BicHuk XapkiBcbkoro HauioHanbHoro yHiBepeuteTy iMeHi B.H. KapasiHa, 201 9 55

DOI: 10.26565/2304-6201-2019-41-06

UDC 519.72

The impact of usage of post object-oriented technologies on defect reduction in
software maintenance

K.A. Nagornyi*, 1.O. Martinkus®, M.V. Tkachuk *
V. N. Karazin Kharkiv National University, Svobody Square 4, Kharkov, 61022, Ukraine
e-mail: imartinkus@gmail.com

The article is dedicated to software quality improvement research within the maintenance phase based on post-object-oriented
technologies. An important problem of the maintenance phase is surveyed, namely, the crosscutting functionality problem.
Mechanisms of post-object-oriented technologies have been reviewed and basic tasks to be resolved have been formulated in
order to reach the final goal of the research: defect reduction during the maintenance phase. The post object-oriented
technologies utilization framework for software quality improvement based on a collection of 4 heuristic assumptions has
been introduced. The conceptual scheme of the framework has been presented. An applied 2-steps procedure for defect
reduction assessment based on quantitative crosscutting-functionality and defect metrics has been described. Twelve results
of the experiments concerning calculation of the residual defect number have been presented and analyzed.

Keywords: post object-oriented technology, crosscutting functionality, software, defect, maintenance, metric.

CraTTs mpUCBSYEHA IOCTI[HKEHHIO IIIBUIICHHSA SKOCTI PO3POOKH IMporpaMHOro 3ade3medeHHS Ha (asi cympoBomy i3
BUKOPHUCTaHHSAM IIOCT O0’€KTHO-OPI€EHTOBaHMUX TexXHONOTiH. OpHiero i3 ocobmmBocTeil (ha3u CympoBOAy MPOTPaMHOTO
3a0e3MeYeHHS € MOCTiifHA 3MiHa BUMOT KOPHCTYBadiB, IO Ha PiBHI BUXIZHOTO KOAY MPU3BOAUTH OO MpOOIEeMH HACKPi3HOL
(YyHKLIOHANBHOCTI, SIKa B CBOIO YEpPry BUKJIMKAE 3pOCTaHHSA piBHA nOedekrtiB. [nsd BupimeHHS NpoOiIeMu HAaCKPi3HOi
(YHKIIOHAIBHOCT] 3alpOIIOHOBAHO BHKOPHCTATH MEXaHI3MH IIOCT 00’€KTHO-OpPIEHTOBaHI TEXHONOTIH Ta chopmyapoBaHi
6a30Bi 3aBOaHHS JUIL JIOCSATHEHHS (iHAMBHOI WIMI JOCHIIKEHHS: 3HIKEHHS PiBHSA He(deKTiB mix dac (asu CympoBOIYy.
IIpencrasnennit ppeliMBOpPK JUIs MiABUIICHHS SIKOCTI IPOIPaAMHHUX CHUCTEM 13 BUKOPHCTAHHSM IIOCT 00’ €KTHO-OPi€HTOBAaHUX
TEXHOJIOT1H, SIKMH 0a3yeThCsl HA KOHLENTI 3-BUMIPHOTO IPOCTOPY, IO MOEAHYE Y COOI THUIT CUCTEMH Ta BHI IIOCT 00’ €KTHO-
OpIEHTOBAaHOI TEXHOJIOTii, 13 BHKOPHCTaHHSAM $KOI IepeadadaeThbCsd 3HIDKCHHS PIiBHS HACKPI3HOI (PYHKLIOHATBHOCTI Y
iTboBil cuctemi. Januii GppeMBOpK Oa3yeThesl Ha YOTUPHOX 0Aa30BHX €BPHCTHYHMX MPHUITYLICHHSX, IO OB’ A3YIOTh PiBEHb
nedeKTiB, HACKPi3HY QYHKIIOHATBHOCTD, IIOCT 00’ €KTHO-OPi€HTOBaHI TEXHOJIOTII Ta IIUILOBY MPOTpaMHy cuctemy. HaBenena
KOHIIENITyaJlbHa CXeMa Ta 3alpoNOHOBaHA IBOIIATOBA NPOILEAYpa i3 BUKOPUCTAHHS JAHOI IMOCT 00’ €KTHO-OPi€HTOBAHOL
TEXHOJIOTT JUIs 3MEHIIEeHHs piBHA JedekTiB Ha (asi cynpoBoay WiIbOBOI mporpaMHoOi cuctemu. [Ipouenypa mependavae
OTpPHUMaHHS KiJIbKICHAX OLIHOK Ha 0a3i MeTpHK HAcKpi3HO! (YHKI[IOHATBHOCTI, TAKUX SK: PiBEHb MPUCYTHOCTI HACKPi3HOL
¢dyukioHanbHOCTI CF g0, T CTyHiHB po3citoBanHs DOS, 3anunikoBuit piBeHb HackpizHOi (yHKIiOHATBHOCTI RCR 40, T
KIUTBKICTh Jie(eKTiB y 1inboBii mporpamuii cucremi NoD. HaBeneni nani 12 nmpakTHYHHMX €KCIIEPUMEHTIB i3 BH3HAYCHHS
3aJIMIIKOBOTO PiBHS Je(eKTiB, 0 3rpymoBaHi 3a YOTHPMa TUIIMH TNPOTPAMHHUX CHUCTEM Ta TPhOMa MOCT 00’ €KTHO-
OpIEHTOBaHMMH TEXHOJOTISIMH, TaKUMH SK: aCIIEKTHO-OPIEHTOBaHA TEXHOJIOTiSI, BIACTHUBICTH-OPIEHTOBAHA TEXHOJIOTIS Ta
KOHTEKCTHO-OPI€HTOBaHA TEXHOJOTis. Pe3ynpTraTH BiOMOBIAHWUX EKCHEPHMEHTIB Oyl IMpOaHaTi30BaHi, OI0 Jal0 3MOTY
MPOpaH)KyBaTH 3TajiaHi BHIIE MOCT 00’€KTHO-OPIEHTOBAHI TEXHOJIOTI 3a 3aJMIIKOBAM DiBHEM Ae(EKTIB B JOCIIIKEHUX
cHCTeMax Ta BHU3HAYUTH HaiiMeHII Ta HaHOLIbII e(EeKTHBHY TEXHOJOTIIO0 Ui BHKOPHCTaHHS B MpOLECi CYNPOBOAY
HNPOTPaMHHX CHCTEM.

Knrouosi cnosa: nocm 06 ’eKmuo-opieHmo6ani MexHon02ii, HACKPI3HA (DYHKYIOHATbHICMb, NPOSPAMHE 300e3neyeHns,
deghexmu, CynposooHICY8anicmy, MEMPUKLL.

CraThsl TOCBSIICHa KCCICJOBAHUIO TMOBBIIMICHUS] KadecTBa pa3pabOTKM IMporpaMMHOro obecrmeueHuss Ha (ase
CONPOBOX/ICHUSI C HCIIOJIb30BAHUEM IOCT OOBEKTHO-OPHEHTHUPOBAHHBIX TexHomorud. OpHOIT M3 ocobeHHocTeil (a3bl
CONPOBOXK/ICHUS] IPOIPAMMHOTO OOECIICUCHUsI SIBISIETCSI OCTOSIHHOE M3MEHEHHe TPeOOBaHUiA MOJIb30BaTENei, Ha YPOBHE
HCXOIHOTO KOZa IPHBOJHUT K MpoOieMe CKBO3HOW ()YHKIMOHAIBHOCTH, KOTOPasi B CBOIO OYEpE]b BEI3BIBAET POCT YPOBHS
nedexToB. 1 pemieHns mpodIeMbl CKBO3HOH (hYHKIMOHATEHOCTH TIPEJIOKEHO HCIIOIb30BaTh MEXaHU3MBI IIOCT 0OBEKTHO-
OPHEHTHPOBAHHBIE TEXHOJOTHUH ¥ CHOPMYIHPOBAHBI 0A30BBIC 33a7aud JUIS JOCTIDKEHUS (DUHAIBHOM IeNN HCCIEIOBAHUA:
CHIDKEHHE YPOBHS Je(eKTOB BO BpeMs (a3sl compoBoxkaeHHs. [IpencraBieHHbIH (pelMBOPK I IOBBIMICHHS KadecTBa
IPOTPAMMHBIX CHUCTEM C HCIIOJb30BAHHEM MOCT 0OBEKTHO-OPUEHTHPOBAHHBIX TEXHOJOTHH, OCHOBAaHHBII Ha KOHIeNTe 3-
MEpHOTrO MpPOCTPAHCTBA, COYETAaeT B cebe THI CHUCTEMbl M BHJ MOCT OOBEKTHO-OPUEHTHPOBAHHOW TEXHOJOTHH, C
HCIOJIb30BaHUEM KOTOPOMH MPEAINOaraeTcsi CHIKCHHE YPOBHSI CKBO3HOM (DYHKIIMOHAIILHOCTH B LieNieBOil cucteme. JlaHHBIN
¢peitMBOpk Oa3upyeTcss Ha 4eThIpeX 0a30BBIX IBPUCTHUYECKUX IMPEINOJIOKEHUAX, CBA3BIBAIOLIMX YPOBEHb NE()EKTOB,
CKBO3HYIO (YHKIMOHAIBHOCTH, MOCT OOBEKTHO-OPHEHTUPOBAHHBIE TEXHOJOTHH U IEJEBYI0 IIPOTPAMMHYIO CHCTEMY.
IIpuBenenHas KOHIENTyaTbHas CX€Ma U IpeUIoKeHa JBYX€ETAHAS IPOIeypa 110 HCIIOIB30BaHUIO JaHHOH ITOCT OOBEKTHO-
OPHEHTHUPOBAHHON TEXHOJIOTHH JUIi YMEHBIIEHUS YPOBHA HE(EeKTOB Ha (ha3e COMPOBOXKACHMS IEJEBOH IPOTrpaMMHOMN
cuctembl. [Ipomemypa mpemycMaTpuBaeT IIOMyYeHHE KOJIMYECTBEHHBIX ONEHOK Ha 0a3e METpPUK CKBO3HOI
(YHKIMOHATIBHOCTH, TaKMX KakK: YPOBEHb IPHCYTCTBHUs CKBO3HOH (yHkimonambHOocTH CFratio, ee cremeHb pacceMBaHHs
DOS, ocraro4Hblii ypoBeHb CKBO3HOH (yHKumoHambHOCTH RCRratio, n Komu4decTBo Ae(EeKTOB B LEJICBOW MPOrpaMMHOI
cucreme NoD. IIpuBeneHHble qJaHHBIE 12 MPaKTHYECKUX HKCHEPUMEHTOB 110 ONPEAENICHHIO OCTATOYHOIO YPOBHS Je()eKTOB,
CTPYIIIHMPOBAHBI MO YETHIPEM THUIMAM MPOTPAMMHBIX CHCTEM U TPEMS MOCT 00BEKTHO-OPHEHTUPOBAHHBIMU TEXHOJIOTHSAMH,
TaKUMH KakK: acleKTHO-OPUCHTUPOBAHHAs TEXHOJIOIUS, CBOWCTBO-OPUEHTUPOBAHHAS TEXHOJOIMS U KOHTEKCTHO-
OPHEHTHUPOBAHHASI TEXHOJIOTHS. Pe3ynbTaThl COOTBETCTBYIONIMX IKCHEPUMEHTOB OBUIH IPOAHAIN3UPOBAHEL, YTO HO3BOJIMIO
MPOPAHKUPOBATH YIIOMSIHYTHIC BBIIIE IIOCT 0OBEKTHO-OPHEHTHPOBAHHEBIE TEXHOJIOTHU 0 OCTaTOYHOMY ypoBHIO [ledekTs B

© Nagornyi K.A., Martinkus 1.0., Tkachuk M.V., 2019



56 Cepist «MaTemaTyHe MogentoBaHHs. IHhopmaLliiHi TexHonorii. ABTOMaTM30BaHi CUCTEMM YNPaBIiHHSAY, BUMYyCK 41

HCCICA0BAaHHBIX CUCTEMAX U ONPEACIINTh HAUMEHEE U Hanbosee 3(1)(1)CKTI/IBHyIO TEXHOJIOTUIO JJIS1 UCTIOJIb30BAaHUA B IIPOLECCE
COIIPOBOKACHUSA MPOTrpaMMHBIX CUCTEM.

Knrwouesvie cnosa: nocm o00vbeKmMHO-OPUSHMUPOBAHHbIE MEXHONOUY, CKEO3HASL (PYHKYUOHATILHOCIb, NPOSPAMMHOE
obecneuenue, deghekmul, CYnPOBOOINCYBAHUCTIb, MEMPUKL.

1 Introduction. Problem actuality and research goals

Nowadays object-oriented programming (OOP) is the most popular technology for software system
development and maintenance [1]. For the maintenance of legacy software systems (LSS) one of the
important problems is continuous modifications of major part of their sub-systems due to changes in
user requirements and the development of new components to meet new user requirements. Permanent
changes in LSS components lead to design instability which causes a so-called crosscutting
functionality (CF) problem [2; 3]. The OOP approach increases source code complexity and does not
resolve this issue in effective way, especially during a maintenance process of large legacy software
systems.

During the last two decades post object-oriented technologies (POOT) have emerged and been
intensively designed. The most known fully-fledged POOT are: aspect-oriented software design
(AOSD) [4], feature-oriented software design (FOSD) [5] and context-oriented software development
(COSD) [6]. These POQOTSs use core principles of the object-oriented software design but additionally
include a complementary feature-set to resolve the crosscutting functionality problem. On the other
hand, utilization of any of mentioned POOT for LSS maintenance results in extra time and efforts
interconnecting software development. Hence most of researchers accentuate the necessity to elaborate
approaches for the complex estimation of POOT’s effectiveness usage in real-life software projects, see
e.g. in [7; 8; 9]. Besides, the issues of relationship between specific features of different POOTs and
software design defects caused by CF [10] as well as development of such sophisticated solutions as
software product lines with FOSD [11] and evaluation of software quality with usage of AOSD [12] are
presented and discussed intensively nowadays. Nevertheless a lack of applied researches related to the
impact of POOTSs on software defects behavior with respect to the factor of crosscutting functionality
has to be emphasized.

Taking into account the above-mentioned issues the research goal of this paper is to assess the
impact of different POOTs on defect reduction in software maintenance and to provide some
methodological recommendations for choosing an appropriate POOT in real-life projects. In order to
reach this research goal the following tasks are to be resolved:

- to analyse some critical CF-issues in maintenance of LSS by utilizing traditional OOP-
methodology;

- to give a short review of the knowledge-oriented approach to the estimation of POOTSs
effectiveness;

- to define metrics to estimate a CF level and a method to calculate a number of software
defects in LSS;

- to propose the conceptual scheme of quality improvement of software maintenance using
POOTs;

- to check the proposed approach experimentally, to analyse the results obtained and to
formulate some praxis-oriented recommendation for usage of POOTSs in maintenance of
different LSS.

The possible solutions for these tasks are presented below in more details, as well as, the outlook of
the next steps concerning this research.

2 A framework for usage of post object-oriented technologies to improve a software quality in
software maintenance.

A lot of studies investigate complexity of the maintenance process of OOP-based legacy software
systems [13; 14], especially a crosscutting functionality (CF) problem. The crosscutting problem is a
functionality which can’t be modularized at the source code level, although represents a particular
businesses feature from the requirement perspective. Some well-known representatives of the CF are:
data validation, transaction management, logging, exception handling, etc. Complexity of the
maintenance process of a software system which includes the CF increases dramatically [14]. There are
some peculiarities which are common to those crosscutting features, namely: complication of software



BicHuk XapkiBcbkoro HaLioHanbHOro yHiBepeuteTy imeHi B. H. Kapasina, 2019 57

requirements traceability; decrease of readability and understandability of diverse design artifacts;
source code redundancy; lack of modularity which prevents further reuse of such CF-solutions.

Separation of Concerns (SoC) [10] is a principle which resolves CF problem. It presents a
decomposition phase and a non-invasive composition phase of the CF-source code and the LSS basic
source code. At the decomposition phase the source code of the crosscutting functionality should be
localized, extracted and isolated, from the rest of the LSS-code, into well-structured modules (CF-
modules). The composition phase involves reassembling of well-structured CF-modules with the LSS
CF-free modules. Realization of the SoC principle allows solving CF-peculiarities listed above and
implementing software system configuration in order to add or remove functionality, if it is required.

As mentioned in Section 1, there are three fully-fledged approaches in POOT-domain, namely:
AOSD, COSD, FOSD. To represent main features of these approaches an interaction between basic
OO-components and POOT-components should be restated [15]. AOSD was proposed about two
decades ago in Xerox PARC research center, and now it is implemented in vast majority of
programming languages, like Java, .Net, C++, JavaScript and so on. CF-related source code should be
isolated in a special module, which is called the aspect. Further composition of this module and non-
crosscutting functionality source code is based on the idea of intersection point — the point-cut and the
injection. Schematically this interaction is shown in Fig. 1(a), where the white vertical rectangles C1,
C2, C3 represent OOP-classes and gray horizontal rectangles Al, A2, A3 represent the aspects.

L = l €~ A interaction between AOSD and OOP
/
= .F/—f [crosscutting functionality]
[ Aspect -
ﬁn-tlzr-t';pe declaretion) H [base funclionaliy]

=5

class C

puihtcuﬂ LR o new Field

T

. ~_ MnewMethod {..} | ||
. o i h“"mlnumn: rethed M
advice L i
. QOR-clagsas before(...} after{.} |
| || | AOP-Aspects aroundf...} r

Fig. 1 AOSD: (a) — the conceptual scheme; (b) — the implementation facets [15]

A specific structure of the aspect is represented in Fig. 1(b). It includes point-cut, advice and inner-
type declarations. The core function of point-cut is to define a set of join points between the aspect and
the basic methods in OO-classes in order to inject advice source code. Advice represents a piece of
source code of former CF, in other words it is a special kind of function written in a OO-programming
language (e.g. Java). There are three types of advice: before — is invoked before target method
execution, after — is invoked after target method execution, around — is invoked instead of a target
method execution. Also it is possible to declare additional members of a target class such as fields and
methods via inner-type declarations. Two other technologies, FOSD and COSD can be represented and
analyzed in the similar way (see [15] for more details).

Even a short overview of CF issues shows that to make a decision about the effectiveness of using
an appropriate POOT to resolve CF-problem in a given LSS, we need to consider a number of factors,
which have to be formalized and evaluated in the appropriate modeling approach. This approach is
elaborated in [15] and its main idea is to use the 3-D modeling information space which is graphically
shown in Fig. 2. According to this modeling framework the integrated effectiveness level of a POOT
usage depends on two interplaying factors, namely: 1) what type of LSS (System Type) has to be
modified with an appropriate POOT; 2) what kind of POOT is used to eliminate the CF in this LSS.



58 Cepist «MaTemaTyHe MogentoBaHHs. IHhopmaLliiHi TexHonorii. ABTOMaTM30BaHi CUCTEMM YNPaBIiHHSAY, BUMYyCK 41

Effectiveness,
1 JR S

System Type
Fig. 2 The 3-D space for assessment of POOTSs effectiveness [15]

In turn, an appropriate System Type for any given LSS can be defined as a set of two interconnected
factors, namely: 1) the target software system Structural Complexity which can be evaluated from an
appropriate collection of object-oriented source code metrics; 2) the system’s Requirement Rank which
depicts the complex characteristics of functional requirements in the target software system (Fig. 3).

requirement rank ® LSS 1

_________ -
: [
high ! :
n . v
g . i
low | : i :

! 'system complexity

simple complex
Fig. 3 The 2-D space to define the System Type for the target LSS

More details concerning the framework for estimation of effectiveness coefficient of POOTSs usage
in maintenance of different types of LSS can be found in [15].

In order to realize our research goal: to elaborate the approach to assessing an impact of POOT
usage on defect reduction in software maintenance, we propose to formulate a collection of heuristic
assumptions. Those assumptions are based on the study of modern information sources and on the
generalization of our own experience of using different POOTS in software development and
maintenance.

Assumption 1. A set T of post object-oriented technologies for software development does exist.
AOSD, FOSD, COSD belong to this set.

(POOT) €T, j=123.. 1)

Assumption 2. Each LSS might relate to some particular system type, i.e. a set of system types S
does exist.

(SysType), €S,i=1,2,3... )

Assumption 3. CF-level decrease in a target LSS is possible by using one of the existent POOT,
although it is accompanied with additional costs needed for software modification of a target LSS.

A(CFR),, =5 ((SysType), ,(POOT) ), 3)

j



BicHuK XapkiBCbKOro HalioHanbHoro yHisepcuteTy imeHi B. H. Kapasita, 2019 59

where A(CFR)i J_ is a ratio of CF-level decrease caused by usage of a j-th POOT within i-th LSS-

type maintenance; o () is a functional dependency between the corresponding values.

Assumption 4. There exists a positive correlation between crosscutting functionality level and an
average number of defects in a target LSS, which are presented during the LSS maintenance process,
i.e. there exists some functional dependency u ():

NoD((SysType), ,(POOT ), ) = u(A(CFR), ). (4)

It should be mentioned that the functions & and x cannot be defined in an analytical way, because

there are a lot of weakly-formalized and complicated factors which characterize software development
process in general, and the LSS maintenance phase in particular. Therefore we have decided to
construct the appropriate metrics and to elaborate a procedure of assessing the impact of POOTs on
possible software defects reduction in maintenance of LSS.

Taking into account the assumptions (1) - (4) mentioned above, we propose a conceptual scheme for
usage an appropriate POOT in order to reduce a number of defects during maintenance of a given LSS.
The elaborated conceptual scheme is shown on Fig. 4, and it can be described briefly as a set of the
following steps:

1
5 6

sempoe® el <artefact>>
_______ [ <<artefact>>
% e Keimporto> <<artefact>>
6“.‘:_‘ """"""" Software Requirement Specification ] BefectReport
bt +version_1 todo Nu[IqulerExceptlon
U <<lmport>> 5 occured during.
ser
<<assess>>
a j <<merge>> ' 2 : —_— :
[ SN ge | : H
M | 5b D_etecl_q:amny 5a
Candidate POOT Software System assesment
Realization Elements
AOSD Specification Elements Developer/QA
<<component>> 8]
FOSD <:;rtefacl>;)
<<component>>
COSD System Model g = ¥
ponete> Bl . | [Pefect B oo
‘.
| S L
i . . o4
\ ~. .
e ! 3b CF \ e kN
3a l 2% \
<<component>> g <<component>> g <<component>> g
A M '
<<source code>> <<source code>>
CEree CF-affected CFmetric
-Zrc;ss;:uning functionality collection
-defects
-functional concern scattering

-concern code tangling

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 4 The proposed conceptual scheme

1. Some User (presented as a role on the scheme) requires some additional/new features to be
added to a target LSS. These user’s requirements have to be transformed into a new version of a
software requirement specifications (SRS).

2. A given version of SRS precipitates the development a new version of a target LSS which
embraces a set of project artifacts: a system model (e.g. architectural model, information model, etc.)
and its realization, namely: a set of target software components.

3. A set of developed software components (source code) can be divided into the following
groups, namely:



60 Cepist «MaTemaTyHe MogentoBaHHs. IHhopmaLliiHi TexHonorii. ABTOMaTM30BaHi CUCTEMM YNPaBIiHHSAY, BUMYyCK 41

a) a subset of components which are “healthy”, that is, they do not contain source code with
CF;
b) a subset of components “infected” with a CF-code which leads to code scattering and
tangling with a source code of another functional concern;
¢) a collection of CF-focused metrics to be constructed in order to assess a level of CF, its
negative factors, etc.;
d) using this metrics an appropriate CF-status of a given LSS has to be defined.
4. A current CF-status in LSS leads to some software defects to be fixed by Developer/Quality
Assurance (QA) shown in conceptual scheme (Fig. 4).
5. A Developer/QA takes a care of assessing the number of defects, namely
a) Completion of a defect reports;
b) Computing a number of defects.
6. Basing on a given defect report the appropriate changes can be done in the next SRS versions.
The steps (1) - (6) in the real LSS maintenance cycle have to be repeated iteratively. Basing on the
results obtained from 3.c (usage of a CF-metrics collection) and 5.b (assessing a number of defects), an
effective POOT (from AOSD, COSD, and FOSD respectively) can be chosen within 2.a (see these
logically interconnected icons shown in grey in Fig. 4).

3 The 2-steps procedure to assess the defect reduction with usage of different POOTS in
software maintenance

According to the proposed conceptual scheme (Fig. 4), and taking into account formulas (3) and (4)
in Section 2, it is possible to construct the quantitative metrics and to elaborate the appropriate
procedure to

1) assess a crosscutting functionality level in a given LSS;
2) compute a number of software defects in this system before and after the usage of an chosen
POOT.

To perform these 2 steps we have to localize source code which includes a particular CF in a given
LSS, and for this purpose we could use some already existing source code analysis tools for CF
localization, CIDE, for example [16]. After that it is possible to define a specific crosscutting
coefficient of a particular CF in the system indicated as CFq,. This coefficient shows a ratio between
OOP-classes “damaged” by a particular CF and all other OOP-classes in the given LSS, e.g. business
logic realization without subordinate classes of a framework. This coefficient can be represented as:

C,
CFfa[iO - m
cf (5)

where C, is a number of programming classes in LSS with CF, C is a number of classes free of CF.
Obviously, that CF_.. €[0;1], and if CF_. = 0, a particular functionality is free from crosscutting; and if

ratio ratio

CF .. = 1, all programming classes are “damaged” with a particular CF.

ratio
After obtaining CF,,, it is possible to calculate a residual crosscutting ratio (RCR) indicated as

RCRyatio- This metric, based on DOS (Degree of Scattering) value is proposed in [15]. But this metric
actually does not allow assessing a “damage” degree caused by a particular CF, therefore we propose to
refine DOS-metric in the following way

RCR

=DOS - CI:ratio (6)
where DOS is a Degree of Scattering; and a CF,;, is a specific crosscutting weight ratio of a particular
CF. Similarly to CF_,,, a value of RCR

o e[0;1], and if RCR,,,= 0, CF is localized in a separate
module and there is no more crosscutting; if RCR_. = 1, CF affects a whole LSS, and is uniformly

ratio
distributed. Thus the proposed quantitative metrics (5) and (6) give to an expert a possibility to assess a
distribution nature of a CF and to estimate a “CF-damage” for a whole given LSS.
As a next step we need to compute a number of defects (NoD) in a given LSS, and this can be done

directly by using a special function known as a DefectCount (), namely
NoD = DefectCount (LSS). 7)

ratio

ratio ratio



BicHuK XapkiBCbKOro HalioHanbHoro yHisepcuteTy imeHi B. H. Kapasita, 2019 61

This function can be realized by defect tracking focused on corresponding features of the target
software system before and after POOT-modification of the source code.

In our research we have used one of existent defect-tracking system as a defect collector for POOT-
modified source code of features in the target LSS. Then direct observation and calculation of a number
of defects have been applied to get the final result.

4 Experimental results and their analysis

Taking into account the workflow in the proposed conceptual scheme (Fig. 4) and using the
quantitative metrics given in formulas (5)—(7) the appropriate computerized experiments have been
performed [17]. The final results are presented briefly in Table 1 and in Fig. 5 — 6. The number of
software defects has been computed basing on the project reports obtained from the defect-tracking

system and grouped according to the 4 system types: I, II, 1l and 1V.
Table 1 — Number of defects
Basic number of defects in Number of defects in LSS Residual number of
LSS (OOP-based) (POOT-modified version) defects
NoD NoD (%)
POOT System type System type System type
I 1 Il [\ 1 i v [ Il i v

I

COSD | 28 68 46 83 6 19 13 18 214 1279 | 288 | 21.7
FOSD | 28 68 46 83 4 24 22 56 143 | 353 | 478 | 67.4
AOSD | 28 68 46 83 4 14 16 27 14.3 1 20.6 | 34.7 | 325

The first group of table columns shows NoD for LSS of corresponding types where maintenance is
based on OOP approach. It is evident that when the System Type becomes more and more complex
NoD increases dramatically. For further calculations this defect quantity is considered as 100%. The
second group of columns represents NoD for the same LSS after their modification with usage of

appropriate POOTs: COSD, FOSD and AOSD.
Fig. 5 shows the data presented in the first two groups of columns from Table 1 as a histogram, and
it is obvious that NoD is decreasing with usage of any POOT for all system types (I, Il, I1l and V).

Defect number
100

83
68 6
46
I s 101318 , 1416
OOP COSD FOSD AQOSD
System Type

NoD

| W =l =WV
Fig. 5 Number of defects with POOTSs impact

The values from the third group of columns in Table 1 are presented graphically in Fig. 5. It is
possible to draw the following conclusions:
1. For LSS of the (I) and the (II) system types, all POOTs presents practically the same defect
reduction. A low structural complexity of LSS could be a reason.
2. For LSS of type (111) the FOSD presents the lower defect reduction in comparison with AOSD
and COSD. A difference between CF-weaving mechanisms in the corresponding POOTS is a reason.



62 Cepist «MaTemaTyHe MogentoBaHHs. IHhopmaLliiHi TexHonorii. ABTOMaTM30BaHi CUCTEMM YNPaBIiHHSAY, BUMYyCK 41

3. For LSS of type (IV), the COSD provides the lowest level of residual number of defects,
namely, about 20%.

Residual Defect Level

100
67,4
X 50 $5,3 47’8347
S 27,9 28,8 F 32,5
21,44 3143 20,6 l 21,7 l
0 ] []
I | [l v

POOT

COSD FOSD W AOSD

Fig. 6 Number of defects with POOTSs impact

Finally, an average NoD value for all types of LSS can be computed:

COSD — 21,4+27,9;28,8+21,7 — 24, 95,
FOSD — 14,3+35,3+47,8+67,4 — 41’ 20’

i

AOSD — 14,3+20,6+34,7+32,5 — 25’ 53’

4

To sum it up, COSD approach to CF-problem management has the strongest impact on a defect
reduction for all System Types.

5 Conclusion and future work

This paper presents a framework for assessing the impact of post object-oriented technologies
(POOT) usage on defect reduction in legacy software systems (LSS) maintenance. Some specific
features of all existing POOTSs, namely, AOSD, FOSD and COSD are considered. Particular attention is
given to the crosscutting functionality (CF) problem. The heuristic assumptions to elaborate the
assessment procedure for defects reduction are formulated. The collection of quantitative metrics to
estimate of CF-level in LSS is provided. The conceptual scheme of the LSS maintenance process in
respect to eliminating CF-problem by using POOTSs is proposed. The scheme allows decreasing a
number of software defects. The performed experiments show the impact of POOTSs usage on defects
reduction in real-life LSS maintenance projects.

Our future work will include advanced analysis of different defect types in LSS maintenance and
detailed research of influence of each POOT on those defect types.

REFERENCES
1. 1. Sommerville. Software Engineering / 9" edition. Addison Wesley, 2011.
2. S. Apel, et al. “On the Structure of Crosscutting Concerns: Using Aspects of Collaboration?” In:

Workshop on Aspect-Oriented Product Line Engineering, 2006.

3. A. Przybylek, “Post Object-oriented Paradigms in Software Development: A Comparative
Analysis”, In: Proceedings of the International Multi-conference on Computer Science and
Information Technology, pp. 1009-1020, 2007.

4. Official Web-site of Aspect-oriented Software Development community, [Online]. Available:
http://aosd.net.


http://aosd.net/

BicHuk XapkiBcbKoro HauioHarnbHoro yHiBepcuteTy iMeHi B. H. Kapasita, 2019 63

10.

11.

12.

13.

14.

15.

16.

17.

10.

Official Web-site of Feature-oriented Software Development community, [Online]. Available:
http://fosd.de.
Official Web-site of Context-oriented Software Development group, [Online]. Available:
http://www.hpi.uni-potsdam.de/hirschfeld/cop/events.
S. Apel, The Role of Features and Aspects in Software Development. Diss., Otto-von-Guericke
University Magdeburg, 2007.
E. Figueiredo, “Concern-Oriented Heuristic Assessment of Design Stability”, PhD thesis, Lancaster
University, 2009.
N. Tkachuk, K. Nagornyi, “Towards Effectiveness Estimation of Post Object-oriented Technologies
in Software Maintenance”, In: J. Problems in Programming, vol. 2-3 (special issue), pp.252 — 260,
2010.
Aversano L., Cerulo L., Penta M., Di. “The Relationship between Design Patterns Defects and
Crosscutting Concern Scattering Degree: An Empirical Study”, In: J. IET Software, vol. 3, No. 5,
pp. 395-409, 2009.
Abilio R., Vale G., Figueiredo E., “Metrics for Feature-Oriented Programming”, Proceedings of
WETSoM'16, May 16-18, 2016, Austin, USA.
Mazen Ismaeel Ghareb,” State of the art metrics for aspect-oriented programming”, AIP Conference
Proceedings, April 2018.
T. Sheldon, Kh. Jerath, H. Chung, “Metrics for Maintainability of Class Inheritance Hierarchies”,
In: J. of Software Maintenance and Evolution, Vol. 14, pp. 1-14, 2002.
T. Gottardi et al.: “Model-based Reuse for Crosscutting Frameworks: Assessing Reuse and
Maintenance Effort”, In: J. of Software Engineering Research and Development, pp. 1--34 (2013)
M. Tkachuk, “Models, Methods and Tools for Effectiveness Estimation of Post Object-Oriented
Technologies in Software Maintenance” / M. Tkachuk, K. Nagorniy and R. Gamzayev // V.
Yakovyna et al. (Eds.): ICTERI 2015: Revised Selected Papers, Series title: Communications in
Computer and Information Science, Vol. 594: Springer-Verlag Berlin Heidelberg, pp. 20-37, 2016.
Official Web-site of CIDE-project: [Online]. Available: http://wwwiti.cs.uni-
magdeburg.de/iti_db/research/cide/
K. Nagorniy, “Models and tools for maintenance of program systems based on post object-oriented
technologies”, Manuscript of PhD-dissertation thesis, NTU «Kharkiv Polytechnic Institutey,
Kharkiv, 2016. [in Ukrainian]

JITEPATYPA

Sommerville 1. Software Engineering / 9™ edition. Addison Wesley, 2011.

Apel S. et al. On the Structure of Crosscutting Concerns: Using Aspects of Collaboration? In:
Workshop on Aspect-Oriented Product Line Engineering, 2006.

Przybytek A. Post Object-oriented Paradigms in Software Development: A Comparative Analysis.
In: Proceedings of the International Multi-conference on Computer Science and Information
Technology. 2007. pp. 1009-1020.

Official Web-site of Aspect-oriented Software Development community, [Online]. Available:
http://aosd.net.

Official Web-site of Feature-oriented Software Development community, [Online]. Available:
http://fosd.de.

Official Web-site of Context-oriented Software Development group, [Online]. Available:
http://www.hpi.uni-potsdam.de/hirschfeld/cop/events.

Apel S. The Role of Features and Aspects in Software Development. Diss., Otto-von-Guericke
University Magdeburg, 2007.

Figueiredo. E. Concern-Oriented Heuristic Assessment of Design Stability: PhD thesis. Lancaster
University, 20009.

Tkachuk N., Nagornyi K. Towards Effectiveness Estimation of Post Object-oriented Technologies
in Software Maintenance. In: J. Problems in Programming. vol. 2-3 (special issue). 2010. pp.252 —
260.

Aversano L., Cerulo L., Penta M., Di. The Relationship between Design Patterns Defects and
Crosscutting Concern Scattering Degree: An Empirical Study. In: J. IET Software. vol. 3, No. 5.
2009. pp. 395-409.


http://fosd.de/
http://www.hpi.uni-potsdam.de/hirschfeld/cop/events
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/
http://aosd.net/
http://fosd.de/

64 Cepist «MaTemaTyHe MogentoBaHHs. IHhopmaLliiHi TexHonorii. ABTOMaTM30BaHi CUCTEMM YNPaBIiHHSAY, BUMYyCK 41

11. Abilio R., Vale G., Figueiredo E. Metrics for Feature-Oriented Programming. Proceedings of
WETSoM'16, May 16-18, 2016. Austin. USA.

12. Mazen Ismaeel Ghareb. State of the art metrics for aspect-oriented programming. AIP Conference
Proceedings. April 2018.

13. Sheldon,T., Jerath Kh., Chung H. Metrics for Maintainability of Class Inheritance Hierarchies. In:
J. of Software Maintenance and Evolution. VVol. 14. 2002. pp. 1-14.

14. Gottardi T. et al.: Model-based Reuse for Crosscutting Frameworks: Assessing Reuse and
Maintenance Effort. In: J. of Software Engineering Research and Development. 2013. pp. 1-34.

15. Tkachuk M. Models, Methods and Tools for Effectiveness Estimation of Post Object-Oriented
Technologies in Software Maintenance / M. Tkachuk, K. Nagorniy and R. Gamzayev // V.
Yakovyna et al. (Eds.): ICTERI 2015: Revised Selected Papers, Series title: Communications in
Computer and Information Science, VVol. 594: Springer-Verlag Berlin Heidelberg, 2016. pp. 20-37.

16. Official Web-site of CIDE-project: [Online]. Available: http://wwwiti.cs.uni-
magdeburg.de/iti_db/research/cide/.

17. Haropuuit K.A. Moneni Ta iHCTpyMeHTalbHI 3aCO0M CYIPOBOAY MPOTPaMHUX CHCTEM Ha OCHOBI
nocT 00’€KTHO-OpPiEHTOBaHUX TexHouoriii: ABtoped. [duc. Ha 3100yTTSI BYEHOTO CTYTEHS
KaHaUJaTa TeXHIYHMX Hayk 3a cremianbHicTio: 05.13.06 — Indopmariiiini  TexHOMOTII.
HarmionansHuil TexHiuHUN yHIBEpcUTET «XapKiBCHKUH MOMTEXHIYHUHN IHCTUTYTY». XapkiB, 2016.

Nagornyi Kostiantyn A. — PhD, Candidate of Technical Sciences; Associate Professor of
Department of System and Technologies Modeling, V. N. Karazin Kharkiv National University,
Svobody Sg 4, Kharkiv - 22, Ukraine, 61022;e-mail: k.nagornyi@gmail.com; ORCID:
https://orcid.org/0000-0001-5948-3682

Martinkus Iryna O. — PhD, Candidate of Technical Sciences; Associate Professor of Department of
System and Technologies Modeling, V. N. Karazin Kharkiv National University, Svobody Sq 4,
Kharkiv- 22, Ukraine, 61022;e-mail: imartinkus@gmail.com; ORCID: https://orcid.org/0000-0003-
4629-6583.

Tkachuk Mykola V. — PhD, Doctor of Science, Professor; Head of Department of System and
Technologies Modeling, V. N. Karazin Kharkiv National University, Svobody Sq 4, Kharkiv - 22,
Ukraine, 61022;e-mail: tka.mobile@gmail.com; ORCID: https://orcid.org/0000-0003-0852-1081.

Hazopuuit Kocmanmun Aunamoniiioguy — KaHOuoam mexHIYHUX HAYK, O0oyenm,; XapKiecobKutl
Hayionanohuil  ynisepcumem imeni B.H. Kapasina, m. Xapxie, ni. Ceo6oou 4, 61022; e-mail:
k.nagornyi@gmail.com ORCID :0000000159483682.

Mapminkyc Ipuna Oneziena — KanHOUOAM MEXHIYHUX HAYK, OOYeHmM Kageopu MOOen08aHHS
cucmem 1 mexHonozit, Xapkiecokuti Hayionanvnull yHieepcumem imeni B.H. Kapasina, matioan
Csoboou, 4, Xapxie-22, Yipaina, 61022, e-mail:  imartinkus@gmail.com;  ORCID:
https://orcid.org/0000-0003-4629-6583.

Txkauyk Mukona Bauenasoeuu — 0okmop mexniyvnux Hayx, npogecop, XapKicoKuil HayioHATbHULL
yuieepcumem imeni B.H. Kapaszina, m. Xapkis, nn. Ceoboou 4, 61022, e-mail: tka.mobile@gmail.com ;
ORCID: 0000000308521081.

Hazopuwvtii Koncmanmun Anamonvesuu — KaHOUOam mMeXHUYECKUX HAyK, OOyeHm Kageopwvl
MOOENUPOBanUss cucmem u mexHono2utl, XapbKoSCKUli  HAYUOHAIbHLLIL VHUSEPCUMEM UMEHU
B.H. Kapasuna, niowaoo Ceob00bt, 4, Xapvros-22, Vipauna. 61022; e-mail: k.nagornyi@gmail.com;
ORCID: https://orcid.org/0000-0001-5948-3682

Mapmunxkyc Hpuna Onezoena — Kanouoam mexHU4eCKUX HAyK;, OoyeHm Kagheopwvl
MOOENUPOBAnUsL cucmem u mexHono2ul, XapbKo6CKuil HAYUOHANbHBIU YHUSepcumem umenu B.H.
Kapazuna, nnowaos Ceoboowl, 4, Xapwvkos-22, Vkpauna. 61022; e-mail: imartinkus@gmail.com;
ORCID: https://orcid.org/0000-0003-4629-6583.

Txkauyx Hukonaii Bauenasosuu — 0okmop mexnuweckux Hayk, npogheccop; Xapbkosckuil
Hayuonanvublll ynueepcumem umenu B.H. Kapasuna, 2.. Xapokos, ni. Ceo6oovr 4, 61022; e-mail:
tka.mobile@gmail.com; ORCID: 0000000308521081.

Hapiiwna - 10.03.2019.


http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/
mailto:tka.mobile@gmail.com

