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Forced liquid vibrations in prismatic tanks under vertical and horizontal loads
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The method of studying forced vibrations of a liquid in rigid prismatic tanks partially filled with a liquid is offered. It is
supposed that the liquid is an ideal and incompressible one, and its motion, caused by the action of external influences, is
irrotational. For those assumptions there is velocity potential that satisfies the Laplace equation. The boundary value problem
for this potential is formulated. On the wetted surfaces of the tank the non-penetration conditions have been chosen. On the
free surface of the liquid, the kinematic and static conditions have been specified. The static condition is the equality of
pressure on the free surface to atmospheric one. The liquid pressure is determined from the Cauchy-Lagrange integral. To
formulate the kinematic condition an additional unspecified function describing the motion of the free surface is introduced.
The kinematic condition is the equality of the velocity of the liquid described by the velocity potential, and the velocity of the
free surface itself. The modes of free vibrations are used as a system of basic functions to solve the problems of forced fluid
vibrations in reservoirs. Unspecified functions are presented as series of the basic functions. The coefficients of these series are
generalized coordinates. Periodic excitation forces acting in the vertical and horizontal directions have been considered. The
vertical excitation examination leads to appearance of additional acceleration. Therefore we obtain a system of unbounded
differential equations of the Mathieu type. This allows us to investigate the phenomena of parametric resonance. The effect of
parametrical resonance is considered when the vertical excitation frequency is equal to double own frequency of liquid
vibrations. Dependences of change in the level of free surface via time under both separate and mutual action of horizontal and
vertical forces have been obtained. The phase portraits of a dynamic system with indication of resonances are presented. The
method allows us to carry out the adjustment of undesired excitation frequencies at the reservoir design stage in order to
prevent the loss of stability.

Key words: prismatic reservoirs, ideal incompressible fluid, vertical and horizontal excitations, Mathieu's equation, phase
portraits

3anponoHOBaHO METOJ JOCII/DKEHHS BHMYIICHHX KOJIMBAaHb DPIAWHM B JKOPCTKHX IPH3MATHYHHX pe3epByapax, 4acTKOBO
3aII0BHEHHX PiANHOI0. BBaXkaeThCs, 0 piinHA € ineanbHO0 1 HECTUCIHBOIO, a 11 pyX, BUKJIIMKAHUHN /Ii€10 30BHIIIHIX BIUTUBIB, €
0e3BUXpOBHM. Y NHUX MPHITyHICHHSAX iCHYE MOTEHIall MIBUAKOCTI, AKUU 3a10BoJbHsAE piBHAHHIO Jlammaca. CdopmymnpoBana
KpaiioBa 3amaya Iy IbOTO MOTeHIiany. Ha 3MOYCHUX MOBEPXHIX pe3epByapa MalOTh BUKOHYBATHCh YMOBU HEMPOTIKAHHSL..
Ha BinbHIlf moOBepXHI piIMHM 3aJaI0ThCA KIHEMATWYHI Ta cTaTW4HiI yMOBH. CTaTM4Ha yMOBa MOJATAE€ B PIBHOCTI THUCKY Ha
BUTBHIH TOBepxHi 10 arMocgepHoro. Tuck piguHM BH3Ha4aeTbest  iHTerpaom Komi-Jlarpamka. (s ¢opmysroBaHHs
KiHEMaTHYHOI yMOBHU BBOJMTHCS JOAATKOBA HEBioMa (YHKILIs, sIKa OIMCYE pyX BUIbHOI moBepxHi. KiHemMaTnuHa ymoBa - 11e
PIBHICTh IIBHAKOCTI PiIMHM, SKa ONMUCYETHCS MOTEHIIAJOM IIBHJIKOCTI, 1 MIBUAKICTIO caMoi BiIbHOI moBepxHi. L{i popmu
BIIBHHUX KOJIMBAaHb BUKOPHCTOBYIOTHCS SIK CHCTEMa HUX (QYHKIIH NpU BHpIIIEHHI NPOOIeM BUMYIICHUX KOJMBAaHb PiIVUHHU Y
BonoiiMax. Hesimomi ¢yHKmii mpencrasieHi y BUMIAAL psAaxy ocHOBHHX QyHKmid. KoedimieHTH mux psmiB € y3araibHEHIMH
KOOpJMHATaMH. PO3IISTHYTO MepiofuyHi cHin 30yPKeHHS, IO JiIOTh Y BEPTHKAIBHOMY Ta TOPU30HTAJbHOMY HAINpPSMKaX.
SIKIIO BHMBYAETBCS BEPTUKAJIbHE 30YIDKEHHs, 1I¢ HPHU3BOAUTH A0 IMOSBH JOATKOBOTO NPUCKOPEHHS. TYT MH OTPUMYEMO
cucreMy audepeHuianbHUX piBHAHBb TNy Martbe. Lle 103BONSE NOCTHIOUTH SIBUINA MapaMEeTPHYHOTO pPEe30HaHCYy. Brms
MapaMeTPUYHOTO PE30HAHCY BBAXKAETHCS TOMI, KOJM YACTOTA BEPTHKAIBHOTO 30YIKCHHsS JOPIBHIOE MOJBIifHINA BIacHIii
4acToTi KoJMBaHb piavHH. OTpuUMaHi 3aJeXKHOCTI 3MiHM pIiBHS BIIbHOI TMOBEpXHI Bil 4Yacy BHACIIIOK B3a€MHOI Aii
TOPU30HTAIBHUX Ta BepTUKAIbHUX cwil. [lonmaHi (a3oBi MOpTpeTH AWHAMIYHOI CUCTEMH i3 3a3HaueHHSIM pe30HaHCIiB. MeTox
JI03BOJISIE€ 3IIHCHUTH PEry/IIOBaHHS HeOakaHMX 4acTOT 30y/KEHHs Ha eTari NPOEKTYBAaHHS IIPU BHPOOHHITBI pe3epByapa 3
METOIO 3aro0iraHHs BTPATH CTIHKOCTI.

Knrouogi cnosa: npusmamuuni pezepgyapu, ioeanbHa HeCMuciuga piouHd, 6EPMUKAIbHI MA 20PU3OHMANLHI 30Y0ICEHHS,
pisusanna Mamoe, gazoei nopmpemu

IIpennosxen MeTos MCCIENOBAHNS BEIHYX/ICHHBIX KOJIeOaHHH )KUAKOCTH B XKECTKHUX MPU3MATHUECKUX Pe3epByapax, YaCTHIHO
3aMOHEHHBIX JKUAKOCTBIO. [Ipedmormaraercs, 9YTO JKHAKOCTH SBISIETCS WACATBHOH M HECKHMAaeMoOH, a ee MABIDKSHHE,
BBI3BAHHOE JICHCTBHEM BHEIIHUX BO3JCHCTBUI, SBIAETCS OE3BUXPEBBIM. B 3THX NMPEAIONOKeHHAX CYIIECTBYeT MOTEHIHAI
CKOPOCTH, KOTOPBIH ynoBieTBopsieT ypaBHeHmIo Jlammaca. ChopMynupoBaHHas KpaeBas 3aj1ada Juisl 3TOro nmoteHnuana. Ha
CMOYEHHBIX IOBEPXHOCTAX pe3epByapa CYLIECTBYIOT YCJIOBHA HempoTekaHus. Ha cBOOOIHOM MOBEPXHOCTH KHUIKOCTH
3aJal0TCsl KWHEMaTHYeCKUe M CTaTHYeckue ycioBHs. CTaTHYECKHE YCIOBHS COCTOST B PaBEHCTBE JABJICHUsSI Ha CBOOOIHOI
MOBEPXHOCTH K aTMochepHOoMy. [laBieHue »XHMAKOCTH ompenensercss uaterpanoM Komm-Jlarpamxa. s dpopmynupoBku
KHHEMaTHYEeCKOT0 YCJIOBHSI BBOJUTCS JIOTIOJHUTEIbHAs HEU3BECTHas (QYHKIMS, KOTOpas OMHCHIBACT ABM)KEHHE CBOOOIHOIL
MoBepXHOCTH. KuHeMaTHdeckoe yCIOBHE - 3TO PaBEHCTBO CKOPOCTH XXHMAKOCTH, KOTOpas ONMCHIBACTCS IMTOTCHIHATIOM
CKOPOCTH, M CKOPOCTH caMoi cBOOGOIHON moBepXxHOCTH. DOpMBI CBOOOTHBIX KOJNEOAHWH HCIONB3YIOTCS KaK CHCTEMa
0a3uCHBIX (QYyHKIMI TpH pemIeHnH MpoOJieM BBIHYKIEHHBIX KoJe0aHWi KUAKOCTH B pe3epByapax. HemsBecTHble (QyHKIUH
MPEICTABICHBI B BUAE PSIOB 1O 0a3uCHBIX (yHKIuH. Kod(hdHUIHeHT 3THX pANOB SBISIOTCS 0000MEHHEIMI KOOPIHHATAMH.
PaccMoTpeHB! nepuoauueckue cuiibl BO30YXKICHUS, JEUCTBYIOIIUE B BEPTUKATBHOM U TOPU30HTAIBHOM HampaBieHusx. Eciu
U3y4aeTcs BEPTUKAIbHOE BO30YXICHHE, 3TO NPUBOJAUT K IOSBICHHIO JOMOJIHUTEIBHOTO YCKOPEHHs. 371eCh Mbl IOJIy4yaeM
cucteMy b QepeHIMalbHbIX YpaBHEHHH THIIa MaTbe. DTO MO3BOJISIET UCCIIEIOBATh SBJICHHS TAPaMETPUIECKOr0 pPEe30HaHCa.
BrusiHue mapaMeTpHuecKoro pe3oHaHca BO3HMKAET TOTA, KOTAa 4acTOTa BEPTHKAJIbHOTO BO3OYKACHHS paBHA JBOWHOM
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cOOCTBEHHOW dacToTe KoJeOaHWH >KUAKOCTH. [lomydeHHBIE 3aBHCHMOCTH M3MEHEHHS yPOBHS CBOOOJHOW IOBEPXHOCTH OT
BpPEMEHH NP B3aMHOM JeHCTBUH TOPU30HTAIBHEIX U BEPTHKAIBHBIX CHIL [IpencTaBieHs! Ga3oBbie MOPTPETH JUHAMUYECKOH
CHCTEMBI C yKa3aHHEM PE30HAHCOB. MeToJ MO3BOJISIET OCYIIECTBUTE OTCTPOHKY OT HEXENIaTeJIbHBIX YacTOT BO30YKICHUS Ha
3Tamne NPOeKTUPOBAHMS NIPU U3TOTOBICHUH PE3EPBYapPOB C IIENbI0 MPEAOTBPAILEHHUS TOTEPH YCTOHUUBOCTH.

Knroueswie cnosa: npusmamuyeckue pe3epgyapbl, UOCANbHAS HECHCUMAEMAS HCUOKOCMb, BEPMUKATbHbIE U 2OPUSOHMATbHbIE
Hazpysku, ypasnenus Mamve, pazosvie nopmpenot

1. Formulation of the problem and its relevance

Containers and reservoirs for the storage and transportation of different liquids are widely used in
aerospace, chemical, oil and gas industry, power engineering, sea transport. These reservoirs and fuel
tanks are usually filled with oil or other dangerously explosive, flammable or toxic substances. Fluid
motion in liquid storage tanks due to intensive external loadings can be very complicated and violent.
Therefore, studying the dynamic behavior of fluid in tanks is an urgent task. During past decades the
significant progress in experimental technique and numerical methods based on using the computational
fluid dynamics approach has been achieved. But these techniques are very expensive and time-
consuming. Therefore the linear wave models based on the potential flow assumptions are suitable as
the first approximation at designing the liquid storage reservoirs. The most important problems are
associated with fluid motion in reservoirs caused by external loadings, especially applied suddenly.

The methods for solving fluid oscillation problems in rigid prismatic tanks under simultaneous
action of horizontal and vertical excitations are proposed in this paper.

2. Analysis of recent research and publications

Sloshing is a phenomenon associated with the intense movement of fluid in partially filled tanks [1].
This phenomenon can lead to negative effects caused by suddenly applied loads (earthquakes, aircraft
crashes, etc.). Most studies are devoted to the analysis of free liquid vibrations [2-4] or excitation forces
acting only in the horizontal direction [5-7]. Liquid vibrations in fluid-filled prismatic tanks under
action of horizontal loading have been studied in [8]. The liquid motion under action of harmonic force
has been considered. Kim has carried out the numerical simulation of sloshing to predict impact loads
and provided comparison of various numerical techniques in [9]. The effects of sloshing have been
considered for viscid liquids in [10]. The authors of [11] have used the coupled finite and boundary
elements method for sloshing in 3D tanks of different configurations. Parametric instability of liquid
free surface in different fluid-filled reservoirs caused by vertical excitations has been the subject of
extensive research in many scientific areas since Faraday’s first works [12].

3. The aim of the study

The aim of the study is to create the methodology for estimating the amplitude of the liquid free
surface vibrations in prismatic tanks under action of various external influences.

4. Outline of the main research material

This paper deals with the problems of free and forced oscillations of liquids in rigid prismatic tanks.
It is assumed that the external load can act either horizontally or vertically. The scheme of the tank is
shown in Fig. 1.

Figure 1. Sketch of fluid-filled prismatic tank
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We suppose that the fluid is inviscid, incompressible, and its motion is irrotational. Under these
conditions, there exists a potential of velocities @(x,y,z,t), such that
VX:a_(P;Vy:a_(p;VZ:a_(P
OX oy 0z
This potential satisfies the Laplace equation. The mixed boundary value problem for this equation is
formulated. At the same time, non-penetration conditions are set on the lateral surfaces and the bottoms
of the reservoir, and kinematic and dynamic conditions are set on the free surface. The kinematic
condition is that the point on the free surface of the fluid in the reservoir at the initial time of motion
remains on that surface throughout the whole movement. The dynamic condition characterizes the
equilibrium of the atmospheric pressure and the fluid pressure on the free surface. The unknowns are
the velocity potential ¢ and function { that describes the level the free surface elevation. The
relationship between these two functions is given by the dynamic boundary condition

op
—~ 4+9c=0.
ot 9

where g is the gravity acceleration. Let the equation of the free surface at the initial instant of time have
the form £ = 0. Designate a moistened shell surface by S;, and a free surface by S.
The boundary wall and bottom conditions are

¢
onls,

Supposing that the Cartesian coordinate system 0xyz is connected with reservoirs under consideration,
the liquid free surface S, coincides with the plane z = 0 at the state of rest. Let us assume that the liquid-
filled shell is under vertical and horisontal driven forces with accelerations a, and a,
a, = a,(t) i, a, = a,(t) Kk, (4.1)
where factors a,(t), a,(t) depend on time t only. i and k are the unit vectors along Ox and Oz.
Firstly we obtain a relation between the velocity potential, the liquid pressure, and accelerations due
to driving forces and gravity. We have

a,=V[x-a,(t)], a,=V[z-a,(t)], 9=-V(pgz), (4.2)
where X, z are coordinates of a point in the liquid.
Motion equations for the ideal incompressible liquid can be presented in the vector form as follows
[18]:

w+ V(xa, (t))+ V(za, (t)+ V(gz) = _% , (4.3)

where w is the acceleration of the fluid flow, p is the liquid density, and p is the fluid pressure.
Therefore the acceleration of liquid particles under gravitational forces, horizontal, and vertical

excitations always has the potential (an analog of the Prandtl’s potential). Using equation (4.3) and

assuming that the flow is irrotational, Bernoulli equation can be derived in the following form:

P—Po= —p{% +a, (tx+(g+a,(t))z+ %W(Dﬂ , (4.4)

where py is the atmospheric pressure. If small oscillations of the liquid are considered then |Vq>|2<<1,
and we have the next expression:

oo
=0 =) S +au(thr(a a0 . @5
Thus, for the velocity potential, we have the following boundary value problem:

oo
S, on

aq
=% pople =0, 4.6
5, ot p p0|SO ( )

vip=0. 0P

on

where p— p, is defined by formula (4.5), where z =C(X, y,t).

To satisfy the solvability conditions for the boundary value problem (4.6), it is also necessary to add the
Neumann condition



BicHuk XapkiBcbKoro HawioHanbHoro yHisepcuteTy imeHi B. H. Kapasita, 2019 71

4.7
n (4.7)
To solve the problem of forced oscillations we construct a system of basis functions, which are the
solutions of the spectral boundary value problem

2q 0. 0D ool ac oD
Vb =0. | _5 P _6G. B -0
"onls, én P Polg, =0, ot gf;so

s, Ot
under additional condition (4.7).
We present the expressions for the first 8 eigenmodes of fluid oscillations obtained in [13]. This is a
system of basis functions obtained as a solution to problem (4.6) - (4.7) for studying forced oscillations.

jaipd3=o.
So

(4.8)

. T . T . T . T
¥,,(x)=C, cos(0- x)sin o) ¥, (x)=C,sin g XC0s(0-Y) ¥, (x)=C,sin g XSin oY

¥, (x)=C,scos— xcos(0y)
a

T T R T
¥ ,(Xx)=C.scos0xcos(— Y. (x)=C,.cos—xsin—
02( ) 5 (b y) 21( ) 6 a b y 4.9)
R T T TT T
¥, (x)=C,sin 25 XCOSTY W (x)=C, COS_-XCOSy

In the Tab. 1 the natural frequencies of fluid oscillations in a prismatic reservoir are shown.
Fig. 1 shows the numerical values of the frequencies wij and the frequency parameter A for a cube-
shaped prismatic reservoir with geometric characteristics a=b=H=1m

Table 1. Natural frequencies of fluid oscillations in a prismatic reservoir

n i j Aij jj

1 0 1 1.772453851 4.051164194
2 1 0 1.772453851 4.051164194
3 1 1 2.506628275 5.710012556
4 0 2 3.544907703 5.892165855
5 2 0 3.544907703 5.892165855
6 2 1 3.963327298 6.233151691
7 1 2 3.963327298 6.233151691
8 2 2 5.013256550 7.012538645

To find the function ¢ we use the following expression for the velocity potential

®= icn(t)@n ,

where the addiction n= n(i, j) is shown in Tab. 1, function @, is determined by [13]

w6 y) n=n,j) =

1 cosh(kijz)
" abcosh(:,H)

where W;; are found using relation (4.9).
Then, provided that z=H , we obtain

£=3a0)

Orthogonality check gives the following relation:

od
on

(Tti jz (ch
JRN— + —_—
2a 2b
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ab

”(Dk(x, yﬁ)l (X, y)dXdy: abSkI'

-a-b

5. Forced fluid oscillations in a rigid tank

Let us suppose that at the initial time, the liquid in the tank is at the state of rest. A combined
periodic load is applied to the tank in horizontal and vertical directions.

We compose a system of differential equations of fluid motion based on the boundary condition on
the free surface

% +a, (t)x+(g+a,(t)) =0.

where

= (5.1)

Let us consider equation

%)Jrax(t)wr(g +a,[t)k(x,y,t)=0 (5.2)
Substituting equations (5.1) to equation (5.2) we obtain

>0, (v H)+a,0x 0+ a0 2 (ko H)=0 63

where
0@, sinh(4;2)4;

= (X, Y).
oz cosh(4;H) Vi(xy)

It should be noted that for z=H
1 oo, 1
q)n(xvva)=_‘//ij(X1y)’ =—a)§CDn,
ab oz g
After a dot product of equation (5.3) by ®,(x, Yy, H) we obtain the following system of differential
equations of the second order:

abé, (t) +a, (t)(x,®,) + o (g +a,(t)abe (1) =0, 1=12,...,N (5.4)

It should be noted that (x,®,) =0, for every modes except i=2. Therefore considering the following
initial data:
c,(0)=0; ¢(0)=0; i=13.. c,(0)=0; ¢,(0)=0.05. (5.5)
we obtain:

abé, (t) +a, cosQt(x, D, ) + w5 (g +a, cos Q,t)c, (t) = 0. (5.6)

6. Numerical results
Let us consider liquid vibration in prismatic tank with following parameters: a=b=1m.

o, =4.05Hz at different a,,a,,€,,€2, . The results are shown in Fig. 2-6. In Fig. 2 the phase portraits
for separate and mutual actions of horizontal and vertical excitations are demonstrated:
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Figure 2. Phase portraits for ), =4.05Hz, a, =1.81during 60 sec.

Fig. 2(a) corresponds to a, =0, a, =1.81 for vertical excitation only. Fig. 2(b) corresponds to

8, =01 a,=0, €Q =0.01Hz for horizontal excitation only. Fig. 2(c) corresponds to mutual

action of horizontal and vertical excitations with abovementioned parameters. The processes of
vibrations shown in Fig. 2(a) and 2(b) are unstable, but the loosing of stability due mutual action of

horizontal and vertical loads begins earlier.

a b c
Figure 3. Phase portraits for Q, =4.05Hz, a, =0.1 during 60 sec.

Fig. 3(a) corresponds to a, =0, a,=0.1 for vertical excitation only. Fig. 3(b) corresponds to
a,=01 a,=0, Q =0.01Hz for horizontal excitation only. Fig. 3(c) corresponds to mutual
action of horizontal and vertical excitations with abovementioned parameters. In this case the stability

of vibration process can be observed.

Figure 4. Phase portraits for QQ, =4.05, Q, =4.05Hz, a, =0.1 during 60 sec.
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Fig. 4(a) corresponds to a =0, a,=0.1 for vertical excitation only. Fig. 4(b) corresponds to

a, =01 a,=0, Q =4.05Hz for horizontal excitation only. Fig. 4(c) corresponds to mutual

action of horizontal and vertical excitations with abovementioned parameters. In this case the vibration
process is unstable, and vertical excitation is not essential.

T T T T
001 002 003 004
X

a b c
Figure 5. Phase portraits for €, =0.012, Q, =8.1Hz, a, =0.1 during 60 sec.

Fig. 5(a) corresponds to a =0, a,=0.1 for vertical excitation only. Fig. 5(b) corresponds to

a,=01 a,=0, €Q =0.012Hz for horizontal excitation only. Fig. 5(c) corresponds to mutual

action of horizontal and vertical excitations with abovementioned parameters. In this case the vibration
process is unstable, but horizontal excitation is not essential.

a b c
Figure 6. Phase portraits for €, =4.05, Q, =8.1Hz, a, =0.1 during 60 sec.

Fig. 6(a) corresponds to a, =0, a,=0.4 for vertical excitation only. Fig. 6(b) corresponds to

a,=01 a,=0, € =4.05Hz for horizontal excitation only. Fig. 6(c) corresponds to mutual
action of horizontal and vertical excitations with abovementioned parameters. In this case the vibration
process is unstable, both vertical and horizontal excitations are essential. The phenomenon of
parametrical resonance can be observed.
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7. Conclusion
The method for estimation of liquid vibration in prismatic reservoir under action of periodic

horizontal and vertical loads is developed. The nature of the behavior of the liquid in the reservoir is
established depending on the frequency of the driving forces. The effects of instability are investigated.
The effect of parametrical resonance at vertical excitation frequency equals to double own frequency of
liquid vibrations is considered. The most dangerous liquid vibrations occur when the frequency of
horizontal excitation coincides to own frequency of liquid vibrations, and the vertical excitation
frequency equals to double value of own frequency.
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