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Study of stress-strain state of the transversely isotropic plates
using the refined theory

I. P. Bokov, N. S. Bondarenko, E. A. Strelnikova
A. N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of
Sciences of Ukraine, Ukraine

The fundamental solution of statics equations of transversely isotropic plate was
obtained using the two-dimensional Fourier integral transform and the inversion
technic based on the special G-function. Such method allows reducing the system of
resolving differential equations, which describe static state of flat plate or shell, to a
system of algebraic equations. Then, the inverse Fourier transform restores the
fundamental solution. Numerical studies, which were carried out, have detected the
behavior patterns of stress-strain state components in dependence on material elastic
constants. This approach demonstrates development of refined theory of plates and
shells based on the three-dimensional elasticity theory.
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OyHIaMECHTAIbHOE pELICHHE YpPaBHEHWH CTATHKH TPAHCBEPCAIBHO-U30TPOIHBIX
TUIACTUH HAWICHO C MOMOIIBIO JBYMEPHOTO HHTETPAIBLHOIO peodpa3oBanust Dypbe u
METOJIUKHU 0OpaIleHus, TOCTPOCHHOMU C MOMOIIBIO0 crieiuanbHol G-dyHkuuu. JlanHbIi
METOJI MO3BOJISICT CBECTH CHCTEMY pa3pelialoniux I epeHIUATbHBIX YpaBHEHUH
CTaTUKU TOJOTUX IUIACTHH U OO0OJIOYEK K CHUCTEME ainrcOpanvecKux ypaBHCHHIL.
Ilocne atoro obpatHoe mpeobpazoBanue Pypbe BOCCTaHABIMBACT (yHIAaMECHTAIBHOE
pemenne. [IpoBeneHBI UYHCIEHHBIE HCCIEAOBAHUSA, KOTOPBIE JIEMOHCTPUPYIOT
3aKOHOMEPHOCTH MOBEICHUS KOMIIOHEHT HanpsHKEHHO-1e(OPMHPOBAHHOTO
COCTOSIHUSI B 3aBUCHMOCTH OT YINPYIHX KOHCTaHT TPaHCBEPCAIbHO-U30TPOITHOTO
MaTepuana. JlaHHbIH MOAX01 JEMOHCTPUPYET Pa3BUTHE YTOUHEHHBIX TEOPUH TIACTHH
1 000JI0YEK Ha OCHOBE TPEXMEPHOU TECOPUH YITPYTOCTH.

Knrouesvie cnosa: mpanceepcanvho-uzompontpie niaCmumbl, YMOYHEHHAS Meopusl, YPAGHEHUs.
cmamuku, pynoamenmanvroe peutenue, cheyuanvhas G-gyuxyust.

@dyHIaMeHTaNbHE PILlIeHHS PiBHSAHB CTaTHKU TPAaHCBEPCAJIbHO-I30TPONHHUX IUIACTHH
3HaHICHO 32 JIOTIOMOTOI0 IBOBHMIPHOTO IHTETpanbHOrO NepeTrBopeHHs Dyp'e Ta
METO/MKH 3BEpHEHHs, MOOyAOBaHOI 3a JomoMoroio cremianbHoi G-ynkmii. Lei
METO/ JO3BOJISIE 3BECTH CHCTEMY MO3BUIBPHHX IU(EpEHLIAFHUX PIBHIHb CTaTHKH
MOJIOTHX IUIACTMH Ta OOOJIOHOK 10 CHUCTeMH anreOpaiuHux piBHsHB. [licis mporo
3BopoTHe mneperBopeHHs1 Dyp'e BimHOBIIOE (QyHIAMeHTalbHE pimlleHHs. [IpoBeneHo
YHCIICHH] JIOCII/DKEHHS, SIKi JIEeMOHCTPYIOTh 3aKOHOMIPHOCTI TMOBEIIHKHM KOMIIOHEHT
NpPYXXHO-IepOpMOBAaHOTO  CTaHy B  3aJEKHOCTI  Bil NPYKHHMX  KOHCTaHT
TpPaHCBEPCATIBHO-130TPONTHOTO ~ Marepiany. Lleli miagxim OeMOHCTpye pO3BHTOK
YTOYHEHUX TEOPill TIIACTHH i 000JIOHOK Ha OCHOBI TPUBHMIPHOI TEOPii IPYKHOCTI.

Kniouosi cnosa: mpanceepcanvio-isomponnui niacmunu, ymouHena meopis, pigHaHHA CIMAMUKU,
@yHnoamenmanvre piwenns, cneyiarvua G-@yHkyis.

Introduction

Engineering facilities consisting of thin-walled structural components, which are
widely used in modern equipment, usually are submitted to the action of strong forces.
Calculations related with such elements are never simple and become even more
complicated when the forces have the concentrated nature.
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This paper considers the transversely isotropic plates and proposes a technology
that allows reducing the three-dimensional problem to two-dimensional one. To
achieve this goal, we expand the sought functions in series of Legendre polynomials in
the normal (transverse) coordinate. This approach allows us to take into account both
the tangent and the normal transverse stresses. Applying it, we have derived the
equations for transversely isotropic plates and developed a method to evaluate the
stress-strain state (SSS) of these plates under the action of concentrated forces.

A lot of publications are dedicated to development of methods for construction of
fundamental solutions of elasticity theory equations for thin plates and shells
(particularly, in the case of concentrated forces). Problem statements, methods of their
solution and a number of concrete results are presented in monographs and scientific
articles of S.A. Ambartsumyan [1], A.L. Goldenveizer [2], S. Lukasiewicz [3], as well
as in reviews of V.M. Darevsky [4], Y.P. Zhigalko [5] and others. Shear forces for
isotropic plates were obtained in the paper of I.P. Bokov, E.A. Strelnikova [6].

Classical Kirchhoff-Love theory satisfactorily describes the SSS of relatively thin
transversely isotropic plates, but it does not take into account the phenomena caused
by shifts and compression. On the other hand, solving the elasticity theory problems in
their three-dimensional formulation runs into considerable mathematical difficulties.
One of the ways for further theory development proposes reduction of the three-
dimensional problems to the two-dimensional ones.

From the point of view of refined theory development, study of SSS of transversely
isotropic plates affected by concentrated forces is an actual scientific and technical
problem. Such study is the main objective of the present paper.

1. The problem statement

In accordance with [7, p. 231], we call “the concentrated force” some abstraction,
which actually is a force of finite value acting over a patch of the surface.

We consider the transversely isotropic plate of thickness 2h in the rectangular

Cartesian coordinate system X, y, z. Let us suppose that the concentrated force F
affects a plate and the coordinate origin coincides with the force application point
(singular point). Solving the problems on effect of concentrated forces, we assume that
sought SSS is local, that is, it does not rich edges of the plate. Therefore, we can
consider the plate as infinite one and set that the components of the sought SSS tend to
zero at infinity. Any obtained solution is to be validated checking whether it meets this
assumption.

Stated mathematically, the problem represents a complete system of equations of
the elasticity theory with no boundary conditions over the plate real edges. The sought
functions tend to zero at infinity. The system of equations, which describes the bended
plate SSS on the base of the theory of S.P. Timoshenko for transversely isotropic
plates, consists of [8, p. 35-37]:

« the geometrical relations

oy oy, Or e oW,
exlzhng exylzh{ﬁxJFEva exzo_%=7x+a—xo (x—>vy). (1.1)

« the elasticity relations (Hooke's law)
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MX = D(exl +vey1), My = D(eyl +VEX1), H :17‘/ Dexyl, (12)

Qx :A(exzo - ex522j (X—=>Y),

2
where D:£L, A=5h—G.
3 142 3
* the equilibrium equations
My oM
0 @—Q)ﬁmx—o yJrﬁ—Qy+my=O, (1.3)

OX oy oy OX
a(?X Qy q =O
X z

To find the fundamental solution of the system (1.1) — (1.3), the vector components
of body forces in formulas (1.3) should be taken in the form

m( y)=n2mis(e ), my (cy)=h?my (e y), w4

Az (x y)=h?a,8(x,y) (x—>y),
where m;,m;,q: are constants and &(x,y) is a two-dimensional Dirac delta
function [9].

2. Definition of transforms of generalized displacements
Substituting the geometrical relations (1.1) into the elasticity relations (1.2) and

passing to the dimensionless coordinate system x; =x/h, X, =y/h, x3 =z/h, we

obtain
0 0 072 8
My =D L +v 2| M, =Dy L2+ T2
8X1 6X2 oX 2 aXl
H-1Vpy| o, o2 (2.1)
2 Xy | ox
oW W
=A +—|, =A +—
Q 0(71 5X1) Q2 0(72 o 2}
where DozlzEL Ozﬁ.
Eh? 31-2 3E

Bending moments and torque are proportional to the value Eh® , and shear forces —
to the value Eh.
In the dimensionless coordinates, we obtain:
oM oM
1+ﬁ—Q1+m1 0, 2+ﬁ—Q2+m2_o (2.2)
aXl aXZ 6x2 aXl
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GG S )
X, OX,
where my =myo(xg,xz), My =m(xg,%p), 3 =d38(xq,Xz)-
Solving this system, we obtain the generalized displacement transforms:
- 1|m q* i m,
2 -1 514 +3(1+v) 3 iz 5 +—3%+—2—§1i2 -
27zD0p p°lp‘ +a Do p* Do p
—3(1+v)m; — 51252 - } (2.3)
pe{p+a
772 :i m_;§+3(1+v)m; §12 +£ié+m_;éjlﬁ_
27| Dy p4 p21p2+a2i Do p4 Do p4

2

3 v)my 51252 . }
prip~ +a

foot| Ml Mpicp 93 1 d3 1|
Dg p4 Ag p2

where p? = 512 + 522, a? =31+ V)Ag; (51,952) are the point coordinates in the space
of transforms.

3. Finding of generalized moments in the space of transforms
The Fourier transform applied to the Hooke's law equations (2.1) gives:

My =-Dg(i&jy +ivéa72), My =-Dq(i&275 +ivé&yr),
~ 1- e~ .~
H ITV Do (i&271 +i&172), (3.1)

Qu=Ag(n —i&Wo), Qp = Ag(71 —i&Wp).
Having substitute the previously obtained expressions for transforms of generalized
displacements (2.3) into the transforms of bending moments equations (3.1) we
obtain:

~ iz 22 L2 2
M1=—— m: 514 - om; 2'%52 . —q3§—14+m2 '51452 B
2zl T p p°lp° +a p
. i8e . & £3 5152
—2m, s T MV = q3v—4+m1 (3.2)

p?(p? +a p p p
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- 5 | 2 - 2 - | 2
M2 = 2 i +2m > é:lzgz > —q3§—24+m1 —é:liz —
4 Y p-{p~ ta Y Y
. iggd & o« &« il
-2m T 3 +m1v——q3v—4+m2 2
p-{p-+a p p Y
Let us denote
. .3 . .2
- i = B
®1(51’52)=p_i’ ®y(&.62) =272,
= & = 53
®3(&.&2)="5 <I>4(51,éz)=7—)- (3.3)
ID4 pz pz +a2
Then the bending moments in the space of transforms take this form:

~ 1 «~ *~ *~ *~
Ml=—§[m1<1>1(§1,§z)+2m1<1>4(éz,51)—q3<1>3(51,§z)+mszz(él,éz)—

= 2my®4 (&1, &)+ My (&7, &) - Ug13(&, &)+ mIV&)z(fz,fl)J: (3.4)

1] =~ %~ "~ .
M3 Z—E[mzq)l(ﬁz,flﬁ 2my®4(&, £ ) - d3®3(E, &)+ M Do (5, &) -
—2my @y (Ep, & )+ M VD (&, & ) - A D3(E, & )+ M, (&, & )J

4. Finding the originals of bending moments
Now we need to invert the expressions (3.4). First, to find the originals of functions
(3.3), let us apply the Fourier integral transform [10, c. 58]

FAfa )l flax)=5- | [Tlaok @ @agas,. @y

—00 —00

We obtain

! 2 2? ( 2 2)
X1\X1 + 3X Xo X1 +3x
Dy (%, %p )= @ (x, X )= -2 i

2 k)
2(x12 + x%)

(D3(X1,X2)=—%| (42)

X X, (3x2 — x3
D4 (%, %)=~ 2 GOl|a| +x3 + 2L " 221G HlalyxE + x5 .
2(x1 +X ) 2(x +X )

where G, ,(rz) is some special G-function [11].
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Applying the formula of two-dimensional Fourier integral inversion (4.1) to the
transforms of bending moments (3.4) and taking into account the expression (4.2), we
obtain the expressions for M, and M, in the space of the originals

! 2 2)

1 X1\X{ +3X X

My ==~ my A2l oy {——L Goalayxf + x5 -
4 2(x12 +x§) 2(x1 +X2)

[2 2 2
x!x —-3x ) 1 x{ + X3 1 X —X
L - 2 G, |a|\/x1 + X3 +q§ A e B Bk
oy 2 4 x2 +x3
X1 +X2 1 2

2 2
Xo\X{ +3X X
-m, M— 2m, 2 Goalalyx¢ +x3 +
oy + x2 22 +x3)
X1 + X2 1 2

X2 3X{ — X [ o *x!3x+x)
MGIZWJ X1+X2 +m 2 1 2

2(x12 + x2) ? 2(x12 + x% )2

[.2 2 2 2 !2 2’
1 X1 + X 1Xx5—x X113X1 + X
Y g P e i I 2 L T v
3 2

—mMmv
2 2
2 At +x5 2(x12 + x%)

2 2
1 * X2!3X1 + X5 ’ * X2 2 2
Mzz—g m, 0 +2m, ‘(ﬁ)GQl'a'\/Xl +X5 +
2(X1 +X2) 2X1 + X2

2 2 2
X 13X —x2 \/x +x2 1x —X
+ 220 720Gy Hlalyxf + X3 b+ a3 —I N P72 2 L

2
2(x12 + x%) 4 X2 + X3

2 2
X1 13X{ + X X [
_mfjl—z)_ZmI 1 G01|a| X12+X§—
oy + x2f 2x2 +x2)
Xl +X2 1 2

X1\X{ —3x [ x‘x + 3X )
M612|a| Xl +X2 +m* 1171 2

2 Y
2(x1 +x2) 2(x1 +x2)

[2 2 2 2 !2 2)
1 X7 + X 11X —X X5 X7 +3X
+ gV Eln}/ 1r72 - 1 21 _m,y 22\t 2

14
2 2 2
2 4xf + x5 2(x12 + x%)

(4.3)
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5. Some numerical results

To study the features of the SSS of transversely isotropic plates under concentrated
force action we set: mf = m; = q§ =1.

The calculation results are shown in the dimensionless Cartesian coordinate system
X1, X2 .

Numerical evaluations were carried out for lead plates and zinc ones. Poisson's
ratios (v) for these materials are 0.446 and 0.212, respectively [12, p. 200]. The

sliding compliance is gz 2,6.

M, M
10“}\ 10 m:\
NN AN
\\\\ ™k o \\\ 2
AN NSNS
NN - \<§\ o
028 \ \ o \\\
\\ N 4,.,.;7 \\\
o] ANy N \\\
N ~

8 10 12 14
X 1

Fig. 1. The bending moments M;, M, for plates of: 1 — lead, 2 - zinc

Fig. 1 contains the graphs of generalized moments M, , M, along the abscissa axis
(xo =0). These graphs show that with decreasing of the Poisson's ratio the values of
generalized moments increase.

6. Conclusions

The developed method allows calculating the internal force components for plates
subjected to the action of a concentrated force. This makes it possible to consider the
shells and plates with thickness of about 1/5 with respect to their characteristic size.

The resulting fundamental solution provides a tool for solving a number of new
problems related to medium thickness plate bending. In presence of concentrated
dislocations, the fundamental solutions, which are the Green's functions, serve as
foundation for building the integral representations of displacement discontinuities
distributed with unknown density. Such integral representations can be used for
solving the problems of plates bending when the plates have different defects, cuts and
incisions.

Numerical studies of the SSS of transversely isotropic plates allowed revealing the
behavior patterns of SSS components, depending on the material elastic constants.
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