16 BicHuk XapkiBcbkoro HauioHanbHoro yHisepeuteTy imeHi B.H. KapasiHa, 20 1 8
DOI: 10.26565/2304-6201-2018-40-02

YK 004.053

An approach to assessment of dynamic software variability in mobile
applications development

R.O. Gamzayev %, E. Karaguha %, M.V. Tkachuk*, O.Y. Tovstokorenko®
V. N. Karazin Kharkiv National University, Svobody Square 4, Kharkov, 61022, Ukraine
2Istanbul Technical University, Maslak, 34467 Sarlyer/fstanbul, Turkey
® National Technical University “Kharkiv Polytechnic Institute”, Kyrpychova str., 2, Kharkiv, 61002 Ukraine
e-mail: tka.mobile@gmail.com

The article describes the approach to the assessment of code reuse in Dynamic Product Line lines (DSPL). Some existing
mechanisms to realize software variability in DSPL, such as machine learning, adaptive configurations based on Java
programming tools which allow developing DSPL, especially in mobile applications domain, have been reviewed. During the
development, some methods for the implementation of the variability specific to the selected programming language have been
tested. For each of these mechanisms, such as Weighted Methods per Class, Response for a Class, Depth of Inheritance Tree,
Coupling Between Objects, Number of Children, the code complexity metrics have been calculated. Based on these results the
code reusability extent can be estimated for each of given variation mechanisms.

Keywords: software product line, dynamic variability, complexity metrics, code reusability, mobile application.

Jus 3abe3medeHHss €(QEKTUBHOTO NPOEKTYBAaHHA Oyab-AKOi CKJIAQAHOI PpO3MOALICHOI NPOrpaMHOi CHUCTEMH HEOOXiTHO
320€3MEeYNTH MOXKIIHBICTS TOBTOPHOTO BHKOPUCTAHHS IEBHUX PECYPCIB MPOEKTY, OCOOIMBO BUXITHUX KOMIB 1 BUKOHYBaHHX
KOMIIOHEHTIB HpOrpaMHOro 3adesmedcHHS. Lle m03Boisie CKOPOTUTH Yac PO3pOOKH Ta 30€perTH iHII BaXKIWBI MPOEKTHI
pecypcH. Y 6araThOX CydacHHX JKepeliax BUBUAIOTHCS MUTAHHS, MOB'SI3aHi 31 3aTHICTIO OIIHIOBATH MOXITUBICTH TOBTOPHOTO
BHUKOPUCTaHHS KOJy BXK€ Ha €Tall MPOEKTYBaHHs IpOrpamMHOro 3adesnedeHHs. CTaTTs ONHUCYe MiAXiJ 0 aHANI3y CTYNEHS
MOBTOPHOTO BHKOPHCTAHHS KOAY y NHHAMIYHUX JIiHiHKax mporpamHux npoaykrtiB (DSPL). ABropamu 3poGneHo crucimit
oms iCHyIOUHMX miaxoniB no moOymoBu DSPL, 30kpema, Taki sIK MallMHHE HABYaHHS Ta BUKOPHUCTAHHS aJalTHBHUX
KoH(pirypamiii. Ha ocHOBI 1iporo Oyna po3poGiieHa JOMEHHA MO IS aHaJi3y albTepHATUBHUX MEXaHi3MiB BapiaOeIbHOCTI
y DSPL st MOGITbHEX 3aCTOCYHKIB i3 BUKOPHUCTaHHS MOBH mporpamyBaHs Java. Ilig yac po3poOku Oyiar BUKOPHUCTaHHI
JIesiKi MEeTOAM iMIIIeMeHTalii BapiabenpHOCTI cienudivHi a1t 06paHoi MoBH. [leprmmiit MexaHi3M Bapialii BAKOHAHHS BU3HAYAE
CIIUCOK CepBepiB, IO BiAMOBifa0Th 3a KOHGiryparii 30upanus: debug aGo release. JIpyruii Bu3Hauae, yu Mae MpaIfOBATH
pydYHe BU3HAYEHHs cepBepa (KOJIM BHOUPAETHCS TECTOBHII cepBep) a00 BUKOPHUCTOBYETHCS MOIEPEAHBO BH3HAUCHUH CepBeEp.
Tperiit MexaHi3M BU3HAYa€ cepBep 3a yMOBUAHHSM, SIKMI OyJie BUKOPUCTOBYBATUCS, SIKIIO HiYOT0 He BUOpaHo. J{i1s1 KOXKHOTO 3
IUX MiIXoZiB OyiaM po3paxoBaHi Taki METPHKH sKOCTI sK “JlepeBo rimOuHM ycmagkyBaHHS, “3B'I30Kk MiX 00'ekTamu”,
“KinpKicTh DOUIpHIX KJIaciB”, a TAKOXK OyJia OLiHEHA CTYIiHb HOBTOPHOTO BUKOPUCTAHHS KOy KOKHHM 3 ITUX METOIIB.

Knwwuoei cnoea: niniiika npoepamHux npooyKmis, 6apiabenvHicmb, Mempuku sIKOCMI, NOSMOPHe GUKOPUCHAHHS KOO,
MObGInbHA po3pobKa.

st obecniedenus 3pheKTHBHOTO MPOEKTHPOBAHUS JIIOOOH CII0XKHOH pacrnpeereHHOW POrpaMMHON CHCTEMBI HEOOXOUMO
00ecTeYnTh BO3MOKHOCTH TTOBTOPHOTO HCIIONB30BAHUS OMNPEACICHHBIX PECypcoB MPOEKTa, OCOOEHHO MCXOIHBIX KOJOB H
BBIITOJTHSIEMBIX KOMIIOHEHTOB IPOTPAMMHOTO OOeCHedeHrsl. DTO TO3BOJISIET COKPAaTHTh BpeMs pa3paOOTKH M COXPaHHUTh
IpyTHe BaKHBIE NPOEKTHBIE pecypchl. Bo MHOTHMX COBPEMEHHBIX HCTOYHHKAX HM3YYalOTCS BOIPOCHL, CBSI3aHHBIE CO
CIIOCOOHOCTBIO OIIEHMBATH BO3MOXKHOCTH MTOBTOPHOTO HCIIONB30BaHMS KOJa YK€ Ha dTare MPOCKTHPOBAHUS MPOTPAMMHOTO
oOecrieueHus. CTaThsl ONMCHIBAET MOJAXOJ K aHAJIU3Y CTEIEHU IMOBTOPHOIO HCIIOIb30BaHUS KOJAa B JMHAMUYECKUX JIMHEHKax
nporpaMMHbIX MpoaykToB (DSPL). ABTopamu cienaH KpaTkuii 0030p CYIIECTBYIOIIMX MOJAX0M0B K moctpoennto DSPL, B
YaCTHOCTH, TaKHe KaK MallMHHOEe 00y4eHHe U UCIIOIb30BaHKUE aJalTUBHBEIX M3MeHeHHni. Ha ocHoBe sToro Obuta pa3zpaborana
JIOMEHHAsT MOJENb JJIsl aHalIu3a albTePHATHBHBIX MEXaHW3MOB BapuabenbHocTH B DSPL mis MOOWIBHBIX MPHIIOKEHUH C
WCTIONIF30BaHUE SA3bIKa MporpaMMupoBanus Java. [1pu paspaboTke OBUTH HUCTIONB30BaHBI HEKOTOPHIE METOIBI HMILIEMEHTAIIHN
BapuabenpHOCTH crienuduyeckrue Ui BEIOPaHHOTO s3bIKa. [lepBbIii MEXaHW3M BapHAIMU BBIIOJHEHHS OMPENENSIeT CIHCOK
cepBepoB, OTBewaromux 3a KoHpuryparmu coopku: debug wmm release. Bropoii ompenensier, umeer au paborats pydHOE
ompeneneHne cepBepa (Koraa BBIOMPAETCS TECTOBBIM CepBEp) HIIM HCIIONB3YETCs MPEIBAPUTENBHO OTPENEIICHHBIA CepBep.
Tperuii MexaHM3M OIpenesseT cepBep MO YMONYAaHHIO, KOTOPBI OyIeT MCHONB30BaThCs, €CIM HUYEro He BeIOpaHO. [lyis
KaXIOTO W3 3TUX IOJIXOJOB OBUIM PACCUMTAHBI TaKMe METPHKH KadecTBa Kak "JlepeBo riayOuubl HacienoBanus", "CBs3b
Mexy obbexTamu", "KomnuecTBO JodepHHMX KIaccoB', a Taioke ObLIa OLlEHEHa CTENEeHb HMOBTOPHOT'O HCIIONb30BaHMS KOJA
KaXXIbIM U3 3TUX METOI0B.

Knwouesvie cnosa: nuneiixa npocpammHwix npoOYKmos, 8apuabeibHOChb, MEMPUKU Kauecmed, NOGMOPHOE UCNONb306AHUe
K00a, MoObGUNbHAS pa3pabomKa.

1 Introduction

Nowadays with the growth of businesses and expansion of markets, it is necessary to produce
software products at a lower cost, in shorter time, but provide higher quality at the same time. Also, the
practice of using the so-called production line takes over the old-fashioned individual product creation.
The main disadvantage of the traditional production line approach is lack of diversification. This is
where the software product lines come into play. They enable developers to create families of systems

© Gamzayev R.0O., Karaguha E., Tkachuk M.V., Tovstokorenko Q.Y., 2018

BicHuk XapkiBcbKoro HawioHanbHoro yHisepcuteTy imeHi B. H. Kapasita, 20 1 8 17

faster and cheaper as in the production line approach, but at the same time give an opportunity to
customization. The motivations for product line engineering include reduction of a development cost,
an improvement of the quality and a reduction of product delivering time. It also allows for coping with
evolution and complexity.

One of the most important activities in the early stages of software product line development process
is the definition of commonality and variability of the product line. While the commonality simply
describes the reusable assets that systems have in common, what we like to investigate is the variability,
i.e. the features that are unique for each system belonging to the family. It is worth mentioning that
research on handling the variability at runtime has led to the creation of dynamic software product line
engineering, which is the modern approach to developing software product lines.

A lot of researches in software product line engineering area are concerned with the variability
management. The following main questions have been recently considered:

- which software components can be varied,;
- how to handle variability on different levels efficiently;
- how variability can be achieved.

Considering the speed of development and growing complexity of mobile application market [1], the
DSPL can be introduced on it as well. Taking this into account, the questions concerning a common set
of software requirements, development approaches and technological complexity are still open. So the
goal of current research is to analyze the reusability evaluation tasks during the DSPL development and
developing the approach to its management.

This paper is structured in the following way: in the first section, some technological approaches to
design variable software are presented; in the second section Dynamic Software Product Lines (DSPL)
is overviewed, in the third section, the usage of some Android-related technologies for variability
management is discussed. Then our case study is presented and in the conclusion our future work is
discussed.

2 Related work

The problem of the system adaptation in response to context changes is covered in [2]. This is why
traditional feature models that describe DSPL are augmented with a set of rules that explicitly
determine under which condition a reconfiguration should occur. Developing an effective set of
adaptation policies is a challenge for developers due to the complexity of the context and its dynamic
nature. While usually in DSPL context changes can be anticipated at design time, in some systems it is
not possible due to the uncertainty of runtime context changes.

There are several approaches that may help with this kind of uncertainty [2]. The first one, machine
learning, aims at learning unanticipated context changes and creating new adaptation rules dynamically.
The second approach, evolution, focuses on changing variability of the DSPL, while derived
configurations are running. Both learning and evolution address specific problems of uncertainty, which
is why they are not used in isolation [3].

The overall adaptive system model to compare with [3] is shown in Fig. 1. Learning and evolution
both are the parts of the process.

?

-
.
Configuration \l/
s

Updated
Feature model
+ Feedback needed Update
. -===="""|adaptation rules

Adaptation Management J

Adaptation feedback needed
Feature
P bindings
C)

feedback

Execution (Managed element)

Monitored data feedback needod

Fig. 1 Workflow Learning and Evolution in DSPLs (to compare with [3])

18 Cepis i(MaTemaTiuHe MoaentoBaHHs. [HchopmaLiiHi TexHonorii. ABTOMaT30BaHi CUCTEMM yNpaBniHHsh, BUNyck 40

In the mobile development, this topic can be presented by a number of tasks that could be solved
using variability mechanisms, such as multilingual support, the presence of several feature sets for
different types of users, as well as the access levels of these users (paid / free accounts). Moreover,
taking into account the growing popularity of cross-platform languages for mobile development, it is
necessary to pay attention to the specifics of adaptation possibilities for each of the platforms and, in
accordance with their requirements, to limit some functionality on one or another end platform.

3 The problem statement: Assessment of code reusability extent in DSPL development

To ensure an efficient design of any complex distributed software system it is necessary to ensure
the possibility of reuse of certain project assets, especially a source code and executable software
components. This can help to reduce the development time and save other equally important resources.

In many modern sources, issues related to the ability to assess the code reusability already at the
design stage of the software development are studied. In particular, the relationship between the
complexity of the code and the reusability is indicated in [5].

The complexity of the software code is determined on the basis of the values of the following
structural complexity metrics [6]:
- Depth of Inheritance Tree (DIT);
- Response for a Class (RFC);
- Number of Children (NOC);
- Coupling Between Objects (CBO);
- Weighted Methods per Class (WMC).

Also, the correlation between the values of the above metrics and the level of code reusability using
the following analytic expression is determined in [6]:

Bx100
Cr = T, (1)
where a is the total number of classes available for each of the aforementioned metrics; is the number
of newly redesigned classes with the help of reuse.

According to the stated assertion about the correlation between the code reusability level and the
values of code structural complexity metrics, an approach to assess the reusability level based on the
metrics of the structural complexity of the code is proposed in [7,11]. The evaluation process is shown
in Fig. 2.

The input will be the target domain in the form of user stories. Next, based on the requirements, a
domain model is constructed using each of the chosen domain-driven design methods and source code
is then generated. Then the resulting code complexity is analyzed using structural complexity metrics.

DM methods
(JODA, ODM, ...)
A 4 o
] 0OO0P Code
UoD (User DM construction Complexity
stories) and code mefrics
generation Domain model
vy i and source v
code
Correlation
» Code analysis ratio (CC. Cr) AHP
A2
DM tools (EMF, Domain IR CC metrics
Actifsource, ...) expert values A \ Code
0O0P Code Reusability
> Reusability Cxtent »
estimation
Metrics tols (Metric 1.3.6, Analistdj, A3
Code analyzer|for Java., ...) & ¥
Calculation wol
0opP (MS Excel,

expert MATLAB, ...)

Fig. 2 The information technology to provide a code reuse assessment

BicHuk XapkiBcbKoro HawioHanbHoro yHisepcuteTy imeHi B. H. Kapasita, 20 1 8 19

In order to obtain the reusability extent, the analytical hierarchy process (AHP) is used [8], which
supposes that a synthesis of priorities is to be calculated on the basis of subjective expert assessments.
[5] presents statistical data on the values of structural complexity metrics and the reusability level.
Applying the weight coefficients the following formula for estimating the integrated value of the
reusability level can be used:

CRoxtens = 0,1198WMC + 0,0398RFC + 0,2801DIT + 0,3603NOC + 0,2CBO)

The approach presented in the formula (2) allows computing the numerical results of assessing the
complexity at different variation points. Therefore, it is possible to provide the appropriate data for a
further decision on the particular option usage in any module of DSPL to be developed.

4 The proposed approach to assessment of code reusability in DSPL development

Software, specifically in mobile DSPL, supposes to provide the appropriate options in different
variability points, so that the complexity of managing the amount of variability becomes a main
problem in their development. In [9] it is recognized that a unified approach to variability management
still has to be defined.

There are four characteristics that are essential to this approach and therefore have to be defined:
consistency, scalability, traceability and means for visualization.

Software engineering for single systems has thus far been done in two dimensions. One dimension
represents the phases of software lifecycle and the other, levels of abstraction. All development artifacts
can be placed somewhere in these dimensions. With the addition of variability in software product line
engineering, the third dimension is added that explicitly captures variability information between
members of the product line.

One of the most effective ways to resolve this problem is reusing different project solutions (assets):
domain knowledge, requirements specifications, software architectures, design patterns, and finally
source (program) code.

The conceptual variability model that addresses traceability of variations at different levels of

abstraction and across various generic development artifacts will be presented later. In this model
different software development stages will be shown with the respect to variability modeling space and
level of abstraction.
The information technology to support the approach to evaluation of code complexity based on (1) can
be modified for the purposes of DSPL. It should also be noted that for the final conclusion on the
effectiveness of using one or another variability method in order to increase the level of reuse
CRoxtent, it is also necessary to estimate the costs associated with the construction of the appropriate
domain models in the process of developing SPL[10].

In order to do so it is necessary to introduce the concept of variation mechanism. These mechanisms
are applied at the source code level so it will be done just after the code generation. Let us decompose
the activity Al in order to show where the variation mechanisms will appear (Fig. 3).

I
DM
methods

DM

UoD fuser .
— =+ construction

Stories)

All Variation

Domaln CDdE_ mechanisms
model generation ——

Domain A12

experts
DM toels Generated code Apply variation
framewark machanisms St of variantss
Al3

i
[\u'ari:ali on

IDE mechanism
experts

Fig. 3 Introducing variation mechanisms

20 Cepis i(MaTemaTiuHe MoaentoBaHHs. [HchopmaLiiHi TexHonorii. ABTOMaT30BaHi CUCTEMM yNpaBniHHsh, BUNyck 40

So after “Code generation” stage, the variability is introduced to the generated code framework. To
apply variation mechanisms they are the first to be selected. To select appropriate mechanisms variation
mechanism experts are to be consulted with. As a result the approach analyzes not just the generated
code framework, but variants obtained after application of some variation mechanisms.

In the next chapter variation mechanism and dynamic adaptation techniques will be analyzed in the
context of DSPL implementation on the Android (Java platform) with respect to the code reusability.

5 Case study: dynamic variability used to implement the prototype

As mentioned in the previous chapter, the experiment to support the proposed approach to the
assessment of reusability extent has been carried out. For this purpose the sophisticated class has been
selected from the developed DSPL, where the variation mechanisms are applied at runtime, namely
ServerSelectionActivity. The purpose of this class is to let a user choose the server endpoint or
manually define it, which can lead to different system behavior depending on the selected server.

As already mentioned, we have decided to choose 2 variation mechanism types for the experiment:
runtime conditional (implemented in Java through “if” statement) and inheritance. These mechanisms
have been chosen because of relative simplicity of the implementation and also they affect the value of
metrics that are used to calculate the reusability extent with the help of the proposed approach. Runtime
conditionals affect WMC and inheritance affects DIT.

Also we have decided to choose one more variation mechanism, namely the configurator, and show
how little it affects the code reusability. In this case the configurator has been implemented in the form
of a property file.

The visual representation of the possible variants after application of these variation mechanisms is
given in Fig. 4 in the form of a feature model.

SenverSelectionActivity Legend
_— | T o Optional
— (=" 0 0 A Altemative
List of servers Seleclt_id__'sener Supe_rclass Abstract
A - _“-ﬁf:“'-i'““-nn _ Pt Concrete

Dehu.g list Release list | Testsenver| Semver2 Semverd Conﬁguréiit}n server Obj‘ect AbstracfAclMty

Manual input
Fig. 4 Feature model for ServerSelectionActivity

The first runtime conditional determines the list of servers to be shown with respect to a build
configuration: debug or release (Fig. 5). The second one determines whether the manual server
definition should work (when test server is selected) or the predefined server should be used.

The third variation mechanism determines whether ServerSelectionActivity extends java.lang.Object
or has an intermediate superclass AbstractActivity.

if (BuildConfig.DEBUG) ({
serversArrayld = R.array.servers_array_debug;
serverNamesArrayld = R.array.servers names_array_debug;
} else {
serversArrayld = R.array.servers_array;

serverNamesArrayld = R.array.servers names array;

Fig. 5 Assigning different server list based on version type

BicHuk XapkiBcbKoro HawioHanbHoro yHisepcuteTy imeHi B. H. Kapasita, 20 1 8 21

The fourth variation mechanism determines the default server to be used if nothing is selected. Two
ways of implementing this mechanism can be observed: property file (Fig. 6) and configuration class
(Fig. 7). It is worth mentioning that the second approach cannot be considered as a runtime adaptation
technique, because it is a compile-time case. The absence of this property file means that these
properties are configured in fields. Using the configuration class only moves these fields out of this
class to the other class. In this case one more dependency appears and the CBO value changes.

protoceocl = http
ip_pc:rt = 192.168.0.100:8080
folder = tesd

Fig. 6 Configurator based on property file

public class C

public static final String protocol = "http":;
public static final String ipPort = "192.168.0.100:8080";
- public static final String folder = "test";]|

}
Fig. 7 Configurator based on configuration class

The experiment has been conducted in the following way. First, all the variation mechanisms have
been removed and the code reusability extend (CRE) has been calculated for this situation. Then the
CRE have been determined for each variation mechanism separately and finally they have been applied
simultaneously. To calculate the appropriate values of CRE the software tool presented in the previous
section have been used.

The results of the experiments are shown in Table 1.

Table 1 — Results of the experiments

Variation WMC RFC DIT CBO NOC CRE
mechanisms /
Complexity metrics
Without variability 2 1 1 3 0 1.159
mechanisms
With runtime 5 1 1 3 0 1.518
conditionals
With inheritance 2 1 2 3 0 1.439
With configurator 2 1 1 3 0 1.159
(property file)
With configurator 2 1 1 4 0 1.359
(configuration class)
Together (with 5 1 2 3 0 1.79
property file)
Together (with 5 1 2 4 0 1.999
configuration class)

To sum it up, applying variation mechanisms increases the CRE. Moreover if applied
simultaneously they provide for higher CRE than when applied separately. Applying runtime
conditionals and inheritance separately in the case of this class shows similar results. Applying the
configurator implemented as a configuration class gives a higher CRE than the one implemented as a
property file. It results from the fact that obtained results don’t take the property file into account, as it

22 Cepis i(MaTemaTiuHe MoaentoBaHHs. [HchopmaLiiHi TexHonorii. ABTOMaT30BaHi CUCTEMM yNpaBniHHsh, BUNyck 40

is not a part of the code. The results of the experiment may help developers to solve the problem of
variation mechanism selection.

6 Results and future work

With respect to external validity, the main issue is that the experiment has been conducted in context
of Android Java platform. There is the possibility that implementing different variation mechanisms in
other platforms, such as .NET, PHP, will result in different CRE values. So, this work does not answers
the question whether the same results can be applied to other platforms and programming languages.

The second issue in the category of external validity is the CRE formula introduced in the paper.
Since it takes into account only code complexity metrics on class or package level, it cannot be applied
to some variation mechanisms like aspects or plugins.

Internal validity focuses on how sure a researcher can be that the results of the experiment
unambiguously determine which variation mechanisms should be selected. Code reusability is not the
only criteria according to which the given mechanism should be chosen. The selection of an appropriate
variation mechanism also depends on the application domain where DSPL has to be designed, on
specific user’ requirements, etc. and these issues can be the focus of our future work.

Acknowledgments
We would like to thank student of NTU “Kharkiv Polytechnic Institute” Andrii Tkachuk for his
support in our research activities, and for the software implementation for the testing of our approach.

REFERENCES

1. Sharma Y., “Emerging trends in mobile apps market and their potential impact on mobile users
engagement in the global economy”, Sharma Y., Kumar B., Nivadit A. Annual Research Journal of
SCMS, Vol. 5, March 2017.

2. Eleutério J., “A Comparative Study of Dynamic Software Product Line Solutions for Building Self-
Adaptive Systems”, Technical Report in Eniversidade estadual de Campinas, 30 p. 2017.

3. A. M. Sharifloo, A. Metzger, C. Quinton, L. Baresi and K. Pohl, "Learning and Evolution in
Dynamic Software Product Lines,” 2016 IEEE/ACM 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), Austin, TX, pp. 158-164, 2016.

4. Wenhao W. Master thesis: “React Native vs Flutter, cross-platform mobile application
frameworks”, Metropolia University of Applied Sciences. / 01 March 2018.

5. Nandakumar A.N., “Constructing Relationship between Software Metrics and Code Reusability in
Object Oriented Design”, International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 2, 2016.

6. Fangjun Wu, Tong Yi, "A Structural Complexity Metric for Software Components”, First
International Symposium on Data Privacy and e-Commerce, pp. 161-163, 2007.

7. Tkachuk M., “An Inte{grated Approach to Evaluation of Domain Modeling Methods and Tools for
Improvement of Code Reusability in Software Development”, Tkachuk M., Martinkus 1.,
Gamzayev R., Tkachuk A. // Heinrich C. Mayr, Martin Pinzger (Eds.): INFORMATIK 2016,
Lecture Notes in Informatics, Vol. P-259: Kollen Druck+Verlag GmbH, Bonn, pp. 143-156, 2016.

8. Saaty T. L., “Relative Measurement and its Generalization in Decision Making: Why Pairwise
Comparisons are Central in Mathematics for the Measurement of Intangible Factors - The Analytic
Hierarchy/Network Process”, RACSAM (Review of the Royal Spanish Academy of Sciences, Series
A, Mathematics), 2008.

9. Berg K., “A Critical Analysis of Using Feature Models for Variability Management”, Berg K.,
Muthig D., Submitted to SPLC-Europe, 2005.

10. Martinkus 1., “Designing software product lines using domain modeling and code reuse metrics”,
Iryna Martinkus, Mykola Tkachuk, Rustam Gamzaev, Systems of control, navigation and
communication,Vol. 3(43), pp. 93-97, 2017.

11. Mykola Tkachuk, Rustam Gamzaev, Iryna Martinkus et al., “Towards Effectiveness Assessment of
Domain Modelling Methods and Tools in Software Product Lines Development”, Enterprise
Modelling and Information Systems Architectures. International Journal of Conceptual Modeling,
Vol. 13 (2018), Germany. pp. 190-206, 2018.

BicHuk XapkiBcbKoro HawioHanbHoro yHisepcuteTy imeHi B. H. Kapasita, 20 1 8 23

JIITEPATYPA

1. Sharma Y., Kumar B., Nivadit A. Emerging trends in mobile apps market and their potential impact
on mobile users engagement in the global economy. Annual Research Journal of SCMS . Vol. 5.
March 2017.

2. Eleutério J., A Comparative Study of Dynamic Software Product Line Solutions for Building Self-
Adaptive Systems, Technical Report in Eniversidade estadual de Campinas, 2017. 30 p.

3. A. M. Sharifloo, A. Metzger, C. Quinton, L. Baresi and K. Pohl, Learning and Evolution in
Dynamic Software Product Lines, 2016 IEEE/ACM 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), Austin, TX, 2016. pp. 158-164.

4. Wenhao W. Master thesis: “React Native vs Flutter, cross-platform mobile application
frameworks”, Metropolia University of Applied Sciences. 01 March 2018.

5. Nandakumar A.N., “Constructing Relationship between Software Metrics and Code Reusability in
Object Oriented Design”, International Journal of Advanced Computer Science and Applications.
2016. Vol. 7, No. 2.

6. Fangjun Wu, Tong Yi, A Structural Complexity Metric for Software Components. First
International Symposium on Data Privacy and e-Commerce. 2007. pp. 161-163.

7. Tkachuk M., “An Inte{grated Approach to Evaluation of Domain Modeling Methods and Tools for
Improvement of Code Reusability in Software Development”, Tkachuk M., Martinkus L.,
Gamzayev R., Tkachuk A. Heinrich C. Mayr, Martin Pinzger (Eds.): INFORMATIK 2016, Lecture
Notes in Informatics, Vol. P-259: Kollen Druck+Verlag GmbH, Bonn. 2016 pp. 143-156.

8. Saaty T. L., Relative Measurement and its Generalization in Decision Making: Why Pairwise
Comparisons are Central in Mathematics for the Measurement of Intangible Factors - The Analytic
Hierarchy/Network Process”, RACSAM (Review of the Royal Spanish Academy of Sciences, Series
A, Mathematics), 2008.

9. Berg K., A Critical Analysis of Using Feature Models for Variability Management, Berg K.,
Muthig D., Submitted to SPLC-Europe 2005.

10. Martinkus I., Designing software product lines using domain modeling and code reuse metrics.
Iryna Martinkus, Mykola Tkachuk, Rustam Gamzaev, Systems of control, navigation and
communication. 2017. Vol. 3(43). pp. 93-97.

11. Mykola Tkachuk, Rustam Gamzaev, Iryna Martinkus et al., Towards Effectiveness Assessment of
Domain Modelling Methods and Tools in Software Product Lines Development. Enterprise
Modelling and Information Systems Architectures — International Journal of Conceptual Modeling.
Germany,2018. Vol. 13 (2018). pp. 190-206.

TI'amzaee Pycmam Onekcandpoguu - KanHOuoam MeXHIYHUX HAYK, OOyeHm; Ooyenm Kageopu
MOOen08anHs cucmem i mexnono2iu, Xapkiecokuti HayionanvHuil yuieepcumem imeni B.H. Kapas3iua,
matioan Ceoboou, 4, Xapxis-22, Vkpaina, 61022; e-mail: rustam.gamzayev@gmail.com; ORCID:
https://orcid.org/0000-0002-2713-5664

Gamzayev Rustam O. — PhD, Asc. Prof.; Asc. Professor of Department of System and
Technologies Modeling, V. N. Karazin Kharkiv National University, Svobody Sq 4, Kharkiv - 22,
Ukraine,61022; e-mail:rustam.gamzayev@gmail.com; ORCID: https://orcid.org/0000-0002-2713-5664

TI'am3zaee Pycmam Anexcanopoeuu - xanouoam mexHuweckux Hayx, 0oyeHm, 0oyeHm Kagpeopwvl
MOOenuposanus cucmem u mexHono2uu, XapbKOGCKUUl HAYUOHANbHBLU YHUSepcumem umeHu B.H.
Kapazuna, naowaos Cs0600u1, 4, Xapvrog-22, Yrpauna, 61022, e-mail:
rustam.gamzayev@gmail.com; ORCID: https://orcid.org/0000-0002-2713-5664

Epmyzpyn Kapaxyxa — Ookmop Hayk, npogecop; Oexkan @dakyivmemy HpupooOHuUuUx ma
npukiaouux Hayk, Cmambyrvcoxuti mexuiunuii yuisepcumem, Macnak-34469, Cmamobyn, Typyis,
34469; e-mail: ertugrulkaracuha@gmail.com; ORCID: https://orcid.org/0000-0002-7555-8952

24 Cepis i(MaTemaTiuHe MoaentoBaHHs. [HchopmaLiiHi TexHonorii. ABTOMaT30BaHi CUCTEMM yNpaBniHHsh, BUNyck 40

Ertugrul Karacuha — PhD, Doctor of Science, Professor; Head of School of natural and applied
sciences, Istanbul Technical University, Maslak-34469, Istanbul, Turkey, 34469; e-email:
ertugrulkaracuha@gmail.com; ORCID: https://orcid.org/0000-0002-7555-8952

Epmyzpyn Kapakyxa — Ooxmop Hayk, npogeccop, Oexkar axyibmema ecmecmeeHHblX U

npuxiaouvix Hayk, Cmambynockuil mexuuyeckuti yrusepcumem, Macnak-34469, Cmambyn, Typyus,
34469; e-mail: ertugrulkaracuha@gmail.com; ORCID: https://orcid.org/0000-0002-7555-8952

Trkauyx Mukona Bauecnagosuu — 0oxmop mexHiuHUX HAYK, npoghecop, 3aeidysau Kagpeopu
MOOeMOBAHHS cUcmem i mexHoao2il, Xapkiscokuti HayionanvHul yHieepcumem imeni B.H. Kapas3ina,
matioan Ceoboou, 4, Xapkis-22, Vkpaina, 61022; e-mail: tka.mobile@gmail.com; ORCID:
https://orcid.org/0000-0003-0852-1081

Tkachuk Mykola V. — PhD, Doctor of Science, Professor; Head of Department of System and
Technologies Modeling, V. N. Karazin Kharkiv National University, Svobody Sq 4, Kharkiv - 22,
Ukraine, 61022;e-mail: tka.mobile@gmail.com; ORCID: https://orcid.org/0000-0003-0852-1081

Txkauyk Hukonau Bauecnasoeuu — 00kmop mexHu4eckux Hayk, npogeccop, 3aeedyiouuil
Kagpeopbl MOOCIUPOBAHUSA CUCTEM U MeXHOJ02Ull, XaAPbKOSCKULL HAYUOHAIbHBII YHUBEPCUMENT UMEHU
B.H. Kapasuna, niowaos Ceo600si, 4, Xapvros-22, Vipauna. 61022; e-mail: tka.mobile@gmail.com;
ORCID: https://orcid.org/0000-0003-0852-1081

Tosecmoxkopenxo Onez IOpiiioeuy — acnipanm xaghedpu npoepamuoi indicenepii ma iHgpopmayiinux
mexnono2iu ynpaeninns, Hayionanonuii mexuiynuil yuigepcumem «XapKi8CbKuil NOMIMEXHIYHULL
incmumymy, eyn1. Kupnuuoea, 2, Xapkie - 2, Vkpaina, 61022; e-mail: tovstokorenko@gmail.com ;
ORCID: https://orcid.org/0000-0003-2664-1650.

Tovstokorenko Oleh Y. - postgraduate student at the Department of Software Engineering and
Information Management Technologies, National Technical University "Kharkiv Polytechnic Institute”,
Kirpicheva str., 2, Kharkiv - 22, Ukraine, 61002; e-mail: tovstokorenko@gmail.com; ORCID:
https://orcid.org/0000-0003-2664-1650.

Toecmokopenxo Onez Hpvesuu — acnupanm Kagheopbl NPOSPAMMHOU UHICEHEPUU U
UHQDOPMAYUOHHBIX — MEXHONO2Ull YynpaeieHus, HayuonanbHulll MeXHUYeCKull yHuUgepcumem
«Xapvrogckuii noaumexuudeckuti uncmumymy, yi. Kupnuuesa, 2, Xapwvkog-22, YVkpauna, 61002; e-
mail: tovstokorenko@gmail.com ; ORCID: https://orcid.org/0000-0003-2664-1650.

Hapinwna -10.11.2018.

