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The present paper focuses on the development of a mathematical model, an effective
algorithm and a self-consistent numerical analysis of the multifunctional properties of
resonant scattering and generation of oscillations by nonlinear, cubically polarizable
layered structures. It presents results of the numerical analysis characterizing the type-
conversion of the generation/scattering oscillations of the nonlinear layered structures
for one/two-sided acting fields at the generation/scattering frequency were taken into
account and could be observed. These effects were observed at a symmetry violation
of the nonlinear problem.
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s mparyst 30cepemkeHa Ha pO3BUTKY MaTeMaTHIHOI MOzeNi, €(peKTHBHOTO alrOpUTMY
Ta B3a€MOY3TO/UKEHOMY UYHCEIPHOMY aHalli3y 0araTo(yHKIiIOHAJBHUX BIACTUBOCTEH
PE30HAHCHOTO  PO3CITHHSA Ta TeHepalil KONWBAaHb HENIHIHHUME, KyOiuHe
HOJIIPU3YEMHUMH  LIADOBaHUMH CTPYKTypamMH. Y Tipalli HaBeAeHi pe3yJbTaTd
YHCENIBHOTO ~ aHali3y 110 XapaKTepH3ylOTh MEPETBOPEHHS THIy KOJHMBaHb
reHepawii/po3cisiHHs Ui OAHO/ABOX CTOPOHHIX TMOJIB 30YMKEeHHS HeTiHifHUX
[IapOBaHHUX CTPYKTYp Ha 4acToTax reHeparii/poscisuus. Li epextu croctepiratothes
IIPY MOPYIIEHHI CUMeTpii HemiHiiHOT 3a1ayi.

Knwouosi cnosa: kybiune nonapusyema cepeod, pe3soHAHCHe PO3CIAHHA, 2eHepayis KOIUSAHb,
83AEMOY3200ICEHULL AHATI3, NePEeMBOPEHH S MUNY KOJUBAHb.

JlanHas paboTa cocpeOTOYEHa Ha Ppa3sBUTHM  MaTeMaTHYeCKOH  MoJelnd,
3} (EeKTHBHOTO aJIropuTMa M CaMOCOIVIACOBAHHOTO YHCIOBOTO aHAM3a MYJBTH
(YHKIMOHATBHBIX CBOWCTB PE30HAHCHOTO pAacCesHUs M TeHepaluu KojebaHuit
HEIMHEWHBIMH, KyOWYecKH TOJSIPH3YEMBIMH CIOUCTBIMH CTpyKTypamu. B paGote
NIPUBEIEHB! Pe3yJbTaThl YHCICHHOTO aHaIN3a, XapaKTepH3YIOLINe IMpeoOpa3oBaHHe
TUIIa TeHEPUPYEMbIX/pacCesHHBIX KoJIeOaHMI U1 OJHO/ABYX CTOPOHHETO ITOJIS
BO30Y)KIEHHS HEMHEHHBIX CIOHUCTHIX CTPYKTYp HA YacTOTaX TeHepaIlun/pacCesHus.
Oti 3¢ dexThl HaOIIOJATHCh ITPU HApYIISHUN CHMMETPUH HeJTMHEHHOIT 3a1aun.

Kntouegvie cnosa: xyouuecku nonsipuzyemas cpeoqa, pe30HAHCHOe paccesinue, 2eHepayus
KOJe6aHull, Camo co2iaco8aH b AHAU3, NPeobpa3osanue muna Ko1eoanui.

1. Introduction

Nonlinear dielectrics with controllable permittivity have a great application
prospect in electronics and device technology [1-5]. The present paper focuses on the
development of a mathematical model, an effective algorithm and a self-consistent
numerical analysis of the multifunctional properties of resonant scattering and
generation of oscillations by nonlinear, cubically polarizable layered structures [6-9].
The multifunctionality of the cubically polarizable layered media will be caused by the
nonlinear mechanism between interacting oscillations - the incident oscillations
exciting the nonlinear layer from the upper and lower half-spaces as well as the
scattered and generated oscillations at the frequencies of excitation/scattering and
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generation. The study of the resonance properties of scattering and generation of
oscillations by a nonlinear layered structure with a controllable permittivity in
dependence on the variation of the intensities of the components of the exciting wave
package is of particular interest.

2. Statement of the problem

The problem of resonant scattering and generation of harmonic oscillations by a

nonlinear, nonmagnetic, isotropic, linearly = E-polarized E=(Ex,0, O)T,

-
H= (0, H, H, )T , cubically polarizable P(NL) = (PX(NL), 0, 0) , layered dielectric

structure (see Fig. 1) is investigated in a self-consistent formulation [6-9]. The time
dependency has the form exp(— ina)t), n=1,2,...

AR R

Fig. 1. The nonlinear layered dielectric structure.

The variables x,y,z,t denote dimensionless spatial-temporal coordinates such that
the thickness of the layer is equal to4z5 , with 6 >0; w=kc is the dimensionless
circular frequency; nk =nw/c=2n/2,, are dimensionless frequencies. This parameter
characterizes the ratio of the true thickness / of the layer to the lengths of the incident

waves A, i.e. h/A,, =2nkS . Where ¢ = (g #0)—1/ 2 is a dimensionless parameter,

the absolute value of which is equal to the velocity of light within the medium
containing the layer, Imc =0, ¢, and g are the material parameters of the medium.
The absolute values of the true variables x',)’,z',t',®" are given by the formulas
b Tk T ,_ 4nd
x',y, 2 t") =——I(x,y,z,t) and ' =—w
(3 2) = (w21 p
The incidence of a packet of plane waves onto the layer at the angles
. 3 . . inc inc |3
Pics T — P .|gon,<| <r/2 ., and with respect to the amplitudes \a,,, by f,-; at

the frequencies {mc}}le is considered, where the excitation field consists of a strong

field at the frequency x (generating a field at the triple frequency) and of weak fields
at the frequencies 2x, 3k (influencing on the process of generation of the third
harmonic):
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3 3

{Einc (nK;y,Z)} U {Einc (nK;y’Z)}nzl :
n=l1
here

i 3
Enc(mc;y,z) 3 amc _ B >
Hﬁinc(nlc;y,z) | pine PPy F e (27270 Z<i2ﬂ5

In such a situation, taking into account Kleinman‘s rule (i.e. the equality of all the

n=1

susceptibility tensor components ;()(;Zcx at the multiple frequencies [10]), the problem

under consideration can be described by a system of nonlinear boundary value
problems [6-9]

[Vz nK K(Z,OZ( mK sV, Z :1) Ex(mc;y,z)
— (o PalfoiE, 2 2xi >Ex (i 7.2) M)
L f(zx;y,z)E:(K;y,z)H, =123,

together with the following generalized boundary conditions:

(C1) E, (nlc; y,z) =U (nic;z)exp(i D, y) , the quasi-homogeneity condition w.r.t. y,
(C2) ®,,, =nd, or ¢,, =@, , the condition of phase synchronism of waves [6],

(C3) Ey (mc; y,z) and H, (mc; y,z) are continuous at the boundaries of the layered

structure,
(C4)  EXVEN (g, o) e [((®, v+, (:7275))], z 275 f
X nK Y,z pscat/gen EXp\ DLy Ty \Z+ 270 )], Z<— a or
nK

ImI,,, =0 and Rel,, >0, the radiation condition w.r.t. the scattered/generated
fields.

Here: V72 =52/c9y2 +c?2/c?zz , 5,/1c — Kronecker’s symbol, Etg(nlc;y,z) and
H (mc; y,z) — the tangential components of the vectors of the full electromagnetic

fields E and H, T, = (I’ZK)2 ~®y? and ®,,. =nxsin(p,,) — the transverse and
longitudinal propagation constants of the nonlinear structure

Enie = >2n6; and s(L)+8,(11,\<IL), |z| < 27r5},

E(L) =1+ 47[;(1(11)(2),

N = a(z){ S |Ey(micy.z)? )

m=1

* 2 %
51[ (K’y’z)] 52 b (2k52.2) e g 3k
' El(K;YJ) o E(2x;,2) 1 ,2) Ea B2 7. 2) .
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alz)= 67[)()(;2“ (z) — the function of cubic susceptibility of the nonlinear medium, ;()(;C)

and ;()(C‘;’Clx — components of the susceptibility tensors of the nonlinear medium.

The sought complex Fourier amplitudes of the total scattered and generated fields
in the problem (1), (C1)-(C4) at the multiple frequencies {nk}izl can be represented
in the form

Ex(mc;y,z)z U(nK;Z)exp(i(I)nKy)
Cl:;}? exp(i(@nKy - I_‘nK(Z - 27[5)))

+ azc,ft/gen exp(i((DnKy +1, (z - 27r5))), z>2n0, 3)
=U(nx;z)exp(i® . p) |z| <2rnd,

bzl;}cc exp(i(q)mcy + (Z + 2”5)))

n bzs(at/gen exp(i((l)mcy - FnK (z + 27[5))), z < —=276.

Taking into consideration (3), the nonlinear system (1), (C1)-(C4) is equivalent to
a system of nonlinear boundary-value problems of Sturm-Liouville type, see [6-9],

[a’z/dz2 + FnZK - (nlc)z{l — & (z,a(z),U(K;z),U(ZK; z),U(3K; Z))}]U(}’ZK;Z)
= (e Pal2) 502 (22 (s 2)

+53{%U3(1<;z)+ U 2(2,<;z)u*(;<;z)}j :

[iT, —d/dz|U(ni;275)= ZiFnKUinc(nK;2ﬂ5),

[iT, +d/dz)U(nx;—2728)=2iT,, U™ (nk;—275), n=1,2,3,
and also to a system of one-dimensional nonlinear integral equations w.r.t. the
unknown functions U(nk;-)e L, (275, 278), see [6-9],

z| <278, (4)

U(nK; z)+ igl;,()z 27fixp(irnx|z _ §|)[1 - gnk(f, a(f), {U(mlc; 5)};:1 )]U(mc; f)df

nK  —2xd

_i(nic)2 210 . 1r72(n .. *(3 4
=S Jeolm ekl ersenrd 5

+53{§U3(K;<§)+Uz(zzc;cs)u*(x;cs)Hdé

+ Einc(mc; z)+ Qinc(nlc;z), n=1,2,3.

Here: U (ni;z) = a'" exp[-iT,,(z - 275)], U™ (nx;z) = b expi T, (z + 275 )].
The solution of the problem (1), (C1)-(C4), represented in (3), can be obtained
from (4) or (5) using the formulas

U (n K270 ) =ayta ;c’?t/ &N U (mc;—27r5) =byi + b,slf(at/gen, n=1273.
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3. Self-consistent analysis of the system of nonlinear integral equations

According to [6-9], the application of suitable quadrature rules to the system
nonlinear integral equations (5) leads to a system of complex-valued nonlinear
algebraic equations of the second kind

[I - BI’lK‘ (UK s U2K5U3K )]UnK

—i (6)
=55C,(Unye, Uz )+ 67C3, (U, Up )+ Ui + UM, 1n=1,2,3
where U, = {Ul(nl()}]]\il ~ {U(nl('zl)};vl — the vectors of the unknown

approximate values of the solution, {{zl }l 1171 =210 <..<z;<.<zpy = 27[5} -a

discrete set of interpolation nodes, I=/{5;" }1]\{ m=1 — the identity matrix,

BHK(UK,UQK,U3K) — nonlinear matrices, CK(UzK,U3K), C3K(UK,U2K) — the

vectors of the right-hand sides determined by the choice of the quadrature rule, and
—inc

N
Ui —{ ¢ oxpl— il (z) — 275)] }l B yine - {bmcexp[+z oz +275)] }121 — the
vectors induced by the incident wave packets at the multiple frequencies nx,
n=123.
A solution of (6) can be found iteratively by the help of a block Jacobi method,
where at each step a system of linearized algebraic equations is solved [6-9]:

(52(‘1)),U§S,;3(‘1)))Ug) Si(g):mi(Sy(g))<é 0

(B, (Ul U

e [uS) v @) oy
-I—Bz (U(SI(Q))’Ugs;l)’Ug%(q)))U(zsrz S>(g)n2(S,(q))<&

—inc 1 (7)
= U2k +Upy -
B L CCURTIRT ) MO R

~ Gy U 1<q>>,Ugs,3( >>)+U3 ruie|

q=1
with

an(9)=[ut) vt
Given a relative error tolerance & >0, the terminating index Qe Nand Q0>2 is
defined by the requirement

v, n=1,2,3.

max{n; (Q)n>(Q)m(Q) < & -
Finally we mention that the classification of scattered and generated fields of the
dielectric layer by the H,,; ,-type adopted in our paper is identical to that given in

[6-9, 11]. In the case of E-polarization, H,,; , (or TE,,; ,) denotes the type of

polarization of the wave field under investigation. The subscripts indicate the number
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of local maxima of |Ex| (or |U , as |U | = |Ex , see (3)) in the dielectric layer, i.e. along
the coordinate axes x, y m z (see Fig. 1). Since the considered waves are
homogeneous along the x -axis and quasi-homogeneous along the y -axis, we actually
study fields of the type Hg , (or TEq, ,), where the subscript p is equal to the

number of local maxima of the function |U | of the argument z in [- 275, 275 ].

4. The type-conversion of the generated oscillations of a decanalizing
nonlinear layer media

The Fig. 2 show the properties of a decanalizing (a(z)<0) nonlinear dielectric
structure with the parameters g(L)(z): 16, a(z)=-0.01, 6§ =0.5. The excitation of
the nonlinear layer takes place from above by only one strong top electromagnetic
field at ¢.=0" and the basic frequency Kk=x"°=0375, i.e.

inc inc _ inc _ ginc __ _inc _ ginc _
{aK #0,bc " =aye =by =a3, =b3 = }

e B --.|
Y~~~

e, e

Fig. 2. Curves:1 — (1) 2 U(i;2),3 - [U(3K; 2) 4 - Re(e,),5 - Ime, )6 -
U, [a,i(nc,z]

Re(83K ),7 - Im(83K) =0 at a,i<nc =24 (left); and surfaces of scattered

fields in the nonlinear layer (right).

and generated ‘ Usy [a}(nc , Z]

In Fig. 2 we see a symmetry violation in the generated field in the radiation zone
(graphs no. 3, left). In particular, inside the decanalizing layer the symmetry violation

is accompanied by the presence of an inflection point z ~1,25, where |U (31(;2} =181

(right). In the

for a" =24, see graph no.3 (left) and the surface ‘U3,< [a,ifc,z]

K
considered ranges of amplitudes a,i(nc , the plane waves exciting the nonlinear layer
under the angle ¢, produce a scattered field U, of the type H( g 4. The generated
field U;,. changes its type with increasing amplitude a,i(nc. The generation of a third

harmonic field U;, is observed in the range a,ifc e [4,24], (right). Here it is of the
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type Hop19 for a,ifc € [4, 23) and of the type Hypg for a,icnc € [23, 24]. The type-

conversion of the generated oscillations from H,,,, to H,,, with increasing a.° is

due to the loss of one maximum point of the function |U (3K;z)| for z e [— 270, 27r5]
at the inflection point z=1.15 for a,i(nc =23, see the point with coordinates
(a’i(nc =23,z=1.15,|Us, |= 1.61) on the surface ‘ Uz, [a,i(nc,z] (right).

The increase in the intensity of the excitation field leads to critical inflection points
of the function (the absolute value of the amplitude of the scattered/generated field)
identifying the type of oscillation. If in these points the local maximum of the function
along the characteristic spatial coordinate of the investigated structure (the transverse
coordinate along the height of the nonlinear layer) is lost, then the effect of type-
conversion of the radiation field occurs. The amplitudes of the incident field, for
which the described effect is observed, can be called the threshold of the considered
types of oscillations.

5. The type-conversion of the scattering oscillations at the two-sided excitation
of nonlinear layered structures
The Fig. 3 show the properties of the nonlinear structures with the parameters:

U _t6,a=0y) zel-216,z=-275/3)
{E(L)(Z),a(z)}z L)~ 64,00 = } ze(z=-275/3, zy = 2725/3);
L) - 16,0 = a3}, zelz =278/3,275);
at 6=0.5, ay=a3=0.01, ap, =-0.01. The excitation takes place from above and

below by electromagnetic fields at the basic frequency k=xk"=025 and

ain® =38, 511 .0, allS = b = 411 = pf1° ~o.

70- 70, .
I;I 00 d _ )Lrl\ 60 i :.'
L os0/ ) Y501
= 2 =
S 40] S
. 30 . 304
L.\: 207 L .4;|'-‘: 20
- W 3 — 2
:‘[‘5 10 S 10 2
0 5—— 00 7 0
10 50 5 10 a0 -5 10

[T
L

Fig. 3. Curves: 0 — |U(K;Z) for a(z): 0,1- g(L),Z - |U(K;Zl 3 - |U(3K;ZX A4
Re(aK),S - Im(gK),6 - Re(83K),7 - Im(83,<)s 0 at {qu, 180° — goK} with @, = 0°
and (left): {a};“c =38,b" = 20}; (right): {a}fc =38,5" = 30}.
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The absolute values of the amplitudes of the total scattering |U (K;zj and

inc binc
Kk ° %k

generation |U (3/(;2) fields, for different variants of two-sided {a } normal

{1pK,1800—(pK}(pK

graphs no. 2 and no. 3 in Fig. 3. They may be identified as oscillations of the types
{H0,0,4 and H0,0,9} (left), {H0,0,3 and H0,0,9} (right). We mention a resonance

excitation of the nonlinear structure are illustrated by the

=09

effect of type-conversion of the total scattered field Hy 4 < Hg 3. The resonant

type-conversion of oscillations, which is observed for the two-sided excitation of both
linear and nonlinear structures, occurs if the symmetry of the excitation is violated.
The resonant type-conversion of oscillations, which is observed for the two-sided
excitation of nonlinear structures, occurs if the symmetry of the nonlinear structures or
excitation is violated. The fundamental difference in the occurrence of this effect
between the nonlinear and the linear situations consists in the presence of the

nonlinear part g,g,jL) of the dielectric permittivity &,,, n=1,3, see (2).

We mention that the behaviour of the quantity 8,(11,\(IL) =Enx — ¢ can be

estimated easily by means of the graphs nos.4, 5, 6, 7 and 1 in Figs. 2 (left) and
3 (left/right). The graph no. 1 depicts the dielectric permittivity s(L) of a linear non-
absorbing Imle L))=0 structure. The graphs nos. 4, 5, 6, 7 show the real and
imaginary parts of the nonlinear dielectric permittivity ¢,, , n=1,3, for the excitation
variants under consideration, see Figs. 2 (left) and 3 (left/right). In particular,

Im(s,(cNL)) takes positive and negative values along the height of the nonlinear layer,

for all the considered excitation variants of the nonlinear structure. The variation of
this quantity characterizes the energy consumption of the nonlinear medium which is
spent for the third harmonic generation.

The numerical results for the scattering and generation of a wave package by a
nonlinear cubically polarizable layer are obtained by means of the solution of the
system of nonlinear integral equations (5). Applying Simpson’s quadrature rule, the
system (5) is reduced to a system of nonlinear algebraic equations (6). The numerical
solution of (6) is carried out using a self-consistent iterative algorithm (7) based on a
block Jacobi method. In the investigated range of problem parameters the dimension
of the algebraic systems was 301 and 501 in the case of single-layered (Section 4)
and three-layered (Section 5) structures, respectively. The relative error of the

calculations did not exceed 107" .

6. Conclusion

The type-conversion effect was observed at a symmetry violation of the nonlinear
problem caused by different amplitudes of the excitation fields. For the first time, two-
sided acting fields at the scattering frequency were taken into account and a type-
conversion of the oscillations could be observed. The latter effect was observed at a
symmetry violation of the nonlinear problem caused by different amplitudes of the
excitation fields. This effect may serve as a basis for numerical and analytical methods
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for the synthesis and analysis of nonlinear structures in the vicinity of critical points of
the amplitude-phase dispersion, similar to the approach developed in the papers [12].
That is, mathematical models for the control of anomalous scattering and generation
properties of nonlinear structures via the variation of amplitudes in a one/two-sided
excitation of a nonlinear structure at scattering and generation frequencies near the
resonance frequencies of the linearized spectral problems can be created.
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