Bulletin of V.N. Karazin Kharkiv National University
76 series «Mathematical modeling. Information technology. Automated control systems» issue 46, 2020

DOI: 10.26565/2304-6201-2020-46-07

VIIK 004.2

Analysis of existing verification technologies for parallel programs
0O.Yu. Moroz, O.G. Tolstoluzka, R.V. Savchenko

Moroz Senior lecturer of the Department of Theoretical and Applied Systems
Olha Yuriivna Engineering, Faculty of Computer Science; VN Karazin Kharkiv National
University, 6 Svobody Square, Kharkiv, Ukraine, 61022
e-mail: 0.moroz@karazin.ua
https://orcid.org/0000-0002-4920-4093.

Tolstoluzka Doctor of Technical Sciences, Senior Research Fellow, Professor of the

Olena Gennadiivna Department of Theoretical and Applied Systems Engineering, Faculty of
Computer Science; VN Karazin Kharkiv National University, 6 Svobody Square,
Kharkiv, Ukraine, 61022
e-mail: elena.tolstoluzka@karazin.ua
https://orcid.org/0000-0001-2741- 180.

Savchenko student of the Faculty of Computer Science; VN Karazin Kharkiv National
Roman Valeriyovich University, 6 Svobody Square, Kharkiv, Ukraine, 61022

e-mail: roma.savchenko@gmail.com

https://orcid.org/ 0000-0002-8184-1818

There have been large fluctuations in the perceived value of parallel computing in the last decades. Sometimes parallel
computation has been viewed optimistically as the solution to all of our computational limitations. The conventional division
of verification methods is analyzed. It has been concluded that synthetic methods of software verification can be considered as
the most relevant, useful and productive ones. The relevance of the implementation of the methods of formal verification of
software of computer systems, which supplement the traditional methods of testing and debugging, and make it possible to
improve the program uptime and security, is noted. The formal verification methods of computer system software can
guarantee that verification of the properties is performed by a system model. Nowadays, development of these methods is lying
in the direction of reducing the formal verification total cost, support of modern programming concepts and minimization of
"manual™ work in the transition from the system model to its implementation. Their main feature is the ability to search for
errors using a mathematical model without recourse to the existing software realization. It is very convenient and economical.
There are several specific techniques used for a formal model analysis, such as a deductive analysis, model and consistence
check. Every verification method is being used in particular cases, depending on the goal. Synthetic methods of software
verification are considered as the most actual, useful and efficient, as they aim to combine the advantages of different
verification approaches being free of their drawbacks. The significant progress in the development of such methods and their
implementation in the industrial software development has been currently made.

Keywords: parallel programming; verification of programs; formal verification

AHAaJI3 iCHYIOYHX TeXHOJI0Tiil Bepudikauii napajejbHUX NPorpam

Mopo3 cmapwuil 8uKIa0ay Kageopu meopemuunoi ma NpuKkiaoHOi CUCmeMOmexHiKu
Ouabra KOpiiBHa Gaxyrememy xomn'tomepuux Hayk;, XapxigcoKuil HAyiOHANLHUU YHigepcumem
imeni B. H. Kapaszina, matioan Ceoboou, 6, Xapxis, Ykpaina, 61077

ToJscrony3bka 0.m.H., C.H.C., hpogecop xaghedpu meopemuyHoi i NPUKIAOHOI CUCTNEMOMEXHIKU
Ounena I'ennaniiBHa Gaxyrememy xomn'tomepuux Hayk;, XapxigcoKuil HAyiOHANLHUU YHigepcumem
imeni B. H. Kapaszina, matioan Ceoboou, 6, Xapxis, Ykpaina, 61077

CaBueHKo cmydenm akynomemy Komn'tomeprux Hayk, XapKiCoKuti HAYIOHATbHUL
Poman BanepiiioBna yuieepcumem imeni B. H. Kapasina, matioan Ceoboou, 6, Xapxkis, Yxpaina, 61077

© O. Yu. Moroz, O. G. Tolstoluzka, R. V. Savchenko, 2020

mailto:o.moroz@karazin.ua
https://orcid.org/ХХХХХХХХХХХХХ
mailto:elena.tolstoluzka@karazin.ua
https://orcid.org/0000-0001-7855-3957
mailto:roma.savchenko@gmail.com
https://orcid.org/0000-0001-7855-3957

BicHuk XapkiBCbKkoro HawjioHanbHoro yHisepcuteTy imeHi B. H. KapasiHa
cepis «MaTematuyHe MogentoBaHHS. IHpopmaLiiHi TexHonorii. ABTOMaTM30BaHi CCTEMW ynpaBniHHAY, Bunyck 46, 2020 77

IIpoBeneHo anaii3 3aranpHONpPHHHATOrO TMOALTy MeroniB Bepudikamii. CyTs (GopManbHHX METOAIB HONSTaE B CTBOPEHHI
MaTeMaTHYHUX MOJeJIed IporpaM i BUMOT 1 B JIOTIYHOMY aHaJli31 BiAMOBIAHOCTI Mk noOynoBaHuMHU MozensiMu. Ha ceoroxHi,
¢dopMasbHI MeTOmM — I (YHOAMEHT, Ha SKOMY CTOITh OymIiBIs TporpamHoi imxeHepil. 3poOJEHO BHCHOBOK, IO
HallaKTyalbHIIINMH, HaHOIIbII KOPUCHUMH Ta NPOAYKTHBHUMH MOXHA BBaXAaTH CHHTETHYHI MeToau Bepudikamii I13.
3a3Ha4yeHo, 10 aKTyallbHUM € BIPOBA/DKCHHsS B MPAKTUKY METOAIB (opMmaibHOi Bepudikaiii mIporpaMHOro 3abe3medeHHs
KOMIT'FOTEpHUX CHCTEM, L0 NONOBHIOIOTH TPagLiliHI METOIU TECTYBaHHS 1 HANAro/KCHHS, 1 JO3BOJSIOTH IiABHUIIUTH
0e3B1IMOBHICTB 1 O€3MeKy mporpam.

Knrwwuoei cnosa: napanenvhe npoepamyeants,; eepugixayis npospam,; gopmanvha eepughikayis

AHaJIN3 CylIeCTBYHOIIHMX TEXHOJIOTHH BepuUKAIMU NapaLlebHbIX

InporpamMmm
Mopo3s cmapwuii npenodagamens — Kageopvl meopemuyeckon U - NPUKIAOHOU
Ouabra IOpbeBHa cucmemomexHuku axyibmema — KOMHbIOMEPHbIX — HAYK, XapbKoeckuil

HayuonaneHwulll yHusepcumem umenu B. H. Kapasuua, niowades Ceob00ul, 0,
Xapvkos, Ykpauna, 61077
Toucronyxckas Enena 0.m.n., CH.C., npogeccop meopemuueckoi u NPUKIAOHOU CUCEMOMEXHUKU
I'ennagueBHa gaxyremema KomnviomepHuIX HAYK, XapbKOGCKULl HAYUOHATbHBIU YHUGEPCUMen
umenu B. H. Kapasuna, nniowaos Ceo600si, 6, Xapvkos, Yxpauna, 61077

CaBueHKO cmydenm axkyiomema KOMHbIOMEPHbIX HAYK;, XapbKoGCKUli HAYUOHATbHBIL
Poman BanepbeBuu yrusepcumem umenu B. H. Kapasuna, niowaos Ce0600wi, 6, Xapvkos, YVkpauna,
61077

ITpoBeneH aHanu3 OOLIETIPUHATOTO pacipeseaeHus MeToaoB Beprudukanun. CyTs GOpMaIbHEIX METOJOB COCTOUT B CO3J[aHUN
MaTeMaTH4YeCKHX MOJENEH mHporpaMM M TpeOOBaHMH M B JIOTHYECKOM aHAIN3€ COOTBETCTBHS MEXAY HOCTPOCHHBIMU
Mmozensmu. Ha ceromgus, gopmanpHble MeTOAbI — 3TO (yHAAMEHT, Ha KOTOPOM CTOUT 3[JaHUE IMPOrPaMMHON HH)KCHEPHH.
Craenan BBIBOA, 4TO Hamboliiee aKTyaJdbHBIMH, HanOoJee MOJIC3HBIMH W IIPOJYKTHBHBIMA MOXHO CUHTATh CHHTETHYECKHE
Mmeroabl Bepudukammu [10. OTMedYeHO, YTO aKTyalbHBIM SIBISIETCS BHEAPEHHE B IPAKTHKY METOJOB (OpMajbHON
BepU(HKaUK MTPOrpaMMHOTo obecriedeHHs] KOMIIBIOTEPHBIX CUCTEM, JOTOJHSIONINE TPaIUIHOHHBIE METOIbI TECTUPOBAHHS U
OTJIaJIKU, ¥ TTO3BOJISIFOT MOBBICUTH 0€30TKa3HOCTh M 0€30MaCHOCTD IMPHIIOKEHHUH.

KiroueBsie cioBa: mapamiensHOe IpOorpaMMHUPOBAHIE; BEpUBHKAIHS IPOrpaMm; hopMaIbHas BeprUpHKAIINST

There have been large fluctuations in the perceived value of parallel computing in the last decades.
Sometimes parallel computation has been viewed optimistically as the solution to all of our
computational limitations. But there are those who argue that it is not worth the effort, given that the
CPU speed continues to improve and memory cost to reduce. The perceptions tend to fluctuate between
these two extremities due to a number of factors: constant changes in the “hot” issues to be addressed,
availability to users of the programming environment, the computer market, vendors involved in
building the supercomputers and the focus of the scientific community at any given moment and time.
As a result, it is very difficult to judge objectively the value and prospects of parallel computing.

Verification of programs or computer systems is an activity aimed at determining their correctness
or finding errors. This activity can take various forms: code inspection; static analysis (search for
typical errors); testing (running the program on examples and checking the correctness of the results);
simulation modeling (creation of a feasible model of the system and its inspection in a special
environment); formal verification (construction of a logical model of the system and its analysis by
means of mathematical logic). There are many approaches, but none of them can guarantee the
correctness of really complex projects; the best results, as practice shows, are achieved by combining
different methods. The essence of formal methods is to create mathematical models of programs and
requirements and a logical analysis of the correspondence between the constructed models. Today,
formal methods are the foundation on which the building of the software engineering stands. It should
be noted that formal methods have long gone beyond the academic community and have become part of
the industry, as well as part of the system development process (microprocessors and operating
systems). In the information society, software development has become mass activity.

Bulletin of V.N. Karazin Kharkiv National University
78 series «Mathematical modeling. Information technology. Automated control systems» issue 46, 2020

Software Testing is developing both as industry and science. Distributions occur, new directions
and scientific flows appear; different techniques, methods and practices of software testing are used. It
is often caused by the fact that companies or organizations pursue different goals or by specifics of
testing the different product categories (medicine, tourism, education, finance, e-commerce, etc.).

STLC (Software Testing life cycle) means all actions which are performed during testing of
software product.

. Designing Test Test execution
Business and . z Summary report
- Test Planning & Cases and with Bug
Requirement L . . and Result Test Closure
. Estimation Preparing Test reporting and 5
understanding analysis
Data closure

Figure 1. STLC (Software Testing life cycle)

Nowadays, ensuring high reliability and infallibility of modern management systems software is one
of the main tasks of the IT industry. Therefore, the implementation of software engineering formal
verification methods, which complement traditional testing and tune-up methods, and allow increasing
software infallibility and security is highly relevant.

Software verification is more general concept than testing. The main goal of verification is to
achieve a guarantee that a verified object (requirements or program code) meets the demands, is
implemented without unexpected functions and suits design specifications and standards. The common
division of verification methods is presented as a diagram in Fig. 2.

Software system validation is a process of proving that goals set for this system are achieved as a
result of system development. In other words, validation is checking if the system meets the customer’s
expectations.

The main standard, which controls software verification planning and realization, is called
IEEE 1012 for verification and validation processes [1]. This standard includes the description of
different verification task sets which accord to diverse activities, recommended template of the
inspection and confirmation plan, determination of 4 software criticality levels (from high to minimal).

Software expertise includes all verification methods, in which evaluation of the software life cycle
artifacts is done by people. The main advantage of this method is the ability to detect 50-90% of errors
[5]. However, it also has some drawbacks. Error search, evaluation and analysis of software properties
are done by a human (usually it is a group of 2-5 persons). Therefore, experts, programmers with 10 or
more years of work experience are required to perform this action.

Static analysis is an analysis performed without program execution. Its methods can be divided into
two: the control to ensure that all formalized rules of correct construction of these artifacts are
performed, and the search for some typical errors and defects based on some templates. [2]. Static
analysis instruments often use both kinds of checking. Static analysis is considered to be the most often
used verification method. Proven code correctness rules or common errors templates are being
transferred to the development environments.

Static analysis advantages:

BicHuk XapkiBCbKkoro HawjioHanbHoro yHisepcuteTy imeHi B. H. KapasiHa
cepist «MaTemaTiHe MoaentoBaHHs. IHhopmaLjiiHi TexHonoril. ABTOMaTM30BaHi CUCTEMM ynpaBniHHs», BUNYCKk 46, 2020 79

— Automatic analysis of multiple execution paths at one time.
— Detection of errors that occur only on single execution paths or on unusual input data.
— Ability to analyze on an incomplete set of input files.
— No overhead costs during program execution.
Drawbacks of this method:
— Lot of error responses.
— Manual checking of work results is required (needs significant time, human and
material resources).

Verification
Expertise I]
[Synthetic
Formal
methods
Static methods
analysis Dynamic
H General i methods
| | Model-based
Deductive | testing
) Correctness analysis
[| Technical rules check P [
Monitering Monitoring
L of formal
Model properties
H Specialized DEfT,C; check _
— search by Analysis of
— Testin v
templates g - formal
properties
L Organizational Consistence
check
Synthetic
method of
| structural
tests
generating

Figure 2. Common division of verification methods

Dynamic verification methods use results of real work of software system or its prototypes to
verify the compliance of these results with the requirements and designs.

There are two main kinds of dynamic verification methods: monitoring, which provides only
observation, recording and evaluation of the software normal working process, and testing, which runs
software by using prepared scripts. The advantage of this method is good error detecting ability; the
drawbacks include the need for a prepared input data set, runtime environment, as well as high demand
for the resources.

Formal verification methods. Their main feature is an ability to search for errors by using
mathematical model without recourse to existing realization of software. It is very convenient and
economical. There are several specific techniques used for formal models analysis, such as a deductive
analysis, a model and a consistence check. Unfortunately, construction of these models requires a
correct and adequate model of software itself [4]. Only if model is created correctly, some of its
properties could be analyzed automatically. However, in most cases specialists require deep knowledge
of mathematical logic, algebra and must be experienced users of this device in order to do an effective
analysis.

Compared to sequential writing, parallel programs are much more complicated. In sequential
programming, a programmer develops an algorithm, then expresses it to the computer in a correct and
understandable language, and makes it efficient to execute. Parallel programming has the same
problems, but also a number of additional ones. They complicate the development and have no
analogues in the consistent sphere. These problems include: data allocation management, parallelism

Bulletin of V.N. Karazin Kharkiv National University
80 series «Mathematical modeling. Information technology. Automated control systems» issue 46, 2020

search and expression, computational load, as well as the proper implementation of a parallel algorithm,
interprocessor communication management, and balancing. The algorithm takes turns considering each
of these challenges.

Distribution of task data is another problem of parallel programming. Most conventional parallel
computers have the concept of data locality. This means that you can get much faster access to data
stored in memory that is “closer” to a particular processor. Data locality can also occur because each
processor has its own local memory. Similarly, in a machine with allocated memory, this occurs
through a cache processor that is in the shared memory system.

The programmer must pay attention to where the data is stored in relation to the processors that will
access them, precisely because of the influence of data localization. The closer the data, the faster the
processor will be able to access them and shut down. That is why the division of labor and the
dissemination of data are closely linked. The optimal design of the program will take both aspects into
account.

For a long time, the basis of parallel computing has been the automatic parallelization of a serial
program by the compiler. Decades of work by compiler researchers have had little success, and
automatic parallelization works only in limited conditions. In the best case, the languages are partially
implicit, in which case a programmer gives the directives for parallelizing the compiler. Verilog,
VHDL, Parallel Haskell, SISAL, Mitrion-C, and System C (for FPGA) are known as implicit parallel
programming languages.

The tools for automatically generating code-based tests that use additional sources of information
have been recently developed actively.

These sources include static a code analysis, a formal analysis, earlier test monitoring, etc. Since this
kind of instruments uses 3—-4 different techniques, their methods are classified as a separate kind of
synthetic verification methods [3]. They combine several approach types — static analysis, formal
analysis of software properties and testing. In the last 10-15 years some of those methods such as
primarily model-based testing and monitoring of formal properties have become independent research
areas. Advantages and drawbacks of synthetic methods are determined by combination of verification
methods used by a synthetic method.

The purpose of the work is to analyze the possibilities of using structures of the semantic-numerical
specification to describe formally the objects of the model of planning parallel processes in the
computer networks. This work contains the analysis of the existing methods of static and time model
specification. The generalized model planning parallel processes in the computer networks is analyzed.

The formal description of input data of the planning model by the semantic-numerical specification
is proposed. The implementation program of graphic editor for the graphic specification for the model
planning parallel processes objects has been developed. The analysis of the resource model planning
highlights its significance and necessity of an object format. With the help of the program we can
construct a topology of the computer networks, C-graphs for C-programs, in order to understand and
create structures of the semantic-numerical specification for input data of the planning model.

The formal verification methods of computer system software can guarantee that verification of the
properties is performed by a system model. Nowadays, development of these methods is lying in the
direction of reducing the formal verification total cost, support of modern programming concepts and
minimization of "manual” work in the transition from the system model to its implementation.

Every verification method is been used in particular cases, depending on the goal. Every verification
method is being used in particular cases, depending on the goal. Synthetic methods of software
verification are considered as the most actual, useful and efficient, as they aim to combine the
advantages of different verification approaches being free of their drawbacks.

The significant progress in the development of such methods and their implementation in the
industrial software development has been currently made.

JIITEPATYPA

1. IEEE 1012-2004 Standard for Software Verification and Validation. IEEE, 2005. p.153.

2. L. Yu A light-weight static approach to analyzing UML behavioral properties. L. Yu,
R. B. France, I. Ray,K. Lano.. Proc. of 12-th IEEE International Conference on Engineering
Complex Computer Systems (ICECCS 2007) pp. 56-63, 2007. p. 79.

BicHuk XapkiBCbKkoro HawjioHanbHoro yHisepcuteTy imeHi B. H. KapasiHa
cepist «MaTemaTiHe MoaentoBaHHS. IHhopmaLjiiHi TexHonoril. ABTOMaTM30BaHi CUCTEMM ynpaBniHHs», BUNYCk 46, 2020 81

https://www.cs.colostate.edu/~iray/research/papers/iceccs07.pdf
3. M. Broy Model Based Testing of Reactive Systems. M. Broy, B. Jonsson, J.-P. Katoen,
M. Leucker, A.Pretschner (eds.). LNCS 3472, Springer, 2005. p. 273.

4. T. Ball Thorough Static Analysis of Device Drivers. In Proc. of EuroSys 2006. T. Ball,
E. Bounimova, B.Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K. Rajamani,
A. Ustuner., ACM SIGOPS OperatingSystems Review, 2006. p. 74.

5. Y. K. Wong. Modern Software Review: Techniques and Technologies. IRM Press, 2006.
p. 368.

6. B.Y. bosm. MHxkeHepHOE TPOSKTUPOBAHUE MporpaMMHOro obecriedeHus. M.: Pajgo u cBs3b,
1985. 368 c.

REFERENCES

1. IEEE 1012-2004 Standard for Software Verification and Validation. IEEE, 2005. p.153.
https://people.eecs.ku.edu/~hossein/Teaching/Stds/1012.pdf [in English]

2. L. Yu A light-weight static approach to analyzing UML behavioral properties. L. Yu,
R. B. France, I. Ray,K. Lano.. Proc. of 12-th IEEE International Conference on Engineering
Complex Computer Systems (ICECCS 2007), pp. 56-63, 2007. p. 79.

https://www.cs.colostate.edu/~iray/research/papers/iceccs07.pdf [in English]

3. M. Broy Model Based Testing of Reactive Systems. M. Broy, B. Jonsson, J.-P. Katoen,
M. Leucker, A.Pretschner (eds.). LNCS 3472, Springer, 2005. p. 273.

https://www.springer.com/gp/book/9783540262787 [in English]

4. T. Ball Thorough Static Analysis of Device Drivers. In Proc. of EuroSys 2006. T. Ball,
E. Bounimova, B.Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K. Rajamani,
A. Ustuner., ACM SIGOPS OperatingSystems Review, 2006. p. 74.

https://dl.acm.org/doi/10.1145/1217935.1217943[in English]

5. Y. K. Wong. Modern Software Review: Techniques and Technologies. IRM Press, 2006. p. 368
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.4479&rep=repl&type=pdf [in
English]

6. B.U. Boehm. Engineering software design. M.: Rado and communication, 1985. 368p.
http://www.library.univ.kiev.ua/ukr/elcat/new/detail.php3?doc_id=136392 [in Russian].

Hagiiwna y nepuin pegakuii 20.05.2020, B octanHiit - 10.06.2020.

https://www.cs.colostate.edu/~iray/research/papers/iceccs07.pdf
https://people.eecs.ku.edu/~hossein/Teaching/Stds/1012.pdf
https://www.cs.colostate.edu/~iray/research/papers/iceccs07.pdf
https://www.springer.com/gp/book/9783540262787
https://dl.acm.org/doi/10.1145/1217935.1217943
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.4479&rep=rep1&type=pdf
http://www.library.univ.kiev.ua/ukr/elcat/new/detail.php3?doc_id=136392

