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3agaya aHanM3a JMHAMHYECKOTO IOBEJEHUs O00OJIOYEeK BpAICHUsS, YaCTHYHO
3aM0JIHEHHBIX HACAIBHOW HEC)KUMAEMOH JKUJIKOCTBIO, CBEJICHA K PEIIEHHIO CHCTEMbI
CHHTYJISIDHBIX HMHTErpaJIbHBIX ypaBHeHHH. Mcrnosb3oBana mnpsmas (GopMyJIMpOBKa
METOa TPAHUYHBIX HMHTErPaJbHBIX ypaBHeHHi. Pa3zpabotaH MeTo] YHCICHHOM
peaiun3anunu, IPOBEACHO CPABHEHHUEC YHWCICHHBIX W AQHAJIUMTHYCCKHUX PE3YJIbTaTOB.
HccenenoBanbl coBMeCTHbIE KoiieOaHUs OOOJOYKM M JKMIKOCTH C YYETOM CHIIBI
TsokecTH. C UCTIONB30BaHUEM Pa3pabOTaHHOTO METOAA PEeIIeHa 3aJada O CBOOOIHBIX
KOJICOAHUSAX YIPYTOi MIHHAPUYECKOIT 000JIOUKH C )KHKOCTBIO.

Knrouegvie cnoga: cuopoynpyeoe g3aumooeticmeue, Memoobl KOHEUHbIX U SPAHUUHBIX YPAGHEHUIL,
cucmembl CUHSYTIAPHBIX UHMESPATbHBIX YPAGHEHU.

3amauy aHai3y AMHAMIYHOI MOBEIIHKH OOOJIOHOK OOEpTaHHs, YaCTKOBO 3allOBHEHHX
i1eaJbHOI0 HECTHCIIMBOIO PIAWHOIO, 3BEACHO 10 PO3B’SA3aHHS CUCTEMH CHHTYISPHUX
IHTETpalbHUX PIBHAHB. 3aCTOCOBAHO MpsiMe (HOPMYITIOBAaHHS METOJY TPaHWYHUX
IHTeTpalbHUX PpiBHAHb. Po3po0ieHO MeTox dYMcenpHOI peanmizarii, 3AiHCHEHO
MOPIBHSHHS YHCEIBHHUX Ta aHATITUYHHUX PO3B’s3KiB. JlOCITIIKeHI CyMiCHI KOJIMBaHHS
00OJIOHKH Ta IUIECKaHb PIIMHHU 3 YpaxyBaHHSIM CHJIM TSKIHHSA. 3 BHKOPHUCTAHHSAM
PO3pO0GICHOr0 METOy PO3B’I3aHO 3a/1a4y BUIBHUX KOJMBAHb MPYXKHOT MIIHAPUIHOT
00O0JIOHKH 3 PiANHOIO.

Knrouoei cnoea: TifpompyXKHs B3aEMOIis, METOAM TPAHUYHUX Ta CKIHYCHHHX CJICMCHTIB,
CHCTEMH CHHTYJISIPHHX IHTEIPaJbHUX PIBHSIHb.

The problem of dynamics analysis for shells of revolution partially filled with an ideal
incompressible liquid was reduced to solving the system of singular integral equations.
The direct formulation of boundary integral equation method was applied. The authors
have elaborated the method of numerical simulation of the process and approved it by
comparison of numerical and analytical solutions. They considered the shell vibrations
coupled with liquid sloshing in presence of gravity forces. The free vibrations of
elastic cylindrical shell were analyzed using the proposed technique.

Key words: fluid-structure interaction, finite and boundary element methods, systems of singular
integral equations.

1. Introduction.

The term “sloshing” means here the low frequency oscillation of free surface of
liquid in a partially filled container. These oscillations can significantly influence the
dynamic response of structures containing liquid. This interaction with sloshing liquid
may lead to instabilities in different engineering areas such as aerospace and chemical
industry, power machine building, wind power engineering, transport, etc. Usually
liquid storage tanks contain oil, flammable or toxic liquids. Destruction of these tanks
by seismic action or shockwaves from a nearby explosion can lead to environmental
catastrophe. So seismic design of liquid storage tanks requires knowledge of sloshing
frequencies and hydrodynamic pressure on the walls [1]. Complex experimental
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investigation of loading processes is difficult and sometimes impossible for various
reasons. Hence, mathematical modeling of physical processes with the help of
advanced computer techniques is a basic approach for these problems. Numerical
methods are especially useful when the geometry of container is complicated and the
sloshing in the container cannot be investigated analytically. Various approaches have
been proposed to research fluid-structure interaction, including the finite difference
methods [2], the finite element methods [3], the boundary element methods (BEM) [5-
10]. The research findings are summarized in [11].

The dynamic analysis of shell structures is usually accomplished by usage of finite
element programs. However, such 3D finite element analysis including the contained
fluid is complex and extremely time consuming. In [7-9] authors offer the approach,
based on the boundary element method, to the problem of free vibrations of fluid-
filled shell of revolution as well as to the problem of liquid sloshing in rigid tank.

In this paper, analysis of elastic cylindrical shell vibration both free and coupled
with liquid sloshing is carried out. For this, here we use combination of reduced finite
and boundary element methods. The analysis consists of several stages, and each
represents a separate task. The frequencies and modes of empty shell vibrations are
defined in the first stage. Displacement vector that is the solution of the hydrodynamic
problem is sought as a linear combination of natural modes of empty shell. First, we
define the frequencies and free vibration modes of fluid-filled elastic shell neglecting
the force of gravity. Then we obtain the same, this time involving gravity, but
assuming the shell rigid. Two latter problems are solved using reduced BEM. Then we
come to the problem of coupled analysis of liquid sloshing and structural vibrations.

2. Problem statement.

Let us consider the coupled problem for the shell of revolution interacting with a
liquid (Figure 1). We denote the wetted part of the shell surface by S and the free
surface of a liquid by Sy. Let us suppose that the shell geometry is defined in global
Cartesian coordinate system x,y,z and free surface lies in xOy plane in the state of rest.

L Wl

X

Fig.1. Shell of revolution partially filled with a liquid.
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The main objective of this paper is to find out and evaluate modes and frequencies
of elastic shell of revolution free vibrations coupled with liquid sloshing.
In this study, liquid contained in the shell is assumed inviscid and incompressible
one and its flow induced by vibrations of the shell is assumed irrotational.
Under these suppositions, there exists a velocity potential ® defined as
y 00, o0, o
Yox T ooy 7 oz

This potential satisfies the Laplace equation.
The equations of motion of the two media (the shell, S, 1, and the fluid with free

surface, So , (see Fig. 1)) can be written in the following form

where U is the vector-function of displacements, P is the fluid pressure on a

moistened surface of the shell, and L. and M are the operators of elastic and mass
forces.

Let us consider the right-hand side of Eqn. (1). It should be noted that the vector P
1s normal to the considered shell, what is the feature of the ideal fluid. We will denote

|P| = p. Assuming that the natural velocity of the fluid is zero, the value p,
according to the Cauchy-Lagrange integral, can be represented as follows

=— 8£+ z |+
pP==p o & Po
where @ is the velocity potential, g is the free fall gravity acceleration, z is the vertical

coordinate of a point in liquid, ©° is the atmospheric pressure and P! is the fluid
density.

To obtain the boundary equations over the free surface we have formulated
dynamic and kinematics boundary conditions. The dynamic boundary condition
consists in equality of liquid pressure at its free surface to atmospheric one. The
kinematics boundary condition requires that particles of liquid free surface remain
there all the time of subsequent motion. So, we have

od|  dC.

L -0
onls, o Pl

b

where an unknown function Qz@(t,x,y 'z ) describes the form and location of free
surface.

Thus, to find the velocity potential ®, we obtain the following boundary value
problem:

oD

Vip=0 On

Here w is for normal component of shell deflection, n is for external unit vector
normal to the shell wetted surface.

So we reduce the problem under consideration to the following system of
differential equations:

_ow 0P
S, o on
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with the such set of boundary conditions relative to ®
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and shell fixation conditions relative to U.

To define coupled modes of harmonic vibrations we represent the vector U in the
form U=u exp(imt) , where o is an own frequency and u is a mode of vibration of the

considered shell containing some fluid.

3. The mode superposition method for coupled dynamic problems
We will seek vibration modes for shell with liquid in the form

N
u=> cu;, 2)
k=1

where ¢, are unknown coefficients and u, are the normal modes of vibrations of the

empty shell. In other words, a mode of vibration of the shell filled with fluid is
determined as a linear combination of normal modes of its vibration without liquid.
Let us note that the following relations are valid

L(“k):QiM(ukl (M(uk)au/)ZSk/ . (3)
Hence
(L(uy),u;) = QfSkj R €))
where Q, is the k-th frequency of empty shell vibrations. The above relations (3)
and (4) show that the modes of shell vibrations u, are orthonormalized with respect
to the mass matrix.
We will seek @ as a sum of two potentials ® =, + @, as it was proposed in [9].
Let us represent the potential @, as the following series expansion

N
D, zzék(Plk . (5)
k=1

Here time-dependant coefficients ¢, are the same in Eqn. (2).
To determine ¢, we have the following boundary value problems:
— 0 , a(p]k
on |,
It would be noted that the solution of boundary value problem (6) was done in [9].
To determine the potential @, we have to solve the problem of fluid vibrations in
rigid vessel taking into account gravitational force. It leads to following representation
of potential @,:

Ay, =Wk, (P1k|50 =0. (6)

M
©,= zdk(PZk > (7)

k=1
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where functions @, are natural modes of liquid sloshing in the rigid tank. To obtain
these modes we have solved the following sequence of boundary value problems:

oY 5,
Ay,, =0; —2k| =0; 8
Vo on |5, (8)
Oy, g O0yy
2k 3. 22k 4 o), 9
on |, ot ot &5 ©)

We have differentiated with respect to ¢ the second of equations (9) and substituted
there % by the left-hand side from the first one. Let us suppose hereinafter that
ka(t,x, y,z)ze”“"cpM (x, y,z). Then we obtain for each ¢, the sequence of

eigenvalue problems with following conditions over the free surface:

2
Oon L, (10
on g
The effective numerical procedure for solution of these eigenvalue problems using
boundary element method was introduced in [6].
Finally, we obtain the following expression for potential @:

N M
®:Zék¢1k+zdk@2k (11)
=1 =1
It follows from Eqn. (11) that function £ can be written as
N M
[ 00,
=Y ——+)d
¢ kz; “ on ; “ on

So, the total potential @ satisfies the Laplace equation and non penetration
boundary condition

(12)

AD=0; o - ow
on (S, ot
due to validity of relations (6),(8). Noted that ® also satisfies the condition
o _a
onlg, Ot
as a result of representation (12).
Satisfying the condition
oD
—+gzl =0
ot & 5
over the free surface, one can obtain the next equality
P - - 09y Nn Oy
ch(plk +de(P2k +g ch +de_ =0. (13)
=1 k=1 o 0z o 24

When functions ¢, and ¢y are found, we substitute them in Eqn (1) by
corresponding expressions and obtain the following relations
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L(ch (t)“kJ + M[ch (t)ukj = _pl(zék (DPy; + zdk (Z)(szJ 5 (14)
k=1 k=1 =1 =1

Mo N oe, M )
de(sz +gzck +deXk(P2k =0.
k=1 k=1 on 5

Here we have simplified Eqn (13) taking into account Eqns (6),(10).

The first equation in (14) is valid over the wetted surface of the shell and the
second one — over the free surface of liquid.

Considering the result of dot product of first equation in (14) by #; and second one

by ¢,;, and taking into account relations (3),(4) and orthogonality of natural modes of

fluid vibrations in rigid vessel, we come to the fpllowing set of n+m second order
differential equations, which determine unknown coefficients ¢, (¢),d, (¢):

¢, (D02 +E,(1) = —p,[Z & Oy, )+ Y d (002w, )] (15)
k=1 k=1

. i 0Q,; 2
dj(f)+ chk(t E’(sz +ngdJ(’)= 0
k=1

So, to solve coupled problem of elastic shell of revolution free vibrations with
liquid sloshing inside it is necessary to obtain three systems of basic functions: natural
modes of empty shell; modes of fluid-filled elastic shell without force of gravity; and
modes of liquid in rigid shell under force of gravity.

To find coupled modes of harmonic vibrations we represent the time-dependant
unknown coefficients as

c(t)=Ce™; d(t)=De™, (16)
where o is the natural frequency, and C,,D, are unknown constants.
Taking into account Eqns (16), one can express the Eqns (15) as

N M -
C,Q% - 0’C, +p,[(ozzck<(p1k,wj)+ mZZDk((pzk,wj)J:O, j=1, (17)
k=1

k=1

L 0
xlle—cozD,Jrgz Ck(—(p”‘ ,(py] =0, /=1,M.
o= on
Introducing the following matrixes and vectors

C D
! ! 0 0 Q0 0
0
0

C= . D= s H, =10 ... | H =
0 % 0 Q,
PZ{ij}Q Py z((Plkaj> k. j=LN;

Bz{bjk}’ bjkz(‘Pzpwk);A:{“.fk}? ajkz(a(plk 0y | k=LNj=LM,

on )
we come to the following problem:
’EC+H,C+o°p,PC+w’p,BD=0;
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w’ED+gAC+H,D=0.

Let also introduce for simplicity vectors and matrix of dimension N + M

X:C;H:E+p2P sz; :Hm 0 .
D 0 E gd H,

It brings us to the following eigenvalue problem
(G-w’H)x =0. (18)

So, analysis of elastic shell free vibrations coupled with liquid sloshing is reduced
to solution of eigenvalue problem (18). It should be emphasized that hereinbefore we
did not assume that our shell must be a shell of revolution.

Hereinafter we will use finite element method to find basic functions w;, and
boundary element method to find basic functions @y , Q.

The proposed technic allows us to carry out numerical simulation for different
value of gravitational acceleration g.

4. Systems of the boundary integral equations and some remarks about their
numerical implementation

Now and hereinafter we consider the shells of revolution only.

The basic procedure is to start with the standard boundary integral equation for
surface potential [5], replace the Cartesian co-ordinates (x, y, z) with cylindrical co-
ordinates (1, 0, z), and integrate with respect to z and 0.

We use furthermore the cylindrical coordinate system and represent unknown
functions as Fourier series by circumferential coordinate

W, (r,z,e)z Wy (r,z)cos ab; o, (r,z,e)z ?; (r,z)cos af; i=12, (19)

where o is a given integer (the number of nodal diameters).

We will seek both harmonic functions @lk and ¢2k. as the sums of potentials of
single and double layers [5], i.e., we will use the direct boundary element method
formulation. Hereinafter we will drop indexes ij for simplicity So we have

2mo(F, Hq ”‘Pan PRt (20)

It is assumed here that S = Sl v SO and the points P and PO belong to the surface
S. The value| P — PO | represents the Cartesian distance between the points P and PO0.

For the mixed boundary value problem defined by Egs. (6), the representation (20)
leads to the following system of the singular integral equations for unknown functions
¢ and q:

1
21t(p J.J.(pa |P P| ]—Hq|P_P|dS '”W|P P| Fes;

”‘Pa [P=R| P| Hq dS i,iw R &S,

In this system, function ¢ deﬁned over the surface S represents the pressure on the
moistened shell surface, and the function ¢ defined over the free surface of liquid S is
the velocity normal component of this surface particles.

€2y
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Let I' be a generator of the surface S1. It has been proved in [7,9] that system (21)
can be written in the form

21t(p(zo)+j(p(z)Q(z,zO z)dl — Jq ¥ (P, P, Jpdp = J w(z)¥(P,B))r(z)dl; B e S, (22)

jtp (2,20 ()0 = [g(p)¥ (P, Jodp = [w(=)¥ (P, B, ()T ; By €S,
Here

a—

4 1 ;’2—1"02+(zo—z)2 Zy—z )
o) o e e ) ] 2o

/2

w(P,R)= %F‘* (k) Ea(k)z (— 1)0t (1 —4(12).[cos20c\|/\/1 —k*sin® yay ;

0

B _l)aj _cos2oydy ( Zo)z; b=2ppy; k= 2b ‘

a=p’ +pi+
J1—k*sin? \|/ ’ a+b

To find potentials @2k we use representation (20) and introduce next integral
operators:

tvi=2mw ([ ﬁ 5 8w = [fvoas Ova= [ 2 s,

ﬂwl P P|dSI,Fwo—jjw0 —dS, . (23)

Then the boundary value problem (8),(10) takes the form
2 2

K K
AWIZEBWO_C\VO; R es; DW1:2WEW0_?F\V0; R es,.

After excluding function y, from these relations, we obtain the following
eigenvalue problem, solution of which gives natural modes and their frequencies for
liquid sloshing in rigid tank

2
(DA7'C+E)y—~MDA'B+F)y,=0; r=2—

Numerical solution of integral equation system (22) and evaluation of integral
operators (23) is obtained by BEM with constant approximation of unknown ¢ and ¢
inside elements.

It would be noted that internal integrals in (22),(23) are complete elliptic integrals
of first and second kinds. As the first-kind elliptic integrals are non-singular, one can
successfully use standard Gaussian quadratures for their numerical evaluation. For
second-kind elliptic integrals we have applied the approach based on characteristic
property of the arithmetic geometric mean AGM(a,b) (see [12]). This property is the
following:
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SR

J' do _ s
Ox/a2 cos’ @ +h>sin’ 0 2AGM(a,b)
To find AGM(a,b) there exist the simple Gaussian algorithm, described below

+b +b
a,=a; by=b; a, = “02 0o by = Jaghysa,, =""T"; b =Aab, ;.

AGM(a,b) = lima, = limb,. (24)

n—0

It is a very effective method to evaluate the elliptic integrals of the second kind.
<107

Convergence &= |a" b, is achieved after 6 iterations (namely, 7 = 6 in (24)).

So we have the effective numerical procedures of inner integrals evaluation, but
integral equations (22),(23) involve external integrals of logarithmic singularity and
thus numerical treatment methods for these integrals must also take into account the
presence of this integrable singularity. Here integrands have strongly nonuniform
distribution over the element, and standard integration quadratures show low accuracy.
So we treat these integrals numerically by special Gauss quadratures [5,13] and
applying technique proposed in [14].

5. Some numerical results

The study of axisymmetric free vibration characteristics of elastic cylindrical shell
interacting with a liquid is presented below. In this special case, parameter o in Eqns
(19),(22),(23) is supposed equal to zero.

X 4

e

Fig.2. Cylindrical shell partially filled with a liquid.

Let our shell be the circular cylindrical tank with flat bottom. Its geometry is
shown in Figure 2. The shell has the following characteristics: the radius R =1 m,
thickness # =0.01 m, the length L =2 m, Young’s modulus £ = 2:10° MPa, Poisson’s
ratio v =0.3, density of material p=7800 kg/m’, the fluid density p,= 1000 kg/m’.
The filling level of the fluid is denoted as H. The shell is assumed pin-connected over
its contour and boundary conditions are following: u, =u, =1, =0 toz=0and r = R.

The three systems of basic functions mentioned in section 3 above have been built.
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The first one - normal modes of the empty shell vibrations - was obtained using
finite element method (FEM) as it was described in [8].

The second system represents normal modes of liquid sloshing in the rigid tank
with taken into consideration gravity force. To verify the proposed numerical
algorithm described further, we have used the analytical solution [11] that can be
expressed in the form

2

Xk H My My 1 My

L=y, tanh| p, — |, k=12,...; =J,| —r |cosh| —=z [cosh™ | =/ H 25
P M (“kRj Doy O(Rj (Rj (R J (25)

The values p, in (25) are the roots of the equation
daJ, (x )

dx
where J, (x) is Bessel function of first kind, y,, ¢,, are our sought-after frequencies

and modes of liquid sloshing in the rigid cylindrical shell.

The numerical solution was obtained by using BEM as it was described
beforehand. Some numerical results were also provided in [15]. In present numerical
simulation we used 60 boundary elements along bottom, 60 elements along wetted
cylindrical part and 100 elements along the radius of free surface. Figure 3 shows the
first three modes of liquid sloshing on free surface in the rigid cylindrical shell.

D
“\\‘.\\ N
)

a0 il

|

n=I n=2 n=3
Fig.3. Axisymmetrical modes of liquid sloshing in cylindrical shell.

Table 1 below provides the numerical values of the natural frequencies of liquid
sloshing for nodal diameter a. =0. The obtained numerical results are compared with
those received using formulae (25).

Table 1. Comparison of analytical and numerical results

n=1 n=2 n=3 n=4 n=5
BEM 3.815 7.019 10.180 13.333 16.480
(25) 3.815 7.016 10.173 13.324 16.470

Figures 4 and 5 also demonstrate good agreement between numerical and

analytical data.
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Fig. 4. Numerically and analytically obtained modes

In Figure 4 the distribution of first three sloshing modes over the free surface is
shown. The solid lines correspond to modes obtained with the help of analytical
expression (25) atz = H.

Figure 5 demonstrates the distribution of these modes over the rigid vertical wall of
the shell.

The lines plotted with circles and squares correspond to numerical solutions.
Numbers 1,2,3 mark the first, second and third mode of liquid sloshing, respectively.
Accuracy & of order 10™* have been achieved in numerical data calculation.

AY

0.321
0.281

V<

8

Fig. 5. Sloshing modes on the vertical wall

Functions @1k were calculated by BEM based method developed in [8].
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Table 2 provides the numerical values of natural frequencies of vibration for empty
and for fluid-filled cylindrical tanks. Here coefficients ng, n; indicate number of shell
modes and quantity of liquid involved in coupled vibrations, n is the number of
coupled mode. For numerical simulation represented here, we have used 4 shell modes
and 5 sloshing modes.

Table 2. Frequencies of empty and fluid-filled tanks

n ng 7 Empty Fluid-filled
elastic tank tank
1 1 6.11932
2 1 1,2 23.2338 7.94464
3 2 8.29916
4 3 9.99584
5 4 11.44149
6 5 12.72385
7 2,1 91.1011 43.86220
8 3,2 205.2520 119.6224
9 432 365.7950 238.6944

Numerical analysis demonstrates that the lowest frequency corresponds to liquid
sloshing. The frequencies of the fluid-filled shell are essentially lower than are those
of the empty shell. It also should be noted that there exist an interaction of both liquid
and wall vibrations. It was especially clear for the first shell mode. This interaction
does not allow us to separate frequencies spectrum of shell and one of liquid.

6. Conclusions

The shell vibrations coupled with liquid sloshing under force of gravity were
considered. The free vibration analysis of the elastic cylindrical shell was carried out
using proposed techniques. We introduce the representation of the velocity potential as
the sum of two potential, one of them corresponds to problem of the fluid free
vibrations in the rigid shell and another one corresponds to problem of fluid-filled
elastic shell vibrations without including the gravitational component. The spectrum
of frequencies for cylindrical tank was analysed.

The main conclusion is following. Vibrations consist of two components: one of
which is produced by liquid sloshing, but another caused by elastic shell vibrations.
Hence these components are both essential. It means that we do not have to consider
these components separately. Thus instead two separate problems one general problem
has to be considered.
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