Biomechanical analysis of tension-compression asymmetry, anisotropy and heterogeneity of bone reconstruction in response to periprosthetic fracture repair

  • Olexander Zolochevsky Doctor of Technical Sciences, Associate Professor, Head of Laboratory, Research and Industrial Center «Polytech»
  • Alexander Martynenko D. Sc., Professor, Department of Hygiene and Social Medicine, V. N. Karazin Kharkiv National University https://orcid.org/0000-0002-0609-2220
Keywords: LISS-plate, biomechanics, anisotropy, heterogeneity, tension-compression asymmetry, periprosthetic fracture

Abstract

Introduction. Bone repair after periprosthetic fracture is a critical issue in orthopedics. Objectives. So there is a need for research to provide new medical solutions, especially in the context of population ageing in the Ukraine. The importance of biomechanics which is concerned with the application of principles, concepts and methods of mechanics of solid and fluid to the human body in motion and at rest is well recognized as a foundation for further experimental and theoretical research in the skeletal tissues. Materials and methods. Different aspects of biomechanics require different concepts and methods of mechanics of solid and fluid to be used. Remodeling occurs significantly throughout lifetime of bone that is why it can be regarded as a primary determinant of the mechanical properties of bone and implant. Biomechanical analysis given in this review has been concerned with understanding on how mechanical signals and molecular mechanisms affect the healing of Vancouver periprosthetic femoral fracture of B1 and C-type with the use of internal fixation through a less invasive stabilization system (LISS)-plate, which is screwed into the artificial hip joint. Results. Identification of such parameters as mechanical properties of bone, titanium alloys (hip prosthesis, coating, LISS-plate, screws) and implant/biomaterial interface with bone under mechanical and biochemical loading that are very essential for predicting arthroplasty outcomes were investigated experimentally considering elastoplastic deformation, creep, fatigue and ratcheting, as well as, damage development in materials under discussion. Among the basic deformation features were tension-compression asymmetry, anisotropy and heterogeneity of mechanical properties. We used the three-dimensional finite element model derived from the reconstruction of treatment and magnetic resonance (tomographic) images. Conclusions. As a result of this model analysis, it was found that treatment rate of periprosthetic femoral fractures after total hip arthroplasty with the use of LISS-plates and screws for internal fixation may be controlled by means of ABAQUS (or ANSYS) software package to reproduce the characteristic features of bone and implant in bone reconstruction in order to improve the fracture healing rate and shorten treatment duration. 

Downloads

Download data is not yet available.

Author Biographies

Olexander Zolochevsky, Doctor of Technical Sciences, Associate Professor, Head of Laboratory, Research and Industrial Center «Polytech»

14, O. Yarosha st., Kharkiv, 61145

Alexander Martynenko, D. Sc., Professor, Department of Hygiene and Social Medicine, V. N. Karazin Kharkiv National University

6, Svobody sq., Kharkiv, Ukraine, 61022

References

Herzen, G. I., Shtonda, D. V. (2013). Periprosthetic femoral fractures after endoprosthetic replacement of the hip joint: The causes, classification and treatment. Proceedings of the Shupyk National Medical Academy of Postgraduate Education of Ukraine, 22(1), 308–314.

Bauer, M., Brand, S., Schrader, J., Krettek, C. Maier, H. J.; Hassel, T. (2017). Local stress investigation of periprosthetic fractures by total hip replacement: A finite element analysis. BMTMedPhys 2017. Poster session 11: Modelling and simulation I. Dresden, 10.09. – 13.09.2017, S. 152.

Brand, S., Bauer, M., Petri, M., Schrader, J., Maier, H. J., Krettek, C., Hassel, T. (2016). Impact of intraprosthetic drilling on the strength of the femoral stem in periprosthetic fractures: A finite element investigation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(7), 675–681.

Brand, S., Ettinger, M., Omar, M., Hawi, N., Krettek, C., Petri, M. (2015). Concepts and potential future developments for treatment of periprosthetic proximal femoral fractures. The Open Orthopaedics Journal, 9, 405–411.

Chen, S. H., Chiang, M. C., Hung, C. H., Lin, S. C., Chang, H. W. (2014). Finite element comparison of retrograde intramedullary nailing and locking plate fixation with/without an intramedullary allograft for distal femur fracture following total knee arthroplasty. The Knee, 21(1), 224–231.

Martin, R. B., Burr, D. B., Sharkey, N. A., Fyhrie, D. P. (2015). Skeletal Tissue Mechanics. New York: Springer, Second Edition, 501 p.

Martynenko, O. V., Zolochevsky, O. O., Allena, R. (2017). Long term evolution of bone reconstruction with bone graft substitutes. The Journal of V. N. Karazin Kharkiv National University. Series «Medicine», (33), 107–118.

Altenbach, H., Altenbach, J., Zolochevsky, A. (1995). Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Stuttgart: Deutsher Verlag für Grundstoffindustrie, 172S. [in German].

Zolochevsky, A. A., Sklepus, A. N., Sklepus, S. N. (2011). Nonlinear Solid Mechanics. Kharkiv: Garant, 719 p. [in Russian].

Zolochevskii, A. A. (1988). Modification of the theory of plasticity of materials differently resistant to tension and compression for simple loading processes. International Applied Mechanics, 24(12), 1212–1217.

Mahnken, R., Schlimmer, M. (2005). Simulation of strength difference in elasto‐plasticity for adhesive materials. International Journal for Numerical Methods in Engineering, 63(10), 1461–1477.

Zolochevskij, A. A. (1988). Kriechen von Konstruktionselementen aus Materialien mit von der Belastung abhängigen Charakteristiken. Technische Mechanik, 9 (3), 177–184. [in German].

Mahnken, R. (2003). Creep simulation of asymmetric effects by use of stress mode dependent weighting functions. International Journal of Solids and Structures, 40(22), 6189–6209.

Altenbach, H., Zolochevsky, A. (1996). A generalized fatigue limit criterion and a unified theory of low‐cycle fatigue damage. Fatigue & Fracture of Engineering Materials & Structures, 19(10), 1207–1219.

Susmel, L., Tovo, R., Lazzarin, P. (2005). The mean stress effect on the high-cycle fatigue strength from a multiaxial fatigue point of view. International Journal of Fatigue, 27(8), 928–943.

Chaboche, J. L. (1992). Damage induced anisotropy: On the difficulties associated with the active/passive unilateral condition. International Journal of Damage Mechanics, 1(2), 148–171.

Altenbach, H., Zolochevsky, A. A. (1994). Eine energetische Variante der Theorie des Kriechens und der Langzeitfestigkeit für isotrope Werkstoffe mit komplizierten Eigenschaften. Zeitschrift für Angewandte Mathematik und Mechanik, 74(3), 189–199. [in German].

Wood, J. L. (1971). Dynamic response of human cranial bone. Journal of Biomechanics, 4(1), 1–12.

Atsumi, N., Tanaka, E., Iwamoto, M., Hirabayashi, S. (2017). Constitutive modeling of cortical bone considering anisotropic inelasticity and damage evolution. Bulletin of the JSME. Mechanical Engineering Journal, 4(4), 17-00095-1–17-00095-18.

McElhaney, J. H. (1966). Dynamic response of bone and muscle tissue. Journal of Applied Physiology, 21(4), 1231–1236.

Yamada, H. (1970). Strength of Biological Materials. Baltimore: Williams & Wilkins Company, 296 p.

Garcia, D. (2006). Elastic Plastic Damage Laws for Cortical Bone. Ph.D Thesis, Lausanne: Swiss Federal Institute of Technology, 197 p.

Mirzaali, M. J., Bürki, A., Schwiedrzik, J., Zysset, P. K., Wolfram, U. (2015). Continuum damage interactions between tension and compression in osteonal bone. Journal of the Mechanical Behavior of Biomedical Materials, 49, 355–369.

Li, S., Demirci, E., Silberschmidt, V. V. (2013). Variability and anisotropy of mechanical behavior of cortical bone in tension and compression. Journal of the Mechanical Behavior of Biomedical Materials, 21, 109–120.

Thiagarajan, G., Begonia, M. T., Dallas, M., Lara-Castillo, N., Scott, J. M., Johnson, M. L. (2018). Determination of elastic modulus in mouse bones using a nondestructive micro-indentation technique using reference point indentation. Journal of Biomechanical Engineering, 140(7), 071011-1 – 071011-11.

Abdel-Wahab, A. A., Alam, K., Silberschmidt, V. V. (2011). Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. Journal of the Mechanical Behavior of Biomedical Materials, 4(5), 807–820.

Nyman, J. S., Leng, H., Dong, X. N., Wang, X. (2009). Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading. Journal of the Mechanical Behavior of Biomedical Materials, 2(6), 613–619.

Dong, X. N., Acuna, R. L., Luo, Q., Wang, X. (2012). Orientation dependence of progressive post-yield behavior of human cortical bone in compression. Journal of Biomechanics, 45(16), 2829–2834.

Dong, X. N., Luo, Q., Wang, X. (2013). Progressive post-yield behavior of human cortical bone in shear. Bone, 53(1), 1–5.

Nyman, J. S., Roy, A., Reyes, M. J., Wang, X. (2009). Mechanical behavior of human cortical bone in cycles of advancing tensile strain for two age groups. Journal of Biomedical Materials Research Part A, 89(2), 521–529.

Dendorfer, S., Maier, H. J., Taylor, D., Hammer, J. (2008). Anisotropy of the fatigue behaviour of cancellous bone. Journal of Biomechanics, 41(3), 636–641.

Nikitenko, A. F., Sosnin, O. V., Torshenov, N. G., Shokalo, I. K. (1971). Creep of hardening materials with different properties in tension and compression. Journal of Applied Mechanics and Technical Physics, 12(2), 277–281.

Nikitenko, A. F., Sosnin, O. V., Torshenov, N. G., Shokalo, I. K. (1976). Strength characteristics of titanium alloys. Journal of Applied Mechanics and Technical Physics, 17(6), 849–852.

Nikitenko, A. F., Sosnin, O. V. (1976). Creep and long-term strength under cyclic loading conditions. Strength of Materials, 8(12), 1395–1398.

Konstantinidis, L., Helwig, P., Hirschmüller, A., Langenmair, E., Südkamp, N. P., Augat, P. (2016). When is the stability of a fracture fixation limited by osteoporotic bone? Injury, 47(S2), S27–S32.

Zolochevsky, A., Galishin, A., Sklepus, S., Parkhomenko, L., Gnitko, V., Kühhorn, A., Leyens, C. (2013). Benchmark creep tests for thermal barrier coatings. Journal of the National Technical University «Kharkiv Polytechnic Institute». Series «Machine-building and CAD », (23), 158–178.

Zolochevskii, A. A. (1982). Allowance for differences in strain resistance in the creep of isotropic and anisotropic materials. Journal of Applied Mechanics and Technical Physics, 23(4), 591–596.

Zolochevskii, A. A. (1985). Tensor relationship in the theories of elasticity and plasticity of anisotropic composite materials with different tensile and compressive strength. Mechanics of Composite Materials, 21(1), 41–46.

Kim, J. H., Lee, M. G., Chung, K., Youn, J. R., Kang, T. J. (2006). Anisotropic-asymmetric yield criterion and anisotropic hardening law for composite materials: Theory and formulations. Fibers and Polymers, 7(1), 42–50.

Wang, J., Xiao, Y. (2017). Some improvements on Sun-Chen’s one-parameter plasticity model for fibrous composites. Part I: Constitutive modelling for tension–compression asymmetry response. Journal of Composite Materials, 51(3), 405–418.

Wang, J., Xiao, Y., Inoue, K., Kawai, M., Xue, Y. (2019). Modeling of nonlinear response in loading-unloading tests for fibrous composites under tension and compression. Composite Structures, 207, 894-908.

Pasynok, М. A. (2000). Development of Anisotropic Creep Analysis Methods Taking into Account Damage of Flat Structural Elements of Machines. Ph.D Thesis, Kharkiv: National Technical University «Kharkiv Polytechnic Institute», 193p. [in Ukrainian].

Zolochevsky, A. A. (1991). Creep of isotropic and anisotropic materials with different behaviour in tension and compression. In Zyczkowski M. (ed.), Creep in Structures (pp. 217–220). Berlin: Springer.

Zolochevsky, A. (1995). The formulation of constitutive equations for anisotropic materials with different behaviour in tension and compression. In Parker D. F. and England A. H. (eds.), IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics (pp. 351–356). Dordrecht: Springer.

Voyiadjis, G. Z., Zolochevsky, A. (1998). Creep theory for transversely isotropic solids sustaining unilateral damage. Mechanics Research Communications, 25(3), 299–304.

Voyiadjis, G. Z., Thiagarajan, G. (1995). An anisotropic yield surface model for directionally reinforced metal-matrix composites. International Journal of Plasticity, 11(8), 867–894.

Voyiadjis, G. Z., Zolochevsky, A. (1998). Modeling of secondary creep behavior for anisotropic materials with different properties in tension and compression. International Journal of Plasticity, 14(10–11), 1059–1083.

Baca, V., Horak, Z. (2007). Letter to the Editor: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Medical Engineering and Physics, 29(8), 935.

Pirohov, Y. N., Tiazhelov, О. A. (2014). The role of bone remodeling process in the development of the femoral head necrosis in injuries and diseases: Conception of pathogenesis (Review of literature). The Journal of Orthopaedics, Traumatology and Prosthetics, (4), 64–72.

Hambli, R. (2014). Connecting mechanics and bone cell activities in the bone remodeling process: An integrated finite element modeling. Frontiers in Bioengineering and Biotechnology, 2(6), 1–12.

Hambli R., Almitani, K. H., Chamekh, A., Toumi, H., Tavares, J. M. R. (2015). A theory for bone resorption based on the local rupture of osteocytes cells connections: A finite element study. Mathematical Biosciences, 262, 46–55.

Schmitt, M., Allena, R., Schouman, T., Frasca, S., Collombet, J. M., Holy, X., Rouch, P. (2016). Diffusion model to describe osteogenesis within a porous titanium scaffold. Computer Methods in Biomechanics and Biomedical Engineering, 19(2), 171-179.

Roshan-Ghias, A., Vogel, A., Rakotomanana, L., Pioletti, D. P. (2011). Prediction of spatio-temporal bone formation in scaffold by diffusion equation. Biomaterials, 32(29), 7006–7012.

Roshan-Ghias, A., Terrier, A., Jolles, B. M., Pioletti, D. P. (2014). Translation of biomechanical concepts in bone tissue engineering: from animal study to revision knee arthroplasty. Computer Methods in Biomechanics and Biomedical Engineering, 17(8), 845–852.

Zolochevsky, A., Grabovskiy, A. V., Parkhomenko, L., Lin, Y. S. (2012). Coupling effects of oxygen surface exchange kinetics and membrane thickness on chemically induced stresses in perovskite-type membranes. Solid State Ionics, 212, 55–65.

Zolochevsky, A., Parkhomenko, L., Kühhorn, A. (2012). Analysis of oxygen exchange-limited transport and chemical stresses in perovskite-type hollow fibers. Materials Chemistry and Physics, 135(2–3), 594–603.

Zolochevsky, A., Grabovskiy A.V., Parkhomenko L., Lin Y.S. (2013). Transient analysis of oxygen non-stoichiometry and chemically induced stresses in perovskite-type ceramic membranes for oxygen separation. Journal of the National Technical University «Kharkiv Polytechnic Institute». Series «Machine-building and CAD », (1), 179–189.

Fletcher, J. W., Windolf, M., Richards, R. G., Gueorguiev, B., Buschbaum, J., Varga, P. (2019). Importance of locking plate positioning in proximal humeral fractures as predicted by computer simulations. Journal of Orthopaedic Research, https://doi.org/10.1002/jor.24235.

Madeo, A., George, D., Lekszycki, T., Nierenberger, M., Rémond, Y. (2012). A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus Mécanique, 340(8), 575–589.

Scala, I., Spingarn, C., Rémond, Y., Madeo, A., George, D. (2017). Mechanically-driven bone remodeling simulation: Application to LIPUS treated rat calvarial defects. Mathematics and Mechanics of Solids, 22(10), 1976–1988.

Lotz, J. C., Gerhart, T. N., Hayes, W. C. (1991). Mechanical properties of metaphyseal bone in the proximal femur. Journal of Biomechanics, 24(5), 317-329.

Zolochevsky, A. A., Damasevich, S. V. (1990). Method for analysis of nonlinear elastic deformation of shells from materials with tension/compression asymmetry. Papers of Universities. Series «Mechanical Engineering», (5), pp. 30–34.

Zolochevsky, A., Galishin, A., Sklepus, S., Voyiadjis, G. Z. (2007). Analysis of creep deformation and creep damage in thin-walled branched shells from materials with different behavior in tension and compression. International Journal of Solids and Structures, 44(16), 5075–5100.

Zolochevsky, A., Galishin, A., Kühhorn, A., Springmann, M. (2009). Transversal shear effect in moderately thick shells from materials with characteristics dependent on the kind of stress state under creep-damage conditions: Theoretical framework. Technische Mechanik, 29(1), 38–47.

Galishin, A., Zolochevsky, A., Kühhorn, A., Springmann, M. (2009). Transversal shear effect in moderately thick shells from materials with characteristics dependent on the kind of stress state under creep-damage conditions: Numerical modeling. Technische Mechanik, 29(1), 48–59.

Cowin, S. C. (1987). Bone remodeling of diaphyseal surfaces by torsional loads: theoretical predictions. Journal of Biomechanics, 20(11-12), 1111–1120.

Zioupos, P., Currey, J. D., Mirza, M. S., Barton, D. C. (1995). Experimentally determined microcracking around a circular hole in a flat plate of bone: comparison with predicted stresses. Philosophical Transactions of the Royal Society of London. Series B «Biological Sciences», 347(1322), 383–396.

Zolochevsky, A., Sklepus, S., Hyde, T. H., Becker, A. A., Peravali, S. (2009). Numerical modeling of creep and creep damage in thin plates of arbitrary shape from materials with different behavior in tension and compression under plane stress conditions. International Journal for Numerical Methods in Engineering, 80(11), 1406–1436.

Güzelsu, N., Saha, S. (1981). Electro-mechanical wave propagation in long bones. Journal of Biomechanics, 14(1), 19–33.

Misra, J. C., Murty, V. V. T. N. (1981). Stress concentration around cracks in long bones. Forschung im Ingenieurwesen, 47(2), 37–0.

Guo, X. D., Cowin, S. C. (1992). Periosteal and endosteal control of bone remodeling under torsional loading. Journal of Biomechanics, 25(6), 645-650.

Zolochevsky, A., Sklepus, S., Galishin, A., Kühhorn, A., Kober, M. (2014). A comparison between the 3D and the Kirchhoff–Love solutions for cylinders under creep-damage conditions. Technische Mechanik, 34(2), 104–113.

Galishin, A. Z., Zolochevsky, A. A., Sklepus, S. M. (2018). Study of creep and damage for a hollow cylinder on the basis of space and refined shell models. Journal of Mathematical Sciences, 231(5), 629–640.

Malanchuk, V. A., Shydlovsky, M. S., Kopchak, A. V. (2010). The experimental study of the process of stress relaxation in mandibular bone. The Journal of Stomatology, (2), 90–96.

Zolochevsky, A., Martynenko, A., Kühhorn, A. (2012). Structural benchmark creep and creep damage testing for finite element analysis with material tension-compression asymmetry and symmetry. Computers and Structures, 100–101, 27–38.

Shydlovsky, M. S., Laksha, A. M., Burianov O. A. (2008). Design of deformation characteristics of system fixation used in treatment of damaged bone and hip joint. Journal of the National Technical University of Ukraine «Kyiv Polytechnic Institute». Series «Machine-building», (54), 51–62. [in Russian].

Published
2019-06-13
How to Cite
Zolochevsky, O., & Martynenko, A. (2019). Biomechanical analysis of tension-compression asymmetry, anisotropy and heterogeneity of bone reconstruction in response to periprosthetic fracture repair. The Journal of V. N. Karazin Kharkiv National University, Series "Medicine", (37), 19-32. https://doi.org/10.26565/2313-6693-2019-37-03

Most read articles by the same author(s)