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G-force reaching several g affect the stability of the launch vehicle in the launching phase. The mathematical modeling
methods are used to study the longitudinal vibration stability of liquid-fueled launch vehicles in the launching phase. The paper
presents the modeling of small oscillations of fluid motion in a rigid, partially filled shell of rotation. The modeling is based on
the developed mathematical model: fluid is supposed to be ideal and incompressible, fluid motion being vortexless, velocity
potential gradient being fluid velocity. The conditions for the velocity potential at the boundaries of the computational domain
are determined. The kinematic boundary condition and dynamic boundary condition on the free surface and nonpermeability
condition on the bottom and side surfaces of the tank are fulfilled. The solution of the differential equations system for the
boundary conditions has been obtained. The liquid sloshing in a low gravity has been investigated and the boundary conditions
have been generalized. In the dynamic boundary condition the surface tension is accounted for. The assumed mode method has
been developed to solve problems of free and forced oscillations of shell structures with compartments filled with liquid. The
system of differential equations relative to the elastic movements of the structure and the active liquid pressure is obtained. For
its solution three sets of basic functions have been used. The gravitational component in the singular equation system in the
problem of sloshing in a rigid shell is taken into account. The cases of control points being positioned on the liquid free
surface, as well as on the shell surface are considered. The solution of the system of equations determines the velocity
potential.
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Metoa inTerpajibHUX piBHAHb B 3a1a4aX JOCTIIKEHHS KOJIMBAHb 000/I0HOK,
YaCTKOBO 3aII0BHEHUX PiAMHOI0

Muponenko Mapis acnipaum
JleoniniBHa Tncmumym npoonem mawunobyoysanus im. A. H. Iliocopnoeo HAHY, eyn.
THooicapcwroeo, 2/10, Xapxis, 61046, Yrpaina

ITepeBaHTa)KeHHs Ha AKTHBHUX JIUITHKAX MOJBOTY BIUIMBAIOTH HA CTIHKICTh paKeTH-HOCIS Ta JOCATAIOTh BEIMYMHY Y KiJIbKa .
JIis  mocmiKeHHST CTIHKOCTI PIAMHHHUX paKeT-HOCITB MOJ0 MAii MO3M0BXKHIX KOJHWBaHb HA AaKTHBHIN IUISHII TOJBOTY
3aCTOCOBYIOTBCSI METO/IM MaTeMaTHYHOTO MOJCIIIOBAaHHS. B CTaTTi HaBEJCHO MOJIENIOBAHHS MaJUX KOJIMBAaHb PyXy DiAHHH Y
JKOPCTKil, YaCTKOBO 3aIllOBHEHIH OOOIOHII 00epTaHHS Ha OCHOBI po3poO0JIeHOiI MaTeMaTHYHOI MOJENi: piAWHA ifeanbHa Ta
HECTUCIINBA, PYX PIIMHU € 0e3BUXPOBUM, TPAJi€HT MOTEHIIANTY IIBHIKOCTI € IIBHIKICTIO piAnHU. BH3HaueHi ymoBH Iyt
MOTEHIIIANY IMIBUIKOCTI Ha TPAaHHUIAX PO3paxyHKOBOI oOnacTi. BUKOHYIOTECS KiHEMaTHYHA Ta TUHAMIYHA YMOBU Ha BUIBHIN
MOBepXHI Ta yMOBa HENPOTIKaHHS Ha MJHUNI Ta OOKOBHMX IIOBEPXHAX pe3epByapy. OTpuUMaHO pO3B’SI30K CHCTEMHU
nudepeHIifHNX PIBHAHb 3 BUKOHAHHSIM I'DAaHUYHHUX YMOB. JlOCHi/PKeHI KOJMBAHHS PiAMHM B YMOBax HU3BKOI rpaBiTamil Ta
y3arajJbHeHO TpaHW4Hi yMOBH. B nuHaMiuHiii TpaHWYHill yMOBI 3IiHiCHEHO BpaxyBaHHS IIOBepXHEBOro Hatrsry. [l
pO3B’si3aHHS 3a1ady PO BJACHI Ta BUMYIICHI KOJIMBAaHHS OOOJIOHKOBMX KOHCTPYKIIH 3 BiJCikaMH, IIO MICTATH PiiUHY,
po3pobieHo Meron 3amanux ¢GopMm. OtpuMano cucteMy IU(EpEHIIHHUX pPIBHAHb BiJHOCHO NPYXHHX IEpeMilleHb
KOHCTPYKIIi Ta IIF0YOT0 THCKY DiJVHH, JJs PO3B’S3aHHs SKOi BUKOPHCTAHO TpH Habopu OasmcHUX (yHKIi. BukoHaHO
ypaxyBaHHS TPaBiTallifHOI CKITa0BOi Y CHCTEMi CHHTYJISIPHUX PIBHSIHB B 3aJa4i KOJMBaHb PiMHU B )KOPCTKii 00onoHMi. [Tpu
OBOMY PO3TJISHYTI BHUIAIKU TIOJIOKEHHS KOHTPOJIFHMX TOYOK Ha BUIBHIM MOBEpPXHI pIIWMHU Ta HAa MOBEPXHI OOOJIOHKH.
P03B’S130K CHCTEMH PiBHSHb BH3HAYa€ MOTEHINAN MIBHAKOCTEH. JIOCIIUKEHO YMOBH, TIPH SKUX BIUTMB IIOBEPXHEBOTO HATATY
crae HecyTreBuM. OTpuMaHi pe3yiabTaTH CBif4aTh PO Te, IO NPH 3HAYHUX MapaMerpax I[epeBaHTAKEHHS BIUIUB
MOBEPXHEBOTO HATATY CTa€ HECYTTEBUM. AJie 3i 3MEHLICHHSM [bOTO MapameTpy (IpH HH3BKUX pIBHSAX TIpaBiTtaii)
MIOBEPXHEBHI HATAT CTA€ JOMIHYIOUHM.

Knrouosi cnosa: mamemamuune Modemoeam—m, nepesanmadstCeHHsl, HU3bKa epaeimaui}z, noeepxneeud Hamse, 8LIbHA NnOBEpPXH:L,
Memoo cPAHUYHUX enemenmis.
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MeTOJI HHTETrpaJbHbIX ypaBHeHnﬁ B 3aJavax uccjeaoBanmus KoJIeOaHuH
060.110qu, YaCTH4YHO 3aII0JIHCHHBIX KUJIKOCTbIO

MupoHeHko Mapus acnupanm
JleonnoBHa Hucmumym npobaem mawunocmpoenus um. A. H. Iloocopnozo HAHY, yn.
Hoowcapcroeo, 2/10, Xapvros, 61046, Ykpauna

Ileperpy3ku Ha akTHBHBIX Y4acTKax I10JICTa BIUAIOT HA YCTOHUUBOCTD PAKETHI-HOCUTEIIS U JOCTUIAIOT BEJIMUYUHBI B HECKOJIBKO
g. s uccnenoBaHMsS YCTOMYMBOCTH JKHIKOCTHBIX paKeT-HOCHTENEH K OEWCTBHIO NMPOJONBHBIX KOJeOaHWII Ha aKTUBHOM
y4JacTKe MOjeTa MPUMEHSIOTCS METOMAbl MaTeMaTH4ecKOro MOAENUpPOBaHMSA. B cTaThe MpHBEIEHBI MOAEIHUPOBAHUS MAIBIX
KoJIeOaHMH IIBIDKCHHS JKHIKOCTH B JKECTKOW, YaCTMYHO 3aIOJHEHHOW 00O0JI0OYKEe BpaIleHHS Ha OCHOBE pa3paboTaHHOMH
MaTeMaTH4eCKOi MOJENH: JKUIKOCTh HIAealbHas U HECXKHMaeMas, JBUKEHHE KUAKOCTH SIBISIETCS Oe3BUXPEBBIM, I'paJHEHT
MOTEHIMAala CKOPOCTH SBIISIETCS CKOPOCTBIO SKUAKOCTU. OTpeseneHbl ycloBUs Ul MOTEHIMAala CKOPOCTH Ha TpaHHIAX
pacueTHOH 00NacTH. BEBIMONHSAIOTCS KHHEMAaTHYeCKOe M JUHAMUYECKOE YCIOBHS Ha CBOOOIHOI NOBEPXHOCTH, YCIOBHE
HENIPOTeKaHWs Ha JHHINE W OOKOBBIX MOBEPXHOCTSIX pesepByapa. IlomydeHo pemenme cuctemsl anddepeHnnaIbHbIX
YpaBHEHUH C BBINOJHEHHEM TPAaHWYHBIX yCIOBHH. MccienoBaHbl KoneOaHUs KUAKOCTH B YCIOBHUSX HHU3KOH IpaBHTalUH H
000011eHbI IpaHUYHEIE YCIOBHSL. B TMHAMIYECKOM IpaHUYHOM YCIOBHHU OCYIIECTBIICH Y4eT IIOBEPXHOCTHOTO HaTsDKeHus . s
pemreHnsi 3a7ad O COOCTBEHHBIX M BBIHY)KICHHbBIE KOJEOAHHS OOOIOYCUHBIX KOHCTPYKIHH C OTCEKaMH, COAEPKAMMUMHU
JKUJIKOCTB, pa3paboTaH MeTon 3amaHHbIX Gopm. [lomydeHa cucrema muddepeHInaIbHbIX YPaBHEHUH OTHOCHTEIBFHO YIPYTHX
HepeMenieHnH KOHCTPYKIMM M AEHCTBYIONIETO OaBIEHHs JKHIKOCTH, ISl PEMICHHS KOTOPOI HCHONb30BaHO Tpu Habopa
0a3ucHBIX (QyHKIMA. BBIMOMHEH y4YeT TpaBUTALMOHHON COCTaBISIONICH B CHCTEME CHHTYJSIPHBIX YpaBHEHHI B 3amade
KoJIeOaHMH KHUAKOCTH B jkecTKOH obosouke. [Ipy 3TOM paccMOTpEHBI CiTydan MOJIOKEHHs TOUeK Ha CBOOOIHOI ITOBEPXHOCTH
JKHJKOCTH U Ha ITOBEPXHOCTH 000JI0UKH. PenieHne cucteMbl ypaBHEHHH ONpeeisieT HOTeHINa CKOPOCTEH.

Kniouesvie cnosa: mamemamuueckoe Moaeﬂupoeayue, nepecpysku, HU3Kas cpasumayus, nNOBEPXHOCMHOe HAMANCEeHUE,
c60000Has noOBepPXHOCmb, Memoo CPAHUYHBIX D1E€EMERMO6.

1. Introduction

The mission plan of the launch vehicle includes several thrust and coast phases. The pulsations of
the engine thrust in the active part of the flight influence the rocket as a closed system, and cause
oscillations of the missile body and liquid in the fuel lines [1]. This can lead to loss of stability and
cause serious consequences.

Flight and control of the launch vehicle on the active part of the trajectory take place under the
influence of such external forces as temperature changes and atmosphere density, wind disturbances, as
well as liquid oscillations in fuel tanks which are caused by the full range of those external influences
[2]. During the orbital shot the gravity and aerodynamic losses reduce the speed of the spacecraft by 2-3
km/s at the end of the active phase. Taking into account these factors, as well as other losses, the
required launch speed will be exceeding the first cosmic velocity. The achievement of speed which
exceeds 8000 m/s over a short period of time during the active part requires significant accelerations.
For example, the acceleration of a 5000 kg rocket upon reaching orbit is approximately 6g [3]. Thus,
the longitudinal acceleration acting on the launch vehicle in this flight path can reach several g and
affect the stability.

A nonuniform rocket motion causes the appearance of inertial force, which is an additional load on
structural elements. Accounting for the presence of rocket payload and assuming no angular oscillations
of the rocket relative to the center of mass, the lateral-stability coefficient and longitudinal load factor,
which show how the stress caused by the payload exceeds the payload weight, is determined in [4]. It is
specified that the decrease in vehicle mass due to chemical combustion has the greatest effect on the
longitudinal load coefficient, which changes unevenly on the active part of the trajectory and acquires
the maximum value at the end of the engine working stage [4].

Researching stability of liquid-propellant missile concerning longitudinal oscillations on an active
part of trajectory is pretty difficult on the ground. Verification tests in situ require significant material
and financial costs, so the use of mathematical modeling techniques can help to avoid such expenses
and contribute to solving the problem of longitudinal stability [5].

2. Problem statement

The elastic shell of revolution, which is partially filled with liquid, is considered. To simulate the
flow of liquid, a computer model based on the postulates that the fluid is ideal and incompressible and
the flow of fluid is vortex-free, has been developed. Only small-amplitude oscillation has been
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investigated (linear theory). There is a velocity potential @(x,y,z,t), the gradient of which is the fluid
velocity, namely:

oo oD oD
Vy=—Vy=—V,;=— (2.1)
OX oy oz
The motion equation of the shell system is presented in an operator form
LU +MU = pn+Q, (2.2)

where L, M are the operators of elastic and mass forces;
p is liquid pressure on a wetted surface of a shell structure, N/m?;
n is an outer unit normal;
Q is exciting force, N.
Using the motion equations and the flow potentiality conditions, we arrive at the Cauchy-Lagrange
integral in the form [6]:

p=-p |:8;D+ax (t)x+aZ (t)z+gz+;|V@|2j|, (2.3)

where py is liquid density, kg/m?;
ay (t) 8y (t) are components of the acceleration of exciting force, m/sec?;
g is a gravity acceleration, m/sec?.

2
If we consider small liquid oscillations (linear formulation), then |VcD| << 1, , and from the
formulas (2.3) we obtain

p=-p [(:thraX (t)x+aZ (t)z+gz:|. (2.4)

Assuming that the flow is vortex-free, the motion of an ideal incompressible fluid is described by the
Laplace equation for the velocity potential.
vio -o0. (2.5)
To determine the pressure, it is necessary to calculate the velocity potential. The boundary
conditions are to be formulated for the velocity potential at the boundaries of the computational domain.
Nonpermeability condition is met on the bottom and the lateral surface. Kinematic and dynamic
boundary conditions are fulfilled on the free surface. The defined conditions are as follows:

Zf+ax(t)x+az (t)§+ ad

oD
=0, —
on

_oe o o 256)
ot on

SO SO (o2

where w = (U ,n) is the normal component of displacement of shell structure;

¢ = {(x, y,t )) is the free surface motion function.
Thus, we have the differential equation system for determining five unknown functions

Uj Uy Ug, @0

1
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-

LU + MU =—p (a(erax(t)XJraZ (t)z+gzj+Q(t),

a (2.7)

VZCD =0.

\§

We solve a system of differential equations (2.7) by fulfilling the boundary conditions (2.6).
To obtain an unambiguous solution of the equations system (2.7) with boundary conditions (2.6), we
add the Von Neumann condition:

oD
[l —ds, =0. 2.8)
So on

The differential equations system (2.7) should also be supplemented by the conditions for securing
the shell structure, i.e. the conditions with respect to the vector-function U.

2.1. Taking into account the surface tension in the study of liquid oscillations at low gravity
Note that the boundary conditions (2.6) in the case of low gravity must be generalized. Let oo be the
surface tension. According to the Laplace-Jung formula [7] we have

where « is the surface curvature.
The expression for the curvature can be linearized, as in [8]:

K = —Asé’,
where A is the Laplacian.
Thus, the dynamic boundary condition on the free surface takes the form

oD 00
—+a(t)x+a, (t)z+9c-2ag| =o. (2.10)
ot A S
0
The condition (2.10) allows us to account for the surface tension, which becomes a determining
factor in the study of oscillations of the shell structure under conditions of low gravity.

2.2. The assumed mode method

The assumed mode method has been developed to solve problems of proper oscillations and
constrained oscillations of elastic shell structures with the liquid-filled compartment. A connected
differential equations system with respect to the elastic displacements of the structure and the effective
fluid pressure has been obtained. Three sets of basic functions are used to represent the solutions of this
system. The first of them consists of normal oscillations modes of the structure in the absence of filler
and is used to construct hydroelastic displacements. The second and third sets of basic functions are
obtained by constructing the velocity potential and the function describing the time variation of the
liquid free surface. The velocity potential is represented by the sum of two partial potentials. One of
them corresponds to the liquid normal oscillations in the rigid reservoir, taking into account the gravity
forces; the second refers to the normal oscillations of the elastic shell with the liquid without taking into
account the gravity forces.

In general, we look for the displacements of the shell structure with compartments partially filled
with liquid, in the form:

U= kglck (t)uk , (2.11)



BicHuk XapkiBCbKOro HawioHanbHOro yHisepcuteTy imeHi B. H. KapasiHa
cepis «MaTematuyHe MogentoBaHHS. IHpopmaLiiHi TexHonorii. ABTOMaTM30BaHi C1cTeMW ynpasniHHsy, Bunyck 50, 2021 75

where Cy (t) is the unknown coefficients which are time-dependent only;

Uy is the oscillation modes of the unfilled shell structure;

N is the number of modes obtained in the calculations.
The orthogonality relations are satisfied [9]

L(uk)=QfM(uk), (M(uk),uj)zakj, (L(uk),uj)zgfgkj, (2.12)

where 'Qk is the k-frequency of natural oscillation of the unfilled elastic structure.

We find the velocity potential as the sum of two potentials @ = @1 + @2. The potential @, is
represented in the form
N

4= 2 G (t) oy, (2.13)
where ¢1k is the basic functions.
In the formula (2.13), the time-dependent coefficients Cy (t) are defined in the equation (2.11). For
the functions ¢1k we have the following boundary value problems:

A 1
an

V2¢1k =0, o= Wi W :(uk,n), ¢1k‘50 =0 (2.14)

These functions are presented in [10].

Let us represent the potential @2 in the form of a normal oscillation mode of liquid in a rigid tank

D ,= k'\zildk (t)dy. - (2.15)

where dk (t) is the unknown time-dependent coefficients;

¢ is the basic functions;
M is the number of modes obtained in the calculations.
For the functions ¢ we formulate boundary value problems as follows:

ap op 0 o¢
v2¢2k=0, 2k _g, T2k % T2k oe g, (2.16)
on . on S ot ot
Thus on a free surface we have a ratio

2

o¢ X

2k k

on g

where Xk is the frequency of normal oscillations of the free surface, Hz.
These basic functions are constructed in [11]. The free surface equation takes the form
N 6¢1k M 8¢2k

é/ = é’(x,y,t) = kéj_ck ain +k§1dk o ) (218)
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and for the velocity potential we have

N M
Note that the total potential (2.19) satisfies the following relations
oD

AD =0, -
on

ow oD

, - (2.20)
S1 & on

ot

So
Thus, for the final solution of the initial boundary value problem (2.7) with boundary conditions
(2.6), (2.9) - (2.10) it is necessary to satisfy the differential equations system (2.6) and the dynamic
boundary condition on the free surface described by the first of equations (2.6), and if the surface
tension is taken into account, it is described by the equation (2.10).
In this case, the following relation is fulfilled on the free surface:

kzlckqjlk +k21dk¢2k +(g+a; (t))( Y g ¢lk +k21d gﬁk j+aX ()x=0. (2.21)

In addition, due to the equation (2.2) the relation is true

N N
L(kZzllck(t)uk)+ M (kélf:'k(t)uk) -

N M
~—p) |:(k§16k(t)¢1k + kéldk(t)¢2k)+ a, (t)x+a, (t)z} +Q. (222

In the equation (2.21) the surface tension is not taken into account.
From the relations (2.21), (2.22) we find the unknown functions of time C (t) and dy (t) For
their unambiguous definition we use the initial conditions

ok (0)=cko, ¢ (0)=ck1, di (0)=dyg, dy (0)=dyq- (2.23)

This makes it possible to investigate the forced oscillations of the shell structure with compartments
partially filled with liquid. Since it is usually assumed that at the initial time the "shell-liquid" system is
at rest, zero initial conditions are used in the calculations.

To study free oscillations, we assume that

ck (t)=Cy exp(iwt), dy (t)=Dy exp(iat). (2.24)

Let us substitute these expressions into the relations (2.21), (2.22) and arrive at the eigenvalue
problem, similar to that given in [11].

Next, we describe the method of reducing the task of determining the oscillation modes and
frequencies of shell systems partially filled with liquid, to a set of singular equations.

3. The system of singular equations for velocity potential in the problem of liquid oscillations
in a rigid shell taking into account a gravitational component
Let us represent the potential ®as follows

0:2(69,2,6) = ) di ©¢2(x,9,2)
k=1

where the functions ¢, are determined from the relations (2.16).
Hereinafter, for simplicity of notation ¢, = .
Let us represent 1 as a sum of the potentials of a simple and double layer [12]
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a1
2mp = || == dS;S €S, u 3.1
Ty ﬂan|P—P0 ﬂ‘panw P 4575 €51Y 50 (3.1)
S

Here r(P, Py) = |P — P,| is the Cartesian distance between P and Py.
Let us consider different cases of the control point position. We leave the general integral solution

mp = ff (P, Po)dsl ff anr(P pyy 450

a) Let P, € S, (the control point is on a free surface):

2’“/’0_[[ ll"’r(Plpo) ﬂ‘l’lanr(Plpo) ﬂ‘l"’azr(Plpo) 0. 33)

In this case We have

i(l) _ Z "% ; (3.4)
\/(x —x0)2+ (v —y0)? + (z — 2)?

In this case, on Sy, z = z, = 62[1)
/4

So

Then

2o (Py) = — ff Yoy 48 ff Vg 08 (35)

b) Let P, € S; (the control point is on the shell surface). We have the following integral equations

(w1 o 1 o 1 |
o= || Gi o || Vo s |V e s 09

k? 1 0 1 0 1
2m4 (Py) =5!f lﬁomﬂmo—sff ¢1%md51—ﬂ ¢o£md50- (3.6)

Let us transform these equations by calculating the components with iy, and , . For control and
integration points on the shell of revolution, we obtain

2myp, + ﬂ zpliLdSl = AyY;. 3.7)
) onr(P, Py)

For control points belonging to the shell and integration points on the free surface we have

k? 1 d 1 k?
— ————dS, — —————dS, = —By — Ciq, .

where
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B0 = [[ w0 (3) s cuo = [ Voo (2 dso (39)
So So

For the control points on the liquid free surface and the integration points belonging to the shell of
revolution we obtain

9] 1
_ﬂ Y1 g, pyy 45 = D¥r: (3.10)
S1
For control and integration points, which simultaneously belong to the liquid free surface, we have
2 kzﬂ- 1dS = 2nE kzF 3.11
Ty g wor o = 2mEy, g Yo, (3.11)
So
where
1
So

For control points on the surface P, € S; we obtain
2

k
AY, = ?szo — Cy. (3.13)

From (3.13) 1, via i, is expressed as follows

k2
Yy = ?A_IBVJO — A7 C,. (3.14)

For the control points from the liquid free surface P, € S; we obtain

k2
Dy, = 2rE, — ?FIIJO. (3.15)

In (3.15) we substitute the expression for y: obtained above and arrive at the following integral
relations

k2 2
?DA_IB'(I)O - DA_lcll)O = ZﬂElpo - ?Flpo;

k2
? (DA_lBll)O + Fl/)o) = 2T[El/)0 + DA_1C1/)0;

k2
?zpo = (DA™'B + F)~1(2nE + DA™1C)yy;

The last one takes the form

(A—2E), =0, (3.16)
where
A= (DA B+ F)™'(2nE + DA™'();
kZ
A=—
g

That is, we came to the eigenvalue problem.

4. Reduction to one-dimensional singular equations
Let us construct integral equations to determine the potential in the form:
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f2n¢1+ﬂ¢1%( ffwo—dso ffl[)oa dSy =0

i\ ﬂ Y15n d51 —2mipo +— f f Po=dSy =0 (1)

From (3.16) we derive yo and k.
The solution of the system (4.1) is sought in the form:

Y =1(r,z) cosab (4.2)
where 7, 0, z are cylindrical coordinates;
Ir| = |P = Py| = \/rz +1¢ + (z — z9)? — 2rrycos(0 — ;). (4.3)
The normal derivative takes the form
% P _1 Pl e _(T;:Oj(: C;Si(;)]_;n;)(f —2), (4.4)
0

a=1r%2+1¢+ (z—29)%b = 2rm,.
The transformation of kernels leads to the following formulas for calculating integrals in (4.1).

9, 1
j f " %(m) ds, = f b (2)0(z, 2y)r(2)dT, (4.6)
S1 . T
[[ ¥ () 450 = [ w @2, 3o (47)
o 0
where
0(z,2,) = — {i [rz T L) —F (k)] n, + E L()m, (4.8)
Va+ b (2r a—b
®(P,Py) = L1!«*0((k), k? = 2b (4.9)
Va+b a+b
/2
Fu() = (—1)o [ 2822040 (4.10)
1 —k?%sin%6
/2
E,(k) = (—1)*(1 — 4a?) f cos2af+1 — k?sin20 do (4.11)

In the given formulas F,(k), E,(k) are integrals along the circumferential coordinate; I" is the

generating surface Si; p is the polar coordinate of So.

Let us calculate the matrices of integrated equations of the eigenvalue problem (3.6). We obtain the

following formulas:

{ AYy = 1By — CPg; Ay + Cipy — ABYy =0 (4.12)
Dyy = 2mEo — AFo; Dy — Evpg + AFpy = 0 '
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or in a matrix form
(b 250

Note that the obtained integral operators contain logarithmic features. To numerically determine
such integrals the method proposed in [13, 14] has been used.

(4.13)

5. Free oscillations of shell structures at different gravity levels

To determine the conditions of stable movement of the shells partially filled with liquid under the
action of external loads, at the first stage we find the frequencies and modes of oscillations of the "shell-
liquid" system according to [9, 15, 16].

At first, we will limit ourselves to liquid oscillations in rigid shells. Note that in practice these
oscillations correspond to the lowest oscillation frequencies which results in the detuning [9].

The cylindrical (C) and cylindrical-conical (CC) shells shown in Fig. 1 are considered. The
frequencies and modes of liquid oscillations in these composite shells of revolution are obtained by the
method proposed above.

Fig. 1. Shells partially filled with liquid

Tab. 1 shows the frequencies of non-axisymmetric oscillations of the liquid for different shells
with the following parameters: H =2 wm, Hi= H>= 1M, R=1m, B = 60°.

Table 1. Frequencies of non-axisymmetric oscillations of the liquid, Hz

¢ n
Shell type
1 2 3 4 5 6 7

1 C 4.2474 7.2352 9.1573 10.726 12.089 13.312 14.433
CcC 4.2346 7.2352 9.1573 10.726 12.089 13.312 14.433

2 C 5.4733 8.1148 9.8966 11.377 12.678 13.855 14.939
CcC 5.4718 8.1148 9.8966 11.377 12.678 13.855 14.939

3 C 6.4197 8.8719 10.558 11.973 13.226 14.364 15.417
C 6.4195 8.8719 10.558 11.973 13.226 14.364 15.417

Fig. 2 shows the first modes of heosesymmetric oscillations of the liquid at a=1.
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Fig. 2 The first modes of non-axisymmetric oscillations of the free surface, « =1

Note that for the selected parameters of the shells, the frequency and the modes of the oscillations
are similar for both tanks considered. It indicates that for such parameters the shape of the bottom does
not significantly affect the frequencies and modes of oscillations; the determining factor is the filling
level of the shells H.

Next, we introduce the parameter [17], which characterizes the capillary length A = ’ig . To take
P

into account the surface tension, we use the formula [18]

o o

— :—I|:1+7\42€ 0)_I2:|’
g g 9 11=12.. (5.1)

where ®,, ®, are the oscillation frequencies with and without accounting for the surface tension,

respectively.
Let us determine the effect of surface tension. To do this we calculate the frequency parameters

0),2 / g for a cylindrical shell, the parameters of which are given above. Next, we select ACZ =102 and

calculate the frequency parameters a)é / g taking the surface tension into account.

The results are shown in Tab. 2. The g-force parameter ng=1 is used here, which corresponds to the
level of gravity on the Earth's surface.

Table 2. Frequency parameters with accounting for surface tension

Frequencies !
and
frequency 1 2 3 4 5 6 7
parameters
o/ g 1.8389 5.3361 8.5480 11.727 14.817 18.227 21.234
|
o’/ g 1.8451 5.4880 9.1725 13.339 18.069 24.282 30.808
cl
® 4.2474 7.2352 9.1573 10.726 12.089 13.312 14.433
|
4.2544 7.3374 9.4859 11.439 13.314 15.434 17.384
cl

Tab. 3 shows the data on the oscillation frequencies of the liquid at different values of the parameter
ng, with and without accounting for the surface tension respectively.

From the results above we see that even at ﬂtz =102 there is a noticeable effect of surface tension,
especially at high oscillation frequencies.
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Table 3. Frequencies of oscillations at different values of the g-force parameter

The

oscillation G-force parameter ng

frequencies 0.1 0.25 05 1 2 3 4
o, 1.3431 2.1236 3.0032 4.2474 6.0065 7.3565 8.4946
o 1.5536 2.1803 3.0235 4.2544 6.0091 7.3579 8.4955

The obtained results indicate that for significant g-force parameters, the influence of surface tension
becomes insignificant. But with the decrease of this parameter (at low levels of gravity) the influence of
surface tension becomes dominant.

6. Conclusions

The integral equations method is generalized for the research of free liquid oscillations in shells at
different values of the g-force parameter. A connected system of differential equations with respect to
the elastic displacements of the structure and the effective fluid pressure has been obtained. Liquid
oscillations in cylindrical and cylindrical-conical shells have been considered. It has been established
that for the selected parameters of shells frequencies and forms of oscillations are similar for both shells
considered. Therefore, for the selected parameters the shape of the bottom has a negligible effect on the
frequencies and modes of oscillations; the determining factor is the level of filling of the shells. The
results characterizing the influence of the parameters of g-force and surface tension have been obtained.
The conditions under which the effect of surface tension becomes insignificant have been investigated.
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