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A method for modelling the flow in a rigid-walled duct with two narrowings has been developed. It has the second order of
accuracy in the spatial and the first order of accuracy in the temporal coordinates, provides high stability of the solution, and
compared to the similar methods requires much less computational time to obtain a result. According to the method, the stream
function and the vorticity are introduced initially, and consequently the transition from the governing equations, as well as the
initial and boundary conditions to the proper relationships for the introduced variables is performed. The obtained relationships
are rewritten in a non-dimensional form. After that a computational domain and a uniform computational mesh are chosen, and
the corresponding discretization of the non-dimensional relationships is performed. Finally, the linear algebraic equations
obtained as a result of the discretization are solved.
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Po3pobneHo Meron, sSIKMi JO3BOJISIE MOJETIOBATH TEUil0 y MPSIMOMY IUIOCKOMY >KOPCTKOMY KaHalli 3 ABOMA IPSMOKYTHHMH
0CECHMETPUYHUMH KOPCTKUMH 3BYXKeHHsAMH. Lleit MeTox Mae Apyruil mopsiioK TOYHOCTI MO IPOCTOPOBUX 1 MepIINii MOPSI0K
TOYHOCTI 10 YacOBii KOOpJIHHATAX, 3a0e3MeUye BUCOKY CTIMKICTh pO3B’sA3KY 1 OTpeOye 3HAYHO MEHIIIC KOMIT IOTEPHOTO Yacy
JUISL OJiepKaHHsS pe3yNbTaTy y IOPIBHSHHI 3 BIANOBIMHMMH METOJAMH, SIKI € B HayKoBiH miTeparypi. BigmoimHo mo0
PO3pOOIICHOTO METOAY, PO3B’sI3yBaHHA 3a1a4i, cHhOPMYIBOBAHOI y PO3MIii 2 CTATTi, MOUYWHAETHCSA i3 BBeIeHHA (DYHKIIT Teyil Ta
3aBHXOPEHOCTI 1 HOAANBIIOro Nepexoy Bix piBHAHb HaB’e-CTokca i HEpO3PUBHOCTI, @ TAKOXK IMOYATKOBHUX 1 TPAHUYHUX YMOB
IO BIATIOBIAHUX CIIBBIJHOIIEHH I BBeAEHHX 3MiHHUX (migpo3ain 3.1 crarrti). OmepskaHi y Takuil cnoci® CHiBBiIHOLICHHS
MEePENUCYIOThCS Y 0e3po3MipHiid ¢opmi (miapo3ain 3.2 crarTi) i AUCKPETH3YIOTBCSA y By3JaX BHOpaHOi MPOCTOPOBO-YACOBOI
CITKHM IHTETpYBaHHS 3 MAJMMH CTAIMMHU KPOKaMH I10 Yacy Ta koopauHatax (migposzin 3.3 cratti). [licis mporo po3s’s3yloThes
JiHIMHI anreOpaluHi piBHAHHA Uit (QYHKIII Tedii, 3aBUXOpeHOCTi 1 THCKy (mizposmin 3.4 crarTi), oJeprkaHi BHACIIIJIOK
NpOBe/IeHHs 3a3HaueHol nuckpern3anii. 11lomo ocTaHHBOI, TO B Hilf 3aCTOCOBYIOTHCS OJHOCTOPOHHS PI3HMIL BIepen Ul
JMCKpEeTH3allii HeCTaliOHapHOTO WIeHa PIBHSHHS IIEPEHOCY 3aBUXOPEHOCTI, a TAKO)K OJTHOCTOPOHHI Pi3HUILI TPOTU MOTOKY (JUIs
JUCKPETH3aIlil KOHBEKTUBHOTO WICHA IHOTO PIBHSIHHA) Ta TPUTOYKOBI IMIAOJOHU (Ui JAMCKpeTH3alii Judy3iiiHOro dscHa
3a3HAYCHOTO PIBHSHHA Ta piBHAHB [lyaccoHa s QyHKMii Tedii i THCKY) IO OCBOBI Ta MOIMEPEYHi KOOpAWHATAX.
Juckpern3aliisi )X KOMIOHEHT IIBHAKOCTI MPOBOJHUTHCS Ha OCHOBI BIAMOBITHHX LEHTpalbHUX pi3HHIG. Lo crocyerbes
3a3HaYCHUX BUIIE JIHIMHUX anreOpaivHuX PiBHAHB AV IIYKAHUX BEJIMYHMH, TO U1 (GYHKIIT Tedii i THCKY BOHH PO3B’S3YIOTHCS
3a JOMOMOTOIO iTepaliifHOro MeToIy MOCIiTOBHOT BEpXHBOi penakcamii. HatoMicTh ozmepxane anreOpaidHe CIiBBiTHOIICHHS
JUISL 3aBUXOPEHOCTI BXXKE€ € TOTOBOIO OOYMCITIOBAJIBHOIO CXEMOIO JUIsl BU3HAYEHHS (i€ BEJIMYMHM HAa OCHOBI BiJIOMHX 3HAa4€Hb
BIATIOBIIHUX BEJIMYMH, 3HAHCHUX Y MONEPEIHiil MOMEHT Yacy.

Knwwuoei cnosa: meuis, kanan, 36yxcenist, (PYHKYis meuii, 3a6UXOPEHICMb, MUCK.

PazpaboTan MeTo[], MO3BOJIIOIIUN MOAENUPOBATh TEUEHHE B KECTKOM KaHaJle ¢ IBYMs cyxeHusAMU. OH UMeeT BTOPOH MOpsI0K
TOYHOCTH TO TNPOCTPAHCTBEHHBIM M IIEPBBIH IMOPSIOK TOYHOCTH MO BPEMEHHOW KOOpAMHATaM, OOECIEYUBAET BBICOKYIO
YCTOMYHMBOCTD pellieHHs U TpeOyeT 3HAUUTENbHO MEHBIIE KOMIIBIOTEPHOTO BPEMEHH JUIS MTOJTyYeHUs pe3ysbTaTa B CPaBHEHUU C
MeToJamu nogo6Horo tuna. CorjiacHo pa3pabOoTaHHOMY METOJy, PeIIeHHEe 33/1a4i HAUMHACTCS C BBEACHUS (QYHKIIMU TEUCHUS
Y 3aBUXPEHHOCTH U COOTBETCTBYIONIETO NEPEX0a K ypaBHEHHAM, 'PAaHUIHBIM W HAYAJIHBIM YCIOBHSIM JUIS 9THX ITEPEMEHHBIX.
TlomydeHHBIE COOTHOIICHUS MTEPETTUCHIBAIOTCS B O€3pa3MepHOM BUIE M AUCKPETU3UPYIOTCS B y37aX BEIOPAHHOH paBHOMEPHOM
CeTKH uWHTerpupoBaHus. [locme 3TOro pemaroTcs NUHEHHBIE anreOpanvecKhe YpaBHEHHS Uil (GYHKIUH TEUEHHS,
3aBUXPEHHOCTH W JABJICHUS], TIOJTyI€HHBIE BCICACTBHE IIPOBEACHNS YKa3aHHOH ANCKPETHU3AIUH.

Knroueewie cnoea: meuenue, xanarn, Cyoicerue, qbyHKLfM}l me4enus, 3a6UXpeHHoCmea, oasenue.

1. Introduction

Study of flows in straight channels is an actual problem in many spheres of science and technology.
Studying fluid motions in ducts with local narrowings, such as wall deposits, welding joints, stenosis and
so on is of a particular interest. That is due to local changes in the flow structure and character, as well as
changes in the flow local and integral characteristics and others are caused by such irregularities in the
duct geometry. Those changes can have corresponding consequences (sometimes serious) not only in the
vicinity of, but far from the irregularities as well (see, for example, [1-13] and the references therein).

An analysis of appropriate publications shows that flows in channels with local narrowings have been
studied rather intensively. In those studies, rigid-walled channels and their narrowings are considered,
and the simplest narrowing shapes are chosen. As for the basic flow (i.e., the flow upstream of a (first)
narrowing), it is laminar, axisymmetric and steady, whereas fluids are assumed to be homogeneous,
incompressible and Newtonian. The other types of channels, their narrowings, fluids and the basic flow
are not considered in this paper, because they have been studied not so often compared with the ones
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mentioned above. Those allow us to investigate the role of the basic parameters of channel, its narrowing
and the basic flow within the framework of the appropriate models as well as significantly simplify
solutions for the corresponding problems (see, for example, [1-13]).

Among the results obtained, the numerical methods, which have been developed to study flows near
channel narrowings, are of a great importance. In particular, a humerical method to solve a problem of
flow in an infinite straight hard-walled channel with two rectangular axisymmetric rigid narrowings has
been developed in [14]. That method has a second order of accuracy in the temporal and spatial co-
ordinates, and allows studying the fluid motion with the velocity and pressure as the variables. However,
due to the huge amount of mathematical operations, it requires a lot of computational time to obtain a
solution.

In this paper, an alternative method has been developed to solve the same problem with the stream
function, vorticity, and pressure as the variables. This method has almost the same order of accuracy and
a higher stability of solution, and, due to the use of less powerful mathematical apparatus, requires far
less computational time to obtain a result in comparison with the mentioned above.

The paper consists of an introduction (Section 1), three main sections and a list of references. It begins
with formulating the problem (Section 2) and presenting the corresponding governing equations, as well
as the boundary and initial conditions. The solution method to the formulated problem is described in
Section 3. The conclusions of the research are summarized in Section 4 and the list of references is
presented.

2. Formulation of the problem

An immovable infinite flat straight rigid-walled duct of width Dy is considered (Fig.1). This duct has
two rigid rectangular axisymmetric narrowings of diameters d; and lengths I; (i=12), which are
situated at the distance |, from one another. In this duct, an incompressible viscous homogeneous
Newtonian fluid, of mass density o and kinematic viscosity v , moves. Its flow upstream of the first
narrowing (i.e., the basic flow) is steady and laminar, and is characterised by the flow rate g per unit

depth of the duct. It is necessary to study the flow near the narrowings, as well as establish the qualitative
and quantitative relationships between its characteristics of interest and the parameters of the basic flow,
the duct, its narrowings and the distance between them.

74

Fig. 1. Geometry of the problem and the corresponding computational domain.

The formulated problem is governed by the two-dimensional Navier-Stokes equations:

2 2
a Yy pax ol oy

auy auy auy _ 1

o%u, 8%u
fu, oo Y Yy
ot

ox oy  poy ) ox° +? 1)

and the continuity equation:
ou
dux My _
ox oy

The boundary conditions are zero fluid velocity at the duct wall, S¢,, and at the surfaces of both
narrowings, S, (i=12):

0. (2.2)
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=0, u 0. (2.3)

u =
X|Schvsi YiSen.si

Also, due to mass conservation in the duct, the flow rate g must be the same in all cross sections:

@20, qZUaDo. (24)
OX

In addition, since a laminar basic flow is considered, the parabolic velocity profile is chosen outside the
disturbed flow region due to the narrowings (i.e., before the narrowings, where the flow is still
undisturbed by them, and far behind them, where the flow is undisturbed again (i.e., where the flow
disturbances disappear, and it becomes basic again)):

:U0(1—4y2/D§), 0. (2.5)

Uy| =
Xlx=—1, h+ho+lp+ly Yix=—ly +h o+l +lg

The pressure p is assumed to be constant upstream of the first narrowing:
p|X:_Iu =const, = py,

and far downstream of the second one:

p|x:I1+I12+I2+Id =consty = pqy ,

and the corresponding pressure drop, Ap = p, — pq = const >0, should ensure the existence of the given
laminar regime of the basic flow. Herewith, without loss of generality, the magnitude pq can be assumed
to be zero', and the pressure p, (which now is equal to Ap), like the pressure in the whole channel,

needs to be found.
In addition the normal pressure derivative should be zero at the immovable rigid surfaces of the duct
and the narrowings:

P ’ Pl o, i=12. (2.6)
an SCh an Si
The initial conditions, in absence of fluid motion in the duct, at the instant of time t =0 are [14]:
ud&o=UAbo=0,m&o=0- 2.7)

In the relationships (2.1)-(2.7) x and y are the rectangular Cartesian coordinates chosen in such a

way that the axis x is directed downstream along the duct axis (see Fig. 1); t the time; u, and Uy the
local fluid velocity components in the directions x and y. Uy and

1 Dof2 ’
Ug=— [ u dy==U
x=—ly o+ + 0
D0 —Dy/2 ultho iy 3
are the maximum and averaged (over the channel cross-section) basic flow velocities, respectively. The

values of the distances |, and |y are given in Subsection 3.3 and the vector n denotes the outward unit
normal to appropriate surface.

3. Solution method

A solution to the problem formulated in the former section consists of the four consecutive steps. The
stream function and the vorticity are introduced initially, and the corresponding transition from the
variables velocity-pressure to the variables stream function-vorticity-pressure is performed. Then the
relationships (which have been obtained on the basis of the transition mentioned above) are rewritten in
a non-dimensional form. After that a computational domain and the corresponding space-time
computational mesh are chosen, and the corresponding discretization of the non-dimensional
relationships is carried out. Finally, the linear algebraic equations obtained after the use of the
discretization are solved. Let us consider each of these steps separately.

3.1. Transition to the variables stream function-vorticity-pressure

Introducing the stream function, y [15]:

L1f the value of py is fixed, it is always possible to choose the corresponding value of p,, in such a way that the
pressure drop Ap (which governs fluid motion in the channel) remains unchangeable.
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oy oy
UX =, Uy 2—5 (31)

oy
(which satisfies the equation (2.2)) and the vorticity, @, (which has only one component in case of two-
dimensional flow) [15]:

ou
oo 2y Oux (3.2)

ox oy
allows transiting from the equations (2.1), (2.2) for the velocity and the pressure to the equations for the
variables y , @ and p. Indeed, taking derivatives of the first and second equations in (2.1) with respect

to y and x, respectively, subsequent subtracting the first of the obtained relationships from the second

one and taking into account the representation (3.2) gives us the vorticity transfer equation:
ow ow ow

2
E‘f‘UX&'FUyE:VV(le)CO, (33)
where
2 2
, & 8
v =2 9
(x,y) o2 8y2

is the Laplace operator in the coordinates X,y .

Substituting representation (3.1) into relationship (3.2) yields Poisson’s equation for the stream
function:

2
V(le)l// =—w, (34)
which directly relates the functions  and @ with one another.

Afterwards, differentiating the first equation in the system (2.1) with respect to x and the second one
in (2.1) with respect to y, adding the obtained relationships to one another and taking into account the

continuity equation (2.2) results in Poisson’s equation for the pressure:

2 ou, (ouy\?
V(2x y)yP=—p (OU—XJ +28ux y +( y] : (3.5
’ OX oy ox oy

As for the boundary and initial conditions for the variables v , @ and p, they can be obtained from

the conditions (2.3)-(2.7) with the use of appropriate mathematical operations. In fact, the relationships
(2.5) together with (3.1), (3.2) allow us to write conditions for the stream function and the vorticity in the
inletx=-I, and the outlet x=1l +k,+I,+1y sections of the disturbed flow region due to the

narrowings:

4y? 8Uopy

W|x=—lu,I1+I12+I2+Id =on[ _E] ' w|X=—|u,|1+|12+|2+|d :D—g ' (36)

From a zero normal component of the fluid velocity on the duct and the walls of narrowings (on the
basis of (3.1)) the constancy of the function y follows:

w|5c+h 5= const, , 1//|Sc_h 5= const_, i=12

(here Sg, and S;" are the upper walls of the channel and the i -th narrowing, respectively, and S, and

S; their lower walls). From here, on the basis of the first relationship in (3.6), we obtain the following
conditions
1

1 .
Viss s+ =3Y00o. Vs s =—3Y0Do. i=12. 3.7)

The absence of the tangential component of the fluid velocity at the surfaces S., and S; yields zero
values of the first-order normal derivatives and the second-order mixed derivative of the function v :
621//

v _o, ¥
Siv oxoy

oy

o

- -0, i=12 (3.8)

SehSi

h
SensSi
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(in the conditions (3.8), Sih and S denote the horizontal and vertical parts of the surface S;,

respectively).
The relationships (3.8) together with the equation (3.4) allow us to write the following conditions for
the vorticity at the channel and the walls of narrowings:

2
oy

82(//
a)|5ch:5ih T2
oy

y a)|S|V :_y y |=l,2 (39)

Sen St S
Regarding the boundary conditions for the pressure, we have (apart from conditions (2.6)) the
following two conditions:

op

OX

ou 0 ou ]
Zp{"v(zx,y)“x __X} ’ L :/{vax,y)“y _Fy} , 1=1,2. (3.10)
S’ 3 2 Sen St S

ot
The relationships (3.10) are obtained from the equations (2.1) after the conditions (2.3) were used.
As for the initial conditions for w , @ and p, they are equal to zero at the instant of time t =0 (see

2.7)-(3.2):
vho=0  @o=0,  pl,=0. (3.11)

3.2. Non-dimensional relationships

Making computations, it is convenient to deal with non-dimensional analogues of the relationships
presented in the previous subsection. Such analogues can be obtained after introducing appropriate
scaling coefficients. In this study, the following magnitudes are chosen as the coefficients: the channel
width Dy as the length scale; the cross-sectionally averaged basic flow velocity, U, =q/ Dy, as the

velocity scale; the ratio Dy /U, and the double mean dynamic pressure of the basic flow, pug, as the
time and pressure scales, respectively; the product U, Dy serves as the scale for both the stream function

and the flow rate; and the ratio U, / Dy as the scale for the vorticity.

For these coefficients, the non-dimensional analogues of the representations (3.1), (3.2) and the
equations (3.3)-(3.5) have the following forms, respectively

ouU
Ux=a—\P, y:_a_\y, o=—7 _y : (3.12)
oY oX oX oY
oQ oQ o 1 o
—+U,—+U,—=—V Q, 3.13
o *ox  Yov Re XY (3.13
V¥ =-Q, (3.14)
2 2
2 aUx aUx GUy 8Uy
\Y% P=- -2 — . 3.15
(X.Y) ( X ) Y X | oy (319
The dimensionless analogues of boundary conditions (2.4), (2.6), (3.6)-(3.10) are written as
oQ oP 3 4 0
_— :1 — = = —_— —_——
oX 0. Q=1 nlg s 0. LP|X:"—ur|-1+|—12+|—2+|-d ZY(l 3Y ]'
chs9i
1 1
Q|X:_LulLl+L12+L2+Ld =12¢, lIr’|S<;rh|5i+ T2 T'S&,Si‘ Ty
ol g oy, @l
Y ls,, sh X |gv oX oY 5,05
o’y 0%y .
Q|S Sh ———2 y Q|Sv ———2 f |::L2, (316)
ch<i oY S Sh i oX Qv
ch1<i i
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The initial conditions (3.11) for the dimensionless variables ¥, Q and P are rewritten in the following
way

Y_,=0, ©Q_,=0, P_,=0. (3.17)

In the relationships (3.12)-(3.17) X =x/Dy and Y =y /Dy are the dimensionless coordinates x and

y; T=tUa /Dy the dimensionless time; Uy =u, /U, and Uy =u, /U, the dimensionless fluid

velocity components in the directions x and y; ¥ =y /(DgU,) and Q =wDy /U, the dimensionless

stream function and vorticity, respectively; P=p/ (pug) the non-dimensional pressure; Re=U,Dg /v
the Reynolds number of the cross-sectionally averaged basic flow; Q=q/(U4Dy) the non-dimensional
flow rate in the channel per its unit depth; D; =d;j / Dy and Lj =1l; / Dy the dimensionless diameters d;
and lengths I (i=12), respectively; L, =1, /Dg and Ly =14 / Dy the dimensionless distances |, and
lq;

2
X2 ov?
the Laplace operator in the coordinates X,Y . It is also taken into account that U, =2U, /3 (see after
the conditions (2.7)).

Vi) =

3.3. Computational domain, computational mesh and discrete relationships
The domain, in which a solution to the formulated problem should be found, is shown in Fig. 1. Its

left boundary X =-L;, is taken upstream of the first narrowing, where the flow is undisturbed by it, and
the right boundary, X =13+ L35 + Ly + Ly, behind the second narrowing, where the flow is already
undisturbed (i.e., where the flow disturbances disappear, and it redevelops into the basic one). Herewith,
for the basic flow velocity the values of the distances L, and Ly considered in this study are assumed to
vary in the following ranges [14]
L, <05, L, <12.
In the indicated domain, a uniform rectangular computational mesh having small spacings (steps) Ay

and Ay in the directions X and Y, respectively, is introduced (Fig. 2):

Xn=Xpa+Ax, Ay =consty <<1; Y =Yynq+Ay, Ay =consty <<1. (3.18)
Ym+2
YWH—] .
Ay
T, » & $
mel
Xp X, Ay Xnt1 Kni2

Fig. 2. Computational mesh.

The integration time is divided into small intervals of the constant duration At :
Tq =Tyq + A1 =KA7, A =consty <<1, Ty =0. (3.19)
Afterwards a discretization of the relationships (presented in the previous subsection) at the nodes
X1 Ym, Tx of the computational grid (3.18), (3.19) is carried out. In doing so the values of an arbitrary

magnitude f at the space-time point X,,,Y,, T are denoted by fn'fm:
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k _
f,m = f(X’Y’T)|X:Xn,Y:Ym,T:Tk '

Discrete analogues of the dimensionless governing equations
Discrete analogues of the representations (3.12) for the velocity components are obtained after
applying the appropriate central differences to them [15]:

k k k k
k Yoma—Yama k Yiom —¥Yoam
U)am = 2 (Uy) = . (3.20)

n,m ZAX
The relationships (3.20) have the second order of accuracy (a discrete analogue of the representation
(3.12) for the vorticity is not presented because it is not used in the paper).

In order to discretize the equation (3.13), we use the two-point temporal onward differencing scheme,
as well as the two-point backward differences and the three-point approximations (or the two-dimensional
five-point differencing scheme; see Fig. 2) in the corresponding coordinates [15]. Specifically, the
application of the two-point temporal onward difference to the non-steady term in (3.13) yields its discrete
counterpart of the first order of accuracy:

(@j“ _Onn -~
T Jom At '
The convective term of the equation (3.13) is discretized by the two-point backward difference schemes
in the coordinates X and Y having the second order of accuracy:

k
k Qnm Qn -1m

(3.21)

k
O R
oX B Q Qk
K k
UX)n,m$;(UX)n,m<O'
ok ok
. (uy);m—”mA nmL( y);mzo,
(Uy—j = Y (3.22)
oY

k k
n,m k Q -Q k
(Uy) n,m+1 n,m ;( y) <0.
n,m Ay n,m
A for the diffusive term in (3.13), its discrete analogue of the second order of accuracy is obtained on
the basis of the noted five-point scheme:
k k k k k
[GZQ} Qn+1m 2Qn m +Qnam {GZQ] Qn m+1— 200 m +Qn m-1

2 2 ’ 2

oX m A% oY m AY

(3.23)
The availability of the relationships (3.21)-(3.23), as well as the use of the expressions (3.20) in (3.22)
allow us to write a discrete counterpart of the equation (3.13):

k+1 k k k k k k k k k
Qn,w;n =ChmQnm +CnamOnam +Cn+1m neim T Cnm-1Cnm-1+ChmiQame,  (3.24)
in which the coefficients have the following forms:

L-ayy (M) my = (A mx )~ 20x —2ay3(Uy)y zo,(uy):’m >0,

y 1-ayy ((A‘P)n my + (AW x) 2ay —2ay (U )i 20'(Uy):,m <0;
" axy () my +(BV)hm X) 20y —2ay i (Uy )} <o,(uy):’m >0;
I+axy ((A‘I’)n my — (A‘P)n m, X ) 20y —2ay ;(Ux)n,m <01(Uy):lm <0;
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k
Cn—l,m =

CKium=
n+l,m ~ gk . 0 k >0
axy (A )n,m,Y Tay 1(UX)n,m < ’(UY) -

X/n,m

X/n,m

nm

Cn,m+1 -
ay <o,(uy)

k
axy (Al}’)lr(l,m,x + oy ;(U )n m <0, (U )n,m <0;

Here the magnitudesay, ay, ayxy are the appropriate ratios of the steps of the space-time
computational grid (3.18), (3.19):

y Oy =———, (24 = ]
ReaZ ' ' Real X244y

ay =

and (A‘P)ﬁ,mlx and (A‘P)ﬁ,my the increases of the function W in the X and Y directions of the grid,
respectively:

k k
(A\P)n m, X —qjm—lm ‘Pn—l,m ’ (A\P)n m,Y —\Pn m+l \Pn m-1-

As for the discrete analogues of Poisson’s equations (3.14) (for the stream function) and (3.15) (for
the pressure), they look similar:

k k k
Yhiam— Z\an"‘an -1m anm+1 2lIJnm"'\anl

k
- - L. (3.25)
X Y
k
k k k k 2 2
l:)n+lm 2P, m+P—lm an+1 2R, m+an—l | 9Yy +25Ux aUer oUy (3.26)
A% A} X Y X Y o

n,m
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The relationships (3.25) and (3.26) have the second order of accuracy and are obtained after application
of the two-dimensional five-point differencing scheme to the equations (3.14), (3.15).

The discrete analogues of the dimensionless boundary conditions and their application to the
equations (3.20), (3.24)-(3.26)

The discrete analogues of the dimensionless boundary conditions for the stream function and the
vorticity from the relationships (3.16) are written as

3 4 1 1

Tﬁm‘ =—Y(1——Y2j, \Prk1m =5 ﬁm =750

TIX =L, Lty 2 3 TSG,ST 2 "Se, S 2

k k k k
(\Pn,m+1_\Pn,m—1) h =0, (‘Pn+1,m _an—l,m) v =0,
SchSi Si
k k k
wk o _opk gk |

Qﬁ,m‘ ~12v | Qﬁ - =— n,m+1 g,m n,m-1 ,
X==Ly,Li+Lr+Lr+Ly " 1S, Si Ay N

SensSi

k k k
WYham —2¥%nm+Yoam |

Ci=12.
A%

Q|Siv =

S

Regarding the pressure P, the discrete counterparts of the corresponding boundary conditions from
(3.16) have the following forms:

k
(Z_m 0, =12,
MMisy.s,

K (U, —2(U)f  +(Uy )
(o R Y (Chr e ST S
X Joml., | Re A%

i
K Kk k k+1 k
+(Ux)n,m+1 _Z(Ux)n,m +(Ux)n,m—1 (Ux)n?:n _(Ux)n,m
A At
k k k
(a_ij _ i (Uy)n+1,m_Z(Uy)n,m+(uy)n—l,m+
N omls o | Re A
ch i
k Kk k k+1 k
( y)n,m+1_ ( y)n,m (Uy)n,m—l ( y)n,m_( y>“m
A At

Sen 8"
(the representation (3.20) should be used for the velocity components).
These relationships allow us to find the values of all terms of the equations (3.20), (3.24)-(3.26) on
the boundary of the chosen computational domain (see the very beginning of Subsection 3.3).

The discrete analogues of the dimensionless initial conditions and their application to the
equations (3.20), (3.24)-(3.26)
The discrete analogues of the dimensionless initial conditions (3.17) are as follows:

k k k
g =0, Q =0, P =0.
nmj o nml o Ml _o

They allow computing the values of all terms of the equations (3.20), (3.24)-(3.26) at the initial instant
of time in the computational domain.



BicHuk XapkiBcbkoro HawioHanbHoro yHisepcuteTy imeHi B. H. Kapasita, 2 0 1 9 13

3.4. A solution of the equations (3.20), (3.24)-(3.26)
The analysis of the equations (3.24), (3.25) shows that
— at first sight, due to nonlinearity of the right part in (3.24) (whose terms depend of the products ¥Q
at the appropriate points of the space-time grid (3.18), (3.19)), this equation is nonlinear;
— they are coupled.
However, more detailed study of the equation (3.24) indicates that all terms in its right part are the known
magnitudes (because they are computed at the previous time stage, T =Ty, and at the initial instant of

time they are established (see above)). Therefore, the relationship (3.24) is a computational scheme

(rather than an equation) to determine the vorticity values, QH}] on the basis of its known right part.

Accordingly, the system (3.24), (3.25) is not a system of coupled algebraic equations.

The availability of the vorticity values at all the nodes of the integration mesh (3.18), (3.19) (which
are obtained on the basis of the scheme (3.24)) allows proceeding to solving the system of linear algebraic
equations (i.e., SLAE) (3.25) with a known right part.

In scientific literature, direct and iteration methods are applied to solve SLAE. The former are used in
case of SLAE of small dimensions, and present good results. However, when systems of equations are of
big dimensions and, in addition, their matrices are rarefied, direct methods require a lot of both time and
computational memory. Therefore, their application is unsuitable. Iteration methods need much less
computational memory and time to solve SLAE of big dimensions, keep their matrices rarefied (if such
a property is present), and give satisfactory results [15].

Taking that into account, as well as the dimension and the rarefaction degree of the matrix of system
(3.25), the successive over-relaxation iteration method is chosen [15]. This method has a second order of
accuracy, and its computational scheme for SLAE (3.25) has the following form

k+1 k Y k k 2wk 2\yk 2 ~k
an,er =1-N¥nm+—" > (\Pn+1,m +¥Wnam+ B8 Yamut B ¥Ynma +AXQn,m) (4.1)
2(1+ 5°)
ere y is the relaxation parameter varying in the ranges 1<y <2, an = e ratio of the
h the relaxat t th 1<y<2,and Ay [ Ay the ratio of th

steps of the grid (3.18)). It could be seen that all terms on the right-hand side of the scheme (4.1) are

known values. Therefore, the magnitudes ‘Pﬁ*,% are found by performing the operations indicated on the

right side of (4.1).
The found values of the function ¥ let us determine (on the basis of (3.20)) the corresponding values
of the velocity components U, and Uy, and substitute these values into the right part of the system

(3.26). Afterwards the successive over-relaxation method is applied to solve SLAE (3.26):

k+1 k k k 2pk 2pk 2 ok
Pn,a =(1-7)Pim +ﬁ(Pn+l,m +Piam + B Pima + B Pama + A% Sn,m)v (4.2)

k
2 2
ouU ouU
Srlim: (auxj +26UX y+( yj

oX oY oX oY

n,m
As in the computational schemes (3.24) and (4.1), all terms on the right part of (4.2) are the known

values. This allows computing the magnitudes Pn‘f;} in the left part of SLAE (4.2).

4. Conclusions

1. A method to predict flow in a straight rigid-walled duct with two rectangular axisymmetric
narrowings has been developed. It has the second order of accuracy in the spatial and the first order of
accuracy in the temporal coordinates, provides high stability of a solution, and requires much less
computational time to obtain a result as compared to the methods available in scientific literature.

2. According to the method, the problem is solved by means of a) introducing the stream function and
the vorticity with the corresponding transition from the Navier-Stokes and continuity equations, as well
as the formulated initial and boundary conditions to appropriate relationships for the introduced variables;
b) rewriting those relationships in a non-dimensional form; c) choosing appropriate computational
domain and space-time computational mesh, and performing a corresponding discretization of the non-
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dimensional relationships; d) solving the linear algebraic equations obtained after the use of the indicated
discretization.

3. Performing the discretization, we apply the two-point temporal onward difference for the unsteady
term, as well as the two-point backward differences (for the convective term of the non-linear vorticity
equation) and the three-point approximations (for the diffusive term of the noted equation and Poisson’s
equations for the stream function and the pressure) in the axial and cross-flow coordinates. For
discretization of the velocity components, the appropriate central differences are applied.

4. The linear algebraic equations for the stream function and the pressure (which are obtained after
performing the discretization) are solved by the iterative successive over relaxation method. The obtained
algebraic relationship for the vorticity is a complete computational scheme to determine this magnitude
on the basis of the known values found at the previous instant of time.
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