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A schedule ensuring the exactly minimal total tardiness can be found by the respective integer linear programming problem with
infinities. In real computations, the infinity which shows that the respective states are either forbidden or impossible is substituted
with a sufficiently great positive integer. An open question is whether the substitute can be selected so that the computation time
would be decreased. The goal is to ascertain how the increment of the infinity substitute in the respective model influences the
computation time of exact schedules. If the influence appears to be significant, then a recommendation on selecting the infinity
substitute is to be stated in order to decrease the computation time. A pattern of generating instances of the job scheduling
problem is provided. The instances of the job scheduling problem are generated so that schedules which can be obtained trivially,
without the exact model, are excluded. Nine versions of the infinity substitute have been proposed. The increment of the infinity
substitute in the model of total tardiness exact minimization rendered to solving an integer linear programming problem involving
the branch-and-bound approach may have bad influence on the computation time of exact schedules. At least, the greater value
of the infinity substitute cannot produce an optimal schedule faster in tight-tardy progressive 1-machine scheduling by idling-
free preemptions of equal-length jobs. Roughly the best value of the infinity substitute is the maximal value taken over all the
finite triple-indexed weights in the model and increased then by 1. The influence of the “max” infinity substitution is extremely
significant. Compared to the case when the infinity is substituted with a sufficiently great integer, the “max” infinity substitution
saves up to 50 % of the computation time. This saves hours and even days or months when up to 8 jobs of a few equal processing
periods are scheduled for a few thousands of cycles or longer. Therefore, it is strongly recommended always to select the infinity
substitute as less as possible in order to decrease the computation time.
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Poskuan, mo 3abe3nedye cTporo MiHiMajabHe 3arajbHe 3alli3HIOBaHHS, MOXKHA 3HANTH 3a BIIIOBITHOIO I{IIOYHCIIOBOIO 3a1a4el0
JHIHHOTO TPOTrpaMyBaHHS 3 HECKIHYEHHOCTSIMU. Y pealbHUX OOYHCIICHHSIX HECKIHYEHHICTh, KOTpa MOKa3ye, IO BiIIIOBIIHI
CTaHH € 3a00pOHEHHMH a00 HEMOXKJIMBUMH, 3aMIHIOETHCSI Ha JJOCTATHBO BENIMKE JOJATHE ILijie. BikpuTuM € mutaHHs npo Te,
YH Taka 3aMiHa Moske OyTH mifiOpaHa Tak, o0 yac o64nciieHs OyB O 3MeHIIeHHH. MeTa mossrae y ToMy, o0 BCTaHOBHTH,
SIK 301IBIICHHS 3aMiHHUKA HECKIHYCHHOCT] Y BIATOBIIHII MOJeNi BIJIMBa€ HA Yac OOYUCICHHS TOYHHUX PO3KIaiB. SIKIIO BIIHB
BUSIBUTBHCS 3HAYHUM, TO CJTiJl HAJaTH PEKOMEHAAIIIO 1010 BUOOPY 3aMiHHUKA HECKIHYEHHOCTI [Tl 3SMEHILIEHHS Yacy OOUHCIICHb.
HageneHo cxeMy reHepaiii eK3eMILUIIPIiB 3a1a4i MIaHyBaHHs 3aBJlaHb. EK3eMIULIpH 3a/1a4i IaHyBaHHS 3aBJIaHb TEHEPYIOTHCS
Tak, M0 PO3KJIAAW, SKi MOYKHAa OTPUMATH TPHBialbHO, 0€3 TOYHOI MOZENi, BHKIIOYEHI. 3alporOHOBAaHO JIeB’ATh BapiaHTIB
3aMiHHMKA HECKiHYeHHOCTI. [IpHpiCT 3aMiHHMKAa HECKIHYCHHOCTI B MO TOYHOI MiHiMi3alii 3arajJbHOTO 3ami3HIOBAaHHS,
3BEIEHOT 10 PO3B’sI3aHHS LIIOYHUCIIOBOT 33a1a4i JiHIIfHOTO IporpaMyBaHHs, 110 Mependaydac MmixiJ METoLy TiJIoK i MexX, MOXe
MarTH ITOTaHUH BIUTUB Ha 9ac OOYMCIICHHS TOYHHUX po3kiaziB. [IpiHaiiMHi Ginblle 3HaUEHHS 3aMiHHMKA HECKIHUEHHOCT] HE MOXKe
CTBOPHUTH ONTHMAJIBHUH PO3KJIa] HIBUALIE Y MIITEHOMY IIPOrpecyrodoMy |-MallMHHOMY IIaHYBaHHI PiBHOLIHHUX 3aBIaHb 3
MepeMHUKaHHIMHA 0e3 MpocToro. [IprOIM3HO HalKpanM 3HaYeHHSIM 3aMiHHAKA HECKIHYEHHOCTI € MaKCUMYM, B3STHH 3a yciMa
CKIHYEHHUMH MOTPIHHO-1HAEKCOBaHIMHI BaraMy MoJieli 1 30ipmeHnit motiM Ha 1. BrimB 3aMiHHHKa HECKIHYEHHOCTI “max’ €
nIyxe 3HagymuM. [TopiBHSHO 3 BUITAAKOM, KOJM HECKIHYEHHICTh 3aMiHEHA Ha JIOCHUTH BEIMKE IIiJie, 3aMiHHUK HECKIHYEHHOCTI
“max” 3aomamxkye 10 50 % gacy obuncnens. Lle 3aomamKye TOAMHN Ta HaBiTh JHI M MICAIl, KOJIH PO3IUIAHOBYETHCS 1O 8
3aBaHb 3a KUIBKOX PIBHUX MEPioiB 10 00OPOOKH NPOTIAroM KIIBKOX THCSY IUKJIIB a00 foBie. ToMy HacTiiHO peKOMEHIYeThCs
3aBXKJH BUOMPATH 3aMiHHHK HECKIHYEHHOCT] SIKOMOTa MEHIIIUM, 100 CKOPOTHTH 4ac 004UCIIeHb.

Knrwowuoei cnosa: nianysanns 3a60ansv,; 1-mawunne niany8anHs 3 nepemMukaHHAMU, MOYHA MOOeIb, 3A2albHe 3aNI3HIOBAHH, YaAC
00UUCHCHHS, 3AMIHHUK HECKIHYEeHHOCMI.

Pacrincanue, oOecrmeunBaroiiee CTPOro MHHHMAlbHOE O0OIee 3ama3/blBaHHe, MOKHO HAWTH 1O COOTBETCTBYIOIICH
IIEJIOYHCIICHHON 3a/aue JTUHEHHOTO MPOTPaMMHPOBaHHS ¢ OCCKOHCYHOCTIMH. B pealbHBIX BBIYHCICHUSIX OCCKOHEYHOCTD,
MOKa3bIBAIOIIAsl, YTO COOTBETCTBYIOLIME COCTOSIHHS 3alpelieHbl WM HEBO3MOXKHBI, 3aMEHSETCS JOCTATOYHO OOJBLINM
MOJIOKUTENBHBIM TEeNBIM 4YHCIOM. OTKpBHITBIM SIBISIETCS BOMPOC O TOM, MOXHO JIH BBIOpaTh 3aMEHY TaK, 4TOOBI BpeMs
BBIUHCIICHUI YMEHBIIHMIOCHh. Llenb cocToMT B TOM, 4TOOBI BBISCHUTH, Kak IMPHPANICHHE 3aMEHUTENS OECKOHEYHOCTH B
COOTBETCTBYIOIIEH MOJIENN BIHSET Ha BpeMsl BRIYUCICHHS TOUYHBIX paclucaHuil. Eciu BIusHUE OKa)XeTcs 3HAYUTEIBHBIM, TO
CJIEyeT aTh PEKOMEHIAIIHIO IT0 BBIOOPY 3aMEHUTENS OECKOHEYHOCTH JJIs1 yMEHbBIIICHNS] BDEMEHH BBIYHCIICHIH. YKa3aHa cXxeMa
reHepalyy 3K3eMIUIIPOB 33aa4y MJIAHUPOBAHUS 3alaHUN. DK3EeMIUIAPHI 3aJa4ll IJIAHUPOBAHUS 331aHUI T€HEPUPYIOTCS TAKUM
00pa3om, YTO pacIUCaHusl, KOTOPbIE MOKHO MOJIYYHTh TPUBHAIBHO, O€3 TOUHOI MOIeNH, HCKITIouatoTcs. [IpeanaraiTces qeBsTh
BapUAaHTOB 3aMeHbl OeckoHe4yHocTH. llpupamieHue 3ameHuTENs] OECKOHEUHOCTH B MOJAEIM TOYHOM MHHUMM3ALUHM OOILIEro
3ara3/ibIBaHusl, CBEIEHHOW K PENICHUIO IEJIOUYUCIICHHON 3aa4il JIMHEHHOTO MPOrpaMMHUPOBAHMS C MCIIOJIB30BAaHUEM TOX0/1a
BETBIICHHS M TPAHUI], MOXKET IIOXO BIMATH HA BPeMs BBIYMCIICHHS TOUYHBIX pacnucannii. [1o kpaiitHelt Mepe, Oosblice 3HAUYCHNE
3aMEHHTENST OECKOHEYHOCTH HE MOKET JJaTh ONTUMATBHOE PAacHHcaHie ObICTpee B IUIOTHOM MPOTPECCHPYIOMIEM | -MalTMHHOM
TUIAHUPOBAaHUU PABHOICHHBIX 33/IaHUH C TepeKiodeHussMA Oe3 mpoctos. [IpuMmepHO NydmuM 3HaYCHHEM 3aMEHHUTEIS
OECKOHEYHOCTH SIBIISICTCS MAKCUMYM, B3SITHI TIO BCEM KOHEYHBIM TPEXUHICKCHBIM BECaM MOJIEIH U YBEIMYEHHBIH 3aTeM Ha 1.
BnusHue 3aMeHuTens OECKOHEYHOCTH “‘Max” sBisfeTcs OuYeHb 3Ha4MTeNbHBIM. [lo cpaBHEHMIO €O ciydaeMm, Korja
OECKOHEYHOCTh 3aMEHSETCS JOCTATOYHO OOJBIIUM IENIbIM YHUCIOM, 3aMEHUTENST OECKOHEYHOCTH “MaX” sKoHOMHUT 10 50 %
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BPEMEHU BBIYUCIICHU. DTO 3KOHOMHT Yachl U JaXXe THU WK MECALbI, KOTrJa INIaHUPpYETCa 10 8 3amaHuil ¢ HECKOJBLKUMH
PaBHBIMH IIEPHUOAAMHU K o6pa60TKe B TCUCHHUEC HCCKOJIBKUX THICAY UKJIOB UJIA JOJIBIIC. HOSTOMy HaCTOATEIIbHO PEKOMEHAYETCA
BCEraa BBI6I/IpaTI) 3aMEHHUTEITh 0ECKOHEUHOCTH KaK MOYKHO MCHBIIINUM, YTOOBI YMEHLIIUTHL BPpEMS BBIYUCIICHUN.

Knwueesvie cnosa: nnanupoeanue 3adanuii; l-mawunnoe nianupogaHue ¢ NEPeKIIOUEHUSIMU, MOYHAS MOOelb, 00wee
3aNnaz0bl6aHUe; 6peMs GbIYUCIEHUS, 3AMEHUMENb OECKOHEUHOCHIU.

The infinity in exact minimization of total tardiness

The model of exact minimization of total tardiness is rendered to solving an integer linear
programming problem involving the branch-and-bound approach [1]. Owing to the fact that no weights
are included (see, e.g., [2]), where release dates are set at non-repeating integers from 1 through the total
number of equal-length jobs, and due dates are tightly set after the respective release dates (although a
few jobs still can be completed without tardiness), the exact model is simplified for such tight-tardy
progressive 1-machine scheduling [3]. Theoretically, this model contains infinities which are intended to
show that the respective states are either forbidden or impossible. In real computations, the infinity is
substituted with a sufficiently great positive integer [3, 4]. An open question is whether the substitute
influences the computation time of exact schedules, i.e. whether it is possible to select the infinity
substitute so that the computation time would be decreased.

The goal of the research

A basis for the research is the well-known problem of minimizing total tardiness in tight-tardy
progressive 1-machine scheduling by idling-free preemptions of equal-length jobs. The goal is to
ascertain how the increment of the infinity substitute in the respective model influences the computation
time of exact schedules. Occasionally, the influence, if present at all, can be insignificant also. If the
influence proves to be significant, then a recommendation on selecting the infinity substitute will be stated
in order to decrease the computation time.

The infinity in exactly minimizing total tardiness

The problem of minimizing total tardiness in tight-tardy progressive 1-machine scheduling by idling-
free preemptions of equal-length jobs is stated as follows [3, 4]. For N jobs, N e N\{1}, where job n is
divided into H equal parts (i.e., has a processing period H ), has a release date (the time moment, at
which job n becomes available for processing)

r,=n for n=1, N (1)
and a due date
d,=H+n-1+b, for n=1, N (2)
by a random due date shift
b,=y(H-¢) for n=1, N 3)

with a pseudorandom number ¢ drawn from the standard normal distribution (with zero mean and unit
variance), and function (&) returning the integer part of number & (see, e.g., [5]), the goal is to schedule
those N jobs so that sum [3, 4, 6]

N
> max{0,0(n; H)—d, } (4)
n=1

would be minimal, where job n is completed after moment e(n; H), which is e(n; H)e{l, N -H}.This

goal is equivalent to minimizing sum
N-H

ii Mt X » (5)

n=lh=l t=1
where x,, is the decision variable about assigning the h -th part of job n to time moment t: x,, =1 ifit

is assigned; x,,, =0 otherwise. The decision variables are constrained by the following relationships:

Xp €10,1) by n=1LN and h=1,H and t=1 N-H, (6)
N-H - N
X4 =1 by n=L N and h=1H, (7)
= N H R
22 %=1 by t=1L N-H, (8)

n=1h=1
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N-H H-

ZZY.,;,,JrH‘.M\H by n=L,N and t=1 N-H 1. 9)
j=t+l h
The triple-indexed welghts (these ones are not the job priority weights)
g N
{{{xnm}ﬂf }hl} (10)
are theoretically defined as follows: "
A =0 (11)
by o
n-1+h<t<(N-1)H+h Vh=LH-1 (12)
and
Ay = o0 (13)
when (12) is not true;
M =0 (14)
by
n—1+H<t<n-1+H+b, (15)
and
A =t—H-n+1-Db, (16)
by
H+n-1+b <t<N-H 17)
and
7\‘nHt = (18)

when both (15) and (17) are not true. For computations, the infinity in (13) and (18) must be substituted
with a sufficiently great positive integer (it can be a sufficiently great positive real number, but the integer
is taken for convenience and memory saving in further arithmetic operations). So, instead of (13) and
(18),

My =0 (19)
and

7\’nHt =a, (20)
are substituted, respectively, by a sufficiently great positive integer o .

A pattern of generating instances of the job scheduling problem
An optimal job schedule

s" =[5 L(NAH) by s;e{L N} forevery t=1N-H (21)
is built by the decision variables at which sum (5) is minimal, where
Symn =N Vh=LH by o"(n;h)e{lL N-H|

and 0°(n;h)<6"(n;h+1) for h=1 H-1.
Thus, 6"(n; H) is a moment after which job n is completed, and, according to sum (4),

9" (N, H)= Zmax{oe (mH)-d,} (22)

is the exactly minimal total tardiness for those N jobs. Meanwhile, schedules for cases with release dates
(1) and due dates satisfying inequalities
d,<d, vn=1N-1 (23)
are built trivially, where the job with an earlier release date is scheduled first. To avoid such triviality,
due date shifts (3) are re-generated if all inequalities (23) turn to be true. Besides, due date shift (3) for
job n is re-generated if d, <1.
At fixed numbers of jobs N and job parts H, for a job scheduling problem instance tagged by an

integer ¢, denote the schedule computation time by &(N, H,c, o) by integer o as an infinity substitute
in model (1) — (20). Value 8(N, H, c, o) implies computation time spent on just searching a solution of

the respective integer linear programming problem, i.e. on exploring nodes by the branch-and-bound
algorithm. If the total number of the instances is C, then the averaged computation time is

S(N,H,oc)=éi8(N,H,c,oc). (24)

Computation times (24) will be estimated by N=2,8 and H =2, 4 for C=10 and the following nine
versions of the infinity substitute:
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1) the infinity is substituted with the sum of all finite triple-indexed weights (10), i.e.

N H NH
o= 2 2 2 o (25)
n=l1 h=l t=1
nht #©0 Anht #0 }"nht F#0

2) the infinity is substituted with the maximal value over all finite triple-indexed weights (10)
increased by 1, i.e.

o =1+maxmax max A, ; (26)
n=l, N h=1, H t=1, N-H
At #00 A #00 Ay #00

3) — 6) the infinity is substituted with multiple maximums in (26) given by

o =2-maxmax max A , (27) o =3-maxmax max A, (28)
n=1, N h=1, H t=1, N-H n=1, N h=1, H t=1, N-H
Aot 700 Mgt %00 Ay 700 Dy 790 A 700 Ay #00

o =4-maxmax max A, , (29) o=5-maxmax max A, (30)
n=l, N h=1, H t=1, N-H n=l, N h=1, H t=1, N-H
At #00 A #00 Ay #00 At £00 A 00 Ay #00

respectively;
7) — 9) the infinity is substituted with a sufficiently great integer given by o =10", a=10°, o.=10°.
Obviously, model (1) — (20) cannot be run for infinitely long time. So, its timeout is set at 7200
seconds (i.e., 2 hours). If the solution of the respective integer linear programming problem is not found
in 2 hours, the model is stopped and its current solution (which may be non-optimal) is returned.

Computational study

To study how the increment of the infinity substitute in model (1) — (20) influences the computation
time of exact schedules, the nine versions of the infinity substitute are to be used. Instead of directly
writing integer o into averaged computation time (24), it will be written as a tag within quotation marks
by the following correspondence table:

Thetagto a 1 2 3 4 5 6 7 8 9
The real value of o [formula (26)[formula (27)[formula (28)formula (29){formula (30)formula (25)| o. =10* | o =10° | o =10°

Thus, the averaged computation time is re-denoted as S(N, H,"6") for the case of sum (25), as

3(N, H,"1") for maximum (26), as 5(N, H,"2") for maximum (27), and so on. Fig. 1 shows averaged

computation times (24) versus the nine tags to a. (the horizontal axes) as the number of job parts and the
job length increase (the entire scheduling problem volume is shown as a stack of small red squares, where
the job length is measured horizontally, and the number of job parts is measured vertically). The shortest
computation time has occurred 13 times (out of 21 volumes of the entire
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Fig. 1. Averaged computatlon tlmes (24) versus the nine tags to o (the horlzontal axes) by the mcreasmg volume
of the entire scheduling problem

scheduling problem) at the infinity substitute as (26) whose value is minimal amongst those nine versions
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of infinity substitute. The version with the sum by (25) has not resulted in the shortest computation time.
Occasionally, o.=10° has resulted in the shortest computation time twice (at N=3, H=4,andat N =8
, H=4), although the case with the greatest volume of the entire scheduling problem (N =8, H=4)
has had six timeouts (tags 1, 3, 4, 5, 7, 9). Except for this case, the longest computation time has occurred
14 times at the infinity substitute as a sufficiently great integer given by a.=10*, a =10, o.=10°.
The worst cases with the maximal computation times
8 (N, H,a)=max3(N,H,c, o) (31)
c=1,10

are shown in Fig. 2 having the 21 stacked subplots analogously to Fig. 1. These subplots have some
resemblance to the subplots in Fig. 1. Now, the infinity substitute as a.=10° (tag 8) has resulted in the
shortest computation time only twice, whereas the other versions (tags 1, 2, 3, 4, 5, 6, where integers are
far less, indeed) have been the best for the rest of 19 job scheduling problems.
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Fig. 2. Maximal computation times (31)
The cases with the minimal computation times
8 (N,H,a)=min3(N,H,c, o) (32)

c=1,10
are shown in Fig. 3. The resemblance to either Fig. 1 or Fig. 2 is weaker here. The case with the greatest
volume of the entire scheduling problem (N =8, H =4) which has had six timeouts (tags 1, 3, 4,5, 7, 9)
and the case with N =8, H =2 are the only two cases where the infinity substitute as a.=10° (tag 8) has
resulted in the shortest computation. Sum (29) has occurred to be the best at the same case with N =3
and H =4. Among the rest of 19 job scheduling problems, the least integer as the infinity substitute (tag
1) by (26) have been the best for 14 cases.

The further averaging is shown in Fig. 4, where each of the three subplots is the average of 21 subplots
in Fig. 1 — 3, respectively. The best average computation time (24) has occurred at the least integer as the
infinity substitute (tag 1) by (26). It has been close to the best maximal computation time (31), but here
sum (25) has eventually “won”. Although the version with o.=10° (tag 8) has ensured the best minimal
computation time (32), it has been an occasional computational artifact caused itself by the six timeouts at
the greatest volume of the entire scheduling problem (N =8, H =4).

The first rough inference from the obtained results is that the model with the lesser integer substitute
produces an optimal schedule expectedly faster. The difference in real time units (not shown in
Fig. 1 —4, though) depends on the volume of the entire scheduling problem. Nevertheless, the average
relative difference between §(N, H,"1") and the other versions of the infinity substitute is not less than

2 %. Furthermore, the least value of the infinity substitute produces optimal schedules by 8.51 % to
10.46 % faster than the infinity substitute as a sufficiently great integer given by a.=10*, o =10°, a.=10°
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Fig. 3. Minimal computation times (32)
ST T —— T — — T &
O
Qo
o O o
O g o
* -4
o 4
o]
o x -3
o
o -3
a . L Q. . L . . . . . A . \ . . . . . . —

2 3 4 5 6 7 8 8 1 2 3 4 5 L] 7 8 2 1 2 3 4 5 7 8 ]

Fig. 4. The averages (from the left to the right) to average computation times (24), to maximal computation times
(31), and to minimal computation times (32) versus the nine tags to o (the horizontal axes)

Discussion
The main difficulty is that it is hard to find any regularities in the subplots of Fig. 1 — 3. This makes
the inference about faster schedules by the lesser integer substitute looser (or rough to some extent),

although the inference is expectedly reliable.
The computation time which is saved by substituting the infinity with “max” by (26) instead of using

a.=10° can be really impressive. For example, an optimal schedule
S=[s],=[t222255551114444333366 6 6 (N
for scheduling 6 jobs by H =4 with due dates
D:[dn]le:[Q 2 8 6 3 10] (34)

is computed in 52.65 seconds by o =10°, whereas it takes 39.68 seconds to compute schedule (33) with
“max” by (26). Total tardiness of schedule (33) is
6
9°(6,4)=>-max {0, 6" (n; 4)—d, } =max{0,12 -9} + max {0,5 -2} +
n=1

+max {0, 20 -8} +max{0,16 —6} +max {0, 9 — 3} + max {0, 24 —10} = 48..
So, the “max” substitution saves here 12.97 seconds (24.64 % of the initial computation time). In another
example, for H =3 and due dates
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=[d,].,=[4 4 5 7 5 8 10 13], (35)
an optimal schedule
S=[s],=[L13133555222777 4448886 6 6] (36

obtained by o =10° and an optimal schedule
S=[s],,=[L11222555777888666 33344 4](@37)

obtained by the “max” substitution (here the two infinity substitute versions produce slightly different
schedules) have the same length as schedule (33), where total tardiness of schedule (36) is

8
9°(8,3)=>_max{0, 0" (n; 3)-d, } = max {0, 4 — 4} + max {0, 12 — 4} + max {0, 6 — 5} +
n=1
+max {0,187} + max {0, 9—5} + max {0, 24 —8} + max {0,15-10} + max {0, 21-13} =53
being surely the same as total tardiness

97(8,3)= Zmax{o 0" (m; 3)—d, | = max {0, 3— 4} + max {0, 6 - 4} + max {0, 215} +

+max {0, 24 — 7}+max{0 9 -5} + max{0,18 -8} +max{0,12-10} + max {0,15—13} =53
of schedule (37). However, the difference between the computation times is more impressive here:

schedule (36) is computed in 900.736 seconds by o =10°, whereas it takes 560.61 seconds to compute
schedule (37), which is equivalent to (36), with “max”. So, the “max” substitution saves 340.126 seconds
(37.76 % of the initial computation time) for the problem with due dates (35). Another, the most
demonstrative, example is for scheduling 8 three-parted jobs (H =3) whose due dates are

D=[d,].,=[4 4 4 10 2 11 13 10]. (38)

An optimal schedule
S'=[s],=[1113335558884446¢6¢677722 2](39

obtained by o= 106 and an optimal schedule
S'=[s],=[L13133222888444777555F6 6 6] (40)

obtained by the ‘max” substitution (once again the two infinity substitute versions produce slightly
different schedules) have the same length as schedules in the previous examples, where total tardiness of
schedule (39) is

9°(8,3)= zmax{o 0"(n;3)—d, } =max{0, 3— 4} + max {0, 24 — 4} + max {0, 6 - 4} +

+max{0,15— 10}+max{0 9-2}+max{0,18 -11} + max {0, 21-13} + max {0,12-10} =51
being surely the same as total tardiness

*

9°(8,3)= Zmax{o 0" (n; 3)—d, } = max {0, 4—4} + max {0, 9 — 4} + max {0, 6 — 4} +

+max {0,15- 10}+max{0 21-2} +max{0, 24 -11} + max {0,18 -13} + max {0,12-10} =5
of schedule (40). However, the difference between the computation times is very impressive here:

schedule (39) is computed in 641.405 seconds by a =10°, whereas it takes just 326.53 seconds to
compute schedule (40), which is equivalent to (39), with “max”. So, for the problem with due dates (38),
the “max” substitution saves 314.878 seconds (49.09 % of the initial computation time). And this is just
for a single job scheduling problem! Obviously, when such a problem is repeatedly solved, the “max”
infinity substitution by (26) saves pretty huge amounts of the computation time. If, for example, there are
10000 job scheduling problems similar to the problem with due dates (38), the “max” substitution saves
about 36.4442 days.

Conclusion

The increment of the infinity substitute in the model of total tardiness exact minimization rendered to
solving an integer linear programming problem involving the branch-and-bound approach may have bad
influence on the computation time of exact schedules. At least, the greater value of the infinity substitute
cannot produce an optimal schedule faster in tight-tardy progressive 1-machine scheduling by idling-free
preemptions of equal-length jobs. Roughly the best value of the infinity substitute is the maximal value
taken over all the finite triple-indexed weights in the model and increased then by 1. Meanwhile,
substituting the infinity with just “a sufficiently great positive integer” is not recommended, unless this
integer is close to the mentioned maximum or the sum of all the finite triple-indexed weights.
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The influence of the “max” infinity substitution is extremely significant. Compared to the case when the
infinity is substituted with a sufficiently great integer, the “max” infinity substitution saves up to 50 % of
the computation time. This saves hours and even days or months (') when up to 8 jobs of a few equal parts
(processing periods) are scheduled for a few thousands of cycles or longer. Therefore, it is strongly
recommended to select the infinity substitute as less as possible in order to decrease the computation time.
In scheduling more than 9 jobs with more than 2 processing periods, the exact model becomes practically
intractable taking too much computation time whichever infinity substitution is used.

It is uncertain whether those recommendations should be kept for the case when the jobs have different
processing periods. So, the research may be furthered by studying this case. Besides, the job priority
weights can be also considered for exactly minimizing total weighted tardiness.
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