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A new approach to mathematical modeling of complex technical systems according to their condition is being developed.
Connections between subsystems of a complex system are considered to be arbitrary in terms of reliability. Due to wear,
failures of subsystems can happen at random moments of time. Failures of some subsystems can lead to the entire system
failure. The purpose of the simulation is to maintain the level of reliability and operability of a complex technical system at an
optimal level for an unlimited time interval by means of regular preventive maintenance and repair. Technical instructions and
specifications, as well as statistical data, are used in modeling a priori characteristics of subsystems. That information is used
to determine the reliability of a complex system and its condition. The mathematical model is built in terms of the Markov
decision-making process. The chosen optimization method allows obtaining the best policy for choosing acceptable preventive
maintenance policy and repairs at the planned time of inspections and moments of failures.
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Po3BuBaeThcs HOBHI MiAXi B MaTeMaTHYHOMY MOJCTIOBaHHI CKIQJHUX TEXHIYHHX CHCTEM 3 YpaxyBaHHSAM IX CTaHiB.
PosrnmsmaroTbes CKIagHI CHCTEMH, IO CKIAJAlOTHCS 3 KIiHIEBOTO YHCIA, B3arali KaXydd, Pi3HHX IMPOCTUX MiICHCTEM.
JlomyckaeTbesl, MO B CEHCl HamifHOCTI MiACHCTEMH 3'€IHaHI MK COOOI0 JOBUTRHO. YCi MiACHCTEMH B Mpoleci podoTu
3HOIIYIOThCSI, UMOBIPHICTh 1X BiIMOBH 301bIIyeThCs. BimMoBa oHiel a00 IEKiTBKOX MiJICHCTEM HE 000B'SI3KOBO MPH3BOIUTH
JI0 BiZIMOBM yci€l cuctemMu. SIKIIO BiMOBA CKJIAJHOI CHCTEMH BiIOYBAaeThCs, TO Iie IPH3BOJUTH IO BEJIMKHMX BTpaT i3-3a 11
HPOCTOIO 1 BUTPAT Ha BiJHOBJIEHHS. Y CTATTi PO3MVISIHYTO BUIIAQJOK POOOTH CHCTEMH Ha HeOOMEXEHOMY iHTepBaji yacy 3
peryisipHUME PO iNaKTHYHUMHU OOCIYrOBYBaHHSMH i PEMOHTAMH B MOMEHTH BiZMOB. JlomyckaeThbesi Oe3id pi3HUX BHJIB
00ciyropyBaHb i PEMOHTIB. METOI0 MOJEIIOBaHHS CHUCTEMH € 3HaXOMKEHHS ONTHUMAIbHOTO IIpaBHia BHOOpY BHAY
00CiyropyBaHHs B IUIAHOBI MOMEHTH KOHTPOJIFO CHCTEMH Ta BHIYy DPEMOHTY B MOMEHTH BiZIMOB, 3 ypaXyBaHHAM
CIIOCTEPEXKYBAHHX CTaHIB, HA HEOOMEKCHOMY IHTepBali dacy. TeXHIUHI ONWMCH Ta CTATHCTHYHI JaHI BH3HAYAIOTH OI[IHKY
(dhyHKIIT HAOIHHOCTI KOKHOT migcuctemMu. DyHKIIT HATIHHOCTI TiacucTeM 1 iH(OpMais mpo iX 3'€qHaHHS MiXK CO0OOI0 B CeHCI
HaJiHOCTI BM3HAYAIOTh OLIHKY (QYHKLIT HaaidHOCTI ckiaaHoi cucremu. CTaH CHCTEMH B MOMEHT KOHTPOJIIO BU3HAYAETHCS
3HA4YECHHSAMHU MapaMeTpiB migcucTeM 1 QyHKuielo HangidHOcTi cucreMu. Take BU3HAYEGHHs CTaHy 3a0e3neuye OLHKY
IMOBIPHOCTI BiIMOBH 1 TIPOYKTHUBHOCTI B KOXX€H MOMEHT KOHTPOJIIO JJIsi KOHKPETHOT PO3IIISTHYTOI cUCTeMU. BuKopucTaHHs
CTaHy B MoJielli IPO(QIIaKTHKH € aKTyaJbHHM, OCKITBKH BPaXOBYIOTHCSI OCOOIMBOCTI, CTYIiHb 3HOCY KOHKPETHOI CHCTEMH. Y
ICHYIOUHX MOJIENSX MPOQIAKTHKH CHCTEMH, MOOYJOBaHNX Ha OCHOBI "HANpaloBaHHS HAa BIAMOBY", JUIsl IPUIHATTS PillIeHb 3
HiITPUMKH ONTHUMAJBHOTO PIiBHS HaAiHHOCTI BUKOPHCTOBYIOTBCS XapaKTEPUCTHKU, OTPHMaHi IX YCEpPEAHEHHSAM IO LIJIOMY
aHCaMOJII0 OTHOTHITHHX CUCTEM. 3pO3yMLo, IO IPH HEOMY OCOOJIMBOCTI KOHKPETHOI CHCTEMH HE BPaXxOBYIOThCA. BapricTs
BIJTHOBJICHHSI CHCTEMH ITIiCJISl BIZIMOBH YacTO 3aJIE)KUTh BiJ HAOOPY MiJICHCTEM, SKi IPUBENH ii 10O BiAMOBH. Y MPOIIOHOBaHIH
CTaTTi PO3MIISTHYTO MOJKJIMBICTh 3HaXO/DKEHHs 1 oOniky Takux HaOopiB. Mogens moOynoBaHa B TepMiHaX MapKiBCBKOTO
IpoLecy MPUHHATTA pimeHb. [IponoHyeThcs BUKOPUCTATH BiIOMHUI METOJ ONTHMI3alii, 3aCHOBAaHUH HA MPUHIHUIT CTHUCIIHX
BimoOpakens. Lleit Meroj 3abe3medye 3HAXOKEHHS MpaBWiia BHOOPY MpodinakTHK i PEeMOHTIB A HEOOXiZHOTO PiBHS
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e(eKkTHBHOCTI poOOTH crucTeMu. Jleski KIIFOYOBI MOMEHTH MOOYJOBM MOAEINI NPOLTIOCTPOBaHI Ha KOHKPETHOMY IpPHUKIIAJL
CKJIQTHOT CHCTEMH.

Knwwuosi cnosa: mamemamuuna mooensb, CKIAOHA CUCMEMA, 3HOC MEXHIUHOI cucmemu, Npaye30amuicmy cucmemu, CHMaH
cucmemu, cmpamezis ynpasuiHHA.
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Pa3BuBaercs HOBBIM IOAXON B MaTeMaTU4eCKOM MOJAEIMPOBAHUU CJIOXKHBIX TEXHMYECKHX CHCTEM IIO COCTOSIHHUIO.
Iloncucrempl, paccMaTpuBaeMOW CIO0KHOW CHCTEMBI, COCAMHEHBI MEXKAY COOOH B CMBICIEC HAAeKHOCTH NPOU3BOJIBHO. B
pe3ynbTaTe U3HOCA JOMYCKAIOTCS OTKA3bl IOJCUCTEM B CllydaiiHble MOMEHTBI BpeMeHH. OTKa3bl HEKOTOPBIX IOACUCTEM MOTYT
OpUBOANTHE K OTKa3y Bcel cucreMbl. llenpio MoaenupoBaHWs SBISIETCS MNOANEPXKAHHE YPOBHS HAASKHOCTH U
paboTOCIIOCOOHOCTH CIIOKHON TEXHHYECKOI CHCTEMBI Ha ONTHMAaJIbHOM YPOBHE Ha HEOrPaHHMYCHHOM HMHTEpBAJle BPEMEHH C
MOMOIIBIO PETYISAPHBIX NMPOPHIAKTHIECKHX OOCTYKHBAaHHH M PEMOHTOB. TEXHHYECKHME MHCTPYKIMHU U OIMCAHUS, a TaKkKe
CTaTHCTUYECKHE JaHHBIC, WCIIOJIb30BAHBI MPU MOJCIMPOBAHUM ANPHOPHBIX XapaKTEPUCTHK IOJCHUCTEM. JTa HMH(pOpMaIys
UCIIONB3yeTCd B MOJENH IPH ONpEJelICHHH HAASKHOCTH CIOXKHOH CHCTEMBI M €€ COCTOSHMA. MaremaTndecKas MOJEIb
MOCTPOCHA B TEPMUHAX MapKOBCKOTO IIpoliecca MPHUHATUS pelleHnil. BEIOpaHHBIH METO/ ONTHMHU3AUH TT03BOJISIET MOTYIUTh
HAaWITy4IIyl0 CTPATETHIO BHIOOpA JOIYCTHMBIX MPO(QUIAKTHYECKHX OOCITY)XMBAaHHH M PEMOHTOB B IUIAHOBBIC MOMEHTHI
KOHTPOJA U B MOMEHTHI 0TKa30B. HekoTopsle KiFoueBble M TPOMO3/IKHE 3JIEMEHTHI TOCTPOSHUS MOJIEIH MPOUILTIOCTPHPOBAHBI
Ha IpuMepe BEIOPaHHOH CI0KHOW TEXHUYECKOU CHCTEMEL.

Knioueevie cnosa: mamemamuueckasn MOdeﬂb, CNIOJHCHAA cucmema, U3HOC MexHuuecKoll cucmemasl, pa6omocnoco6nocmb
cucmemsl, COCmMosiHue cucmemosl, cmpamecus ynpaeileHusl.

1 Introduction

The method for constructing a mathematical model of a complex technical system in order to
optimize the level of its reliability and performance by means of preventive maintenance and repair for
an unlimited time interval is discussed in the article.

The class of the systems under consideration is limited by the following conditions. The system
consists of a finite number of subsystems. All subsystems in a complex system are used to achieve the
same goal. All subsystems wear out during operation, their level of functional quality decreases, and the
failure probability increases. Subsystem failure leads to its shutdown and following recovery costs. We
assume that in terms of reliability the subsystems are interconnected arbitrarily and function
independently of each other. Therefore, the failure of one or more of them does not necessarily lead to
the complex system failure. But system failure leads to long downtime and could be very expensive. It
follows that the substantiation of the optimal policy for choosing preventive maintenance at the planned
inspection time and at the moments of system failure is an important and urgent task. A solution to this
problem is proposed in this article.

The existing methods of optimizing the policy of preventive maintenance and repair of technical
systems are based on such concepts as “mean time between failures”, “failure rate”, “availability
factor”. The solutions based on these characteristics are presented in such well-known works as
[1,2,3,4]. Estimations of these characteristics are obtained by processing statistical information from the
observation of a wide range of similar systems. It is clear that such estimations can characterize only a
generic system and cannot take into account the specifics of a current condition of a specific system. In
addition, it is problematic to obtain a representative statistical sample of a sufficiently complex system.

There are some definitions of condition of a complex system which have two values and do not take
into account the structure [5]. Other definitions can, for example, introduce a logical variable for
identifying the subsystem condition or divide the system operating time into three stages: “burn-in”,
“normal work”, “wear-out” and assign the condition to each stage. But there is a difficulty in
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identifying the condition of a working system. In any case, only generic solutions are available to
maintain reliability at a given level, which, obviously, could not be high enough.

A possible option of a system condition is proposed in [6, 7]. The condition in the model is
introduced as the value of a random process, the realizations of which are functionally related to the
failure probability. The dependence of the failure probability on the condition is estimated according to
statistical data. For the convenience of obtaining this dependence, a random process with monotonically
increasing trajectories is chosen. All these actions are important for constructing not a generic but
specific model. The disadvantage of this approach is that it is impossible to properly define the system
condition at the moment of inspection and therefore to make an effective decision.

The model proposed below is a condition-based one. When determining the condition, the following
requirements have been accounted for. The assessment of specific system condition in accordance with
the observed values of the parameters as well as the available a priori information for each subsystem
should be available at any inspection time. It should be noted that the construction of a condition-based
mathematical model of system reliability are described as a promising one in [1]. The proposed
condition-based model of a system is more suitable for solving the problem of preventive maintenance
of a complex system than the ones mentioned above in a brief review of existing approaches, since it
takes into account the specific features of a system under consideration. But this method requires larger
amount of statistical information.

The system condition forms the basis for the mathematical model of a complex system. The system
condition should include the degree of wear of each subsystem, the failure probability of each
subsystem, and the interconnection of subsystems in terms of reliability. System failure is allowed.
Therefore, reducing the probability of system failure is one of the main tasks for improving the
efficiency of the system. It is assumed that at the moment of system failure one of the possible actions
is applied. The chosen action ensures that all failed subsystems are restored. Additionally, the chosen
action determines one of the subsystems to be updated reducing the likelihood of its failure. We assume
that the duration of an emergency shutdown depends on the set of failed subsystems that has caused the
failure of a complex system. If there is no failure, the system is stopped for maintenance after operating
for a time interval 7 specified by the regulations. The duration of the stop is specified by the regulations
as well. One of possible actions is applied to ensure the restoration of all failed subsystems to an
operating condition, and one of the subsystems determined by the selected action is updated.

When constructing a model, a procedure for determining the basic sets of subsystems the failure of
which causes the complex system failure is proposed. We assume that the cost of restoring a system
depends on the specified set and the costs of restoring its subsystems, as well as the costs of actions and
downtimes are known.

The model is supposed to use certain statistics. All of them refer to the operation of subsystems on
time intervals of durationz . Statistical requirements and their usage will be considered during the
model construction process. Real statistical information may be incomplete; therefore it is allowed to
use expert assessments for the model construction. The system operation being observed, the missing
information can be supplemented and the model refined.

The constructed model allows us to determine the optimal policy for choosing actions at planned and
unplanned moments of inspection (action policy). This means that at each moment of inspection all
failed subsystems will be restored, and the subsystem for updating will be selected. These actions
provide an optimal level of reliability and system performance for an unlimited time interval under the
specified conditions and constraints.

The proposed work considers a complex system consisted of simple subsystems. The analyst
determines whether the system is simple or complex taking into account the purpose of modeling, the
chosen modeling methods, available information about the system, and the required degree of
adequacy. To a large extent, the adequacy of the model of a complex system depends not only on the
available information, but on the analyst’s skill as well.

2 Mathematical model

The purpose of constructing a mathematical model is to optimize the reliability and performance of a
complex technical system operating for an unlimited time interval. The model will be based on the
system condition. The condition can be assessed at every moment of inspection. It characterizes the
performance of the system and the failure probability. System failure as a result of wear of subsystems
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during operation is allowed as well as its restoration to working condition. Preventive maintenance and
repair are supposed to be performed at the specified time intervals or in case of failure. The paper
proposes a method for optimizing the choice of preventive maintenance and repair, which considers the
system condition.

In this work the model of a complex system built in [8] is modified, the statistical requirements is
changed, the assessment of the current system condition is simplified and refined, the adequacy of the
model is increased, and the class of modeled systems is expanded.

The model is constructed in terms of the Markov decision-making process [9,10]. The method based
on the Banach contraction principle is used for the optimization [9].

Let a complex technical system S be composed of a finite number n of simple subsystems and be
examined on an unlimited time interval. It is required that at any moment of time it is possible to
unambiguously determine whether the subsystem is in working or non-working (failure) condition. It is
convenient to assume that each simple subsystem has one “input” and one “output”. Then the working
condition of a simple subsystem can be associated with the presence of an input-output connection, and
the non-working condition with the absence of such connection. The model considers and analyzes the
sets of several subsystems. Let each set have one input and one output. That will unambiguously
identify the working or failure condition of the set in question at any given time.

Simple subsystems are arbitrarily interconnected in terms of reliability. Isolated subsystems are
excluded. An example of such complex system is presented in the Appendix.

2.1 System reliability function

It is obvious that the reliability of the system S should depend on the reliability of its constituent
subsystems. Let us consider some properties of separate subsystems. Let us adopt the following
definition of the reliability function. Let &; be the random time before the failure of the i -th subsystem,

i=1..,n. Then P(i)(t) =P(& >t) is a reliability function of the i -th subsystem [1].
Each subsystem, as a rule, has a set of monitored parameters containing information about its
reliability and performance. Let the integral indicator of reliability determined by these parameters be

denoted by G(i), i=1..,n. Let the parameter H(i) increase monotonically with increasing wear of the
subsystem on the interval ®(i) :[Q(i),é(i)} [11].

We assume that the system S is inspected at regular time intervals 7 if there is no system failure
and at the moment of failure if it occurs. At each moment of inspection, one of the possible actions
aimed at restoring the failed subsystems and preventive maintenance (update) of one of the subsystems

is applied. Let us denote a random variable ¢ = min {é,r} , Where & the random time before the system
failure is, 7 is the time interval specified by the regulations as the interval of inspection for the system
S . The beginning of any interval is bound to a t=0 moment.

Let us suppose that there is the information about the parameter changes of each of the subsystems
at some inspection intervals¢ . We assume that it can be limited only to the values at the time of

inspection and at the time of subsystem failure. Let us choose the intervals where the information about
the trajectory of the parameter of the i-th subsystem is available. Fig. 1 shows an example of three

observed trajectories placed on the same interval[0,7). At the beginning of the interval at t=0 the
parameter values are equal to 9(‘)(0). Using interpolation and extrapolation methods, it is possible to
estimate the dependence of the parameter of the new subsystem on time [12]. Let us denote it as 9(‘) (t)

,te[O,T],e(i)(O):Q(i), where T is the maximum duration of the time interval provided by statistical
data, i=1...,n. In Fig. 1 it is continuous over the time interval [0, T].
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o T
Fig. 1 The estimation of the dependence of the subsystem parameter on time

The adequacy of the model depends on the accuracy of estimating the function e(i) (t). Therefore,
when changing the operating conditions of the system or obtaining new statistical data on the evolution

of a parameter, it is recommended to refine the assessment of its e(‘) (t) functions.
Let us denote the function inverse toe(i)(t), as tzq/(i)(e), i=1..n. It should be noted that
y,(i)(g(i)):o_

Discretization of the set of parameter values. To construct the model it is necessary to discretize
the set of parameter values for each subsystem of the system S . For simplicity’s sake, we assume that

(1) _ (i)
the number of parameter values of any subsystem is equal to M. Let us denote & :u. Let us
m

assign the discrete parameter value ngi):g(i)+(k—1)5, k=1...m-1 to the half-interval

[Q(i) +(k —1)5,Q(i) + k5) and the discrete parameter value er(n‘) =Q(i) +(m-1)$ to the closed interval
[Q(i)+(m—1)5,§(i)] The discrete set of values of the parameter of the i-th subsystem will be

denoted by &) and a separate value will be denoted by 8) or by é,gi), k=1..m,i=1..n.

Let the i-th subsystem have the parameter value H(i) e®(i) at the moment of inspection. It
corresponds to a discrete parameter éj(') IS (:)(i), the value of which can be calculated by the formula

o) - r:z:w (9(‘) —(Q(‘) +(k —1)5))h‘ (g(‘) i ka—e(‘))(g(‘) +(k —1)5)+
; h*(e(‘) —(g(‘) +(m—1)5))h+ (Q(‘) ; m5—9(‘))(g(‘) +(m—1)5),

+ 1, t=20  _ 1, t>0 _ . :
where h (t) = . h (t) = — the variants of the Heaviside function.
0, t<O0 0, t<0

Actions. Let a set of actions Y =Y, UY, be given. Any action in the set Y; :{y(l),..., y(n)} can be

applied at the scheduled time of inspection. Any action from the set Y, ={§/(1),..., 9(”)} can be applied

at the moment of system failure. The cost of actions depends on the subsystem selected for updating.
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Let us consider the effect of action y(i) €Y;. At the scheduled time of inspection, the application of

action y(i) leads to the restoration of all failed subsystems and to preventive maintenance of the i-th
subsystem. Assume that the following values of the subsystem parameters are recorded after the

restoration of the failed subsystems: é(j) e(:)(j), j=1...,n. Application of action y(i) changes the
value of the parameter of the i -th subsystem to the value élgi) < 6 with probabilityp(élgi) ‘5(0, y(i))

,k=1,...,m. The estimation of the probability distribution o can be obtained on the basis of statistical
data or by using expert estimations. The distribution o for actions from Y, can be the same as for

actions from Y; or it can be estimated separately.

Subsystem reliability function. Numerical information about the probability of subsystem failure is
determined by its reliability function. The estimation of the subsystem reliability function can be
obtained after processing the available information about the parameter change over time, as well as
subsystem failures. Let us consider the case when a failure of any subsystem is detected at the moment
of the failure.

Let L be the number of intervals that contain available information. At the beginning of the | -th

interval, the action having been applied, the value of the parameter 9(‘)(|)e®(‘) of the i-th
subsystem, i=1,...,n is recorded.
If the i-th subsystem does not fail on the |-th interval, then at the time of inspection 7 the

subsystem is in working condition and the parameter value e(i)(l,r)eG)(i) is recorded. If the i-th
subsystem on the |-th interval fails at a t(i)(l,g) moment, then the value of the parameter
e(i)(l,g)e(a(‘) is recorded.

We convert the available statistical information on the i -th subsystem for the new i -th subsystem in
the following way. Let us set the | -th interval. If at the scheduled time of inspection 7 the parameter

value equals H(i)(l,z')e@(i), then for a new subsystem this value is reached at the time

£(®) (I,7)= W(i) (9(‘) (l,r)) . If at the moment of failure the parameter value equals o) (1,¢)e 0 then
in a new subsystem the failure would occur at the moment of time f(‘)(l,g):w(‘)(a(‘)(l,g)). Note

that if at the moment of failure the parameter value is unknown, but the time of failure t(i)(l,g) is
known, then f(i)(I,§):t(i)(l,§)+z//(i)(0(i)(l)) , where 9(‘)(|) is the parameter value at the beginning

of the | -th interval. Let the shifted time moments f(i)(l,r), t(i)(l,g) be found for all intervals 1 =1,...,L

and for all subsystems i=1,...,n. We denote by T the maximum value of all f(i)(l,r)and f(i)(l,f)

for each i.
The empirical reliability function of the i -th subsystem can be defined as follows.

Let us denote by L) (&) the set of intervals in which the failure of the i -th subsystem occurs.

We denote by H(i)(t)z1 > h_(t—f(i)(l,g)) if L(i)(§)¢® and assume H(i)(t)zo if
L 1el(e)

L(i)(.f)=®. Then for time until the failure of the new i- th subsystem the empirical distribution
function has the following form

F0 (1) = H(‘>(t)+(1— H(‘)(t))h— (t—T(i)),
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and the empirical reliability function has the form
PV () =1-r (1). 2.1)

Afterwards, it is more convenient to use leveled versions of the functions Fo(i)(t) and P(gi)(t),
where F(Si)(o):o and at t »oo Féi)(t) monotonously tends to 1.

The reliability functions of the new subsystems Po(i) (t) define the reliability function Ry (t) of the

new system S . The reliability function for the model of the system is given in Appendix Item 1.
The prediction of the reliability function. The prediction of the reliability function of the new i -th
subsystem at the moment of time & can be estimated by the function

- (i)
Pé(")(t):w, t>0,i=1..n. 2.2)
R’ (9)

Here Po(i) (t), i=1..,n, the reliability functions of new subsystems. They define the reliability function
Ps (t) of the new system S at a point in time o .

Assume that all failed subsystems having been restored, the parameters of the subsystems take on the
values 49('), i=1...,n at the time of inspection t; . For each i-th subsystem, we will find the shift of

values £() :w(‘)(e(‘)).
The estimation of the reliability function of the i-th subsystem at the time of inspection t; has the
form
Po(i)(t+f(i))

W,DO, i=1..n. (2.3)

R (0=

Then the system reliability function at the time of inspection t. can be determined with the functions

PO (1), i=1...n. We denote it by P, (t).

The reliability function of the i -th subsystem in a time interval ¢ , after evaluating the parameters at
a time momentt. , can be represented in the form

éi)(t+f(i)+5)
Po(i)(f(i) +5) e

Reliability functions Pg(i)(t), i=1,...,n, determine the system S reliability function Ps (t) in the

i=1..,n. (2.4)

P (1)=

time interval & after the moment of inspection.

2.2 System condition

Let the condition X of the new system S at the initial moment of time be equal to0.

We can calculate the average operating time t of the new system S over a time interval 7 using
the Stieltjes integral

T

T=[td(1-Ry(t))+7-Py(z). (2.5)
0
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Let P, (t) be the reliability function of the system S at the time of inspection t; . Then the average
operating time &, of the system over a time interval (tc,tC +r) is

T

t=[td(1-P;(t))+ 7P (). (2.6)
0
. . o . t-1%
Let us assume that at the moment of inspection t. the condition of the system S is equal to X; ==

The prediction of the reliability function Py (t)of the system S in the time interval & after the
moment of inspection t; allows us to calculate

i =ftd (1-Ps(t))+7-Ps (7). 2.7)
0

.. . . -t
Let us assume that the condition of the system S at time t. + ¢ isequal toXs = -9,

As a result, the condition of the new system S at the initial moment of time is x=0, and the
condition of a completely worn out system is close to 1. The set E =[0,1] contains all possible
conditions.

In addition, it has been found that the set of parameters of the subsystems {H(i),i =1..., n} , recorded

at the moment of inspection t. after applying the action, makes it possible to estimate the condition of

the system S at any moment t, t. <t<7. It is assumed that estimations of the reliability function of
all subsystems have been obtained earlier.
Discretization of the set of conditions. Let us suppose that the discrete set of conditions of the

system S consists of N elements and denote it by E . Let us assign the discrete condition X of the

. 1 1 .
systemS, k=0,...,N —1to the half-mterval{kﬁ,(k +1)WJ .Let us assume that the condition X, has

the value k )
N

Let the condition X € E be observed at the moment of inspection of the system S . It corresponds to
the discrete condition X, , the value of which can be found by the formula

o CN=2 _(k+1 N kYk 4 N N-1\N-1
xV_A(x)_EOh (T—xjh (X—Njﬁ+h (I-x)h (X—T]T. (2.8)

Here A is a mapping of aset E to a discrete set of conditions E = (Xs-s XN-1) -

2.3 The process of changing the system condition over time

Subsystems wear out during operation, and some of them may fail at random times. Information
about possible failures of subsystems is accounted in the corresponding reliability functions. In
addition, the presence of unaccounted factors determines the evolution of the system condition over
time as a random process.

If at the beginning of the interval all subsystems are new, then the reliability functions of new
subsystems at the moment of time & are presented in (2.2). Let us consider these functions, assuming
O to be a variable. The corresponding reliability function of the new system S will depend on the
variable &, which we will further denote by z. The time-dependence function of the new system
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""I

condition will be x(z)= -1z, E, where T( jtd (1-P, (t))+P, (7). An explicit form of the

—

dependence and its graph for a specific system can be obtained in the MAPLE system (see Appendix
Item 2.).

Let us assume that the dependence of the trajectory of the condition x(t),t >0, on time has the form

X(t)=%(0)+(1-%(0)) -1, >0, x(t)<E,

where %(0) is the initial condition.

The estimations of » and g parameters can be obtained from observations of a single trajectory
(for example, a new system for which %(0)=0). If necessary, the shape of the trajectory can be
corrected by observing the trajectories of a specific system.

Suppose that at the scheduled time of inspection t, =0, after the restoration of all failed subsystems,

a condition i(o)e E is observed and the values of the parameters {0( j) j=1 }IS recorded. The

application of action y(i) eY will determine the sets of parameter values A, :{0(1),...,9|£i),...,0(”)},

k =1,...,m. Each set A, determines the system condition x(O,k)e E at the beginning of the interval.
Let us denote %(O, k) ( (O,k))eél. For each j, j=0,.,N—-1, we define the set
{ A(x(0,k))=% } where %;(0) is the condition with the number j from the set E at the

moment of time tC =0, Let us assume that the desired probability of the discrete condition Xj (0) after

applying the action y(i) eY is

P()?j (0)‘)?(0),y(i))= » p(alﬁi)‘e(i),y(‘)), j=0,...N-1. (29)

keK;
J
Transition probability. For further model construction, it is convenient to expand the discrete set
of conditions E . If a system fails in the condition Xj e E , then we will formally consider it a different

condition and denote it by >"<j. In this case, the set of conditions will be doubled. We denote the
resulting discrete set of conditions byE=EuE’={>20,...,>‘<N_1,>?O,...,>"<N_1}. We assume that in the
conditions of the set E , the actions from the set Y;, and in the conditions of the set E’, the actions
from the set Y, can be applied. The sets Y; and Y, do notintersectand Y =Y; UY,

Let us calculate the probability of each condition from E which the system can assume in a time
interval z after applying the action y(i) eY ina given condition from the set E .

If the action y(i) eY; is applied in the condition >‘<(0)e E, then the probability of the condition
(0), ). 1t should be

%j(z) that the system will have in the time interval z is denoted by p(f(j (2)
noted that after applying the action y(i) eY; in the condition %(0)e E, the system transitions to the

condition X;(0) with probability P()”(j (0)[%(0), y(i)j, j=0,..,N-1.

Let us denote KJ—(z):{k:A(Xk(0)+(l—>"<k(O)) rz j:x,}.

yz+p
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Then

)?(O),y(i)j: 5 p(kk(o)ﬁ(o),y(i)), ze[0,]. (2.10)

keKJ-(Z)

P(*j(z)

If the time of inspection t, =0 is unplanned, then the form of formula (2.10) remains correct,

provided that %(0) e E is replaced by %(0)<E’ and vy ey, byyW ey, .

Let the trajectory of the system condition after the application of the action start from X j (O) . Then

t-f ' z Polt+ 1 Pol7+ 1
kj(O)zw,where t is defined in (2.5), fmd(lj)=ft-d 1— 0( ZJ) ‘7 0(7 ZJ).
0 Ro(j) Ro(j)
since tg =t_(1—f<j (0)) the value of the shift y; of the reliability function of the new system for the
J N—j

N
shifts 7, j=0,...,N -1 can be calculated in the MAPLE system for all conditions E during the model

construction before its optimization. These values can be used to construct transition and direct income
functions.

initial condition X; (O)ZN is found from the equation g (;(j)zt_( j j=0,..,N-1. The

2.4 Decision function. Transition matrix

The transition function Q(x\,

Xy y(i),tj, Xy € E , determines the probability distribution on the set

E at the moment of the next inspection (planned at t=7 or unplanned at the moment of system

failure), provided that x, € E is the condition of the system in which action y(i) eY is applied at the
beginning of the interval.
Let the mapping f :E —Y be given, and f(f(j)eYl, f(f(j)eYz, j=0,..,N—1. The mapping

f is called a decision function. The sequence of decision functions 7 ={fq, fy,...} is called a action

policy. The policy 7 = £() _ {f,f,..} iscalled stationary [9].
For each decision function f there is a corresponding matrix of transition probabilities Q( f) of

dimension 2N x2N .
Qi1 leJ
f)= ,
o) (Q21 Q22

We will assume that the matrix Q( f ) is regular for any decision function f [9]. In our case, this

limitation is not essential.
Let us introduce the notation for the elements of the submatrices Qj; :

a(%ol%: f (%)) - a(Anlf. T (%))
Q= )
d(Ro[tn- F(fnct)) - d(Rnaffns F (Rna))
a(%ol%. f (%)) - a(Fnl%. F (%))
Q2 = 2 )
A%t f (=) - a(Rnaffns F(Rna))
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a(%o[%o. F (%) - a(fnaal%. f (%))
Q1= :
d(%o[fn-: F (Fn-a)) - a(Rnaffnas F (Rna))
a(%ol% (%)) -~ (Nl f (%))
Q=
A(%o|*n-1. F (*n1)) - a(Rnaffne F(Rn))

The matrix element Q1 can be calculated with allowance for (2.9) and (2.10) by the formula

R . R PO(T+ZK)
’ = K 0 1 N
oY) KEKZ,-(r)p(X O)Fy) Po(2x)

a(%; (2.11)

where K ; (r):{k :A()”(k (O)+(1—>2k (0))y/r+ﬂ]: >‘<J} . y="Ff(X)eY1, % is the shift of the
trajectory of new system conditions for the trajectory beginning %,.(0).

Formula (2.11) remains correct for the matrix elements Q4 after %, e E is replaced by Xy € E and
if y="f(X)eYs.

The matrix elements Q5 can be calculated as follows

Q(lekk,y)=} > p(iK|2k,y)d[l—Mj, (2.12)

OKeKJ-(t) I:)0 (ZK)

where KJ-(t):{x:A()?K(O)+(1—>”<,((0))) 7 =>2j}, y="f(X)eYr, xx is the shift of the

trajectory of the new system conditions for the trajectory beginning X, (0).

Formula (2.12) is correct for the matrix elements Qp, after Xy is replaced by %, e E and if
y= f ()‘Zk)EYz.

2.5 Basic set of failures

Complex system failure can occur as a result of failure of all subsystems in the system S or one
specific set of subsystems. The duration of system downtime, as well as the cost of its restoring to an
operational condition usually depends on the set of failed subsystems. Therefore, it is important to
define all such sets in advance. We will assume that failure of any simple subsystem does not affect the
failure probability of any other simple subsystem.

Simple subsystems wear out during operation and their failure probability increases. Failure of one
or more subsystems does not necessarily result in the failure of the system S. However, there is a
number M of sets of subsystems with the following property. Failure of all subsystems in a set from
M leads to failure of the system S. None of the set from M contains subsystems "indifferent" to
failure of the system S : failure of the system S occurs when all subsystems of the set fail, and after
restoring any single subsystem of this set, the system S will not remain in a failure condition. If M
contains all the different sets of subsystems from S that have the properties indicated above, then this
set will be called a base set of sets leading to failure of the system S, or simply a basic set of failures.
Note that sets of M can overlap.

Algorithm for compiling a basic set of failures. The method for finding the basic set of failures
M which can be easily implemented by using the MAPLE mathematical program is proposed. Let the
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system S consist of N simple subsystems. The system reliability function is supposed to be known. Let
us execute the following algorithm.
1. Find all subsets of a set of N elements. Denote it by C . Formally identify an element of the set
C with the corresponding set of subsystems.
2. FormasetG, consisting of the elements from C , which correspond to a set of subsystems, the
failure of which leads to failure of the system S . Denote by Gj, elements of the setG , which
correspond to sets of i subsystems, i=1,...,n.

Note that, for some i the set G; =& .

3. If G #J, then G =G;.

4, 1f G=Gy=..=G =D, G,1#T, then G4 =Gy,1.

5. Let Gy =@ . Define the set G, . Any subset g € Gy is excluded from Gy if there is a subset
h eék_j, j=1..,k—1, such that g >h. The remaining elements form a setGk . The union of the

obtained non-empty sets Gi forms the basic set of failures M .

The example of implementing this algorithm for the model can be found in Appendix Item 3.

The theoretical calculation of the failure probability of the given set he M up to the moment of
time t that leads to the failure of the system S is not difficult. However, applying this data to the
model would make determining the condition rather cumbersome. The practical value of the model will
be significantly lower due to the complexity of the implementation. Therefore, the method for
accounting the sets of failures from M is proposed.

Suppose that failure of the system S occurs during a interval of durationz . In this case, the only set
from M is realized. Let us denote the cost of restoring the system S to a working condition by g(h),
heM , if the failure occurred as a result of failure of all subsystems in the set he M . Let us denote the
number of elements in M by J . A selective distribution of the cost of restoring a failed system can be
obtained from the available observations. Therefore, only intervals with failures and the beginnings of
trajectories should be taken into account. The probability that the cost of restoration will begj,

j=1..,J, if the trajectory of the process starts in the condition %(0)e E and the system failure occurs
is denoted by p(g;|%(0)).

2.6 Direct income function
Let us denote the average cost of restoring failed subsystems at the time of inspection by R the cost

of the action f(x)eY determined by the decisive function f in the condition xeE by r(f(x)); the

income per unit of time that the operating system yields for one interval starting in the condition x € E
by v(x); the average duration of system downtime during preventive maintenance by o ; the average

duration of system downtime when restoring from a failure condition by A ; the cost of restoring the
system from a failure condition if the failure occurs due to the realization of the set hj eM by g;.

The direct income function w(x, f (x)) xeE, f (x) eY , with the fixed decision function f isa

column vector composed of 2N components. The component of this vector for a given xeE can be
calculated by the formula

w1 ()= 3 2B g

T+0

X, f(x))-R-r(f (x)))M+

Po (k)

X, f(x))-R=r(f(x))-g;- p(gj kk))d£1—MJ.

Po (k)

i V()A(k)'t(p(ik
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2.7 Optimality criterion. Optimization method
We assume that the inequality a>b is true for the vectors a and b if a similar inequality & >bj; is

true for all components a; > bj; . The inequality a>b is satisfied if a>b and a=b.

The case of an unlimited system operation time is being considered. The action policy is the
selection of admissible actions at the moments of inspection. For each stationary policy

7= £ ={f,f,..} we identify the corresponding average income per unit of time ¢(z) on an
unlimited time interval [9]:

§(7)= Tim L3 Q! (Fpu(f).

L—o0 L 1=0
The limit exists and the column vector go(;z) is composed of the components of equal size if the matrix
Q(f) isregular.

A stationary policy 7" is optimal if the inequality ¢(7z* ) > ¢(7r) is true for any stationary policy 7 .

A stationary policy 7 is & -optimal if the inequality ¢(7r)—¢(7z;")sg is true for a given >0 and
any stationary policy 7 .
The search for an ¢ -optimal policy for controlling the reliability of a complex system can be

implemented by a well-known method based on the Banach contraction principle [9]. Let us introduce
the following auxiliary definitions and notations.

Let a seminorm p(v)=maxv; —minv;, 1<i <2N be defined on a vector space V with elements v

| I
of dimension 2N [13]. The chosen optimization method requires a normalized space. To fulfill this
condition we factorize V by K :{v: p(v) =O} to determine the factor-space V'=V /K on which p is

the norm ||| [13].
Let us define the following operators onV .

F(f v =w(f)+Q(fv;
Uv=m]ng(f)v.

Under the assumption that transition matrix is regular for any decision function f , the operator U

on V' is contractive [9]. Those assumptions allow us to apply an optimization method based on the
Banach contraction principle [9]. The algorithm stopping rule will be based on the following statement:

Statement [14]. LetveV', [Uv—V|=¢&, Uv=F(f v. Then

1. The policy = = £) s ¢ -optimal.

2. m)zn Uv-v)x)<p® < m;?x(Uv ~v)(x).

Here ¢ is an average income per unit of time, which corresponds to an optimal policy.

Corollary [14]. Let ;z*:(f*, f*) be the optimal policy. vy, vy, €V’ and fy,q satisfy the
conditions: vi 3 =Uvy = F(fe,gvg  Let us denote &=|vi 3 —Vk|. Then the decisive function fy .3

determines the ¢ -optimal policy z: = (fy 1, fis1..)-
Optimization algorithm [9].

Selecte >0.

Choose a starting vector vy eV’ arbitrary.
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k-th step of the algorithm (k =1,2...)
1. Calculate Vg =Uv 1 = F(fk )kal Vi eV’ .

2. Check the inequality ||Vk —Vk—1|| <&

()

If it is true, then the policy 7= f." is & -optimal.
Otherwise, execute the (k +1)-th step of the algorithm.
The ¢ -optimal policy will be achieved for any given ¢ >0 in a finite number of steps [9].

Note 1. It is convenient to choose a v, with zero first component from the coset of the factor-space

V'. In practice, this means that for any considered vectorV, it is necessary to subtract the value of the
first component from all components of the vector Vv in order to obtain v'eV'.

3 Conclusion

The constructed mathematical model of a complex technical system according to its condition
provides a higher level of adequacy and, therefore, allows finding a more effective policy for preventive
maintenance and repair for an unlimited time interval in comparison with those proposed earlier in
similar conditions. There is no universal mathematical model of a complex system capable to solve any
problem. The goal of modeling should always be formulated first.

The article deals with a complex technical system composed of a finite number of simple
subsystems which are, generally speaking, different. Each of the simple subsystems wears out during
operation, and the probability of its failure increases. A failure of one of the subsystems does not affect
the failure probability of any other subsystem. Subsystems are arbitrarily interconnected in terms of
reliability. Thus, failure of one or more subsystems does not necessarily lead to failure of the entire
system. We assume that the failure of the system leads to long downtime, highly expensive and,
therefore, is better to be avoided. The work of subsystems as part of one complex system is to achieve a
specified objective. To do that, a modeling approach in terms of a Markov decision-making process,
and an optimization method based on the Banach contraction principle have been chosen.

To implement this approach using the available statistical information for each subsystem is
proposed. If the volume of statistical information is insufficient, it can be supplemented by expert data.
Lack of information reduces the level of model adequacy. On the other hand, using all available
statistical information is not always justified due to the increasing model complexity. The practical
value of the model can be significantly reduced due to its complexity. In the proposed article a
compromise between the complexity of the model and its practical convenience has been sought. Some
key points of complex system modeling for the given model example are presented in Appendix.

One of the possible directions for further development of the proposed approach to constructing the
models for complex system maintenance according to its condition can be revising, clarifying, and
generalizing the concept of action in the problem formulation. Modeling a complex technical system,
the work of which is influenced by seasonal fluctuations can be another direction. The optimization
method for such a system is proposed in [15]. Optimizing the interval of planned system inspection can
be another possibility to improve the efficiency of model usage. The solution to this problem is
proposed in [14].

Appendix
1. Let us consider a model example of the complex technical system § consisting of N=9 simple

subsystems. The subsystems are interconnected in the sense of reliability as shown in Fig. 2. The
connections are denoted by a line crossing.
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Fig. 2 The complex system example

p® (t) i=1...,9, are subsystem reliability functions. The method for finding the reliability function

P(t) of the system S based on the total probability formula has been proposed in [8], namely,

P(t)=1 (1 p (t))(l PP(t))

PP(t)= [1—(1— p(2) (t))(l— p(*) (t))}(l— p(®) (t))[l—(l— P (t))(l— p(®) (t))]
(1P ()P 0P 1)
+[1-(1-Ps;)(1-PSy)) PE)( ( (9)(t))+
+[1-(1-PSg)(1- Ps4)]( (t)) PO (1)+
+[1-(1- PS5 )(1- S ](1 p(® )( P(g)(t)),

PSlz[l—(l—P(z)())(l P(4)(t))}[ ( 3)())(1—P(5)(t))},

Ps, =P (t)P") (1),
_p? (t)p(g) (1),
PS, = [1—(1— p(4) (t))(l— p(®) (t))}[l—(l— p(®) (t))(l— p(7) (t))},
PS5 =1—(1— P (1)pC) (t))(l— P (1)p®) (t)),

1-

where:

0384
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024
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Fig. 3 The new system reliability function
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Fig. 3 shows a graph of the reliability function pO_ syst(t) of the new system S on the time interval

[0,5)
The derivative dp0_syst(t) of the reliability function p0_ syst(t) is found by using the following
command:

dp0 _syst(t) == diff (p0_syst(t),t);

Let us suppose that 7 =3. The average operating time TO of the new system on the time interval
[0,7) can be found with the command:

10 = evalf (int( -t-dp0 syst(t),t=0.tau) + tau-p0 syst(tau));
T0 := 1.437222359 .

The prediction of the reliability function ptt _syst(t) of the new system at the moment of time ¢ is

found by the formula (2). In the MAPLE system, it is implemented with the command ( ¢ replaced by
tt):

pit_syst(t) = subs(p[l] =[ (e + 1) ],p[Z] [MJ,;;[S]

pl1](e) pl2](e)

_ (2Bt u) _(plAle+m) _(plSle+m )y
[ ;{g[? P ( ft;[ﬁ](rr ] ( 1;[]5 (i) )J’p[f’]
_ E ‘J I-I—H _ £—|-!! [ -+t
{ [%[? w )P ( pl7](1r) ] [ pl8](11) J (9]
Ju e
( p[9 .“." ,p_,S_V.Sf]

-

081

0.6

0.4

02

”0 i ; ; : :

f

Fig. 4 The prediction of the system reliability function

Fig. 4 shows a graph of the prediction of the reliability function of a new system in the time interval
=2 over time [0,5).

The derivative dptt _syst(t) of this function is found by the command:
dptt_syst(t) = diff (ptt_syst(t),t) :

Then we obtain the average operating time Ttt of the system, starting from the moment of time tt,
over an interval of duration 7 by using the command:

Ttt == int(-t-dptt_syst(t),t=(0.) ..tau) + tau-ptt_syst(tau);
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Ttt == 0.5653022542 .
The new system condition at a moment of time can be estimated by using the formula

X = % . In this case x == 0.6066702896 .

It is easy to obtain a prediction of the trajectory of the new system condition on the time interval
[0,7). To do this, we need to clear the variable tt by using the command tt:="tt";. We define the

function Ttt(tt) and function x(tt) :TO__I_—TOtt(tt). The graph of condition changes of the new system S

on a time interval [0,7) can be obtained by using the command:

plot(x(tt), tt=0.tau);

0.6

041

034

0.11

0 T T 1
0 1 2 3
it

Fig. 5 The dependence of the system condition on time

Fig. 5 shows a graph of the predicted condition changes of the new system S on the time interval [O,T) :
where 7=3.

3. The set C of all subsets of a set of n=9 elements has cardinality 2" =512. All subsets can be found
in the MAPLE system by using the commands:

> with(combinat) :

> C :=choose(9);
Let us group the resulting subsets into rectangular matrices by i elements in the row, i=1,...,9 . We
obtain matrices C;,i=1,...,9, with a different number of rows. These matrices can be obtained
sequentially by using the command:

> convert(choose(9,i), Matrix) ;

il(n—i)!
matrix C; is a set of subsystem numbers. From the rows of the matrix C;, we compose the matrix G;
according to the following rule. A row of the matrix C; is included in the matrix G;j, if a failure of all

subsystems listed in that row results in a failure of the system . The MAPLE program, which solves the
problem of finding matrices for the considered system S is presented below. It has been found that in
the model example there are 84 sets of subsystems, the failure of which leads to the system failure.

. We assume that the k -th row of the

The number of rows in the matrix C; is equal to
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#Sets of subsystems, the failures of which leads to the system failure
>restart;
>with (combinat) ;

>n:=9; #A number of subsystems

>p:=convert (array(l..n),Vector) ; #Vector for storing the subsystem
#reliabilities

>L:=0; #A number of found sets

>for i from 1 to n

mi:

do
=convert (choose (n, 1) ,Matrix): #Matrix of sets of n elements by i

k max:=n!/(i!*(n-i)!): #A number of all sets
for k from 1 to k max

do

for 1 from 1 to n do p[l]:=1 od:
for I from 1 to I do plmifk,1]]:=0 od:
#System reliability calculation

pl

p2_
p2_
:=(1-(1-p2 sl)*(1-p2 s2))*p[8]1*(1-p[9]):

P2

p3_
p3_

p3
P4
P4
pé:

pp:=

=(1-(1-p(2])*(1-p[4])* (1-pl6])) *(1-(1-p
) *(

s1:=(1-(1-p[2])* (1-p[4])) * (1~ (1-p[3]
52:=p[6]*p[7

sl:=p[2]*p[3

]

)

1:
s2:=(1-(1-p[4])*(1-p[6])) *(1-(1-p[5])*(1-p[7]1))
:=(1-(1-p3_sl1)*(1- p3 s2))*(1-p[8]1) *p[9]
s2:=p[6]*p[7]:
sl:=1-(1-pl[2]*p[3])*(1-p[4]*p[5]):
=(1-(1- p4 sl)*(1-p4 _s2))*(1-p[8])*(1-p[9])

(pl+p2+p3+p4)

p_syst:=1-(1-p[1])* (1-pp):

If p syst=0 then L:=L+1 fi:
If p syst=0 then print(mi[k]) fi:
end do:

end do: print (‘A number of sets in G’L);
The basic set of failures M can be easily found by using the algorithm given in Section 2.5. The set

M contains 8 sets of G4, Gs, Gg : {1,2,4,6},{1,357} , {1,2,47,9} , {1,2,57,8} , {1,3/4,6,8} ,
(1,3,5,6,9), {1,2,5,6,8,9}, {1,3,4,7,8,9} .
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