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Modeling of the discrete flows interaction considering correlation
between flow elements
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In the paper, the authors consider the simulation of flows interaction in the frame of
extended model of discrete stochastic flows with correlation between elements. In the
random arrival problem, the average delay time for a single element, which depends
on differing clustered structures of major flow, is obtained using computer simulation
system for crossing process modeling developed by the authors. The difference
between models with and without correlation between elements as well as their
application scopes are considered. The applicability of presented in this paper results
to creation of intelligent transportation system is.
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VY crarTi po3mIsfacThesi KOMITIOTEPHE MOJISIIOBAHHS B3a€MOJI] MOTOKIB B paMKax
posmupeHoi MojelNi JUCKPETHUX CTOXAaCTHYHHX IOTOKIB C ypaxXyBaHHSIM KOpPEsIii
Mk enementamu. CepenHili 9ac OdiKyBaHHS JUII OJHOTO €IEMEHTa B 3aladvi
BUIIQJIKOBOTO MNPHOYTTS Ha MEPEeTHH 3aJeXHO BiJ PIi3HOI KIACTEPHOI CTPYKTYpH
TOJIOBHOTO TOTOKY 3HAXOJMThCS 3a JOIOMOIOI0 PO3pOOJICHOT aBTOpaMU CHCTEMH
KOMIT'IOTEPHOTO MOJIEIIOBAHHS Iporecy nepeTrHy. OOroBoproeThest BiIMIHHICTD MiXK
MOJIETSIMH 3 ypaxyBaHHsAM 1 Oe3 ypaxyBaHHs KOpeJSLii MiX eleMEeHTaMH B IOTOL i
00JIacTIO 3aCTOCYBaHHS IHMX Mopenei. Po3risigaeTscs MOMKIMBICTH 3aCTOCYBaHHS
pe3yNbTaTiB, HABEJCHUX Y CTATTI, B IHTEJICKTYAIbHNUX TPAHCIIOPTHUX CHCTEMAX.

Knrwouosi cnosa: cmoxacmuunuil OUCKpemHuil NOMIxK, KIacmepHa Cmpykmypd, po3nooiil 4acosux

inmepeanie, NPONYCKHA 30amMHIiCmb.

B craree paccMaTpuBaeTCsi KOMIIBIOTEPHOE MOJCIMPOBAHUE B3aUMOJICHCTBUS
MOTOKOB B PaMKaX PACHUIMPCHHOW MOJEIM JIHCKPETHBIX CTOXACTHYECKUX MOTOKOB C
y4EeTOM KOppEIALMH MEKAy diaeMeHTaMu. CpenHee BpeMsl OXHIAHUS U OJHOTO
9JIEMEHTA B 33j1aue CIy4allHOrO HPHOBITHS Ha IEpeceYeHHEe B 3aBUCHMOCTH OT
pa3IMYHOM KJIACTEPHOW CTPYKTYphl TJIABHOI'O TOTOKAa HAXOJUTCS C IOMOIIbIO
pa3pabOTaHHON aBTOPaMM CHCTEMbl KOMIIBIOTEPHOTO MOJICIUPOBAHKS IIpoliecca
nepeceyeHnsi. OOCyXKIaeTcsl paziumyie MEXIy MOICISIMH C ydeToM H 0e3 ydera
KOPPEJALMI MEXIY dJIEMEHTaMH B MOTOKE M 00JaCThIO NPUMEHEHHUS STHX MOJENCH.
PaccmarpuBaeTcs BOSMOXXHOCTb PUMEHEHHS PE3YJIbTaTOB, IPUBEACHHBIX B CTAThE, B
HMHTEIUICKTYaIbHBIX TPAHCIIOPTHBIX CHCTEMaX.

Kniouesvie cnosa: cmoxacmuueckuii  OuCKpemuwlii  NOMOK, —KIACMEPHAs — CMPYKMypa,
pacnpeoeneniie 6peMeHHbIX UHMEPBATIOs, NPONYCKHAs CHOCODHOCIb.

1. Introduction

With the help of computer simulation one can predict such negative phenomena as
queuing and capacity reduction in complex transportation systems. Considering
possibility of queues formation, intersections are the most critical components of the
network.

Priority-controlled intersection is the mostly used type of intersections in road
transportation systems [1-4]. Let us suppose that in the intersection (Fig.1) the
possibility of crossing (merging) for element of minor flow is restricted if the time gap
between major flow elements is less than some value « , and element of minor flow
has to stop and give way. Intervals less than & will be called critical. The elements of

© Didenko I., Lazurik V., Samilyk K., 2015



BicHuk XapkiBcbkoro HavjioHansHoro yHisepcutety Ne1156, 2015 87

major flow have the priority and can pass through without stopping at the
intersections.

Fig. 1 Model of crossing flows with different priorities ¢, and ¢,

The classic problem is capacity determination of that kind of intersection. Capacity
describes the maximum possible throughput of an intersection under predefined
conditions. In [1-4] the authors show that capacity of the priority-controlled
intersection in a transportation system is determined by the traffic flow rate and time
headway distribution of the flow. It is often assumed that time gaps between elements
are distributed independently, i.e. there is no correlation between them.

But there are some problems, in which existence of such flow element groups
where all time gaps are less than critical value becomes important. Distribution of
these groups in the flow must be included into consideration as well. According to
Kerner [5], these groups or "moving jams" in discrete flows can be formed due to
stochastic nature of a flow in the long roads or at the intersections of different kind.

Let us define as "clusters" [1] the groups of flow elements having only critical time
gaps between them, and the "clustered structure" of a flow as a combination of two
characteristics: the intercluster intervals distribution and the cluster size distribution.

On assumption that there is no correlation between cluster elements, the cluster
size distribution in the flow can be found as:

pa(n)=(1-w)o" " 1,

where o — the probability of critical time gap appearance, n — the group size.
However, it will be shown bellow that p_,(n) can significantly vary depending on

the right side of equation (1) while time headway distribution remains fixed.

Time headway distribution does not allow us to find out what is the clustered
structure of the traffic flow without taking into consideration additional parameters
that should describe the correlation between elements.

This paper is devoted to priority-controlled intersection modeling in the bounds of
clustered flow model. The average delay time for element of minor flow before
merging (crossing) in random arrival problem was calculated using for traffic flow
description both clustered and non-clustered model. The authors measure the influence
of the flow clustered structure on their interaction characteristics in two ways: with the
help of analytical calculations and using computer system for crossing process
simulation.
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2. The average delay time in the random arrival problem

Let us consider the model of priority-controlled intersection with two crossing
flows depicted in Figure 1: @, - the major flow with time headway distribution p, and
¢, — the minor flow; size of elements in the flows is equal to zero, critical interval for
crossing — a. It is supposed that the minor flow level is so low that the probability of
queuing (more than one element in the intersection simultaneously) tends to zero.

At first, let us obtain the average delay time in the non-clustered flow model using
time headway distribution.

The element of minor flow randomly arriving to the intersection finds the time gap
x between major flow elements. Let us define the distribution of x as modified time
headway distribution - p, (x). According to Ventcel p,(x) can be obtained from p,

as shown in [7]:
P (x) = (1/ )] py (x)dx @),

where x — the mean of P -
Then the average delay time can be calculated using the formula (3):

— T

T, =7, +w, —%—
=Tt O T 3),
Where:

7, = _[XP; (xx)dx (4)

0
7, = [xp, (x)dx )

0
@, ZJPo(x)dx (©6)

0

o, = j pe(dx=(a/x)(1-w,)+1/x L“ xp, (x)dt (7)

As we can see from (3), the average delay time depends only on time headway
distribution of the major flow.

Now let us consider again the problem of element random arrival to the
intersection, this time describing the major flow in terms of the flow model, which
takes into account its clustered structure.

For clustered structure description the authors have used the composite model
presented by May [6]. Intercluster intervals are distributed exponentially and
intracluster intervals have the normal distribution (the intercluster intervals are larger
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than the critical interval size). p, - is the ratio of summarized intracluster intervals to

total time of intervals in the major flow.
The probability for element of minor flow to fall within the cluster of size » is
determined by time the cluster of that size occupies the intersection and is proportional

to the cluster length in terms of time — nz, . The delay time such element needs to

wait until cluster of size n passes the intersection is proportional to nz, /2.

So, theoretical evaluation of the average delay time before the element of the minor
flow crosses (merges) the intersection with the major flow yields a value proportional
to cluster size squared (8):

T ~ DY (n7,)* 12 ),

It is possible to change cluster size distribution and consequently Z(MZ)2 /2

n

keeping p, untouched. The time, during which the cluster of size n occupies the

intersection, can greatly vary depending on cluster size distribution in the flow.
Therefore, based on the formula (8), one can conclude that in the case of fixed p, the

average delay time depends on cluster size distribution as well.

3. The simulation of the discrete flows' intersection.

Since it is hard to calculate the average delay time in clustered flow model, the
authors have extended previously developed computer modeling system adding there
the generator of flows with different clustered structure [8]. In this simulation system,
the algorithm for calculation of average delay in random arrival problem is
implemented. The algorithm is based on the Monte Carlo method.

In the simulation experiment, the time delay for element of minor flow randomly
arriving to intersection was obtained according to both clustered flow model (Monte
Carlo simulation) and non-clustered one (formula 3 — calculated numerically). Time
headway distribution of the major flow was a constant and consequently p, was

always the same as well. Nothing was changing but the cluster size (the authors were
considering the case of same size for all clusters). Figure 2 shows the generated time
headway distribution according to clustered flow model with parameters p,= 0.3,

mean of intercluster interval g =0.75, exponent shift = 0.75.
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Fig.2 Time headway distribution generated according to the clustered flow model

Time headway distribution of that shape (exponential tail and great part of small
intervals) frequently occurs in real traffic flows in the city road network [6].

The series of experiments were carried. The number of series performed for each
cluster size n from 2 to 10 was N=10°. The shape of distribution and value of p, did
not vary when n was changing. Evaluation results for average delay time in

dependence of different sizes of clusters in the major flow, with fixed distribution in
both models, is shown on Figure 3.

Fig.3 Average delay time for different cluster size (n) in major flow calculated by computer
simulation - solid curve for clustered model and for non-clustered model - dotted
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Average delay time for different cluster size (n) in major flow calculated by
computer simulation: solid curve — for clustered model and dash-dotted one — for non-
clustered.

4. Conclusions

In this paper, simulation of flows interaction is considered using the extended
model of discrete stochastic flows. In the model, besides the time headway distribution
and intensity of a flow, two characteristics of its clustered structure were taken into
account: the distribution of a gap between the elements of the cluster and the cluster
size distribution in the flow. It is shown that, in the random arrival problem, the
difference in clustered structure can significantly influence the delay time for flow
element. The authors have developed a computer modeling system, which allows
obtaining the value of the average delay time for a single element, depending on the
major flow clustered structure. The results presented in this paper can be used when
creating an intelligent transportation system [9].
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