BicHuk XapkiBCcbKOro HawjioHanbHoro yHisepcutety imeHi B. H. Kapasina, 201§ 33

DOL.

UDC 539.3

A comparative analysis of axisymmetric vibrations of conical and cylindrical
fluid-filled elastic shells

K.G. Degtyarev', V.1.Gnitko', Yu.V.Naumenko®, E.A. Strelnikova®?
A.N. Podgorny Institute for Mechanical Engineering Problems of the Ukrainian Academy of Sciences,
2/10,Pozharsky Str., Kharkiv, 61046, Ukraine
2V.N. Karazin Kharkiv National University, Freedom Square 4, Kharkiv, 61022, Ukraine
e-mail: strelea@ukr.net

This paper presents the comparison of low- frequency vibrations in liquid-filled cylindrical and truncated conical elastic shells.
The liquid is supposed to be an ideal and incompressible one and its flow is irrotational. To evaluate a velocity potential the
system of singular boundary integral equations has been obtained. The boundary element method is used for their numerical
simulation. The vibration modes of the shells with liquids are determined as linear combinations of their natural vibration
modes without liquids. Sloshing frequencies and modes of fluid-filled cylindrical and truncated conical shells are estimated.
The solution of the hydro-elasticity problem is obtained using a combination of boundary and finite element methods. Shells
with both rigid and elastic bottoms are considered. The illustrative examples are provided to demonstrate the accuracy and
efficiency of the method.
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Po3risiHyTO mIpoliecH KOJMHMBAaHHS INPY)KHHX OOOJIOHOK OOepTaHHs, YacTKOBO 3allOBHEHUX pimuHOM0. IlpHIryckaeTbes, 1o
piavHa € imeanbHOI Ta HECTHCIHMBOIO, a ii pyX € 0e3BHXpoBUM. B mux ymMoBax icHye MOTeHIian IBUAKOCTEH piauHu. s
Horo OOYMCIEHHS 13 3aCTOCYBaHHSIM METOMIB Teopii MOTEHI[ia]y Ta JApyroi TOTOXHOCTI IpiHa OTpUMaHO CHCTEMY
CHHTYJSIPHUX IHTETpaJIbHUX PIBHSHB. BBakaeThbes, 10 GOpMH KOJMBAaHb 3aIIOBHEHOT 00OJIOHKH MOKHA 300pa3HUTH B BHIJIIL
psny 3a GpopmMaMH KOJIMBaHb HE3aIllOBHEHOT 000yI0HKH. [1J1si BU3HAUCHHS IIMX 0a3ucHMX (YHKIIH 3aCTOCOBAHO OJHOBUMIipHHUI
METOJ] CKIHYeHHUX ejieMeHTiB. PopMu KoMBaHb OOOJIOHKH 3 PiMHOIO 0e3 ypaxyBaHHS IIECKaHb PIIUHU CKIANAIOTH IPYTY
cucreMy OasucHUX GyHKUid. [l BpaxyBaHHS BIUIMBY IUIECKaHb 3HAieHI (OpPMH KOJIUBAHb PiAMHH Y BiANOBIAHOMY
JKOPCTKOMY pe3epByapi. Lli popMu ckmanaroTh TPETIO cHCcTeMy 0a3UCHUX (YHKIIHN I 3HAXOMKECHHS IIYKAHOTO MOTEHIaTy
mBHAKOCTeH. [ 3HaxomKeHHs 06a3ucHUX (QyHKUOIA Apyroi Ta TpeThoi cucTeM cOpMyThOBaHI MillaHi KpaloBi 3amadi A
piBasHHA Jlarutaca. OTpuMaHi MpH OBOMY CHCTEMH TPAHUYHHUX IHTETPANBbHUX DIBHSAHB 3BOISATHCS OO OJHOBHUMIPHHUX 3
HEBIIOMUMH T'YCTHHaMH, IO 3aJaHi B3IOBX MepHIiaHy OOOJOHKM oOepTaHHs. UHCIOBHH PO3B’SI30K OTPUMAHHX CHCTEM
3IifICHEHO 3a JOIOMOTOI0 PEIYKOBAaHOTO OJHOBHUMIPHOTO METOIY TI'paHMYHHMX eJeMeHTiB. B po0oTi HajaHO MOpPiBHSIHHS
HH3bKOYACTOTHUX KOJIUBAHb IMJIIHAPHYHMAX Ta KOHIYHMX 3alIOBHEHUX PIAMHOIO HPYXKHUX 00O0JIOHOK. PO3MIISHYTI KOJMBaHHS
3alIOBHEHHUX Ta HE3aIOBHEHHX PiJMHOI0 00OJOHOK 3 )KOPCTKMMH Ta MPYKHUMHU CTIHKaMM Ta JHHIIAMH. Bu3HaueHO dacToTH
TUIECKaHb DPiJMHMA B JKOPCTKHAX 3allOBHEHHWX HWIIHAPHYHHX Ta YCIU€HHX KOHIUYHHMX 00osoHKax. Po3B’s30Kk 3amadi Tigpo-
MPY>KHOCTI 3A1HCHEHO 32 JOTIOMOTOI0 MiAXOAY, 32CHOBAHOTO Ha IMOEIHAHHI METOJIB CKIHUCHHHX Ta TPAHHYHHUX EJIEMEHTIB.
HaBeneHo imrocTpaTBHI NpUKITAagM, OO0 NEMOHCTPYIOTH TOYHICTH Ta e(eKTHBHICTH Meroay. OTpuUMaHi JaHi BiXHOCHO
HAfHIKYMX YacTOT KOJMBaHb CHUCTEMH «OOOJIOHKa-PiMHA», IO IO3BOJIAIOTH MPOBECTH €(QEKTHBHE BiJICTPOIOBAHHA BiJ
HeOa)kaHUX PEe30HaHCHUX YacTOT.

Knwuoei cnosa. xonusauHs, i0edaivbHa HeCMUCIUBA PIOUHA, NAECKAHHA, YUTTHOPUYHI MA KOHIYHI OOONOHKU, CUHSYAADHI
iHme2panbti PIGHAHHS, MEMOOU PAHUYHUX MA CKIHYEHHUX eleMeHmie

1 Introduction

Various fuel and liquid storage tanks, oil and propellant storage containers are widely used in
different engineering areas. If such storages are subjected to surface shots caused by a terrorist act, an
airplane crash or a seismic shockwave, this will be lead to a dangerous ecological catastrophe. So
defining the strength characteristics of such elements is a topical engineering problem. These data allow
evaluating the ultimate strength of a structure under shock or seismic actions, isolate spurious resonance
frequencies, and identify the most hazardous zones from the viewpoint of stress concentration.
However, studying the frequencies and natural vibration modes for structures interacting with a fluid is
a challenging design problem. Complex experimental investigation of loading processes is difficult and
sometimes impossible due to the various reasons. Hence mathematical modeling of physical processes
with the help of advanced numerical procedures is a basic approach for these problems.

A lot of analytical and experimental research has been performed in the field of shells interacting
with a fluid in last decade [1-6]. Most of these works have been devoted to the problem of flat plates,
curved plates and circular cylindrical shells [1-3]. The dynamic behaviour of cylindrical shells without
liquids has been studied in a considerable number of numerical, analytical and experimental
investigations [4-6]. The case of a conical shell filled with a liquid has been successfully developed by
Lakis et al. [7]. A free surface effect was neglected in [7], but in [8] it was shown that the supposition
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about the spectrum separation of frequencies of the elastic shell filled with the liquid and sloshing
frequencies of the rigid shell with the same geometrical characteristics and filling level as for the elastic
one is not always valid.

The main purpose of this paper is to study the influence of both sloshing and elasticity effects on
vibrations of the fluid-filled tanks in the form of shells of revolution with an arbitrary meridian.

In this paper we demonstrate that dynamic characteristics of cylindrical and conical shells of equal
heights and equal radii of free surfaces are differed drastically. The proposed method is based on
representation of the velocity potential as a sum of two potentials. One of them corresponds to the
problem of fluid free vibrations in the rigid shell and another one corresponds to the similar problem for
an elastic shell with a fluid without including the gravitational component. The method allows us to
obtain the natural frequencies and vibration modes for fuel tanks of different shapes.

2 Problem statement and mode superposition method for coupled dynamic problems

Free harmonic vibrations of fluid-filled elastic shells of revolution having arbitrary meridians are
investigated. The shell is of uniform thickness h, and height H, made of homogeneous, isotropic
material with elasticity modulus E, Poisson's ratio v and mass density ps. As the examples, fluid-filled
cylindrical and truncated conical shells are considered, as shown in Fig. 1.

Denote the wetted part of the shell surface as o and the free surface of a liquid as Sy Let Sy be the
surface of the tank bottom. Let us denote the vector-function of shell displacements as U= (U,,U,,U,).
At first let us consider the free vibrations of the elastic shell without a liquid. The finite element method
is applied by Ravnik et al. in [8] to evaluate natural frequencies Q, and modes u, , k =1,N of the shell

of revolution without a liquid. After forming the global stiffness L and mass M matrices, the following
equation of motion for the shell containing fluid has been obtained:

LU+MU = pn,

where n is an external unit normal to the shell wetted surface, the pn is the fluid dynamical pressure
upon the shell, normal to its surface.

Z

X

Fig. 1. Cylindrical and conical fluid-filled shells.
Consider the modes of fluid-filled shell vibrations in the form

N

U= Z_;ck (th, , (2.1)

where ¢,(t) are unknown coefficients, and uy are the eigenmodes of the empty shell vibrations.
It is assumed here that a liquid is an ideal and incompressible one, and its motion, beginning from a
state of rest, is irrotational. In these conditions, there exist a fluid velocity potential ®
VX:aE’Vy:aE’VZ:aE’

OX oy oz
that satisfies the Laplace equation. The liquid pressure p upon the shell walls is determined from the
linearized Cauchy-Lagrange integral by the formula
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p=- (g2+g%+p
P ot 0

where @ is the velocity potential, g is the acceleration of gravity, z is the vertical fluid point coordinate,
p is a fluid density, po is an atmospheric pressure. On the wetted surfaces of the shell the non-
penetration boundary condition is set [9]. On the free surface, the following dynamic and kinematic
boundary conditions must be satisfied
oD
anls,

_oc. _
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where the function € describes the shape and position of the free surface. Thus, for the velocity potential

we have the following boundary-value problem [8]
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Consider the potential ® as® =®d, +d,, as it is done in [10]. The series for potential ®, can be
written as

N
Dy = Yy (thork -
k=1

Here time-dependant coefficients c,(t) are defined in equation (2.1). To determine functions ¢y the
following boundary value problems are formulated:

091k
Apy =0, =W, , ¢ 0,w, =(u,n), k=1, 2.3
1k P k 1k|50 k ( k ) (2.3)

The solution of boundary value problems (2.3) is presented in [11].

To determine the potential ®, we have the problem of fluid vibrations in the rigid shell including
gravity effects.

Use the expansion

M |
Dy= > dy (oo .
k-1

where dy.(t) are unknown coefficients, and functions @, are natural modes of the liquid sloshing in a
rigid tank. To obtain these modes the following boundary value problems are considered:
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Finally, for the sum of potentials ® = ®, + ®, the following expression is valid:

N M
D=3 ¢ (s + 2 dy (thpok - (2.5)
k-1 k-1

The unknown function ¢ takes the form

3 01k 0Pk
¢= a7 +Zd == (26)
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To define coupled modes of harmonic vibrations, suppose
thatc, (t)=C, expliot), d,(t)=D, exp(iot). Substituting these expressions into equations (5)-(6) and
then into equations

LU+MU=pgn 2o qd =0
a o,

results in the generalized eigenvalue problem where both elasticity and gravity effects are taken into
account.

Both boundary value problems (2.3) and (2.4) are reduced to systems of singular integral
equations by using boundary element method in its direct formulation, Brebbia et al. [12].

As it was shown in [3], the integral operators obtained in singular integral equations are of
logarithmic singularities, and thus the numerical treatment of these integrals will also have to take into
account the presence of this integrable singularity. The integrands are distributed strongly non-
uniformly over the element, and standard integration quadratures fail in accuracy. So we treat these
integrals numerically by the special Gauss quadratures [12] and apply the technique proposed by
Naumenko et al. in [13].

3. Numerical simulation and discussion

Empty and fluid-filled isotropic cylindrical and truncated conical shells are considered. These shells
are shown in Fig. 1. R; and R, are radii of the cone at its small and large edges, R, is also for cylinder
radius, o is a semivertex angle of the cone, and H is the height of both cone and cylinder, L is the
length of cone generatix. Both conical and cylindrical shells are referred to the cylindrical coordinate
system (x,0,z). For all following numerical simulation, the thickness of the shell and the Poisson’s ratio
are taken as h/R,;=0.01 and v =0.3, semivertex angle a=45°, H/R,=0.5, Young’s modulus E =2,11-10°
MPa, p,=8000 kg/m® [6] p=1000 kg/m°. The following boundary conditions for both shells are
presented: clamped — free, i.e. shells of revolution are clamped at the ends A, and free at the ends B,
Fig. 1.

For both shells we estimate sloshing frequencies, the frequencies of empty shells with rigid and

elastic bottoms, and coupled hydro-elastic vibrations of fluid-filled conical and cylindrical shells.

3.1. Oscillations of empty shells with rigid and elastic bottoms.

First, we determine the requisite number of finite elements for a precise determination of the natural
frequencies. The convergence is established when numbers of finite elements along the shell wall is
equal to 60, along the bottom is 100 elements, the same numbers are used for boundary elements
simulations in elastic tanks, the number of boundary elements along the free surface radius is 100 as
well.

Then the numerical simulation of dynamic characteristics for both conical and cylindrical shells is
provided.

In Table 1 the frequencies of empty cylindrical shells with rigid and elastic bottoms are presented,
where n is the number of the mode.

Table 1: Frequency of axisymmetric oscillations of empty cylindrical shells, Hz

n 1 2 3 4 5 6() | 7(2) 8 93) 10 11(4) | 12(5)
rigid 817.07 | 844.14 1019.2 1448.0 | 1563
elastic | 25.26 | 98.37 | 220.39 | 391.26 | 610.96 | 817.07 | 844.14 | 879.49 | 1019.2 | 1196.8 | 1448.0 | 1563

The lowest frequencies correspond to the shell with elastic bottom. The frequencies of the shell with
rigid bottom are coincided with ones of the shell with the elastic bottom when the wall vibrations are
dominant. It can be concluded that accounting for the bottom deformations leads to appearance of
lowest frequencies.

Fig. 2 demonstrates the first four axisymmetric vibration modes denoted by numbers 1,2,3,4 of
the cylindrical shell with the elastic bottom. There are any wall deformations for these modes, i.e. the
bottom vibrations are dominant.
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Fig. 2. Axisymmetric modes m=1,2,3,4 of cylindrical shell with elastic bottom

Fig. 3 demonstrates the first four axisymmetric vibration modes of the cylindrical shell with rigid

bottom.

These modes are coincided with axisymmetric modes for shells with elastic bottoms with

numbers m = 6,7,9,11. So the wall vibration modes are not dominant for shells with elastic bottoms.
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Fig. 3. Axisymmetric modes m= 6,7,9,11 of cylindrical shell with rigid bottom.

In Table 2 the frequencies of empty truncated conical shells with rigid and elastic bottoms are

presente

d, where m is the number of the mode.

Table 2: Frequency of axisymmetric oscillations of empty conical shells, Hz

m 1 2 31) | 42) | 53) | 6(4) 7 8(5) | 9(6) 10 | 11(7) | 12(8)
rigid 550.4 | 675.8 | 707.28 | 824.91 1001.1 | 1274.7 1679.0 | 1994.0
elastic | 101.0 | 393.4 | 559.5 | 675.8 | 708.68 | 824.94 | 881.58 | 1001.1 | 1274.7 | 1565.0 | 1679.0 | 1995.3

Comparing results of Tables 1-2 we can conclude that frequencies of empty truncated cones differ
essentially from cylinder ones. The lowest frequency of the cylindrical shell is nearly four times less
than that of the truncated conical shell. The lowest frequencies of both shells correspond to dominant
bottom vibrations.

Fig.

4 demonstrates the first axisymmetric vibration modes (m=1,2,3,4) of the cylindrical shell with

the elastic bottom. For the first two modes there is no any wall deformation, i.e. the bottom vibrations

are also

dominant.
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Fig. 4. Axisymmetric modes m=1,2,3,4 of conical shell with elastic bottom

Unlike cylindrical shells the only two first modes are bottom dominant.

Fig. 5 demonstrates the first four axisymmetric vibration modes of the truncated conical shell with
rigid bottom. These modes are coincided with axisymmetric modes of the shell with the elastic bottom
with numbers m = 3,4,5,6.

4

Fig. 5. Axisymmetric modes m=3,4,5,6 of conical shell with rigid bottom

It should be noted that the third mode is the torsion one, and it does not affect the fluid-structure
interaction because an ideal fluid produces only a normal pressure on a moistened body.

3.2. Low frequency sloshing modes for fluid- filled cylindrical and conical shells.

Linear sloshing in the rigid A-shape conical shell with R; = 0.5m and R,= 1.0m, H=0.5m and o=n/4
is considered. The cylindrical shell is of R,= 1.0m and H=0.5m. The sloshing frequencies are calculated
accordingly to Degtyarev et al. [14]. The total number of boundary elements along the shell meridians,
as well as, the radii of free surfaces is 240 for both cylindrical and truncated conical shells. Below we
demonstrate that sloshing frequencies of rigid cylindrical and conical shells differ. Both shells are of
equal height (H=0.5m), and the radius of cone R, =1m is equal to the cylinder radius. The comparison
of the results for n=0 (axisymmetric modes) is shown in Table 3.
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Table 3: Axisymmetric sloshing frequencies, Hz

Conical shell Cylindrical shell
m Numerical solution Numerical solution Analytical solution
1 5.3534 5.9989 5.9965
2 7.8068 8.2898 8.2842
3 9.6034 9.9922 9.9932
4 11.1044 11.438 11.426
5 12.4246 12.710 12.705
6 13.6180 13.872 13.865

Obtained results testify the accuracy of the proposed method. The lowest frequencies of cone
and cylinder differ drastically, but with increasing the number m difference become smaller.
Fig. 6 demonstrates the first sloshing modes of the cylindrical and conical shells.

L

i u'.'.l Wi
&1\5\ \\\g R

Fig.6. Axisymmetric sloshing modes of conical and cylindrical shells

It should be noted that the sloshing modes are the same for conical and cylindrical shells.
3.3. Vibrations of elastic fluid-filled truncated conical shells

Free vibrations of elastic cylindrical and conical shells coupled with liquid sloshing are under

consideration. The results have been obtained for axisymmetric modes (n=0) and m=112. The
frequencies of empty and fluid-filled cylindrical and truncated conical shells have been considered. The
results of numerical simulation are shown in Table 4.

Table 4: Comparison of axisymmetric frequencies for conical and cylindrical shells, Hz

m Cylindrical shell Conical shell
empty fluid-filled empty fluid-filled

1 25.268 10.382 101.07 48.62
2 98.372 50.701 393.49 252.68
3 220.39 133.15 559.52 471.10
4 391.26 260.56 675.88 571.08
5 610.96 412.38 708.68 637.51
6 817.07 472.56 824.94 680.67
7 844.14 623.22 881.58 708.68
8 879.49 681.49 1001.1 859.20
9 1019.2 792.71 1274.7 1142.87
10 1196.8 956.08 1565.0 1250.17
11 1448.0 1163.75 1679.0 1519.97
12 1563.0 1289.83 1995.3 1565.55
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From the results obtained we can conclude that the frequencies of fluid-filled shell vibrations differ
drastically from the frequencies of empty ones for both cylindrical and truncated conical shells.

But when the circumferential wave number increases the difference becomes smaller gradually. The
frequencies of the cylindrical shell are smaller than those of the conical shell. The frequencies ® near
10Hz may be considered as the most dangerous for the cylindrical shell. The results of tables 3 and 4
testify it. For example, ®=10.382Hz corresponds to n=0 and m=1 for the elastic shell; ®=9.9922 Hz
corresponds to n=0 and m=3 for sloshing in the rigid shell. It can be the reason for the stability loss in
shell structures.

Conclusion

The free vibration analysis of the elastic cylindrical and truncated conical elastic shell coupled with
the liquid sloshing has been carried out. The combination of reduced finite and boundary element
methods has been used. The analysis consists of several stages and each represents the separate task.
The frequencies and modes of the empty shell vibrations have been defined at the first stage. The
displacement vector, that is the solution of the coupled problem, is sought as the linear combination of
natural modes of the empty shells. So the frequencies and free vibrations modes of the fluid-filled
elastic shell without accounting for the gravity force have been defined. The frequencies and free
vibrations modes of the liquid in the rigid shell under the gravity force have been estimated. These two
problems have been solved by using the reduced boundary element method. This method substantially
reduces the computing time for the analysis and reveals the new qualitative possibilities in modeling the
dynamic behavior of shells. The difference in the dynamical characteristics between elastic truncated
conical and cylindrical shells has been established. The frequencies of fluid-filled shell vibrations differ
drastically from frequencies of empty ones for both cylindrical and truncated conical shells. The
obtained results can be used as the basis for the further research of non-axisymmetrical vibrations of
shells, as well as, dynamical characteristics of structures subjected to an intensive loading in case of
interaction with a fluid.
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