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Modeling of the viscous fluid flow around rotating circular
cylinders with the lattice Boltzmann method at moderate Reynolds
numbers
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In this work the task of the viscous fluid flow around both a circular cylinder which
rotates with the constant speed in a plane channel and a lattice of rotating cylinders has
been numerically solved by the lattice Boltzmann method. The method of setting the
boundary conditions on the rotating cylinder boundary has been developed and tested.
The comparison of obtained results with known numerical results obtained by other
numerical methods has been made. Both stationary and periodic solutions have been
investigated. The dependence of the computational grid resolution on the cylinder
rotation speed for the predefined accuracy has been shown.
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B po6oTi MeToioM TpaTKoOBHX PiBHAHB BobIMaHa YUCETBHO PO3B’sI3yBasacs 3ajada
OOTiKaHHS TIOTOKOM B’SI3KOI PIIMHM KPYroBOTO IIIHApPa B IUIOCKOMY KaHajil Ta
PELIITKM KPYroBUX LMJIHIPIB, IO 00epTaloThCs 31 CTalor MBHAKiCTIO. Byma
po3po0iieHa Ta THPOTECTOBaHA METOMMKA 3aJaHHA TPaHMYHUX YMOB Ha TpaHULi
WTiHApa, mo obepraeThes. [IpoBeneHO MOPIBHSHHSA OTPUMAHHUX pe3yJlbTaTiB i3
BIIOMHMH YHCEIFHHMH PO3B’S3KaMH, [I0 OYylIM OTPUMaHI IHIIUMH METOIaMHU.
JocnimkyBaiuch SK CTaliOHapHI Tak 1 mepioandHi pexumu Tediil. [lokazana
3aJIeKHICTE PO3MIpY PO3PaXyHKOBOI CITKH BiI HIIBHIKOCTI OOEpTaHHS LIUIIHIAPY NPH
3aJaHii TOYHOCTI.

Kniwouosi cnoea: 6’s3xa piouna, o6epmanvHutl Kpy2oeutl YuniHop, pewimka yuniHopie, pieHAHHS
Boavymana, uucno Petinonvoca.

B nmanHON paboTe ¢ MOMOIIBIO METOJOM pPELICTOYHBIX ypaBHeHWH bosbrMana
YHCICHHO pelIanach 3ajada OOTeKaHHs IIOTOKOM BS3KOH >KHIKOCTH KPYTOBOTO
UIMHIPA B IIIOCKOM KaHAaJIe U PELIETKH KPYTOBBIX IIIHHAPOB, KOTOPHIE BPAIIAIOTCS
C MOCTOSIHHOM CKOPOCThIO. Bhlma pazpaboTaHa M MpoTeCTUPOBAaHA METOAUKA 3aJaHUS
TPaHNYHBIX YCIOBUH Ha IpaHUIE Bpamiaromerocs muiuHapa. [IpoBeneHo cpaBHeHHE
MOTyYEeHHBIX Pe3yIbTAaTOB C M3BECTHBHIMH UHCICHHBIMH DEIICHUSIMH, TOIyIeHHBIMI
JIpyrUMH MeToJaMmHu. MccnemoBanuch Kak CTalMOHApHbIE, TaK M IEpUOAMYECKUE
pesxumbl TedeHHH. Iloka3zaHa 3aBUCHMOCTb pa3Mepa pacdeTHOM CETKH OT CKOPOCTH
BpallleHUs] LIIMH/IPA MIPH 3aJJaHHOM TOYHOCTH.

Knrouesvie cnosa: ss3xasn jcuokocmv, 6pawaiowuiics Kpy206ou Yunuiop, peuemra yuiuHopos,
ypasnenue borvymana, uucno Peiinonvoca.

1. Introduction

Rotating circular cylinder is a classical problem in fluid mechanics [1, 2]. During a
cylinder rotation, a symmetric flow around it becomes disrupted and forms a
circulation flow [2]. In this case, a flow rate increases on the one hand of a rotating
cylinder and decreases on the other one. The speed difference entails the difference in
pressure. Thus, the additional lift appears (the Magnus effect [3]).

In this paper, to simulate the fluid flow around a rotating cylinder the lattice
Boltzmann method has been used. Usage of this method, based on the kinetic theory
of gases, started in 1990 and is growing rapidly [4]. One of the advantages of this
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method are simplicity of understanding and programming, due to all stages being well
understood processes of a particle collision and a particle transport which are
described by the linear equations and therefore can be solved with the explicit
schemes. There is also a possibility to parallelize the algorithm on CPU using the
OpenMP technology and on GPU, using the CUDA technology. The usage of the
CUDA technology provides a significant speed-up of computations, approximately in
50-70 times [5].

The lattice Boltzmann method is one of the new promising approaches in the
computational fluid dynamics and it is widely used for the simulation of the
conventional and multiphase flows [6], the multi-component flows [7], the flows with
the free boundaries [8], the heat transfer [9] and the calculation of hydrodynamic
coefficients [10]. The method has been already used for the flow simulation around a
rotating circular cylinder built on complex boundaries [11-12], but clear and universal
rules for setting the rotating boundary condition have not been given.

The aim of this work is to develop and test the boundary conditions needed to
specify the rotation of a circular cylinder constructed along the edges of the
computational grid cells with the lattice Boltzmann method. The obtained results have
been compared with the similar results obtained with other numerical experiments.

2. The lattice Boltzmann method
For the fluid dynamics simulation with the lattice Boltzmann method, the pseudo

particles described by the discrete particle density distribution function f, [13-15]

have been used. The particle displacement probability in one of the k directions has
been described by the distribution function values. It should be noted that in the
kinetic theory of gases, the particle density distribution function determines the
density of the probability of finding the particle around the point of the six-
dimensional phase space (coordinates and velocities) [16].

The computational field is divided by the square cells with the length d. There are
nine values of the particle density distribution function in each cell. Thus, particles can
move to one of the eight possible directions or stay at rest (fig.1). This model is called
two-dimensional nine-vectors model of the lattice Boltzmann method (D2Q9) [13-15].
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Fig. 1. Possible directions of the particle movement according to D2Q9 model
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To determine the size of cells d, the fluid kinematic viscosity v and the number of
cells per length N are set. The time step is calculated according to the equation [17]:

2

Atzld—(r—l) (1)
3v 2

where 7 — nondimensional parameter of relaxation [17]. According to equation (1) and

basing on the condition At >0, the limitation of the relaxation parameter isz >0.5.

Such modeling parameters as the lattice speed ¢ and the lattice speed of sound C

are defined as [18]:
1 1d
C,=—=C=—12=— 2
=B A )
The system of the discrete kinetic equations that describes the movement of pseudo
particles is [17]:
fi(r+ed,t+At)= 1, (rt)+Q, k=08 3)
where Q, — collision operator [17] (the model of the collision integral from the
integral Boltzmann equation);
r=(x,y) - coordinates;
t — time.

The model of the collision integral is presented in the BGK (Bhatnagar-Gross-
Krook) approximation form [17], which is the linear relaxation to the local Maxwell

equilibrium;
fe(r,t)—f (r.t
R o
In the LBM for isothermal flows, the expansion of the Maxwell equilibrium

distribution function by the powers of the velocity vector U has form [19]:

(cec.d(rt)) a(cea(rt))” yuiie)

eqd (o +)_ -
i (rt) =wpo(r,t)| 1+ z o @ ()
where w, —weights;
p — fluid density;
u — velocity vector.
, 4 1 1
The weights for the D2Q9 model are: w, = §?W174 = §;W578 ~3% [17].

The conversion from the particle density distribution function to the fluid

properties such as density p, velocity U and pressure p is performed according to
equations [17]:
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p(F1)=2 (7t a(;,t)zﬁgcank(at); p(r.t)=c2o(Ft) ©

It is known that the disadvantage of the LBM is conditional stability [14, 15, 19-
21]. The stability of the solution is affected by:

e C, — the lattice speed of sound: as shown in [14], the method remains stable

when: C, < «/1—U§]ax , where U, is the maximum speed value in the computational

domain;
e 7 — the relaxation parameter: to avoid the negative influence of the relaxation
parameter on the numerical results, it is usually setas z =1 [15];
e ¢ - the lattice speed: as shown in [19, 20], the method remains stable when
M <<1, where M is the lattice Mach number calculated by the equation:
U

M = —max )
C

3. Setting the boundary conditions
There are several methods of setting the boundary conditions in LBM [15, 22-24]
which can be chosen according to the task.
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Fig. 3. Boundary conditions

In this work the following boundary conditions (BC) are used (fig. 3):

» No-slip BC. The method for setting the no-slip BC is described in [22] in
details and it is implemented by setting the condition of the particles reflection from
the boundary in the opposite direction.

» Inlet BC. Inlet BC. When the inlet BC is set, there are two levels that describe
fluid: the macroscopic level and the microscopic one. Firstly, at the macroscopic level,
the velocity components are set. The fluid density on the boundary can be calculated
according to the method described in [24, 25] using the known distribution function
values. As the lattice speed of sound is a variable value, the density is calculated
according to the equation:

(1) = (fo+f,+ f4i+2( fo+ fo+ 1)
1—Eugﬁn

Then, at the microscopic level, the unknown distribution function values on the
boundary can be calculated by formulas [25]:
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(R0 = (.0 + = p(F,0u, (1)
3c
L0 = HED+ 2 £,(0 - H00)+ (.00,

fy(r,0) = f(r,t) +%( f,(r,t) - f, (F,t))+é p(r 1)U, (r,1)

» Outlet BC. The fluid flow from a channel is implemented by the constant
pressure boundary condition at the outlet of channel [25]. For this purpose, firstly set

the u, velocity component on the boundary which is equal to the velocity on the
previous layer of the computational grid u, (N, -1, j)=u, (N, —2,j). HereN, is a

number of cells along x axis. Velocity component U, is set as zero: U, (N, =1, j)=0

All nine values of the distribution function are recalculated according to the equation
(5). Thus, there is the relaxation of the distribution function to the local equilibrium on
the right boundary.

» Symmetric BC. Using the symmetric BC particles that move over the
boundary not reflecting from it but transferring to the opposite boundary without
changing their direction (fig. 4) [22].

Fig. 4. The motion scheme of the particles. The symmetric boundary
conditions are applied to the side walls

For setting the rotation of a cylinder the following technique is proposed. Consider
a circular cylinder with radius R, which rotates with the constant linear speedv,. A

circumference shown in fig. 5 corresponds to the boundary layer of the cells with a
fluid that are directly adjacent to the cylinder. Knowing the rotating speed of the
cylinder the velocity componentsv,,v, in each cell with a fluid that borders the
cylinder can be calculated. For this, knowing that the velocity vector is directed along
tangent, we can use the property of the perpendicular vectors:

V-r=0 (8)
where v = (v,,Vv,) —the velocity vector at any point on the circumference;
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r — the radius vector from an arbitrary point on the circumference to its center (40
vector in fig.5);

Vi
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Fig. 5. The direction of the velocity vector and its components in any point of the
circumference

The linear velocity of rotation Vv, is a velocity vector module v

v, =‘\_/‘ = VPV (9)

Combining equations (8-9) we obtain the system of nonlinear equations for the
each cell with a fluid from the circumference in fig. 5.

v-r=0,

e (10)
v =z,

Solving the system (10) numerically by using the Newton method we got the

velocity components valuesv,,v, for each fluid cell. For all fluid cells that border the

cylinder we set all nine values of the particle density distribution function using
equation (5) of the Maxwell equilibrium distribution function.

4. Results of the modeling

All calculations presented below have been obtained using original program
written in C++ language in the development environment software Visual
Community2015 using CPU parallel technology OpenMP.

4.1. Rotating circular cylinder modeling

To test the proposed method of setting the rotating conditions in LBM, the series of
calculations of laminar flows around a rotating cylinder at Reynolds number Re =200
and at dimensionless rotating speed belonging to the rangev, =0,5—3 have been

conducted. The obtained results, namely, the flow patterns have been compared with
the known experimental data [1-3].

The results of the calculations have been obtained as periodic solutions and
stationary circulating flows. Possible instability of a numerical solution is a feature of
modeling such flows with the lattice Boltzmann method. When cylinder rotating speed
increases, the lattice Mach number also increases according to formula (7). To avoid
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the increase of the lattice Mach number and, consequently, instability, the lattice speed
c must be decreasing. Lattice speed ¢ reduction can be achieved by grinding the
computational grid, which leads to the increase in the simulation time.

Let us set the kinematic viscosityv =6,25-10"°, the diameter of the cylinder
D =0,125, the fluid velocity at the entrance of the channelU,, =0,1, the relaxation
parameter 7 = 0,55, the simulation time T =20 and the size of the domain2x1. Thus,
the Reynolds number is Re=200 and the blockage ratio isB=1/D=8. Also the
series of calculations with these parameters to get the lattice Mach number M ~ 0,15

have been conducted. A larger value M will result in increasing an error of the
numerical solution, as shown in [19, 20]. The results of the numerical solutions are
presented in the table 1.

Tab. 1. Dependence of the rotation speed of a cylinder on the modeling parameters

Rotation speed v, v, =0,5 v, =10 v, =15 v, =20 v, =30
Number of cells N 300 300 350 400 550
Time step At 0,00296 0,00296 | 0,00218 0,0025 0,00182
Lattice speed ¢ 1,125 1,125 1,3125 1,5 2,0625
Mach number M 0,144 0,163 0,158 0,159 0,156
Solution time (min) 44 43 87 141 460
Flow patterns for different cylinder rotation speeds are shown in figure 6.
a) v=1 b) =2 o) v=3

Fig. 6 — Flows around a rotating circular cylinder at Reynolds number Re = 200 and at
different rotation speeds

As shown in figure 6, when the fluid flows around a rotating circular cylinder the
circulating current appears. A solution can be periodic or stationary depending on the
cylinder rotation speed. It should be noted that the transition from the periodic to the
stationary solution occurs at the rotation speed critical values v/ =1,9for the

Reynolds number Re=200. The same results have been shown in [3]. Thus, the
obtained results fully correspond to the existing data.

As shown in table 1, the solution time increases with an increase of the rotation
speed (fig. 7).
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Fig. 7. Graph of the dependence of the solution time from the cylinder rotation speed
at the Reynolds number Re=200

The reason for this growth is the grinding of the computational grid, required to obtain
the lattice Mach number M = 0,15. Therefore, the calculations for the rotation speed

v, >3 have not been carried out in this work. Nevertheless, these results can be

obtained by using algorithm parallelization on GPU using CUDA technology, which
could increase calculation speed up to 100 times depending on the computational
capabilities of the graphics card [5].

4.2. Modeling a lattice of rotating circular cylinders

Let us make the series of similar calculations for a lattice of rotating cylinders. To
do this, we define the symmetry boundary conditions on the top and the bottom
boundaries of the domain, as has been shown in the previous section. The received
flow patterns are corresponding to the flows at Reynolds number Re=200, shown in

Fig. 8.
Lo ST BRI
W

-

a) vl b) w2 ¢ v=3
Fig. 8. Flow around a lattice of rotating circular cylinders at Reynolds number Re = 200 at
different rotational speeds

As shown in Fig. 8, there is not the vortex separation from cylinders for the speed
range v, =1—3and the solutions are stationary. If the rotation speed is less than the
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velocity of the fluid flow, i.e. v, <1, there is the separation of vortices and the solution
is periodic (fig. 9).

Fig. 9. Flow around a lattice of rotating circular cylinders at Reynolds number Re = 200 and
v, =0,5

Thus, the flow pattern in the simulation of a lattice of rotating cylinders differs from
the flow in a channel with the same parameters. Moreover, the critical rotation speed
value at which the solution transits from the periodic to the stationary one for the case
of the flow around a lattice of cylinders is less than for the case of the flow in a
channel.

Conclusion

The paper presents the results of modeling the two-dimensional problem of a
viscous fluid flow around a rotating circular cylinder in a plane channel and the flow
around a lattice of rotating cylinders with the lattice Boltzmann method. The method
of defining the boundary conditions for the rotation of cylinders for simple geometry,
in which the cylinder is constructed along the edges of the cells of the computational
grid has been proposed and tested. Both periodic and stationary regimes of the
received flows have been shown. We have determined the critical number of the
circular cylinder rotation speed, at which the transition from periodic solution (when
the vortex track behind a cylinder is observed) to the stationary one occurs. Namely,
v/" =1,9for the Reynolds number Re=200 which corresponds to the results of other

authors. The dependence of the cylinder rotation speed on the solution time has been
shown. The data confirm the adequacy of the proposed method of setting the rotation
conditions. Furthermore, this technique is much simpler in terms of description and
programming. It should be noted that the lattice Boltzmann method is of great
potential. We are planning to obtain a sustainable solution for large Reynolds numbers
in further researches.
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