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For the preemptive scheduling problem in case of subsequent job importance growth, it is studied whether the optimal schedule
might be found faster within an exact model. It is ascertained that when the number of jobs up to six (except for the case of
four jobs) and there is no randomness in problem forming, a little advantage of weight-descending job order exists only on
average. As the number of jobs increases, the advantage of either weight-descending or weight-ascending job order becomes
more certain. When priority weights are formed randomly, weight-descending job order is expected to be faster than weight-
ascending.
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Teopist po3KIagiB € BAXIUBOIO Taly33l0 MPHUKIATHOI MaTeMaTHKHU, CIIPSIMOBAHOIO HA OpraHi3amilo 0araToeTamHHUX MPOLECiB
KOMITOHYBaHHS, BAPOOHUITBA, OyIIBHULTBA, TUCTIETUYEpU3allii, o0uncieHs Tomo. OAHUM 3 TOJOBHUX KPHUTEPIiB € MiHIMIi3amis
3arajbHOTO 3BaXKEHOTO 4acy 3aBeplleHHs. ICHye Kiac 3ajad IUIaHyBaHHS 3 NMEPEMHKAaHHSMH, y SKAX BHKOHAHHS OJHOTO
3aBIaHHs MO)ke OyTH IepepBaHO HAa KOPHUCTh BUKOHAHHS IHIIOTO 3aBJaHHs. Y IBOMY KJaci iCHye miIkiac 3ajiad, y sSKOMY
3HAUYIIICTh HACTYIHHX 3aBJaHb 3pocTae. Taki 3amadi IUIaHYBaHHS BUHUKAIOTh y CHCTEMax, YMH PO3BUTOK CTa€ OibLI
CKJIQTHMM Pa3oM 31 3pOCTalOYNMH BHTPATaMH JUIS MATPUMKH IIbOTO PO3BUTKY. Ko KibKiCTh 3aBIaHb csra€e KiJIbKOX COTEHb,
Taki 3aJadi MOXKYTh PO3B’S3yBaTHCA 3a JOINOMOTOI0 EBPHUCTHK. AJie 3HaXOMKEHHS TOYHOTO MiHIMaJbHOTO 3arajibHOTO
3BaKEHOTO Yacy 3aBEPIICHHS € IIJIKOM MOXKIMBUM JUTA BUITAIKIB 3 KUTPKOMa 3aBIaHHAMH, X04a 1€ 1 ToTpedye 3HAYHO TOBIINX
oburcieHp. OMHAK, OCKUTBKH €BPUCTUKU MOXYTh JAaTH JIMIIE HAaOIMKEHI pO3KIAAN, TOYHI PO3KIAIN A KOPOTKOCTPOKOBUX
3a1ad IUTaHYBAaHHA BCe LI TPEACTABIAIOTH iHTepec. TOMy METOI0 € 3’4CyBaTH, UM ONTHMAIBHUHA PO3KIAA Mir Ou OyTH
3HAMJCHNH MBHUNIE y paMKaxXx TOYHOI MoJeii. BcTaHOBMIOETHCS, IO 3a YMCIa 3aBJaHb JIO IIECTH, Oe3 BUITQJAKOBOCTEH Y
(dopMyBaHHI 3a7adi, 32 BUKJIIOUCHHSIM BHUIIAJKY 3 YOTHPMa 3aBJaHHIMH, cilabka mepeBara MopsIKy 3aBIaHb 3i CIIaJarouyiMu
BaraMy iCHye JIMIIIe Y CepeAHbOMY. 31 3pOCTaHHAM KITBKOCTI 3aBIaHb IepeBara IMopsIKy 3aBlaHb a0 3i CllalaloYlMK Baramy,
abo 3i 3pocTalouMMK Baramu ctae Oinbin 4iTkoro. Konm Baru mpiopurteTiB copMOBaHI BHIAIKOBO, OUYIKYETHCS, IO came
HOPSITIOK 3aBAaHb 31 CIIaJal0YUMH BaraMu OyJie MIBUIIINM.

Knwwuosi crosa: onmumanvhuil po3kiad, nopsiook 3a60aHb, NePeMUKAHHS, 3A2AbHULL 36AXCEHUL YAC 3A8EPUICHHS, MOYHUL
PO36 30K, guepaul y 4aci 0O4UCIeHHs.

B 3amaue mnaHnpoBaHus ¢ HepEeKITIOYEHUSAME IIPH BO3PACTAHUU 3HAYNMOCTH MOCIEAYIONINX 3aAaHIN H3ydaeTcs BOIPOC O TOM,
MOJKET JIM ONTHMAJIbHOE pachucaHue ObITh HaliIeHO ObICTpee B MpejeNax TOYHOH MOJENH. Y CTaHABIMBACTCS, YTO C UHCIOM
3aJaHui 10 mecTH, 0e3 ciaydaifHocTel B (OPMUPOBAHHH 3aadH, 32 UCKIIOYEHHEM CITydas ¢ YeTBIPbMS 33aJaHHsAMH, c1aboe
MPENMYINECTBO MOPSAAKA 3aJaHUi ¢ yOBIBAIOIIMMH BECaMM CYIIECTBYET TONBKO B cpegHeM. C Bo3pacTaHMEM KOJIHYECTBA
3aJaHuil MPEUMYIIECTBO MOpsKa 3aJaHui MO0 ¢ YOBIBAaIOIIMMHU BecaMH, JHOO C BO3PACTAIOIIMMH BecaMH CTagr Ooiiee
yétkuM. Korna Beca mpuoputeToB c(hOPMHUPOBAHBI CIIy4ailHO, OXKUAAETCS, YTO MMEHHO MOPSJOK 3alaHMil ¢ yOBIBAaIOIMMHU
BecaMH OyJieT ObIcTpee, YeM C BO3paCTaIOINMU BeCaMH.

Knroueevle cnosa: onmumanvhoe pacnucarue, I’lOpﬂaOK 3(1()(1Hu1/7, nepexiiodenue, 0614466 B36CUICHHOE 6peMsl 3A6EPUIECHUSL,
moYHoe peweHue, e6blucpovlil 60 6PEMEHU BbIUUCTICHUSL.

The preemptive scheduling problem by subsequent job importance growth
The scheduling theory is a quite important field of applied mathematics helping in organizing
multistep processes of assembling, manufacturing, building, dispatching, computing, etc. [1, 2]. Given a

number N of jobs, where N < N\{l} and each of them has its own importance designated as a weight,

one of main criteria is minimizing the total weighted completion time (TWCT) [2, 3]. There exists a
class of preemptive scheduling problems (PESPs), wherein a job can be interrupted in favor of another
job [3]. A subclass of this class contains problems in which importance of subsequent jobs grows. Such
PESPs arise in systems whose development becomes more complicated along with its growing costs.
When N is of order of hundreds, PESPs can be solved only by using some heuristics [1, 2, 3].
Meanwhile, finding the exact minimal TWCT is surely possible for a few jobs, although it requires
much longer computation time compared to heuristics [3, 4]. However, whereas heuristics may give
only approximate solutions, exact solutions for short-termed scheduling are still a matter of
interest.
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An approach to find the exact minimal TWCT by the Boolean linear programming model
Let job n have a processing period (PP) H, (job n is divided into H, equal parts), a release date

(RD) r,, and a priority weight (PW) w,, n =1, N.. Vectors of PPs, PWs, and RDs are
H :[Hn]lw eNY, W :[wn]lm, eN', R= [rﬂ]lxN eN", @
respectively, where r_ is the time moment, at which job n becomes available for processing, and

k
Elnle{l,_N} such that r, =1, 1+ZE’,,>F,(+1 vk=1 N-1 )

by having sorted components of R in ascending order to vector R =[T, ] » Whereupon vector H
becomes respectively sorted after R =[T, [FRLY H :[I—Tn ]1 " The goal is to minimize the TWCT, i. e.

iwne(n; H,) (3)

would be minimal, where job n is completed after moment 8(n; H, ), which is

o(n;H,)efL T} by T:iHn. (4)

Let X, =1 if the h -th part of job n is assigned to time moment t; otherwise, X, =0. The
respective triple-indexed weights are calculated as follows:
Ane =0 by r,—1+h <t<T-H, +h, Vh=LH -1 (5)

to schedule the jobs so that sum

and
Aone =0 by when double inequality in (5) is not true, (6)

N T
where o >0 is a sufficiently great integer (similar to the meaning of infinity), e. g., a = Zant ;
n=l t=1
A‘ant:Wnt by i’“—l+Hn\<\I€_T (7)
and
Ao =0 by when double inequality in (7) is not true. (8)
HH

;
Denote an aggregate of all variables by X :{{{thnt}Nl} } e A, where A is a set of all possible
1

"=h=

aggregates. The factual goal is to find such an aggregate

X*={{{x:m}n“ S } carumind 3" ©)

n=l h,=1 t=1
by constraints which constitute set A (an integer binary lattice):
Xni €{0,1} by n=L N and h =1L H and t=1T, (10)
Znht—l by n=L N and h =1 H_ ZZ =1 by t=1T, (11)
n=l h,=
Zz J+Hx, <H, by n=L'N and t=1T -1. (12)
J=t+l =1

Formulae (1) — (12) is the Boolean linear programming model (BLPM) [4] allowing to find the
optimal job schedule S =[sf]m by s e{l_N} for every t=1,T and its exact minimal TWCT [3]
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p ( N ) = iii}\‘nhﬂtx:hnl (13)

n=l h=1 t=1
for those N jobs. However, problem (9) by the BLPM is NP-hard [1, 2, 4]. It becomes hardly tractable
for a few tens of jobs. So, reducing the BLPM computation time even for a few jobs is very important.

An example of that the job order into the BLPM matters
Consider a PESP by subsequent job importance growth of eight jobs:

H=[H,]..=[2]..,, W=[w,],=[1 3 7 16 33 44 55 67], R=[r

o

=[n]lx8. (14)

Here the total processing time isT =16, and the optimal schedule given by the BLPM (1) — (12) is

*

S=[s],=[1133557 788664422 (15)

The exact minimal TWCT by schedule (15) is 2138. However, this problem might be stated as
H=[H, ], =[2].,, W=[w,],,=[67 55 44 33 16 7 3 1], R=[r,] , =[8-n+1] ,.(16)

Then, obviously, the optimal schedule given by the BLPM (1) — (12) remains the same, that is
S'=[s/], -[6866 442211335577 (17)

giving the exact minimal TWCT of 2138, but it is obtained at least by 25 % faster than schedule (15).
Thus, the job order in the BLPM (which uses the branch-and-bound approach for solving [4]) matters.

The object of studying

Taking into account that the job order in the BLPM may determine the computation time, the
purpose is to study whether the optimal schedule is found faster in the PESP by subsequent length-equal
job importance growth (SLEJIG) when the job order is weight-descending (just like in the example
above). The PP will be set at 2 for simplification. To achieve the goal, the three following tasks are to
be accomplished:

1. To compare computation times of weight-descending job order (WDJO) and weight-ascending
job order (WAJO) for PESPs with trivially increasing PWs and RDs. RDs will be set trivially as

R=[r],y =[n],, forWAJO and R=[r]  =[N-n+1]  for WDJO. (18)

2. To compare computation times of WDJO and WAJO for PESPs by SLEJIG, whose PWs are
formed randomly by definite statistical laws along with (18) and sorted. The comparison will be a ratio

B(N):].OO TAS(N)_TDGS(N) ,
Toes (N)
where 1,,(N) and 1, (N) are averages of computation times for WAJO and WDJO, respectively.

3. To finally conclude on the statistical results and find out regularities/laws, if any, of solving
PESPs by SLEJIG with WDJO/WAJO by the BLPM. Then practical recommendations are to be given.

(19)

PESPs with trivially increasing PWs and RDs
Here, two versions of PESPs with WAJO and WDJO are given as

H =2, r,=n by w =n (WAJO)and r,=N-n+1 by w,=N-n+1 ¥n=1 N (WDJO), (20)
and
H,=2, r,=n by w,=2n-1 (WAJO)
and r=N-n+1 by w,=2N-2n+1 vn=1 N (WDJO), (21)
respectively, for N =2,10. Fig. 1 shows ratio (19) for cases (20) and (21), whence it follows that
WDJO is definitely computed faster for N e{2, 3, 6}. This particular conclusion is confirmed by
disclosing the averages — see Fig. 2, wherein two bunches of ratios (19) for cases (20) and (21)
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obtained separately in the repetitious solutions of the same problem (9) by BLPM (1) — (12) are really
tight, especially when N increases. On average, only PESPs with nine jobs are solved slower by
WDJO than by WAJO.
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Fig. 1. Ratio (19) for cases (20) and (21): on average, PESPs by WDJO are 13.4 % solved faster than by WAJO
195 T T T T T T T
190 — A

160 [~

e
=

T i |

Y T B I

[

1

I T |

10N

2 3 4 5 8 7 8 9
Fig. 2. Two bunches of ratios (19) for cases (20) and (21) obtained separately in the repetitious
solutions of the same problem (9) by BLPM (1) — (12)

Obviously, cases (14) and (16), (20) and (21) do not confirm that PESPs by WDJO are solved faster.
Moreover, Fig. 1 and 2 prove that WAJO by SLEJIG is preferable for 4, 5, 8, 9 jobs by case (20), where
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PWs are the most compact, and for 7, 9, 10 jobs by case (21), where PWs are slightly loose.
Nevertheless, the averaged time-advantage of WDJO is an evidence of that the job order in the BLPM
might be optimized for other cases of PWSs generated by the certain laws (e. g., see [5]).

PESPs whose PWs are formed randomly along with (18) and sorted
Let PWs for WAJO be generated by the following law:

H,o=2, r,=n by w,=w”+yd,, ye{0,1}, W =y(Ng+1) vn=LN

and w’, <w” V1=2,N but 3L.e{2 N} such that w°; <w’, (22)

-

where { is a pseudorandom number drawn from the standard uniform distribution on the open interval
(0;1), function \u(ﬁ) returns the integer part of number &, and

d,=1, d,=3, d =y(d,,+d,+ok), k=3 N by o, =i/8, i=0,8. (23)
PWs for WDJO are generated similarly to (22) by (23):
H,=2, r,=N-n+1 by w,=w" +ydy ..., v€{0,1}, w® =y(Ng+1) vn=L N

1

and w” >w” VI=2,N but HLe{Z,_N} such that w®, >w". (24)

Fig. 3 shows ratio (19) for 10 cases by (22) — (24), whence it follows that WDJO is computed faster
for N e{4,6,10}. It is preferably to use WAJO for PESPs with three jobs. The average computation
time gain by ratio (19) is 15.9 % for PESPs with 10 jobs. This gain is over 28.7 % for PESPs with four
and six jobs. The lowest gain has been revealed for PESPs with five and eight jobs. Moreover,

disadvantage of WDJO has occurred for every studied number of jobs (see Fig. 4). The averaged
advantage of WDJO is nonetheless observed, although it doesn’t grow as the number of jobs increases.
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Fig. 3. Ratios (19) for 10 cases by (22) — (24), wherein PESPs with the even number of jobs seem to be better to
be solved by WDJO when using BLPM (1) — (12)
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Fig. 4. Bunches of ratios (19) for 10 cases by (22) — (24) obtained separately in repetitious solutions

Discussion

Even if the plotted polylines suggest that WDJO is computed faster, some of results appear quite
contradictive. For instance, considering only polylines in Fig. 1, the inference about the averaged time-
advantage of WDJO for the even number of jobs is a bit inconsistent. Polylines in Fig. 3 are more
convincing for the case of the even number of jobs, although the case with eight jobs just falls out the
mentioned inference. After all, during a single repetition of the problem solving, a negative ratio (19) is
not excluded for case (22) — (24), where monotonic PWs are nonetheless formed randomly. So, on
average for randomly monotonic PWs, it is better to solve PESP by SLEJIG by the BLPM with WDJO.
However, a small possibility of a slower solution (compared to WAJO) still exists.

Cases (20) and (21), which do not contain any random parameters, show us in Fig. 2 that an assured
conclusion on WDJO/WAJO advantage must be made for PESPs with six to ten jobs. Indeed, those
polylines in Fig. 2 become more “stable” as the number of jobs increases up from 5. Thus, it is faster to
solve PESPs with WDJO for 6, 7, 10 jobs in PESP (20), and 6 and 8 jobs in PESP (21). Conversely,
PESPs with WAJO for 8 and 9 jobs in PESP (20), and 7, 9, 10 jobs in PESP (21) are solved faster. Note
that this time-advantage of WDJO/WAJO here is not averaged. A similar conclusion on 5 and 4 jobs,
and especially for 3 and 2 jobs, is not possible. Even by implying “on average”, only the case with 4
jobs is consistent: PESPs (20) and (21) are solved faster by WAJO and WDJO, respectively.

Conclusion, practical recommendations, and a further research outlook

WDJO is not definitely better (i. e., faster) than WAJO. For PESPs without randomness with the
number of jobs up to six, except for the case of four jobs, a small advantage of WDJO exists only on
average. As the number of jobs increases, the advantage of either WDJO or WAJO becomes more
certain. For PESPs by SLEJIG which do not have such “regular” PWs, WDJO is expected to be faster
than WAJO. However, this averaged time-advantage of WDJO is not truly reliable for all cases (like
reliability of just cases with 4, 6, 10 jobs by Fig. 3).

Solving PESPs by SLEJIG with WDJO/WAJO by the BLPM does not have a statistical law of the
averaged time-advantage of WDJO or WAJO, which (i. e., the law) could be described in general. To
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obtain the gain in computation time, it is recommended to study statistics as per Fig. 1 — 4 before using
either WDJO or WAJO. A further research outlook will be focused on WDJO/WAJO in heuristics.
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