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3MICT

BummneBenkuii O. JI., Bunagkosi 6;ykaHHS Ha CKIHUEHHUX Tpymax
13 KJIAaCOBOIO MMOBIPHICTIO: ainreOpaidHuil miaxi.
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GbyHKITIH.
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Cuyuaiinble OJ1y>K1aHNsT HA KOHEUYHBIX I'PYyIIIax
C KJIACCOBO BEPOSTHOCTHIO: ajreOparmdecKuil o Ixo]|

A. JI. Bumnesenkuii

Xapvrosckuli HAUUOHAALHDIT GETNOMOOUNLHO-00PONHCHBLT YHUBEPCUMEM,
ya. . Mydpozo, 25, 61002, Xapvkos, Ykpauna
alexwish@mail.ru

Xoporo u3BeCTHbI HEOOXOAWMBIE U JOCTATOYHBIE YCJIOBUS CXOAUMOCTH 7~
KPaTHON CBEPTKU BEPOATHOCTH HA KOHEYHOIl rpynmne G K paBHOMEPHOH (Tpu-
BUaJIbHON) BeposgrHOoCTH HA G 11pu N — 00. OUEHKe CKOPOCTH ITON CXOAUMOCTH
MTOCBSIIIIEHO MHOTO PadoT.

Hensb cTaTbm — moOJTyvUeHNEe OMEHOK CKOPOCTH 3TOW CXOAUMOCTH /IS BEPOSITHO-
CTel, TOCTOAHHBIX Ha KJIACCAX CONPAZKEHHBIX 3JIEMEHTOB KOHEYHBIX I'DYIIIL.
Karouesvie cro6a: BEpOATHOCTH, KOHEYHAS TPYIINA, CXOJAUMOCTbD.

Bumnesenpkuit O.JI., BunmagkoBi GJykaHHSI HAa CKIHYEeHHHUX rpynax i3
KJIACOBOIO HMOBIpHicTIO: asrebpaiunmii miaxia. JloOpe Bimomi HeoOXxis-
Hi i mOCTaTHI YMOBH 3012KHOCTI Nn-KpaTHOI 3rOPTKU iMOBIPHOCTI HA CKiHYEHHIMH
rpyui G 1o piBHOMipHOI (TpuBiasbhoil) iMoBipHOCTi Ha G 1pu n — 0o. Ouinui
MIBUIKOCTI TMi€l 30i?KHOCTI TPUCBIIEHO OAraTo pobiT.

inp crarti — omepzkaHHSA OIMIHOK IMIBHAKOCTI Ti€l 36ixKHOCTI m1s IMOBipHO-
CTeil, TTOCTIMHNX Ha KJIAcaX CIPSAKEHUX eIEMEHTIB CKIHYEeHHUX TPYTI.

Karwnoei caoea: iIMOBIpHICTh, CKIHYEHHA, TPYyIa, 3012KHICTH.

A.L. Vyshnevetskiy, Random walks on finite groups with conjugate
class probability: algebraic approach. Under well known conditions an
n-fold convolution of probability on finite group G converges to the uniform
probability on G (n — 00). A lot of works estimate a rate of that convergence.
The aim of the article is to obtain estimates of the rate for the probabilities
that are constant on classes of conjugate elements of finite groups.

Keywords: probability, finite group, convergency.

2010 Mathematics Subject Classification: 20D99, 60B15, 60B10.

(© Burmmmesernkuit A.JI., 2017
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1

G|
~ paBHOMepHas (TpuBHMAIbHAs) BeposTHOCTh Ha G, P — n-kparmas cBeprTKa
dbyuxun P. Xopowo ussecrubl [I] Heobxopumble n jg0cTaTouHble YCJAOBHS, IPU
koropeix P — U (n — 00). OreHke CKOPOCTH 3TO# CXOAUMOCTH HOCBSAIIECHO
MHOTO paboT (cM., HampumMep, 0630p [2]).

ITenw cTaThu — MOy9YEHME OMEHOK CKOPOCTH CXOJUMOCTH A KOHETHBIX TPYTITT
U BEPOSATHOCTEH, TTOCTOSHHBIX Ha KJIACCAX COMPSAKEHHBIX 3/1eMeHTOB. CXOIUMOCTh
B npocrpancTee dyHkimit F(g) #Ha rpynmne G IOHUMAETCs OTHOCHTEIHHO HOPM

1/2

1Flh = X IF(9)] u [|FIl = (|G XIF(g))? (Mbl muimem »; Bmecro - ).
g g g geG

IIycrs P — BepogTHOCTb Ha KoHedHoli rpymnne G mopsika |G|, U(g)

B [1L 2] nopma ||||1 umeer koabduiment 7
IIycts CG — rpynnosas asrebpa rpynnsl G Haj mojieM C KOMILIEKCHBIX Y-
cesr. Conocragum BepositHoctu P(g) snement p = Y P(g)g anrebper CG; sror
g

9sleMeHT Mbl 0B03HAYaeM TOH ke (HO Masoii) OGyKBOM, YTO M HODPO/MBIIASL €ro
dyukIius, u HazeiBaeM sepoamuocmoto wa CG. Ceeprie

(PxQ)(h) =Y P(9)Q(g~"'h), heG
g

dyuxnuit P u () coorBeTcTBYET Ipou3BeieHne pq BepositHocTeit Ha CG.

IMycrs L(G) — upocrpanctso dbyukmuii vag nonem C ma rpynme G, nocro-
SHHBIX HA €€ KJIacCaX CONPSKEHHBIX JEMEHTOB (KJIaCCOBBIE WM IEHTPAJbHBIE
dbynkuun). B nanbHeiimem, ecim He OrOBOPEHO IIPOTUBHOE, BCE BEPOSITHOCTH SIB/IsI-
1o1cs KjaaccosbiMu. Ha abeneBoii rpyiine Bce BEpOATHOCTH SABJIAIOTCA KJIACCOBBIMU.
B npocrpanctse L(G) onpeeneno ckaasiproe ipousseenne: eciu Fy, Fy € L(G),

TO
1

(F1, Fp) = @ZFNQ)FQ(Q)? (1)
g

rzie YepTa O3HAavYaeT KOMILIEKCHOe compsizkerne. Muoxectso Irr(G) HempuBoau-
MBIX KOMTLJIEKCHBIX XapakTepoB Tpymnbl (G 0b6pas3yer OpTOHOPMHUPOBAHHBIN Oa-
suc B L(G) orHOCHTENBHO cKajsipHOro npousseenus ((1). ITosTroMmy BeposTHOCTH
P € L(G) pasznaraercs no 6azucy Irr(G) ={1qg, X1, -, Xk}, IPUYIEM BBULY

> Pl =1 (2)
g

ko3 uimenT npu rIaBHOM XapakTepe 1l paBeH ‘—Cl;':

1
P=@1G+m1X1+---+kak (3)

Honoxum dj = deg x;, b= max|b;|, rue
J

_ |GIm;

b= G=1,....k). (4)



6 A. JI. BumneBenkuit

Jlemmal b<1

Hoxaszarenscrso. Tak xax |x;(g)| < dj, 1o u3
1 _
Imjl = 1(P, x;5)| < @Z [P(9)X;(9)| =
X (9)] < P(g)Ixi(9)] < P(g
~ e PO < 7 PO < 157 3Pl = i

[Tosromy n3 |bj| <1 u, cieposarensHo, b < 1.
Ilycrs supp(P) = {g € G, P(g) # 0} — nocurens BeposatHoctu P. OneHky
JIEMMBI 1| MOZKHO yCmmuTh j1191 BEpOATHOCTEH, Y KOTOPBIX HOCUTE L SUpp(P) = G.

Teopema 1 b <1—min P(g).
9

Hoxaszarenserso. Homoxum | = min P(g), lp = (1 —1)~!

g
Oyuxius P = lo(P—1U) ssagercs BepostHocThio Ha G. JI1s 1106010 HENJTABHOTO
xapaxTepa x; € Irr(G) umeem

m;(P1) = (P1, x;) = lo(P = lU, x;) = lo(P, x5) = lom;,

rae m;(Pr) — xoapdmmentsr pasnoxenns (3) as Py (5 = 1,...,k). TTostomy
bj(P1) = lobj(P) n
b(Pr) = lob(P). (5)

Tak xak b(P) <1 (sremma , 10 H(P) <yt =1-1.
B janpmeitmem OygeM cumTaTh, 4YTO YHCIA b; 3aHyMepOBaHBI TakK, YTO

1/2
t
b=|bi|=...=|bs| m |bj| <bmpu j >t Ilycrs D= <21d32> .
J:
Teopema 2 Db" < [P —U|| < Db" + a" (|G| — 1 — D?)/* | 20e 0 < a < b,
a u b e sasucam om n.
HoxazarenbcTBo. Ilycets p,u BepOHTHOCTI/I na anrebpe CG, COOTBeTCTB Ionme
BepoarHocTam P, U. Ecim e; = @ij 9)g9 (J=1,...,k), o u3
g

creyer

k
G .
= X tagtm S xi@)g+ e D x(g)g =u+ > D e =
g g g Jj=1

k
=u-+ Z bjej.
j=1
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Tak Kak u,eq,...,e; — OPTOrOHAJILHBIE UAEMIOTEHTHI 1HeHTpa ajaredpel CG,
k

To p" =u+ Y bley,
j=1

kdb”

k k
d;
R ILIEDID TS o] bou- ¥
j=1 =1 g g

WJIH, BO3BPAIASICH K PYHKIHAM Ha Tpymme G,

kdb”

V=26

Tarc s 2 = 1615 s (0)2 = G, 7o pymeaumn g (G =1,.... k) opaay-
g

10T OPTOHOPMUPOBAHHOE MHOXKECTBO OTHOCUTEIHHO HOPMBI || - ||. Tlosromy

k
IP™ — U = [p3"[d] = b*" D>+ [b3"[d] < b*"D*+a” ) d3,
j=1 >t >t

rae a = max|b;j|, 0<a <b.
j>t

k
Tak kak 0 < Zd?: (Zd?—D2> = (|G]-1-D?), 1o
j=1

>t
D2b2n < ”p(n) _ UH2 < D2b2n +a2n (‘G’ 11— DQ) ’

OTKYZa CJAeIyeT YTBEPXKIEHUE TeOPEMbI.
Caencrsue 1.

1) P 52U no soboit HOpMe TOT/Ja W TOJBKO TOTma, Korma b < 1.

2) st 70CTATOYHO OOJIBIMUX N CYIIECTBYeT Iucao ag € [0;1), He 3aBucdIee oT
n, TAKOe 9TO

Db* < ||P™ —U| < (D + al) " (6)

1
GI72Db" < ||PM™ — Ul < (D + ag) b" (7)

Jokaz3aTenbeTBo.

1) B KOHEUYHOMEPHOM IPOCTPAHCTBE JIFo0asi HOPMa SKBUBAJEHTHA HOpME || - ||.

2) B nokazaresbeTBe HYKIa€TC TOJTBKO . Ecan n3z m > 2 BemecTBEeHHBIX THCET
ai ...Qy XO0Td 6])1 ABa HE PaBHBI Hy.)'[IO7 TO B CI/I.Hy HEPpaBEHCTB ME)K,Z[y CcpeaHnMun

m

m 2 m
Za? < (Z ]aﬂ) < mZa?. (8)
i=1 =1

i=1
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Beumy BHAYEHWsT BYX BEPOATHOCTEH Ha (G HE MOTYT OTJIMYATLCS POBHO HA
opaom 3semente. Ilosromy npu m = |G| B kKagecrse aj, ..., 0y, MOXKHO B3dTh
3HaveHusd QYHKIUHT (P(”) -U ) g, g € G. lzBekas B KBQIPATHBIN KOPEHb,
TTOJTY IUM

1
G721 P™ — U < |P™ = Uy < |P™ ~ U

[TosTomy cienyeT U3 @

Beuay mepasencrs (6) u (7)) wucio b urpaer BaxHyo posib B OLEHKE CKOPOCTH
CXOTUMOCTH P ¢ U. [IpuBenem oIleHKH [1/Ig BEJIUYHUHBI b.

1 1
P2 -1\2 P2 -1)2
TeOpeMa3 <|||G|:—1> SbS(H’Z))

JoxazarenbcTBo. BozbMeM cKaIgpHbIi KBagpaT paBeHcTBa ((3) OTHOCUTEBHO CKa-
ngproro npoussenenust ((1)):

k
1 2 1 2
@ZP (9) = G2 + 2 mi.
g j=1

k
Yunokas na |G|? u nenonbsys , nonygaem |[P|2 —1= ) b?d?. Tak Kak
j=1

t k

By di <) i <y di =0°(G| - 1),

J=1 Jj=1 Jj=1

kol

J
[l

Gl =1

k
u D? = d?, to b2D? < ||P|?> — 1 < b*(|G| — 1). Hoatomy ||P||> —1 > 0 m
=1

1P|* —1

2
<V <

, 9TO 3aBEpIIaCT AO0Ka3aTE/ILCTBO.

MoxHO oreHuTh b cHM3Y ¢ momMoInbo Tucita s = [supp(P)].

Caencrsue 2.

1
1 1\2
b> (- — — 9
> (- @) ¥
. JloxazatensctBo. Tak xak s+ > |G|™!, mo u3 n TOJTYYa€eM, dTO
|P|I?|G|~t > s~ L. TlosTomy

[ S
Gl-1 = |d]

el

1 1
> =
S
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3aMmedyaHus.
1. B cuny (9) BeposTHOCTH € MAIBIM HOCHTEJIEM HE MOTYT OBICTPO CXOIUTHCA K U.
2. C nowmorpsio @ MOYKHO TIOJIY9UTh HETPUBHUAIBHYIO ONEHKY JJist b m1axke mpm
s = |G|. dna sroro myxuo npuvenuts (9) x BepoarOocTH Py (CM. mOKa3aTens-
cTBO Teopemsi [1)), y koropoit supp(P) # G.

Caencreue 3. Ecianm BeposttHOCTL P paBHOMEPHO pachpenenena Ha HOP-
Glst -1 5, |Glst—1
— <V < ——.

|G| —1 D2
Jokazarenscrso. [ paBHOMepHOro pacnpenenenus P(g) = st
IIO9TOMY

MaJIBHOM S-3JICMCHTHOM MHO2KECTBE, TO

(g € suppP),

IPI* =G| ) P*(9) = G|s-s~> = |G|s™".
g
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Ye1oBus €IMHCTBEHHOCTH TTOJIOYKEHUsT PABHOBECH ST
3aj1aun Kot 1151 TUHETHBIX MATPUIHbBIX
nnddepernmaibHO-aIredpandecKnX ypaBHeHni
1. B. Cricoes

Jlonbacckutl 20cydapcmeertoill nedazo2uteckuti YHUGEPCUMEM,
Caasanck, ya. Tenepana Bamioxa, 19, 84116, YVrkpauna
chujko-slav@inbox.ru, chujko-slav@Qukr.net.

Tlosy4yensl [1OoCTATOYHBIE YCJIOBUSI CYIIECTBOBAHUS €JIMHCTBEHHOI'O II0JIOYKEe-
HUsl paBHOBecus 3ajadn Komwm st juddepeHiuaibHo-aarebpanaecKux
ypasHernwuii. [IpemjiokeHa KOHCTPYKTHBHAS CXeMa MOCTPOEHUS ITOJIOXKEHUsT
paBHOBecust 3amadn Komm B 00meM cirydae, KOrja JIMHEWHbINH omeparop L,
COOTBETCTBYIOMNIMI OHOPOHON YacTh ypaBHEHHsI, He MMeeT 00PaTHOrO.
Kmouesvie crosa: muddepeHnaabHO-aIredOpaniecKkue MaTPUIHBIE ypaBHe-
HUST; TICEBI000pATHBIE MaTPUIIHI.

Cricoe /I. B. ¥YMoBu icHyBaHHSI €JMHOTO MOJIO2KEHHsI piBHOBaru 3aja-
uyi Ko ajis giHIHHUX MaTpUYHUX JdudepeHIliaTbHO-aJIredopaiayHnx
piBHaHb. BcranoBieHO [OCTaTHI YMOBHM ICHYBAHHS €IUHOTO IIOJIOXKEHHS
pisHoBaru 3ama4di Komi gis qudepeniiaabHo-aIredbpaldHux piBHAHb. 3alpo-
[MOHOBAaHA KOHCTPYKTUBHA CXeMa IMOOYI0BY MOJIOYKeHHs piBHOBaru 3a a4l Kol
Yy BHUIQJIKY, KOJIM JIHINHWN omepaTop L, BIAMOBIIHWN OJHOPIIHOI YaCTUHU
piBHSIHHS, He Ma€ 0OEPHEHOTO.

Kmowosi caosa: nmudepenmianbHo-aaredpaitini MaTpUIHI PIBHIHHS; IICEBIO-
obepHEHa MATPHIIS.

D.V.Sysoev. A condition for the existence of a unique equilibrium
position of the Cauchy problem for linear matrix differential-
algebraic equations. Sufficient conditions for the existence of a unique
equilibrium position of the Cauchy problem for differential-algebraic equations
are proposed. The paper proposes a constructive scheme of the equilibrium
position in the Cauchy problem in the general case, when a linear operator L,
corresponding to homogeneous of the equation, has no inverse.

Keywords: differential-algebraic matrix equation; pseudoinverse matrix.

2010 Mathematics Subject Classification: 15A24; 34B15; 34C25.

© Coicoes /1. B., 2017
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1. ITocranoBka 3ama4un
Uccnenyem 3amady o nocrpoerun pemiennii [1]
Z(t) € CL,gla,b] := C'a, b] @ R**P
zagaqu Komum ajist MaTpudHoro quddepennuaibHo-aaredpantieckoro ypaBHeHust
AZ'(t) =BZ(t) + F(t), Z(a)=2A, AeRYP, (1)

Baecs 2, 3]

p

AZ'(t) =Y Si()Z' (W) Ri(t), BZ(t):= > ;(t)Z(t)¥;(2)

i=1 j=1
— JINHeWHBbIe MATPUIHbBIE OIIEPATOPHI,
Si(1), ®i(t) € Conalasd], Ri(t),U;(t) € Causlarb], F(t) € Cosla,b)

— HEIPEpBLIBHBIE MaTPHIbI; KpOMe TOro «,3,7,0 € N — npousBojbHbIE HATY-
paJibhble ynciaa. Marpuanoe quddepennuaibao-ajiredpandeckoe ypapuenue (|1)
06001aeT TpaIuIuOHHbIE IOCTAHOBKY, KaK JJis MATPUIHbLIX HuddepennuaabHbx
ypasuenuit [4 5], rak u s quddepennuanbro-anrebpandeckux ypasHenuit [0l
7, 8]. VIzyuenne kpaeBbIx 3a/1a4, KAK MATPUIHBIX, TakK U jist auddepeHnuanbHo-
aaredpamyecKux ypaBHEHHH OCHOBAHO Ha HMCCJICIOBAHUM aJrebpamaecKux Mar-
PUYHBIX YpaBHEHWil, B YaCTHOCTH, PE3YyJIBTATHI, IOJyYeHHDbIE /IS MATPUIHO-
ro juddepennunanbHoro ypasaennst Pukkaru [4], onuparorcs Ha ucciegoBanust
MATPUYHOIO ajirebpandeckoro ypasHenus Tuia Jlsmynosa [9]; pesyiabrarsr cra-
reii [2), B, 5] onuparorcst Ha mccieioBaHus MATPUYIHBIX ypaBHeHuil Tuna Cuibse-
cTpa u, B 4acTHOCTH, ypasHenus turna Jlgnyrosa [9, 10, [11], [12].

Ocobennocrrio 3ajtaan Kormn qtst iudppepeHInabHO-AIredpanIeCKIX
ypasuennit [6] [7, [8] sipisieTcs nekoppexTHOCTD €e nocranosku B kiacce CL. B[a, b]
IPH IPOU3BOJIBHBIX @, 3,7,0 € Nu F(t) € C,yxs(a,b] [13, 14]. ITocTaum ciemyio-
HIyTo 3a/a4y: JUIsl Kakux Kjaccos 3aja4da Komu (1) nmeer euacTsennoe pemenne
IPH IPOU3BOJIBHEIX v, 3,7,0 € N u F(t) € Cyxsla, b]. Oboznatnm

By
{@J} S R’BX7
j=1

ecrecrBennblii 6asuc [15] npocrpancrea RA*7. Bamada 0 HAXOMKIEHHH pEITEHHIT
MaTPUIHOTO JuddepeHnraaIbHO-aIre0panieckoro ypaBHeHU s [IPUBOJIUT K 3a-
Jate o Haxoxenun sexropa z(t) € CL sla; b], kommonenTs KoToporo z;(t) onpe-
JIEJISTIOT PA3JIOXKEHUE MATPUIIBI

a-fB
Z(t) =Y 29z(t), zt) eClad], j=12 .., a-B.

=1
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Omnpegenum oneparop M[A] : R™*™ — R™" gak omeparop, KOTOPBIH CTaBUT
B coorBercTBre MaTpuile A € R™*" pekrop-croaber B := M[A] € R™™ cocras-
JIEHHBIN U3 1 cToJIOIOB MaTpuIlsl A, a Takxke obparHbliil oneparop [12]

M—l |:B:| . R %Rmxnj

KOTOPBIN CTABUT B COOTBETCTBHE BeKTOpy B € R™™ Mmarpuny A € R™*™. Jluneii-
ubiii quddepernuanbro-anredpandeckuit MarpudHbIil oneparop AZ'(t) 1o ompe-
JIEJIEHUIO TIPEJCTABUM B BUJIE

AZ'(t) = i‘éA =D () Z(t),
j=1
IIpU 3TOM
M[AZ’( )] =Qt)-Z(t), Qt):= [Qj(t)]aﬁ € RIxaB,
j=1
rae
() = M[AZDW], j=12 .., a8
Anajyiornuno
a-B ‘
M [BZ(t)] =0(t)-2(t), O(t): :[@j(t)] B e RT*B - Q;(t)=M [B 5<J>(t>} .

Takum obpasoM, 3a71ada O IMOCTPOSHUHU peleHuit auddepeHnuaIbHo-aaredpan-
JECKOI'0 ypaBHEHUSI [IpUBe/IeHa K 3aJ1a9e 0 HAXOXKIEHUU PelleHui

2(t) € Cq g [as 0]

TpajunmonHoro jaud depennuaabao-anrebpandeckoro ypasaerus [6l 7]
Q)2 () =0() 2(t) + Ft), F(t)=M [F(t)] (2)

2. OcHOBHOI1 pe3ysbTaT
ITpu ycnosuu [2), 3] 5]
Po-yO(t) =0, PosyF(t) =0 (3)
cucrema (2)) paspemmma oTHOCHTETBHO TPOU3BOHOI

% = QN (1)Ot)z + F(t, o(t), Tt p(t) := QT ()F(t) + Po, (t)e(t).
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Baecw P, (t) — (- B X r)-marpuna, cocTaBjeHHAs U3 I JTHHEHHO-HE3aBUCHMBIX
cTon1610B (-3 X v+ )-Marpunp-opTonpoexTopa Po(t) : R*# — N(Q(t)). B cayuae

A:=QT1)O(), f:=Q(t)F(t), P, (t) = const (4)
cCucreMa OPpUBOAUTCA K BUIY
Y =Az+Poc+f, ¢ €R. (5)

Takum obpazoMm, P yCJIOBUSIX u cucremMa IMeeT IIOJIOXKCHUSI PaBHO-
BeCHs z = const, JuIg HaxOXKJICHNA KOTOPBIX NPUXOJANM K YPaBHEHUIO

Qe+f=0, Q:=(A Py ), c:=col(z ¢)ecR¥, (6)
IIpu ycmosun Py« f = 0 (1 ToJIbKO Ipu HEM) ypaBHEHHe @ Pa3peImmMo:
2= (Insg O)(Po,co=Q"f), ¢ =(0 L )( Py,c, —Q"f).
Bnecw Py, — ((af +1) X p)-MaTpuia, cocrasjieHnas u3 p IMHEHAHO-HE3aABUCHMbIX
crosbnos ((aff + r) x (aff + r))-Marpui-opronpoexropa Py : R+ 5 N(Q).

Takum o6pa30M, Ipu yCJIOBUAX 148 CcucreMa nMeeT II0JIO2KECHHA PaBHO-
Becud

2=Dc,+K[f], D:=(1Iag O)Pg, e ROF*PK[f]:= (I, 0)Q"f,
ompejiesironue pertenne 3ajadn Kommn (1) B corygae
Dec,+ K[f] = M(X).

[Tocnennee ypaBHeHHE Pa3peIluMO TOLJIA U TOJILKO TOIJIA, KOTIA
Pp. {M@t) - Km} 0. @)

Bnecs Ppr — (aff x af)-marpuna-opronpoektop Pp« : R — N(D). Hrax,
IIPU YCJIOBUSIX , u zagada Kommm (1)) mmeer euHCTBEHHOE TTOJIOKEHUE
paBHOBECHS

Z(c,) =M1 [DD*M(QL)] - Ml{PD*K[f]}.

Takum o6pa30M, JOKa3aHO cjieayroniee yTBEP2KICHUE.

Teopema 0.1 Ilpu ycrosuax (@, U (@ sadawa Kowu umeem eduHCmeeH-
HOE MONOHCEHUE DABHOBECUA

Z(er) = W) + K[F(1)],
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npedcmasaernoe cymmots pewenus, 00nopoonozo F(t) = 0 ypasnenus
Z(e,) =W (&) := Mt [DD*M(QL)]

U YACMHO20 PEWEHUA HEOOHOPOoOHoT 3adavu Kowu
2(er) = KTF(0)] = M o1},

IIpumep 0.1 Yeaosuam dokasannoti meopemui[0. 1] ydosaemsopaem mampuunas
sadavwu Kowu

AZ'(t) =BZ(t) + F(t), Z(0)=2A, AeR¥F; (8)
3decw
) 000 000
1 ol A o 0 0 0 . 01 0
AZ(t)_Z;SZZ(t)Rz, SS=lgo1l =001l
= 010 000
100 000 00 0
Rl(ooo)’ 722(010)’ \Pl(010>’
, 000 000
00 1 00 1
BZ(t):=> &, Z'(t)¥;, & := 000l =400l
= 00 0 00 0
000
010 1/5 5 -1\ 010
lh‘[’2_<010>’ %‘_5<55—2>’ FO=1109 0 o
000

EcrecrBenmbrit 6asmuc mpocrpancrsa R3*? cocTaBiisior MaTpHIb

(1 o0\ - _[(010Y ~ (00 0\
t"too0oo0/) 2" \ooo) %" \oo0o1)"

KiroueBrwie IIpnU UCCJIEAOBAHUUN YPaBHCHUA MaTpHUIIbI UMEIOT BUJI

[1]

*

0 000O0OO0OO0OOTO0OOO® O
0001 0O0O0OO0OO0OTO0OO0O® O

0— 001 0O0O0O0O0OO0OO0OO0O®O
' 00 00O0OO0OO0OO0OO0OO0OO0OO
0 000O0O1O0O0O0OO0OTO® O

00 00O0OO0O1O0O0O0OO0O®O
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o O O o oo
OO oo oo
SO OO oo
[esRlen B en B e B e B @)
[eRen B en B e B e en)
N OO = OO
oo oo oo
O O OO oo
o O O o oo
OO oo oo
oo oo oo

IIPU 3TOM YCJIOBHE Bommosneno: Po« O (t) = 0, Pg.)F(t) = 0, xpome Toro

50 0 00

00000O00O0 0 05 0 00
000O0TGO0O 0 00 2 00
00000O00O0 0 00 0 50

A=l o o0o0o0o00 | W=l PO=00 0 05
00100 2 1 00 -1 00
00000O00O0 0 00 0 00

00 0 00

— KOHCTAQHTBI, CjieJOBaTEe/JIbHO, YCJIOBHE TaK2>Ke BbIIIOJIHCHO. ManI/IL[bI

O OO OO w
O O O O ot o

O O N OO
O O ot o O O
O ot O O O O
OO OO OO
O O OO OO
N OO = OO
OO O o oo
O OO o oo
_ o O N OO

-1

a Taxxke oneparop ['puna 3amaan Komm 115 cucreMs

(00 -1 00 —2)

at| —

K[f] =

ITO3BOJISTIOT TIPOBEPUTH yCJIOBUE . ITockosbKy Bce TpebOBaHUS JIOKA3aHHO TEO-
peMBbI BBINIOJTHEHBI, 3a7a49a Komm uMeeT €IMHCTBEHHOE I10JIO?KEHNE PaBHO-
Becus

Z(cr) = W(A) + K[F ()],
rue

1 1 1 0 0
way= (11|, KFOl=—[0 0
0 0 11

JlokazanHast TeopeMa MOXKeT ObITh UCIIOJIb30BaHa TP perneHnn 1uddepenim-
anbHbIX ypaBHeHnit Pukkarn u Bepuysumn [4], npu perennn JuHeRHBIX KpaeBbIX
3aJ1a4 It MaTpuaHbIX Juddepenimanbabix ypasaennii [3, 0l [16], a rakzke B Teo-
puu ycroitausoctu nsuzkenus |17, [I8]. TTosyuennbie pesynbrarsr anasoruano [19)
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1. Introduction

Denote C* = C\{0}. For z € C* consider the equation of the form

flaz) = p(2)f(2), (1)

where p(z) is some function, ¢ € C*, |q| < 1. If p(2) = const, then meromorphic
solution of this equation is called p-loxodromic function [5]. In particular, if
p(2z) = 1, we have classic loxodromic function. The class of loxodromic functions is
denoted by L,. It was studied in the works of O. Rausenberger [12], G. Valiron [14]
and Y. Hellegouarch [3]. In recent years, A. Kondratyuk and his colleagues also
investigated these functions and their various generalizations in other domains
(see, for example [4], [6]-[8]).

Loxodromic functions have been used to construct explicit solutions to the
rotating Hele-Shaw problem, the viscous sintering problem, the problem of finding
vortical equilibria of the Euler equation and the problem of free surface Euler flows
of the surface tension [2]. These functions also have a fairly wide range of practical
applications, for example see [10], [11].

So, it will be quite interesting to generalize the class of p-loxodromic
functions for the case of more general functions p(z) other then the constant
ones. The purpose of this article is to obtain meromorphic solutions of the
equation , where p(z) are some elementary functions. These solutions will be
some generalizations of p-loxodromic functions. This task can be viewed as the
first step towards more general case where p(z) is an arbitrary rational function,
which in turn may lead to further generalizations.

1
2. The case p(z) = —
z

Let us consider functional equation

fla) = Lf(z), ze . ¢l

Our task is to find its meromorphic in C* solutions. At first consider the
Schottky-Klein prime function [5]

P(z) = (1-2) [ (1 - q"2) <1 - qz) (3)
n=1
It was introduced by Schottky [I3] and Klein [9] for the study of conformal
mappings of double-connected domains, see also [I]. This function is holomorphic
in C* and has zero sequence {¢"}, n € Z. The following property of P(z) is well
known [3, p. 94]
P(qz) = —27'P(2). (4)

Theorem 1 Let g € L,. The meromorphic in C* function f(z) = P(—z)g(z)
satisfies (@
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Proof. The proof is by direct calculation. Since ¢ is loxodromic, we have

f(42) = P(~42)g(a2) = - P(~2)g(z) = (2).
We also use here equality .

Theorem 2 Fvery meromorphic in C* solution of (@) can be represented in the
form f(z) = P(—z)g(z), where g € L.
. . . _ )
Proof. Let f(z) be a solution of (2|). Consider the function g(z) = Pl=2)’ Since
—z
f(2) is meromorphic and P(—z) is holomorphic, it follows that g is meromorphic.
Applying equalities and , we get

1
faz) _ 10
o) = it 5 = el

Therefore, for all z # —¢", n € Z we have g(qz) = g(z). It means that g is
loxodromic, which concludes the proof.
We also can reformulate Theorems [I] and [2] in the following forms.

Theorem 3 The meromorphic in C* function
P(@)r (@) @) En)
a a Gm am
f(z)=C 1 - 2 - - 1/
P<b1> P(l)2> P (bm>

where C' is a constant, ai,as,...,amy+1 and by, by, ... by are compler numbers,
m—+41 m

not necessarily distinct, such that [[ a; = — [ b;, satisfies equation H/
=1 i=1

Proof. Indeed, taking into account equality ,

flqz) = CP CZ) " (Zj) - <§:m> " <aiil>

z
P|— P
(—D)™ lajas ... ama1 <a1>

=¢ (—1)™b1bs ... by, P<(
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Theorem 4 Every meromorphic in C* solution of equation (@ can be written in

the form
f(z) = CP (;) PS;) zP (;n> Pg(anil) 7
P<M>P<®>.”P<%)

where C is a constant, ai,as,...,am+1 and by, by, ... by are complex numbers,
m—+1 m

not necessarily distinct, such that [] a; = — [] b;.
=1 =1

Proof. By Theorem [2] we know that

f(z) = P(=2)g(2), ()

where g € L;. We use the loxodromic function representation via Schottky-
Klein prime functions (see [3], [14] for more details). Namely, let c1,ca,...,cm
and by, by..., by, be the zeros and the poles of function g in the annulus A4(R) =
{z € C:|q|R < |2| £ R}, R > 0, respectively, 0A,(R) contains neither zeros nor
poles of g € L,;. Note that each loxodromic function g has equal numbers of zeros
and poles (counted according to their multiplicities) in every such annulus A,(R)
[3, p. 93|. Then [14] p. 478]

oo )P G) P (5) .
o) @) r )

C1C2...Chpy

biba ... by,
and K is a constant. Applying equality to @, we have

)
() (o)

p(p+1)

where C' = (—a1)Pq~ 2 K. Combining and (8], we obtain

f<z>:cP<Q;>P<;>"'P<;>P<—21>7
P(5)r () (5)

where
=q? peL, (7)
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Let us denote a1 = ¢Pcy1, ag = c2,...,am = Cm, Gm+1 = —1. Now we can rewrite

£ as follows
) @)
P<;1>P<b22> P(bi)

m+-1 m
where [] aj = — [] b;, which is clear in view of (7). The theorem is proved.
j=1 j=1
1
3. Th =
e case p(z) T

Now, consider functional equation of the form

flas) = T f(2), € T )

We also are interested in finding meromorphic in C* solutions of @
Define the entire function with the zero sequence {¢~"}, n € NU {0}, 0 <
gl <1,

o0

H(z) = H(l —q"2).

n=0

Theorem 5 Let g € L,. The meromorphic in C* function f(z) = H(z)g(z)
satisfies @

Proof. The proof is straightforward. Since g is loxodromic, we have

oo

(1-2)f(gz) = (1 - 2)g(gz)H(qz) = (1 - 2)g(2) [[ (1 = ¢"'2)
n=0
(1-2)g HlfQZ—g()H(lfq”Z)zf(Z)-
k=1 n=0

Theorem 6 FEvery meromorphic in C* solution of (@) can be represented in the
form f(z) = H(z)g(z), where g € L.

Proof. The proof is analogous to the proof of Theorem [2] Let f be a solution of

equation (|9). Consider the function g = T Since f is meromorphic and H is

holomorphic, it follows that g is meromorphic. Taking into account equality (@,
we get
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Therefore, for all z # ¢7", n € NU {0} we can conclude that ¢g(¢z) = g(z). We
obtain that g is loxodromic. The proof is completed.

Using the loxodromic function representation via Schottky-Klein prime
functions, namely formulas @ and , we also can rewrite Theorems |5 and
[0] in the following forms.

Theorem 7 The meromorphic in C* function

. Csz(z)P (5) P <€2) P <c;> |
p<h>p<®>m-p<%>

where ci,¢a ..., Cym and bl, by ..., by are complex numbers, not necessarily distinct,
such that P H ¢ = H bj, p € Z and C is a constant, satisfies
7j=1 7j=1

Theorem 8 FEvery meromorphic in C* solution of (@ can be written in the form

. Csz(z)P ({1) P ({2) - <CZ”> |
P(m) P(m) P<bm>

where ci,¢o ..., cy and b1, by ..., by are complex numbers, not necessarily distinct,
such that qP H ¢ = H bj, p € Z and C is a constant.
7j=1 7=1

Applying the Schottky-Klein prime function’s property to the representa-
tion of function f in Theorems [7] and [§| we can reformulate these theorems in the
next forms.

Theorem 9 The meromorphic in C* function

PQ;JP<;>m,pQ;>

=CH
f(z) (Z)pipi AN
b ) b
where ci,¢a ..., Ccm and bl, by ..., by are complex numbers, not necessarily distinct,
such that ¢P H cj = H bj, p € Z and C is a constant, satisfies
j=1 j=1

Theorem 10 Every meromorphic in C* solution of (@ can be represented in the

form
f(2) ZCH(Z)P((I501>P<CZQ> p<:n)
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where ci,co ..., Cpm and by, by ..., by are complex numbers, not necessarily distinct,
m m
such that ¢ [] ¢;j = [ bj, p € Z and C is a constant.
j=1 j=1
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Extremal lattices are lattices maximal in size with respect to the number n of
their join-irreducible elements with bounded Vapnik-Chervonekis dimension
k. It is natural, however, to estimate the size of a lattice also with respect
to the number of its meet-irreducible elements. Although this number may
differ for nonequivalent (n,k + 1)-extremal lattices, we show that each
(n,k + 1)-extremal lattice has k disjoint chains of meet-irreducible elements,
each of length n — k + 2.
Keywords: Extremal lattices, Vapnik-Chervonekis dimension, meet-irreducible
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1. Introduction

This paper deals with extremal problems for lattices with bounded Vapnik-
Chervonekis (VC) dimension. For a finite lattice L, the VC dimension of L,
denoted vc(L), is the maximal k such that that L admit an order embedding
of boolean lattice on k generators B(k). A lattice L is called (n, k)-free if it has
at most n join-irreducible elements and its VC-dimension is at most k — 1, that
is, if it does not admit order embedding of B(k). Let us define f(n, k) as

k—1
Fn k) = <n>
(n, k) ; ;
It is known [2] that f(n,k) is an upper bound on the size of (n, k)-free lattices,
which is sharp for all n and k. Thus, we define (n, k)-extremal lattices to be (n, k)-
free lattices that reach this bound. As a matter of convenience, we will mostly
work with (n, k4 1)-extremal lattices, as they can be considered maximal lattices
of VC dimension k.

The idea of constraining VC dimension arises from the fact that, as it was
shown in [2], the growth of VC dimension is the only reason for exponential growth
of the lattice with respect to |J(L)| or to |M(L)|, where J(L) and M (L) are the
sets of join-irreducible and of meet-irreducible elements of L correspondingly. The
bound f(n, k), restricting the size of L, however, obviously depends only on |J(L)|,
while it is rather natural to consider either |J(L)| + |M(L)| or |J(L)||M (L),
or other bounds symmetric in |J(L)| and |M(L)|, as some natural measure of
“complexity” of the lattice. For example, |J(L)||M(L)| is the size of the reduced
formal context describing L, see [6] for examples.

The first step towards building such symmetric bounds could be an estimation
of the size of M (L) for (n,k + 1)-extremal lattices. As extremal lattices are not
unique for £ > 2, this number may vary. Here we are interested in producing
a simple lower bound for this case, as we generally seek to maximize |L| and
minimize |J(L)| and |M(L)|. Namely, we will prove that in L there are at
least k(n — k + 2) meet-irreducible elements arranged in k& disjoint chains,
descending from the top of the lattice almost to its bottom. We will also show
that this bound is sharp for k = 2, that is, for (n,3)-extremal lattices. It seems
that for larger k, however, this is not so, and even the rate of growth of |[M(L)]| is
not clear. As for the upper bound on the size of |M(L)|, it can be rather big. We
refer to [I] for the example of the family of (n, k + 1)-extremal lattices, k < n/2,
for which every k-th element is meet-irreducible.

The structure of the paper is as follows. In Section 2, for the sake of self-
sufficiency, we recall some basic facts about extremal lattices, as well as about
lattices and partial orders in general. In Section 3 we explore how extremal
lattices can be decomposed, and how these decompositions can be stacked. Then,
in Section 4, we introduce extremal decompositions of lattices, and prove, in
Theorem [2] that there is a one-to-one correspondence between extremal lattices
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and extremal decompositions via root decompositions. In Section 5 we use this
technique in order to provide, in Theorem [3] the desired lower bound on the
number of meet-irreducible elements. Finally, in Section 6 we outline the possible
directions for application or extension of obtained results.

2. Preliminary definitions

In this section we recall basic definitions from lattice theory, as well as some
facts about extremal lattices. We refer to [0] for further details and for general
background.

For a function f and a subset X of the domain of f, we write f[X] to denote
the image of X under f. From time to time we deal with unions of disjoint sets,
in this case, in order to stress their disjointness, we write A| | B instead of A B.
We write k to denote the standard set of k elements {1,...,k}.

All lattices and other objects considered in this paper are finite. Throughout
the text we will be dealing with three types of embeddings of lattices, which we
will explicitly differentiate: proper lattice embeddings, that is, (V, A)-embeddings;
(1, A)-embeddings, which will be the most common case; and order embeddings,
that is, embeddings of lattices as posets. Sometimes we will refer to (1,A)-
embeddings as simply embeddings, two other cases will always be indicated
explicitly.

For a lattice L, an element © € L is called join-irreducible if it does not
have proper join-decomposition, that is, if + = » V v implies * = u or © =
v. Meet-irreducible elements are defined dually; the sets of the join-irreducible
elements and of the meet-irreducible elements of L are denoted J(L) and M (L)
correspondingly. It is a well-known fact that for a finite lattice each element can
be represented via join-irreducibles, namely

v=\/{je )| j<a}

We denote semi-intervals in L as

(z] :=={y [y <z},
[z) :={y |y > z}.

For each x € L we introduce notation J(z) = (z]NJ(L) and M (x) = [z) "M (L).

We say that a set X C J(L) is a representation of an element x if \| X = z; X
is a minimal representation if no proper subset of X joins to x. Notice that,
in general, minimal representation is not unique, the simplest counterexample
provided by the lattice M3, also called diamond. Atoms are elements of L that
cover 0, the set of all atoms is denoted A(L). Every atom is, obviously, join-
irreducible, thus A(L) C J(L). Lattice is called atomistic if each element in it can
be represented as a join of atoms. For atomistic lattices it holds that A(L) = J(L).
The notion of coatoms is defined dually, and the set of coatoms is denoted Co(L).

The notion of mazimal chain of a poset is quite common in order theory. Here
we find useful to introduce a slightly different notion of a covering chain in a
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poset. We say that C'is a covering chain in P if C', with induced order, is a chain,
and if from x <¢ y it follows that x <p y. It is easy to see that for a finite P any
covering chain is a subinterval of some maximal chain.

A lattice is called graded, if for each element x the lengths of all maximal
chains in (z] are equal, in which case this length is called rank of =, denoted r(x).
In graded lattice, the zero is the only element with rank 0. Note that graded
lattice is a particular case of graded poset, which, however, would require a little
more elaborated definition.

We refer to [2] (or to its extended version [3]) for detailed discussion on
extremal lattices and lattices with bounded VC dimension. In particular, we refer
to these papers for the proofs of all statements in this section. Note also that there
authors would call an (n, k)-free lattice by a more correct, but more cumbersome
name a B(k)-free lattice on n join-irreducible elements.

A convenient characterization of B(k)-freeness can be given in terms of
minimal generators. The following Proposition is an easy consequence of [3]
Lemma 6.

Proposition 1 Lattice L is B(k+1)-free if the size of each minimal representation
s at most k.

The general bound which connects the lattice size with its VC dimension is
as follows:

Theorem 1 (Vapnik-Chervonekis bound) For a finite lattice L with ve(L) <
k and |J(L)| < n it holds
|L| < f(n,k+1). (1)

This bound is sharp for all n, k > 1.

As was mentioned before, lattices reaching the bound are called (n, k+1)-
extremal. The following proposition states basic properties of extremal lattices,
and describes their construction for several simple cases.

Proposition 2 1. An (n,1)-extremal lattice is a one-element lattice, for all
n>1;

2. an (n,2)-extremal lattice is a chain of length n;
3. forn <k, an (n,k + 1)-extremal lattice is B(n);

4. forn,k > 1, an (n,k+1)-extremal lattice is a graded lattice of height n with
r(x) = [J(z)];

5. forn>1 and k > 2, every (n,k + 1)-extremal lattice is atomistic.

Note. In Theorem (1} which establishes the upper bound on |L|, we demand
that ve(L) < k and |J(L)| < n, not ve(L) = k and |J(L)| = n. This formulation
is rather a technicality, as for extremal lattices these inequalities will always turn
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out to be equalities, for one exception: as stated, an (n, 1)-extremal lattice is a
one-element lattice, its VC dimension is 0, but it has no join-irreducible elements,
that is, |J(L)] =0 < n.

In contrast to the general case, in an extremal lattice each element x
has a unique minimal representation, which we denote by G(x). Note that
the uniqueness of minimal representations can be considered as an alternative
definition of the meet-distributivity of a lattice. Thus, stating the uniqueness
of minimal representations in extremal lattices is equivalent to stating that all
extremal lattices are meet-distributive.

As it turns out, all extremal lattices can be iteratively constructed through
procedure called doubling. For a poset L and its subposet K, doubling of K in L,

[ ]

denoted L[K], is a poset with elements L U K, and order

< §U{($,3’/)GL><K|x§y}U{(9‘c,§;)€K><K|x§y},

where K is a disjoint copy of K. Although doublings are defined for arbitrary
posets, mostly we will be interested in doublings of lattices.

Proposition 3 If L and K are lattices and K (1, \)-embeds into L then L[K] is
a lattice.

The procedure for construction of arbitrary extremal lattices by doublings is
provided by the following lemma:

Lemma 1 For an (n,k + 1)-extremal lattice L, n > 1, k > 2, and an (n,k)-
extremal lattice K, order-embedded into L, LIK] is an (n + 1,k + 1)-extremal
lattice.

In the following two sections, which constitute the core of the paper, we will
widely generalize the doubling procedure from Lemma [I| above, arriving at root
decompositions of extremal lattices.

3. Decompositions of extremal lattices

In this section we show that doubling can be used to deconstruct extremal
lattices, as well as to construct them. This and the following sections follow in
general Section 3 and Section 4 in [4]. The methods that we develop here are,
however, far more refined and close connections can only be made at the beginning.

Lemma 2 Let L be an (n,k + 1)-extremal lattice, n > 1, k > 2. Then there is a
one-to-one correspondence between the coatoms of L and the elements of G(1r),
established by:

ceCo(L) 2a€G(1y). (2)
Moreover, given such ¢ and a, K' = [a) is an (n — 1,k)-extremal lattice, L' =
(=L —la) is (n — 1,k + 1)-extremal, and the mapping §: K' — L/,

8(z) = \/(J(z) — {a}), (3)
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defines a (1, \)-embedding of K' into L'. Thus, L = L'[K'].

Note. Sometimes, when referring to §, we write J, in order to explicitly identify
the element a used in .

Proof. We will only establish the correspondence between coatoms and elements
of G(11), the rest follows verbally [2, Theorem 4].

Let us take a € G(11), X = (J(L) —{a}), and ¢ = \/ X. As G(11) is the only
minimal decomposition of 17, and as X 2 G(1r) (because a ¢ X)), we get z < 1¢.
It is also clear that x is covered by 1y, because there is exactly one element (a)
in J(1z) — J(z). Thus, ¢ is a coatom, and it is, trivially, the only coatom not
above a. Thus, establishes an injection of G(11) into Co(L).

For the bijection, let us note that for any coatom d there is a € G(11) — J(d).
Now, if we construct ¢ = c¢(a) using the procedure above, then ¢ is a coatom,
and d < ¢, implyingd =c. m

We write ¢, or, in a functional form, ¢(a), to denote the unique coatom of L
satisfying (2), for @ € G(11). An easy corollary from [4, Proposition 2.3 is the
following representation for c,.

Proposition 4 In the notation of Lemma@ ca =V (J(L) —{a}).

For an (n, k + 1)-extremal lattice L and an element a € G(1y), let us denote
by L, a lattice L — [a) = (¢4, and by L® a (1, A)-embedding of semi-interval [a)

[ ]
into L, by § from . We also use notation L, and L to denote semi-intervals

(cq) and [a) correspondingly, the notation paralleled with that in the doubling
[ ] [ ] [ ] [ ]
construction. Notice that L & L,[L*] and L = L, U L* = L, U L* As L, = L,
introducing the latter may seem excessive. We, however, will find it useful further
[ ]

on, when we will be constructing families Lﬁ and LE , for which the mentioned
lattices would serve as building blocks. In general, different elements of G(1r)
yield nonequivalent decompositions of L in a sense that L, % L; for different
a,be G (1 L).

Now we are going to prepare a method for stacking decompositions. First of
all, we examine how join-irreducible elements behave under decomposition.

Proposition 5 For an (n,k + 1)-extremal lattice L and an element a € G(1p),
holds:

1. if k> 3 then J(L,) = J(L*) = J(L) —{a};

2. ifk =2 then J(L,) = J(L)—{a} and J(L*) is an n-element chain, J(L*)

L*—{0ra}, and there is a natural correspondence between J(Lg) and J(L%),
established as follows:

o for x € J(L,) we define 2’ € J(L*) as 6(z V a),
e fory e J(L®) we definey’ € J(Lg) as a unique y' for which §(y'Va) =
Y,
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Fig. 1: Correspondence between join-irreducible elements of an (n,2)-extremal
lattice embedded into an (n, 3)-extremal lattice.

3. if k =1 then L and L, are n + 1 and n-element chains correspondingly,
a=1p, J(L,) = J(L) — {a}, and L® is a one-element lattice, L* = 1y,
J(L%) = 0.

Proof. All statements, except for the explicit correspondence in (2), follow from
the fact that L, and L® are (n—1,k) and (n—1, k — 1)-extremal correspondingly,
and from structural properties of extremal lattices given in Proposition 2} In
particular, atomicity implies that L, and L® not only have the same number of
join-irreducible elements, but that these elements are exactly atoms, and thus
coincide.

So we only need to prove the explicit correspondence between join-irreducible
elements in an (n — 1, 3)-extremal lattice L, and an (n — 1, 2)-extremal lattice L®.
First of all, as L? is a chain, J(L*) = L* — {0z« }. Now, as L is (n,3)-extremal,
each subset of J(L) of size at most 2 is a unique minimal representation for some
x € L. Thus, theset A ={xVa|x € J(L)} contains exactly n elements, all lying

L]
above a. But, as [a) = L%, we get |[a)| = |A| = n. Thus, the mapping = — x* =
o
x V a establishes a one-to-one correspondence between J(L) and L®. Moreover, as

a*=aVa=a= Oia7 this is also a correspondence between J(L,) = J(L) — {a}

and J(L®). The application of § to the right-hand side establishes the desired
correspondence.

See Figure [1] for the illustration of the argument. m

From Proposition [5| also easily follows the correspondence between J(L*) and
J(L*):
Corollary 1 In terms of Proposition 3,

J(La) = J(La>5
J(L) = av J(LY) = aV J(Ly),
where aVJ ={aVyj|jeJ}

Proposition 6 For an (n,k + 1)-extremal lattice L and an element a € G(1pr),
holds:
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G(1 ) {a}, k>3,

1. G(1pe) =< (G(1p) — {a}), k=2,
; k=1

2 o, )= 600~ ek weh
. Fa G(1z) — {a} + {b} for somebe J(L)—G(11), n>k.

Proof.

Item (2) is exactly [4, Lemma 3.4|, and cases kK = 1,2 in (1) are trivial, so
we need only to prove (1) for k& > 3. Let us observe that the lattice L® is an
(n—1, k)-extremal with J(L) = J(L®) and |G(1pe)| =k —1=|G(11) — {a}|. On
the other hand, notice that

\/GlL —a\/\/ —{a}) \/{x\/a|a:€G1L {a}}
—\/ —{a}).

Thus, G(11) — {a} is a minimal representation of 17« in L. m

With Proposition [f| we now can take two (or more) elements a,b € G(1z) and
construct lattices Ly, = (La) b and Ly, = (Lb)a' Fortunately, these lattices are
equal, as we will soon prove. First of all, however, we need to introduce some
intermediary terminology, which is a technical, but necessary step.

Note. The terminology developed below, until Lemma [3| will only be used in
formulation and the proof of the lemma, which then would enable us to drop it
and introduce a more concise formulations.

For an (n,k + 1)-extremal lattice L, let A and B be disjoint, and possibly
empty, subsets of G(11,), |A|+|B| = p < k. Let X = x1,...,xp, be an enumeration
of A| | B. We denote by L‘;‘(’B the lattice, embedded into L and obtained as the
result of the following process: Lo = L, Ljy1 = (L’)xz ife; € Aand Ljy1 = (Ll)xl

if z; € B, L?’B = L,. We write simply Ly, if A and B are clear from the
context. When X is an enumeration of a set {a, b} with only two elements, we use
instead a simplified notation L, Lab7 Lba and L to denote four possible ways
of decomposition.

Similarly, we define Lx by putting L;+1 = (L;)* instead of (L )xl, and

=

Lit1 = (Lj)g, instead of ( ):c in the iterative definition above. Note that L
is embedded into L itself, for all A, B and X.

Proposition 7 For an (n,k + 1)-extremal lattice L and a,b € G(1r,), holds:

¢r,(b) = cra(b) = cq A cp,
ce (b) = cq A cp,

a

Cia(b ) = ¢,
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where b* =bVa € J(z/“).

Proof. By Proposition 4] ¢, = \/(J(L) — {a}), thus

cL, (0) = ¢, (0) = \/ (J(ca) — {8}) = \/ (J(L) — {a,D})
—\/J ﬂJcb)—ca/\cb:cLb(a).

°
As L, = Lg,, the second equation is obvious, for the third one we use the

representation J(L*) = aV J(L,) from Corollary to get:

ch®ﬁ=\ﬂJ@a—{Vﬂ=\ﬂaVKLJ—waH
—a\/\/ —{0}) =av \/(J(L) - {a,b})
=\ (J( {b} = cp.

Lemma 3 L?(’B is independent of enumeration X, for an (n,k + 1)-extremal
lattice L and disjoint A, B C G(11). That is, Lx = Ly, for all enumerations X, Y
of AU B.

Thus, Lx depends only on A and B, and we denote it by Lf. Moreover, LE
is an (n — |A| — |B|, k + 1 — |B|)-extremal lattice.

Proof. Trivially, all we have to do is to prove three cases, namely that L., = Ly,
LY=Lt and L% = L% for an (n,k + 1)-extremal L with n > 2 and k& > 1, 2
and 3 correspondingly. Figure [2] below depicts this equivalence.

The proof itself, however, is a straightforward application of Proposition

1. Ly = (CLab] = (Ca /\Cb] = Lpq;

2.
LY =08,b)r, = 0plb,cal = {0p(2) | b < z,2 < o}
= {0p(x) | b < z,(x) < dp(ca)}
= 35[b) N (By(ca)] = B4[b) N (ca A ] = LY,
3.

L% = §[b) o = 6([b) N da[a))
=0y 004([aV b)) =d,00([aVb)) = L"

|
L]
Lemma [3| then easily extends to Lf.
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Fig. 2: Equivalence of enumerations.
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L]
Proposition 8 In terms of LemmaB, L_?(’B 1s independent of enumeration, thus

L]
justifying the notation LE. Moreover,

- /B, Al

Mapping 6p: [\/ B) — (A c[Bl], defined as

[ ]
establishes an isomorphism between LE and LB, and

05" (@) =\/(J(z) + B).

Proof. The independence proof follows the one from Lemma and is only
snnphﬁed by the fact We do not use §. Namely, we get Lab = (ca Np] = Lba,

L b= 1b,cq] = Lb and Lab [aVb) = Lba Same argument also yields two other
statements of the proposition. m

Corollary 2 In terms of Lemma@ LB N)-embeds into L ap. Moreover, for
any disjoint A" and B', such that A’ I_IB' AI_IB a lattice LB (1, N\)-embeds into
Lﬁ;, whenever A C A’.

Note. At this point, as mentioned above, we no longer need any notation
involving enumerations, like LQ’B. Further on we will write simply Lﬁ.
4. Root decompositions

Notions of root and root decomposition were introduced in [4] in order to
count isomorphism classes of (n, 3)-extremal lattices. There it was shown that for
k < 3, but not for larger ones, isomorphism of decompositions is equivalent to
isomorphism of lattices. Here we generalize root decompositions in order to obtain
similar equivalence for larger &, thus, our definition of root decomposition will be
different. The definition of root, however, stays the same.

Definition 1 (Extremal decomposition) An (n,k+1)-extremal decomposition
is a family {L%} of extremal lattices, parametrized by a set X C k, together with
a family {¢xy: Ly — L} }ycxck of embeddings, such that:

1. L% is (n,k — | X| + 1)-extremal, for all X;
2. ¢xy is a (1,N)-embedding of L’ into L3, for allY C X ;

3. ¢x.x =1id and ¢py,z o dxy = ¢x.z, for all Z CY C Z C k; that is, all
embeddings are compatible.
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We typically denote an (n, k + 1)-extremal decomposition by £ = (L%, ¢x,y) and
often omit the word extremal, whenever the context is clear. The lattice Ly, or
simply L*, is called a root of the decomposition, all other lattices L% are embedded
into it. With abuse of notation we denote embedding of L% into L* as ¢x. We
will write simply ¢ if the image and the domain are clear from the context. At
times, instead of k we use custom fixed set of size k, which we call a base set of
L.

Note. For most embeddings in an (n,k + 1)-decomposition, the unit
preservation is automatically satisfied, as, by Proposition , for k > 1all (n,k+1)-
extremal lattices are graded of height n. The only place where it matters is when
we considering embeddings of Ly, as it is a one-element (n,1)-extremal lattice,
and the condition ensures that this element is always mapped to the unit element.

Our goal is to show that every (n+k, k+1)-extremal lattice can be in a unique
way put to correspondence with an (n, k + 1)-decomposition. The road for such
correspondence is already paved by Lemma [3]

Definition 2 (Root decomposition) For an (n + k,k + 1)-extremal lattice L
we define its root decomposition L£(L) as an (n,k + 1)-extremal decomposition
L(L) = (L%, ¢xy), where G = G(11), Ly = LY _«, and ¢xy: L}y — L% is a
natural embedding of Ly = Lé_y into L, = Lé(_X, for X CY.

It follows from Corollary that all ¢ are (1,A)-embeddings and the
compatibility is straightforward. We also define a root element of an extremal
lattice L as z* = A\ G(11) and a root L* of L as L* = [0,2*], . Note, that L* will
also be the root of £(L), and further we will not distinguish these definitions.

For further justification of putting £(L) to correspondence with L, we make
the following digression.

Proposition 9 For an extremal lattice L it holds

L= |_| ‘Z’é—Xv
XCG

where G = G(1).

Proof. We recall from Propositionthat LY v =[VX,A\e[G-X]]. Forz € L,
let us introduce H(x) = G N J(x) (we recall that the suggestive notation G(z)
is already used to denote the minimal representation of z). Then H(x) C G and
x > \/ H(x). Moreover, Lemma [2| implies that j < x < z £ ¢;, for h € J(L).
Thus, x < ¢, for all h € G — H(x), and consequently x < A ¢[G — H(z)], that is,
7 H(2)
T < LGiH(x).
On the other hand, if x € Lg_H, for some H C G, then « > h for all h € H,
and x < ¢; & j £ x for all j € G — H, from which it follows that H = H(x).

All in all, the family Lé_ y 1s nonintersecting and covers entire L, so the
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statement of the proposition follows. m

While root decomposition gives us a transition from extremal lattices to
extremal decompositions, the following definition enables us to pass from
decompositions back to lattices.

Definition 3 (Canonical lattice) Canonical lattice L(L) of an (n,k + 1)-
decomposition L is a poset

{X,z) | X Ck,x € Lx},
with an order defined by
(X,2) < (Y,y) & X CY and x < ¢y.

The fact that L(L) is a lattice, let alone an extremal one, is not that trivial and
we pose it as a separate lemma.

Lemma 4 The canonical lattice of an (n,k + 1)-extremal decomposition is (n +
k,k + 1)-extremal.

Proof. For k = 1 the statement is trivial, so we consider k£ > 1, fix an (n,k + 1)-
extremal decomposition £ = (L%, ¢x y), and denote its canonical lattice by L.
The lattice Ly, is (n,1)-extremal and thus, by Proposition [2| is a one-element
lattice. We denote this element by w and note that ¢k x always maps u to 1.
Thus, (k,u) is the largest element, that is, a unit, of L.

Now, for € L% and y € Lj-, let us consider the element z = (X NY, ¢(z) A
®(y)), which is trivially a lower bound of (X, z) and (Y,y). On the other hand,
if some (W, w) is another lower bound, then W C XY and thus W C X NY.
Finally, w < ¢x,w(z) and w < ¢y, w(y). Thus

w < dxwx A dy,w(y) = dxny,w © dox,xny (2) A dxav,w © oy, xny (V)
= dxny,w © (dx,xny (2) A dy,xny (Y)),
and (W, w) < z, that is, z is a meet of (X, z) and (Y,y). Allin all, L is a (1, A)-

semilattice and, consequently, a lattice. Still, let us describe join in L explicitly.
We claim that

\/(AU a;) = (4,a),

7
where A = J; Ai, a = \/;¥a,.4(a;) and ¥xy(z) = ANy €Y | 2 < ¢y x(y)} for
X CY. As it is with ¢, we write simply 1 when the image and the domain are
clear. Trivially, ¢)xy o ¢y x(z) =z, for all X C Y.

The proof of explicit construction of joins is almost immediate. Indeed,

(Ai,a;) < (A,a) for all i. Now, if we take (W, w) such that (A4;,a;) < (W, w)
for all 4, then A ={J, A; C W and a; < ¢w 4, (w), for all i. But then

Ya;, (@) <a, a0 dwa,(w) =1a,40 044, 0 dw,a(w)
= ¢W,A(w)a
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and a =/, Ya; < ¢w, implying (A,a) < (W, w).

Now we consider join-irreducible elements of L. We claim that there are exactly
two kinds of them: n elements (0, j) for j € J(L*), and k elements ({i},0) for
i € k. Indeed, all these n + k elements cover (,0), that is, the zero of L, and
so they are trivially join irreducible. Let us show that no other join irreducible
element exists.

First of all, for X C k, if | X| > 2 then (X, z) = (X —a, ¢x)V (X —b, ¢x), where
a and b are any two distinct elements of X, and thus (X, x) is not join irreducible.
If | X|=1and z > 0 then (X,z) = (X,0)V (0, ¢z), and (X, z) is again not join
irreducible. Finally, if x € L* and x = y V z is a proper join decomposition of z
then (0,2) = (0,y) Vv (0, 2) is a proper join decomposition of ({, z), which finishes
our claim about the structure of J(L).

Simple manipulation with binomial coefficients show that L has

00 02020
-2 ()0)- Z.(7)

j<n+k
elements, so in order to finish the proof we only need to show that L is B(k + 1)-
free.

To show this, we employ Proposition [l| and argue that each minimal join
representation has at most k elements. Let us fix an element (X, z) of L, and let
H C J(L) be a minimal representation of (X,z). Again, we may take X C k,
for otherwise the statement holds trivially, and denote [ = |X|. Recalling the
structure of J(L), we split H into H = HN{(0,5) | J € J(L*)} and H" =
HnN{({i},0) | i € k}. Then

(X,z)=\/H v\ H
= \VA©.5) | 0,5) € BV \{{i}0) | ({i},0) € H"}
= (0.0 1 0.) € H'Y) v ({i | ({i},0) € H"},0)
=y),

where Y = {i | ({i},0) € H"} and y = \/{¢p v (4) | (0,7) € H'}. We may conclude
that X =Y and z = y. From the first equation we get X = {i | ({¢},0) € H"} and
thus H” = {({i},0) | « € X}. In particular, |H”| = | X| = I. Now, let us notice that
for j € J(L*), ¥p x(j) lies in J(L%): if | X| < k — 2 then J(L%) = ¢ [J(L.)], and
if | X| = k—1 then L% is a chain and all its nonzero elements are join irreducible.
As H is minimal, then the representation y = \/{¢y x(j) | (0,5) € H'} is also
minimal, for otherwise we could exclude some elements from H” without changing
the join of H. However, this representation is in L%, which is (n, k—[+1)-extremal.
Thus, |[H"| <k —1,and |H|=|H'|+ |H"| <l+k—-1l=k m
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Corollary 3 For an (n,k+1)-extremal decomposition L there are n+k elements
in J = J(L(L)), which have form J = J U J", where

J'={.5) | J € J(L)},
J"={({i},0) | i € k},

|J'| =n and |J"| = k.

Corollary 4 For an (n, k+1)-extremal decomposition L, joins and meets in L(L)
are defined as

\/(Aiva’i) = (A’ CL),

i

where A = UZ Ai, a = \/z wAi,A(ai)} @bx,Y(fE) = /\{y ey | r < ¢Y,X(y)}} fO’F
XCY. And

/\(Biabi) = (B,b),

where B =, B; and b= )\, ¢, B(b:).

To establish a correspondence between extremal lattices and decompositions
we now clarify which decompositions we consider isomorphic.

Definition 4 Isomorphism of (n,k + 1) decompositions £ = (L%, ¢xy) and
K = (K%,p¢xy) is a pair (0,e) where o is a permutation of k, and e: K* — L*
is an isomorphism from K to L, such that gb;(lX) ogopx is an isomorphism of
K% into L, for all X C k. Decomposition K is isomorphic to L if there is an
isomorphism between them.

It is trivial to check that, thus defined, isomorphism is an equivalence relation, and
that canonical lattices and root decompositions are preserved under isomorphisms.

Proposition 10 For (n + k,k + 1)-extremal lattices L and L', and (n,k + 1)-
extremal decompositions L and L' holds:

e L(L)=L(L), whenever L = L';
o L(L) = L(L), whenever L= L.

Finally, the following Lemma shows that the operations of constructing
canonical lattice and root decomposition are inverse up to isomorphism,
which establishes the correspondence between extremal lattices and extremal
decompositions.
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Lemma 5 For an (n + k,k + 1)-extremal lattice L and an (n,k + 1)-extremal
decomposition L holds:

Proof. L(L(L)) = L. Let us denote G = G(11,) and
L'=L(LL)={(X,z) | X CG,x e L _x},

and let us recall that by Proposition [J]

L= |_| i)G'(—Xa
XCG

and that by Proposmonl the mapping dx : LG x = LG X

5x($) = \/L* (JL(.Z') — X),
5 (@) = \/o(Jo+(2) U X),

is an isomorphism between I.L)G{ y and Léi -

Thus, the mapping a: L' — L, defined by a(X,z) = 5;(1(30), provides a
bijection between L’ and L with o (z) = (H (), () (x)), where H(x) = J(x)N
G. Now we recall, that ¢xy for £(L) is provided by the natural embedding of
Lgfy into LX_y, which means that (X,z) < (Y,y) if and only if X C Y and
S AN

Note that for = € Z})G(_X holds J(6x(z)) = J(z) — X, and thus for z € LY
holds J,(6%"(x)) = Jp+(x) U X . Thus

(X,2) <Yy & XCY,z<py
& X CY,Jp-(x) C Jr-(y)
& X UJp(z )CYHJL*(ZJ)
& J(0x (x) € J(6 (v))

<~ OL(X,ZE) SL Oé(}/, y)v

and the isomorphism of L and L’ follows.
L(L(L)) = L. Let L= (Lx,¢xy), L=L(L)and L = L(L) = (L/X7¢/X,Y)'
By Corollary |3, L is (n + k, k 4+ 1)-extremal and J(L) = J' U J", where
J'={(0.5) | T € J(L")},
J"={({i},0) | i e k}.
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Trivially, \/ J” = (X, 1) = 1z. Thus, G = G(11) = J", and
L = L = |og,\/ (D) - G(L)}L

[OL,\/J’} [(DOL* (@,\/J(L*))L

=[(0,01+),(0,17+)], = L*.

We define o: k — J” and ¢: L* — L™ as o(i) = ({i},0) and e(z) = (0,z).
We claim that (o,¢) is an isomorphism of £ and £'. Indeed, let X' C J” =
{({i},0) | i € X} = o[X] for X C k. Then

L =L i = {\/X/ /\ ]}L
S\ZAZE (G—X’)}; VN vV

= [(X) OL*)’ (@7 ]-L*) \ (Xa OL*)]L
= [(X’OL*)’ (Xv 1L*)]L = L;(a

and the isomorphism between L% and L, is established by the mapping a: L%, —
L’;,, ofx ):( ,T) = ¢X’(0 ¢X( )) ¢0[X}050¢( r). -

As an easy Conbequence we now obtain the most important structural result
of the paper, which establishes a correspondence between extremal lattices and
decompositions.

Theorem 2 For an (n+ k, k + 1)-extremal lattice L and an (n,k + 1)-extremal
decomposition L, L = L(L) if and only if L= L(L).

Although technical details in this section were rather involved, the basic fact
of the correspondence between extremal lattices and decompositions is quite
transparent. Apart from providing structural information about extremal lattices,
decompositions can be quite handy in depicting them, as illustrated by Figures
and [l

5. Meet-irreducible elements in extremal decompositions

One possible application of structural insight we gain from extremal
decompositions is the estimation of the number of meet-irreducible elements. We
start by characterizing meet-irreducible elements of canonical lattices of extremal
decompositions. We then apply this characterization to get a simple lower bound
on the number of meet-irreducible elements of extremal lattices.

Proposition 11 For an (n, k+1)-extremal decomposition L, its canonical lattice
L =L(L), and elements (X,x) and (Y,y) € L, (X,z) is covered by (Y,y) if and
only if either x =y and X <Y, or if X =Y and x <1 y.

Proof. It is trivial that under given conditions, (X, z) < (Y,y), so we show that
these conditions are also necessary. Indeed, if (X, z) < (Y, y) then (X, z) < (Y,y),
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meaning that X C Y and ¢z C y, and that at least one inequality is strict.
If X £ Y then there is Z such that X C Z C Y and thus (X,z) < (Z,z) <
(Y,y), contradicting the covering. Thus, X < Y, and similarly z < y. Finally,
if in both cases there is a proper covering, that is, if X < Y and =z < y, then
(X,z) < (X,y) < (Y,y), again contradicting the covering. m

Lemma 6 For an (n,k + 1)-extremal decomposition L and its canonical lattice
L = L(L), an element (X,x) € L is meet-irreducible if and only if one of two
mutually exclusive conditions hold:

e either x is meet-irreducible in L%, and x ¢ ¢y x [L3], for allY D X;

e orx is aunit in Ly and X =k —a, for some a € k.

Note. By this lemma, all elements of the form (k — a, x) are meet-irreducible.
Proof. We use the property that an element is meet-irreducible if and only if
it is covered by exactly one element. The statement follows from step by step
classification of the elements of L:

e 7 = (k,1). T is a unit in L and thus is not meet-irreducible. Neither it
satisfies any of two given conditions;

o T = (k—a,l), for some a € k. The only element covering 7 is (k, 1), thus
it is meet-irreducible, while it also satisfies the second condition, and does
not satisfy the first, because the unit element is not meet-irreducible;

o T = (k—a,x), for some a € k and x < 1. As Lj_, is a chain, = is meet-
irreducible in Ly _, and thus T satisfies the first condition. The element
Z = (k — a, ) is covered by (k — a,2’), for a unique 2’ € L, covering .
In the same time Lj contains only unit, and (k, z) is not a cover of . Thus,
T has a unique cover and thus it is meet-irreducible;

e 7T = (X,1), for X C k , |X| < k—2. T does not satisfy neither of two
conditions. In the same time for a,b € k — X, a # b, elements (X U a,1)
and (X U b, 1) cover T, thus Z is not meet-irreducible;

o7 = (X,x), for X Ck, |X| <k-2, 2z < 1. If z is meet-irreducible in
L% and = ¢ ¢yx [Ly] for all Y 2 X, then T satisfies the first condition,
does not satisfy the second, and (X, 2’) for a unique cover 2’ € L% of x is
a unique cover of T in L. Otherwise both conditions are not satisfied and
there is a proper meet-decomposition of . If x is not meet-irreducible in
L% then this decomposition is given by (X, z) = (X, z") A (X, 2") for proper
meet decomposition z = 2’ A z”. Or, if x € L} for some X D Y then the
decomposition is given by (X, z) = (X, 1) A (Y, z).
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Theorem 3 Any (n + k,k + 1)-extremal lattice L has at least k(n + 1) meet-
wrreducible elements, arranged in k disjoint covering chains of length n each. Fach
of these chains contains exactly one element of rank i, fori € k—1,...n+k—1.

Any covering chain of meet-irreducible elements in L of length n is one of
those chains.

Proof. Trivially, if we denote the initial lattice by L and denote G = G(11) and
L = L(L), then L = L(£) and by Lemma |§| set {(G —a,z) | v € L§_,} =
[V G — a,1) gives such chain.

For the second statement, let us take a covering chain C of meet-irreducible
elements in L of length n. Again, from Lemma [f] it easily follows that all these
elements should lie in L% for some fixed X. Otherwise there are elements T =
(X,z) and § = (Y,y) in C such that T < 7 and X C Y, which is impossible. Now,
let us note that height of L% is n, and thus in order to fit in such chain, the unit
of L% should also be meet-irreducible, which is only the case for X = G —a. m

We call meet-irreducible elements from Theorem [3] canonical meet-irreducible
elements, and corresponding chains canonical chains. Note also that in an (n +
k,k + 1)-extremal lattice there are at least k meet-irreducible elements of rank
k — 1. However, all elements of rank lower than k& — 1 are situated trivially, as was
shown in Lemma 3.2 in [4], which we repeat below as a Proposition Its easy
corollary is that there are no meet-irreducible elements of smaller rank.

Proposition 12 For an element x of an (n, k+1)-extremal lattice, G(x) = J(z),
whenever G(x) < k — 1.

Corollary 5 The smallest rank of a meet-irreducible element in an (n+k,k+1)-
extremal lattice 1s k — 1.

Proof. Theorem [3|states that there are & meet-irreducible elements of rank k£ — 1.
On the other hand, let us take x such that r(z) = |J(z)| < k — 2, and let us
take two distinct join-irreducible elements a,b € J(L) — J(X). Then there are
two elements x, and x; such that G(z,) = J(z) + a and G(xp) = J(x) + b. By
Proposition [12} J(z4) = G(z,) = J(z) + a and J(x3) = J(z) + b. Consequently,
J(xg Nxp) = J(xg) N J(xp) = J(z), and thus x4, A 2, = x, which gives a proper
meet-decomposition of z. m

The easiest example of canonical chains in extremal lattice can be given by
an interval lattice on n + 2 elements, which is (n + 2, 3)-extremal. This lattice
is the lattice of all intervals of [1,...,n + 2], including the empty one, ordered
by set inclusion. The meet-irreducible elements are {[1,7] | i = 1,...n+ 1} and
{[i,n+2] | i =2,...n+ 2} and there are 2(n + 1) of them. Figure |5 provides an
illustration of these lattices.

As it turns out, interval lattice has no meet-irreducible elements, other than
those, provided by Theorem [3] Moreover, it is, in essence, the only extremal lattice
with that property. All other (n,3)-extremal lattices will have some additional
elements, and for k > 2, construction of an (n + k, k + 1)-extremal lattice with
k(n + 1) elements is impossible for large n.
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Fig. 5: Interval lattices. Black dots indicate meet-irreducible elements.

Lemma 7 An interval lattice on n+2 atoms is (n+ 2, 3)-extremal with 2(n+ 1)
meet-irreducible elements, that is, it reaches the lower bound on the number of
meet-irreducible elements from Theorem 3,

Moreover, if an (n + 2,3)-extremal lattice has 2(n + 1) meet-irreducible
elements, then it is isomorphic to the interval lattice on n + 2 elements.

Proof. The fact that the interval lattice is extremal an reaches the lower bound
is trivial, so we only need to prove the second statement. Let L be an (n + 2, 3)-
extremal lattice with J(L) = n+ 2. By Theorem 3| in L there are two disjoint
chains {m1,...,mp4+1} and {l1,...,l,+1} of meet-irreducible elements, such that
r(m;) =r(l;) =1, fori =1,...,n+ 1. By proposition of the lemma, those are the
only meet-irreducible elements of L. Let us additionally put my42 = lp42 = 1.
This way, chains {m;} and {l;} are still covering, but we can now state that each
x € L can be represented, not necessarily in a unique way, as x = m; A l;, for
some ¢ and j.

Without losing generality, we suppose that J(m;) = i, for all ¢: this can always
be achieved by reordering of J = J(L). Note that for each = m; A l; we have
J(:L') = J(mz) N J(l])

We claim that J(l;) = [n 4+ 3 — j,n + 2]. In this case the elements of L will
be z such that J(z) = 0, or such that J(z) = [a,b] for 1 < a < b < n+ 2. This
structure will correspond exactly to the interval lattice and that would finish the
proof of the lemma.

Let us suppose the contrary, and fix the largest j such that J(l;) # [n+3—j,n+
2], notice that j < n+2as J(lp42) = J(1) = [1,n4+2]. As J(lj41) = [n+2—j,n+2],
we get J(I;) = J(lj11) —a=[n+2—j,n+2]—aq, for some a € [n+3 —j,n+2|.

Let us recall that a = m;, Alj,, where iy and jg are smallest such that a < m;,
and a < [j,. Thus, a = mg A l]+1 and

1= |J(a)| = |[1,a] N [n+2—j,n+2]|
:\n+2—g, )| > |n+2-jn+3-4)]=2

a contradiction. m
6. Discussion and open problems

As was mentioned in Introduction, the ultimate goal of our exploration is to
arrive at bounds on the size of lattices with bounded VC dimension, symmetric
with respect to |J(L)| and M (L). However far we may be from this goal, several
improvements certainly can be made.
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First, it seems that for k£ > 3 our lower bound may be significantly improved,
although this would require a certain elaboration. As a first step, we are interested
in the possibility of constructing extremal lattices with only canonical meet-
irreducible elements:

Question 1 Is there an (n + k, k + 1)-extremal lattice with only canonical meet-
wrreducible elements, for k > 3 and for sufficiently large n

The tentative answer to Question [I] is: no. What we can realistically expect is
some limit on the rate of growth on the number of meet-irreducible elements,
which we anticipate to be linear.

Question 2 For given k, is there a constant C = C(k) such that for all n there
exists an (n + k, k + 1)-extremal lattice L with |M(L)| < C -n?

An obvious way of providing an upper bound on the minimal number of meet-
irreducible elements is to try and construct a family of lattices obtaining such
bound. Obviously, root decompositions can be a handy tool for this. As a step in
this direction, one can ask for an algorithm that, starting from given (n,k + 1)-
extremal lattice L, would go through all its (n + k,k + 1)-extensions, possibly
with repetitions. Here we use term extensions to denote extremal lattices, which
share a given root, at least up to isomorphism.

Devising such algorithm may, on the other hand, be nontrivial, as it involves
generating (n, [)-extremal lattices, embedded into intersection of several (n,l+1)-
extremal lattices. This, apart from problems of practical realization, may require
further theoretical elaboration.

Problem 1 Device an effective algorithm for enumerating, possibly with repetitions,
all extensions of an (n,k + 1)-extremal lattice.

As a curiosity, which, on the other hand, can help in shaping the theory, let
us recall that the root decomposition in this paper appear as a generalization
of a more simple construction from [4], which was used to count all possible
non-isomorphic (n,3)-extremal lattices. Now, we may ask the similar question
about the number of non-isomorphic lattices for lager k, and see if our advanced
decomposition can help in finding them.

Question 3 How many non-isomorphic (n + k, k + 1)-extremal lattices exist?
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TOHOBA, JIjI IHTEPBAJBbHUX IOJIIHOMIB y Te€pMiHaX OPTOTOHAJILHUX ITOJIIHOMIB
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sIKi pobacTHO CTabIIi3yIOTh KAHOHIUHY CHCTEMY.
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HAJIBHBIX HOJMHOMOB Ha [0, 400) U UX IIOJUHOMOB BTOPOro poja. Ilpemioxkeno
CEeMENCTBO yIpaBIeHuil, pPOOACTHO CTAOUIU3UPYIONIEE KAHOHUIECKYIO CUCTEMY.
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™Mbl ['ypBHIa; cTabuan3aius yiupaBiseMbIX CHCTEM.
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1 Introduction

Throughout this paper, let n and m be positive integers. We will use C and
R to denote the set of all complex numbers and the set of all real numbers,
respectively.

The aim of this work is to rewrite Kharitonov’s well-known theorem [26] on
the Hurwitness of interval polynomials through orthogonal polynomials [0, co) and
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their second kind polynomials; see Proposition [2| and Theorem [2 We will also
construct positional robust controls u = w,,(x) for the Brunovsky system of degree
n via two sets of Markov parameter sequences or equivalently by using two families
of Hurwitz polynomials; see Definition [§] and Theorem [3]

The motivation for present work comes from two sources. One comes from
the interrelations between the Markov parameters, orthogonal polynomials and
Hurwitz polynomials and their practical application on control theory. The second
comes from the generalization of the indicated results for the matrix case.

The present work is based on the Markov parameter approach which is
thoroughly studied in [20, Chapter XV]. We decisively use the explicit interrelation
between the coefficients of given polynomials and their Markov parameters; see
remark 1] or [I0, Lemma 3.1]. This interrelation together with the Hurwitness
criteria in terms of the positive definiteness of two Hankel matrices; see lemma,
or [10, Theorem 3.4]. The explicit representation of a Hurwitz polynomial through
orthogonal polynomials, allows us to rewrite the Kharitonov theorem on interval
polynomials with the help of orthogonal polynomials; see Proposition |1f or [9,
Theorem 7.10].

In this sense, the following notions play a relevant role for the present paper:

e The truncated Stieltjes moment problem,
e Orthogonal polynomials,
e Hurwitz polynomials.

In contrast to Kharitonov’s theorem, instead of verifying the Hurwitzness of
four polynomials of degree n = 2m (resp. n = 2m + 1), we propose checking four
polynomials of the degree [2] (resp. [%E1]). To this end, the notion of Kharitonov
quadruples is introduced. Roughly speaking, this notion highlights the fact that
every stable interval polynomial can be constructed by two ordered sequences
of Markov parameters. The latter means that the corresponding orthogonal
polynomials and their second kind polynomials satisfy a certain order; see
Definition [8l

The paper contains three conjectures. The first one states that every stable
interval polynomial generates four sequences of ordered Markov parameters. The
second conjecture says that the ordering of the quadruple
(hq(q,max), g,(qmax),h%min),ggmin)) can be written in terms of the degree of the
corresponding interval polynomial p,. Finally, the third conjecture states the
necessary and sufficient conditions for an interval polynomial to be a stable
interval polynomial in terms of the Kharitonov quadruples.

The construction of robust controls of control systems in terms of the
coefficient of certain interval polynomials was considered in [I], [25], [19], and
references therein. In contrast to these works, we apply the Markov parameter
approach. The advantages of using Markov parameters are explained in [22].
These consist mainly of the fact that the stable region in the coefficient space of
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a given polynomial is not convex, while the stable region in terms of the Markov
parameters s; with positive definite Hankel matrices (2)) is convex set [24].

Future work can be devoted to the comparison of the descending degree
procedure of the interval polynomial proposed in the present work (as in example
1)) with the Routh procedure considered in [3]. Furthermore, future research on the
characterization of two Markov sequences to be ordered sequences which generate
Kharitonov quadruples is relevant. Such characterization could notably improve
Algorithm 3.1.

This work is organized as follows. A brief summary of the truncated Stieltjes
moment problem, orthogonal polynomials and the Hurwitz polynomial are given
in the Introduction. In section 2, the Kharitonov theorem is represented via
orthogonal polynomials on [0,400) and their second kind polynomials. An
example of constructing a stable interval polynomial of degree n = 7 starting
from two sequences of Markov parameters is given. Additionally, in remark [] an
example of a family of interval polynomials is proposed. In section 3, a result
on the construction of stable interval polynomials via orthogonal polynomials is
given; see Theorem [3] In subsection 3.1, an algorithm for the construction of a
robust control is suggested. Following this algorithm, a family of robust controls
is written; see examples [2[ and |3| Finally, in section 4, the conclusion and three
conjectures what develop or complete some results of section 2 are presented.

In the subsequent three subsections, we recall the definitions and relevant
results concerning the Stieltjes moment problem, orthogonal polynomials on
[0, +00) and Hurwitz polynomials.

Note that in [I2] the stabilization of the canonical system through orthogonal
polynomials on [0, +00) is treated.

1.1 The truncated Stieltjes moment problem and extremal solutions

The truncated Stieltjes moment problem is stated as follows: Let n be greater
than or equal to 2. Given a sequence (sj)’;:_ol of real numbers, find the set M of
nondecreasing functions o of bounded variation on [0, c0) such that

s :/ tdo(t), 0<j<n-—1. (1)
0

This problem was considered in [29, Page 176 and Page 192|.
In case of an infinite sequence (s)3, with for j > 0, the stated problem
is called the classical Stieltjes moment problem.

Let
S0 S1 e Sj S1 S9 e Sj+1
HLj - S1 59 N Sj.+1 ’ H2,j — 8:2 8:3 . . Sj:+2 ' (2)
S5 Sj+1 ... 52 Sj+1 Sj42 ... S25-1

It is known [16], [I7] that the truncated Stieltjes moment problem with given

moments (s]-)ifo+1 (resp. (sj)’;?go) as a solution if and only if Hy ,, and Hg ;1
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(resp. Hj ,,—1 and Hy ,,,—1) are positive semidefinite. In [I6], [17], the complete set
of solutions of the truncated Stieltjes moment problem when Hy,, and Hy ;1
(resp. Hy yy—1 and Hg,,—1) are positive definite was given.

With the help of the analytic function in C\ [0, c0)

(2) = /Omff"_(t)

called associated solution with ¢ € M, the truncated Stieltjes moment problem
is reduced to finding a set of associated analytic functions s € Z such that

s(z)=-20 5L Sl
P REEE

Assume that o is normalized as o(t) = oltt0)F+olt=0) " apd 0(0) = 0. From the

2
Stieltjes inverse formula [2, Page 631], one gets a corresponding measure by
1 t
o(t)==1lim [ Ims(x+ ie)dx.
™ e=0 Jo

1.2 Orthogonal polynomials on [0, +00)

Orthogonal polynomials [6], [39] play an important role in a number mathematical
areas. On one hand, orthogonal polynomials have been extensively used in
applications for solving practical problems, such as in signal processing [32] and
in filter design [38], [30]. On the other hand, the zeros of a certain family of
orthogonal polynomials can be interpreted as the electrostatic energy for a system
of a finite number of charges; see [43].

In the present subsection, we focus on truncated families of orthogonal
polynomials on [0, +00).
Definition 1 The sequence (sj)?fo (resp. (sj)?zo_l) is called a Stieltjes positive
definite sequence if Hy , and Hg 1 (resp. Hy ;-1 and Hy 1) are positive
definite matrices.

In the sequel, we consider only Stieltjes positive definite sequences.

Definition 2 Let (:;p?i;;l and (Sj)§$0 be Stieltjes positive definite sequences. For
k=1,2, let

Sk—1 Sk cee Si4k—1
Sk Sk+1 .- Sj+k
Sj+k—2 Sj+k—1 .. S2j+k—2
1 z .. 27
Sk—1 Sk cee o Si4k—1
Sk Sk+1 .- Sj+k
Ek,j(z) = >
Sj+k—2  Sj+k—1 --- S2j4k—2

ero(2) era(z) ... erji(2)
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where (e1,0(2), e1,1(2),...,e1(2)) = (0,—s0,—250 — 51,-- -, ZJ lzj =lg)
and .

(€2,0(2), €2,1(2),...,€2,(2)) := (=50, =250 — 81, .., — {:U zj_lsl).

Denote by p1,o(2) :==1, q10(2) :=0, p2o(2) :==1, and g20(2) := s¢. For j > 1 and

k=1,2, let

det Dw(z) _ det Ek,j(z)

det Hy ;1 ’ Qk,j(z) . det Hy ;1 ' (3)

pr,j(2) ==

The polynomials qy ; are called second kind polynomials.

Note that in [9] a matrix version of py ; and g ; is considered. In the proof of [8,
Remark 2.6], the transformation from the matrix form to the determinant form

is performed.

Definition 3 Let n = 2m (resp. n =2m+1). Let o(t) be a positive distribution
on [0,00) such that all moments s; := [ t/do(t) are finite for 0 < j < n — 1.
The sequence of monic polynomials (pl,j);-”zo

| msomatasn ={ & 175 g0

Cj,

and respectively
> 07 . k?
| miomatnano ={ § T2 450
0 gy J = R

are called the sequences of monic orthogonal polynomials on [0, 00) with respect to

do(t) (resp tdo(t)).

For completeness, we recall two special, associated solutions of the truncated
Stieltjes moment problem for n = 2m+1 (resp. n = 2m) called extremal solutions:

S(Qm—l) 5) = Q1,m(Z) S(Qm—l) 2) = — QQ,mﬂ(Z)
M ( ) . pl,m(z)’ ( ) Zp27m71(2)' (5)

These solutions, introduced by Yu. Dyukarev in [I8], play a relevant role as proving
Proposition

1.3 Hurwitz polynomials and Markov parameters

The real polynomial of degree n
fn(2) :=apz" + a1z" V4 an_1z +an
can be written as with the help of two polynomials h, and g, such that

Fal(2) = hn(2%) + 2gn(2?),
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where

(6)

() o= a12™ +aze™ 2 4Lt ap—3z +ap—1, n=2m, )
gn\Z) == apz™ + asz™ 4+ 4 an_32 + an_1, n=2m+ 1.

hn(2) = apz™ + asz™ V+ . 4 an_o0z+a,, n=2m,
n = alzm—{-a3zm—1—|—,..—|—an,22—}—an, n=2m+ 1,

A polynomial f, is called a Hurwitz polynomial if all its roots have negative
real parts.

Definition 4 The numbers (sj)?zo_l (resp. (sj)gfo) appearing in the asymptotic
eTpansions

g2m(_2) o S0 S1 S92 S$9m—9 Som—1 )

m__;_;z—?—-u—zgm_l— om — .., ()

hami1(—2) __ S0 _ 851 _ S22 _ Sam—1 Som N o)
(_Z) g2m+1(_2) VA 2:2 Z3 T sz Z2m+1 e

are called Markov parameters of the polynomials fy,

Note that the expansion appears in [20, Chapter XV|, meanwhile expansion
([9) was first introduced in [9] in the matrix case.
Here we highlight two of the Hurwitzness criteria.

e The algebraic Routh-Hurwitz criterion 23], [34], [4], which is given in terms
of the coefficients ag, of the polynomial f,,. More precisely, one should verify
whether the so-called Hurwitz matrix, constructed by the coefficients aj has
positive principal minors; see [23], [34], [4].

e The Markov parameter criterion [20, Chapter XV| given in terms of the
Markov parameters si. This criteria consists of finding out whether two
Hankel matrices of the form are positive definite; see lemma

Lemma 1 [10, Theorem 3.4] Let n be greater than or equal to 2. The polynomial
fom+1 (resp. fom) is a Hurwitz polynomial if and only if the associated Hankel
matrices Hy , and Hg 1 (resp. Hy o1 and Ha 1) associated with f,, are
positive definite matrices.

The following remark proved in [I0] allows the calculation of the Markov
parameters sy from the coefficients a; of the polynomial f,.

Remark 1 /70, Lemma 3.1] Let f,, be a real polynomial of degree n, and let hy,
gn be as in and (7). The Markov parameter sequence (sj)?ﬂo (resp. (sj)?;'lo_l
from the relations and (@ 1s determined by the following equalities:

(50, 815+, S2m—1)T :Agé(al,ag, cey@2m—1,0,...,0)T,  n=2m, (10)

(S0, 815+ -+, S2m)T :.A;T}LJFI(al,ag, cey@2m+1,0,...,0)T, n=2m+1, (11)
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where
ag 0 0 0
a9 —a e 0 0
An = : - .. .. 0 ’
Ag(n—1) —Qan—2) --- (—1)"ag (—=1)""ag

for n > 2 is the n X n matrix with ap, =0 for k > n.

In [9, Theorem 6.1], it was proven that every Hurwitz polynomial can be
written in terms of orthogonal polynomials py j, & = 1,2, on [0,00) and their
second kind polynomials gy, ;; see [7, Equality E.2|. We reformulate the latter as
a proposition.

Proposition 1 FEvery real Hurwitz polynomial f, with ag = 1 admits the
following representation
—-1)m —22) — 2 —22)), n=2m,
fue) = { 0= =222, = 12
27) 4+ z2pam(—27)), n=2m+1.

Here py, j, k = 1,2 are orthogonal polynomials on [0,00), and qy ; are their second
kind polynomials defined as in Definition |3,

To prove Proposition [I], the subsequent, explicit relation between polynomials h,,,
gn as in @, and orthogonal polynomials was introduced in [9, Pages 78
and 79]:

hom(2) = (=1)"p1m(=2), gom(2) = (_1)m+1qu(_Z)a (13)
9om+1(2) = (=1)"p2,m(=2), homi1(2) = (=1)"g2m(—2). (14)

2 Kharitonov’s theorem via orthogonal polynomials

In this section, we propose a new form of the Kharitonov theorem which first

appeared in [26] in 1978. This representation consists of writing the ) (resp.

g,(f)) part of each of the four Kharitonov polynomials via a member of a family
of orthogonal polynomials on [0,00) and their second kind polynomials. Such
a procedure is based on the Markov parameters generated by the Kharitonov
polynomials Kff).

Let § € R"*!, and let P, be a family of monic interval polynomials:

n

Pn(2,6) =Y 6n_j2, (15)
j=0

with
€y S(Sn—j Syj, j:{O,l,,n} (16)
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Denote
th(Z) =30 + Yoz + 1a2” + ..., (17)
QT(LI)(Z) =x1 + Y3z + 2527 + ..., (18)
hﬁf)(z) =Yo + T22 + y4,z2 +..., (19)
and
9$P(2) =1 + a3z + s+ (20)

Definition 5 Let p, be an interval polynomial as in , and let h,(@k), gf{“) be
polynomaals as in —(@. The following four polynomials

KM (2) =h{D(2%) + 290 (22), (21)

KP(2) =h{D(2%) + 292 (22), (22)

KP®(2) =hP(2%) + 290 (22), (23)
and

KP(2) = B (%) + 292 (?) (24)

are called Kharitonov polynomials of the interval polynomial p,.

Note that the Kharitonov polynomials are usually defined in the following form:

KT(Ll)(Z) =To + 12 + y222 + y3z3 +agzt a4 , (25)
KP(2) =z 4 y12 + 1222 + 2325 + 242t +y52° + ..., (26)
K’r(zg)(z) =yYo +T12 + x222 + y3z3 + y4z4 + x5z5 + ..., (27)
KW (2) =yo + y12 + 222% + 232° + a2 +y52° + . . ., (28)
The equivalence between — and — is obvious.
Definition 6 Let o := (o, o, ..., o) where o are real numbers. An interval

polynomial py,(z,d) as in 1s said to be a stable interval polynomial if for each
a; € [z4,y;] all the zeros of pn(2, a) are strictly in the left-hand complex plane.

Let us recall the celebrated Kharitonov theorem [26].

Theorem 1 Let p, be an interval polynomial as in . Furthermore, let K,(f) for
r =1,2,3,4 be Kharitonov polynomials as in Definition[3. The interval polynomial
Dn is stable if and only if the four Kharitonov polynomials K,(f) for r =
1,2,3,4 are stable.
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In the present work, we restrict ourselves to the case where the leading interval
coefficient dy is equal to [1,1].

Definition 7 Let the polynomials h%k), gfzk) fork =1,2 be defined as in —(@.
Forn = 2m, define

A
=
=
\
N
P~
N
2
\
!

W) =D @y o o) (20)
hn” (=) hn” (—2)
L)/ () _
hy ' (—2) hy ' (—2)
Stmilarly for n = 2m + 1, define
L _ (2)_
s (2) ::%7 s@(2) = %UZ)’ (31)
(=2)gn’(—2) (=2)gn"(—2)
(1) _ (2)_
5 (z) = ((2) 2. s () = ((2) L (32)
(=2)gn " (=2) (=2)gn(=2)
Each of these rational functions s( can be expanded as in and @,
respectively. Every sequence (sy))?;ol corresponding to such expansions is called

the Markov parameter sequence, which is associated with the polynomial KT(LT).

Under the assumption that K,(LT)(Z) are monic Hurwitz polynomials, we will
prove that the functions s(")(z) are in fact extremal solutions of truncated Stieltjes
moment problems.

Lemma 2 Let the polynomials KT(LT)(Z) for r = 1,2,3,4 be monic Hurwitz
polynomial, then the following is valid.
(T))nfl

a) The Markov parameter sequence (sj 0 associated with the polynomial Kr(f)

s a truncated Stieltjes positive definite sequence for r =1,2,3,4.
b) The functions s\")(z) defined by (@)— are extremal solutions of the

truncated Stieltjes moment problem with (sgr))?:_& forr=1,2,3 4.

Proof1 Part a) is a direct consequence of lemma . Part b) is verified by
employing , (@ and equalities in lines 12, 22 on [9, Page 80].

The following Proposition can be readily verified by applying Proposition [1] for
every r =1,2,3,4.

Proposition 2 The interval polynomial with 6o = [1, 1] is stable if and only
if the four Kharitonov polynomials KT(LT) forr =1,2,3,4 as in - admit
the following representation

K" (z) = { (_1)m(p§?n(—22) - qu) (—22)), n=2m,

; g r=1,2,3,4, (33)
(1) (g5 (=2%) + zp&,),l(—zZ)), n=2m+1
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where p( " and ql,)n (resp. p( ")

and Second kind polynommls

and q2 m) are orthogonal polynomials on [0, +00)

To write Kharitonov’s theorem of two sequences of Markov moments, we
introduce the following notion.

Definition 8 Let n = 2m (resp. n = 2m +1). Let ((s gmm))?:_&’ (sg-max))” o) be
Stieltjes positive definite sequences such that sg-mm) ;max) 0<j<n—1wih

at least one strict inequality. Furthermore, let (p,gmgx), . (min) m ), for k = 1,2, the
polynomials as in Definition[d The quadruple

Py, = ( (min) (min) (max) (max)) (34)

plm ’qlm 1m0 H411lm

and

((mln) (min) _(max) (max)) (35)

P2m+1 me 7Q2m ’p2m )qZ,m

are called Kharitonov quadruple if the Markov parameter sequences
(550775 (s203mg ) (resp. ((s§)320), (s2)7%0)) (36)
generated by

P () e (z) P () i (z)
- (resp. | — )

¢ (2) g (z) () 2g ()

(37)
A m

are Stieltjes positive definite sequences.

Remark 2 The Markov parameters (@ can be calculated by Laurent series
expansion of the rational functions appearing in , respectively.

Alternatively, to determine the Markov parameters (@ one can use remark
with

(ha(2),9a(2)) = ()™M (—2), (~1)™ g™ (=2)), n=2m  (38)

and
(ha(2),9a(2) = (~1)™g5m) (=2), (~1)"p5™ (~2)), n=2m+1.  (39)

Definition 9 Let n = 2m (resp. n = 2m + 1), and let K\ ) forr = 1,2,3,4
be the monic Kharitonov polynomials as in Definition [3], which correspond to the
mterval polynomial with the leading coefficient g = [1,1]. Furthermore, let

h%k), gn for k=1,2 be as in . We say that the Kharitonov polynomials

form a Kharitonov quadruple if between the polynomials h7(Z ), g,(lk), k=12
there are quadruples

(=1 hS) (=2), (1™ g2) (=2), (~1)™ ) (—2), (-1 g (=)
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and
((=1mghz (=20 (1™ RG L (=2), (1) gty (<2), (<1052, (=2) )
that are Kharitonov quadruples. Here (i) is one of the superscripts (1) or (2).

Now we state the main result of the present work.

Theorem 2 Let n = 2m (resp. n = 2m + 1) and K for r =1,2,3,4 be
monic Kharitonov polynomials as in Definition é If the polynomials KT(LT) form a
Kharitonov quadruple, then the corresponding interval polynomial p, is a stable
interval polynomial.

Proof 2 The proof follows by using Propositon @ and Equalities —.

Note that the converse statement to Theorem [2] appears in Conjecture

The following remark verifies, for 2 < 57 < 7, some ordering of the pairs
(h(lk)jg]( )) appearing in 1)1} This ordering allows the identification of the
pairs (hgmax)’gj(max)) and (hjmin ’g§min)
are stated in Conjecture [2|

). For j > 7, the corresponding equalities

Remark 3 Let hﬁ), gg), hﬁf), g,(f) be as in —(@. Furthermore, let the pairs
(hgl),gﬁfa)) forip =1 or iy = 2 with k = 1,2. be Kharitonov quadruples as in
definition[4 Thus, the following equalities hold.

(B g8y =D g8, (™, g8y = (h", g8, (40)
(h§™) g8y =(n§), g, (™, g™y = (hD,68Y),  (a1)
(h§™), g >>:<h<” g gy = (0P ), 2
(B gy =D g, (M, gl = (), 687, (43)
(h§™ g™y =D g8, (™, g™y = (hD, g8). (49)
(R gy =(n{D g, (AT gty = (B, gtV). (45)

Proof 3 Equalities @— can be verified by using lemma : see also [10,
Remark 3.1].

Example 1 Let the following Stieltjes positive definite sequences be given

19 913 49959 2753481 151846263 8374343913 461849056119
8 ' 16 32 ’ 64 ’ 128
596853 16095575 868194535
1 1 ) 3 , 2926929877}

{5t Nmo={5

(i 415
¥ ={9, —2,5538,

}
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(min) (max

Clearly, s, < s ) for 0 < k < 6. The corresponding orthogonal polynomials
and second kind polynomials (see Definition @) are given by

6322 153 1923 219
P (2) =28 — ;'+1uz—7f,qg“N@: ; ST T g,
- 223 ; 14322 25
pggm)(z) =% 31224 F 76, q§,m3m)(z) =95 — 2% 11092 — 5
Let
K (2) 1= = (¢85 (=2%) + 2 pSy " (—22), (46)
K™ (2) 1= — (85 (=22) + 2035 (=5%)), (47)
3 X i
EP(2) 1= = (¢35 (=2%) + 2pf3 " (—2), (48)
and
4 min max
K{Y(2) = = (a85™(=2%) + 2 p§5™ (—22). (49)
By applying remark[3, we calculate the Markov parameters
316 19 447 23910 34763331 937569489 50573020801
Lo ={=, =, 2 161131
{Sk}k—o {2727 4 ) 3 ] ) ] ) 16 }( )
242490639 13373470377
{s35_y ={9,212, 5788, 159466, 4396929, ). (51)

2 ’ 4

Next, we verify that @) and are Stieltjes positive definite sequences; see

Definition[1. Furthermore, we construct the corresponding orthogonal polynomials

pg)’%, pg‘% and their second kind polynomials q%, qgg. These are the following:

) )

223 1923 219
Pha(z) =2* =312+ zz_ﬂi é?&)=*§*—7u2+—53—1z
6322 153 14322 25
zﬁﬁd=n3— ; + 11z — —-, éﬂ@)=9f—» z +109z — 7.
By Pmposz'tion the corresponding Kharitonov polynomials Kémin), émax), K§3)

and K§4) are Hurwitz polynomials. Finally, by Theorem@ the interval polynomial
fr(z,8) :==002" + 6125 + 0225 + 032% + 642% + 0522 + 062 + 07 (52)

is a stable interval polynomial. Here &g € [1,1], 61 € [9,9.5], d2 € [31,31.5], d3 €
[71,71.5], 64 € [111,111.5], 85 € [109,109.5], & € [76,76.5] and &7 € [12,12.5].

The interval coefficients d; are attained from the coefficients of Kémin), émax),

Kés) and K§4), which in fact are the Kharitonov polynomials of f7.
Note that the interval polynomial was considered in [4, Example 5.4,
Chapter 5|.
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Remark 4 By using the moments of example[1] and Definition[d, we construct the
polynomials ((pY'),)3,_, (a\"))3,—0» (S 0.)3—0> (a5)3—0)- With the help of these
polynomials and @, we establish four finite sequences of Hurwitz polynomials:

) =2+ a 1P vl r=1,04,

and k € Z$. Here 78 =1{1,2,...,p}. For every k, each interval coefficient of the
interval polynomial is defined by

() )]

> MAX ay

[min a
rezZy

4
reZj

The family of stable interval polynomials in descending order with an initial
interval polynomial @ is then given by
fo(z) =2% +19,9.5]2° + [30.57, 30.05] 2% 4 [66.61, 67.74] 2% 4 [97.24, 99.18] 2>
+ [83.30, 85.84] 2 + [47.27, 48.74],
f5(2) =2° +[9,9.5]2% + [29.33,29.94] 2% 4 [54.87, 57.75] 2>
+ [61.43,67.49]z + [26.00, 29.92],
fa(z) =2 +19,9.5]2% + [28.41, 29.11] 2>
+ [46.39, 50.06] 2 + [38.96, 43.07],
f3(z) =2 +9,9.5]2% + [26.69, 27.35] 2 4 [30.63, 33.71],
fa(2) =22 +19,9.5]2 4 [23.05,24.02],  fi(2) = 2+ [9,9.5].

3 Robust stabilization of the canonical system

Let z := column(z1, z2,...,x,). Consider the linear system
T =A,x, (53)
where
0 1 0 0
-y —Qp_1 ... —Qy —Qj

with o € [y, @j] for 1 < j < n. System li represents a linear system subject to
some uncertainties, which may be caused by unknown perturbations with entries
within a given interval; see [25].

Definition 10 Let A, be a matriz as in .
a) The interval polynomial

pa,(t) = (=D"(t" + art" P+ aqt" 2+ it + ay) (54)

1s called the characteristic interval polynomial of the matrix A,,.
b) System is called stable if (—1)"pa,, is a stable interval polynomial.
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Now consider the linear control system
T = A,z + bpuy, (55)

with
by, := column (0,...,0,1). (56)

Definition 11 The system is robustly stabilizable if there exists a 1 X n
interval matriz v == —(v1,72, - .., ¥n) where v; € [v4,7;] for 1 < j < n such that

the linear system & = (A,, + by)x is stable. Here

0 1 ... 0 0
Antbr=1 "9 o .. 0o 1 |’
—0n —0Op—1 ... —0y —01
with 6; = [z, y;] and
(25, y5] = o + 75,05 + 7] (57)
The linear interval function
Un(T,7Y) 1= —Yn®1 — Yn—1T2 — ... — N Tn (58)

1s called the robust stabilizing control of the system .

In , we used interval arithmetic. For completeness, let us recall endpoint
formulas for the arithmetic operations of intervals; see [31].

Remark 5 Let [a,b] and [c,d] be closed intervals. The addition, subtraction,
multiplication and division of intervals are defined respectively as follows:

[a,b] + [¢,d] :=]a + ¢, b+ d],
[a,b] — [¢,d] :=]a —d,b— ],
[a,b] - [c, d] :=[min{ac, ad, be, bd}, max{ac, ad, be, bd}],
L aabbd
[C,d] T mln{ 7dac7d}amax{cadvcad} ) Og[cad]

Remark 6 System with A, = Ay (a) and u, = up(z,7y) a is parametric
differential equation

T = An(a)z + bpun(z, ). (59)
In turn, differential equation @ 1s a special case of the differential equation
&= f(z,a,7),

where a and v are parameters taking certain given values within certain closed
intervals. See for example [33, Equality (1), [21)] and [35].
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Now we turn to the problem of the robust stabilization of the Brunovsky system.
Let

0y I,_
A(O)::< n—1x1 n—1 >’
" 0 O1xn—1

where I, and 0,x, denotes the identity matrix and p x g zero matrix. The system
i=A2 + byu, (60)

is called the Brunovsky system or canonical system. System is a widely used
control system for the study of the controllability and feedback stabilizability of
linear and nonlinear systems, with the latter after a certain transformation; see
[37], [36]. The Brunovsky system as the basic control model is used for testing
results or approximating more general systems for controllability, time optimal
control and stability problems; see [5], [37], [40], [41], [42], [44], [15], [13], and [L1].
In particular, we emphasize the relevance of the controllability function method
created by B.I. Korobov in 1979 [27]. This method allows stabilization at a finite
time of the Brunovksy system and more general control systems under bounded
controls [28]. See also [14].

The following result allows the construction of a robust control that stabilizes
system by employing the Kharitonov quadruples as in Definition

Theorem 3 Let n = 2m (resp. n = 2m + 1). Let p,, be the interval polynomial
of the form with interval coefficients 6; constructed via the Kharitonov
in)

m (min) (max) (max (min) (min) (max)
quadruples (pl,m yd1m s P1im A m 2m 92m s P2m s glfnx)

Thus, the linear interval function

)), respectively (p

Un(x) = =0px1 — dp_12 — ... — 012y, (61)
s a robustly stabilizing control for system (@)

Proof 4 Let 6™ := —(61,00,...,0,). Write the positional control u, as
1(@;6) = 6My. Substitute u, for up () = sz in (@) The right-hand side of

can be written in the form & = A, x, where
A=A 4p,60.

The characteristic polynomial of An has the form

Pz, () = det(t] — Ap) = (=1)"(t" + 61" "+ 61t" 2 + ... + 61t + 6n)

Clearly (—1)"px  coincides with the stable interval polynomial py of the form
with coefficients (1,081,02,...,0,). Consequently, the control robustly

stabilizes system
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3.1 An algorithm for constructing a robust control

Let n = 2m (resp. n = 2m + 1).

1) Find two Stieltjes positive sequences (sgmin))?:_&, (ngax))j:_& such that
ngin) < ngax) with at least one strict inequality.

2) Construct polynomials (pgﬁn),qgﬁn), pglf;jx),qﬁjx)), and (pgﬁn), qéﬁn),
(max) (max)

5 m 3 3 m ) asin Deﬁnition

3) In the case that the polynomials constructed in 2) form a Kharitonov
quadruple, using lemma [I] and remark [2] calculate the interval coefficients.
In the opposite case, return to Step 1).

4) With the help of , write the stabilizing robust control wy,.

Example 2 Consider the system @) with n = 7. We use example |1, which in
fact follows the suggested algorithm. Thus, we attain the positional control

wr(2)=—[12.12.5]2, —[76, 76.5)m5—[109, 109.5]z3—[111, 111.5]a4—[71, 71.5]z;
— [31,31.5]z6 — [9,9.5]a7,

which robustly stabilizes system (@)

Example 3 As in a similar manner for 2 < n < 6, system (@) can be robustly
stabilized by

ug(x) = — [47.27,48.47)x1 — [83.3,85.84]x9 — [97.24,99.18]z3
— [66.61,67.74)z4 — [30.57,30.05]z5 — [9,9.5]z6,
us(x) = — [26,29.92]z; — [61.43,67.49]zy — [54.87,57.75]3
— [29.33,29.94]z4 — [9,9.5]z5,
ug(x) = — [38.96,43.07)z1 — [46.39, 50.06]z5 — [28.41,29.11]z5 — [9, 9.5]24,
us(x) = — [30.63,33.71)z1 — [26.69, 27.35]z5 — [9, 9.5z

and

ug(x) = — [23.05,24.02]z1 — [9,9.5]x2.

4 Conclusion and conjectures

In the present work, a reformulation of the Kharitonov theorem via quadruple
polynomials is given. A family of decreasing degrees stable interval polynomials
is proposed. With the help of constructed stable interval polynomials, a family of
robust controls is formulated.

Next we present three conjectures concerning the results of section 1.
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Conjecture 1 Let n = 2m (resp. n = 2m + 1) and let p, be a stable interval
n—1

polynomial of the form . Furthermore, for r = 1,2,3,4 let (sy))‘ . be
J:

Markov parameters
corresponding to Kharitonov polynomials K ofpn Thus, the following order

yields
(min) <8(i2) <5 (i3) < (max)’
J - J - .7 -

where (min), (i2), (i3), and (max) take one of the values 1,2,3 or 4. Furthermore,
at least one of the inequalities in (@) is a strict inequality.

s 0<j<n-1 (62)

Conjecture 2 Let h%l), g,&l), th), g,(f) be as in —(@. The following equalities
hold.

(i) aies)) =(hiy- z,gii) ) () aies) = (il gl) o), (63)
(e 05y =(hig o 0i ), (W ) = (gl (69)
CHNH =<h4g .9 i?) (5™, g1 ™) = (057, 017, (65)
(hgjla?)’ 4?13:)': ) =(h{ 4e 3 44 3) (hz(lr;ir:ls)’gz(iren:?) = (hi?,;g,gg),?)). (66)
This conjecture is a generalization of remark (3| It says that the superindex (min)

and (max) can be related to the degree of the interval polynomial p,, (15).

Conjecture 3 Let n = 2m (resp. n = 2m + 1). The interval polynomial py, is

a stable if and only if the Kharitonov polynomials K for r =1,2,3,4 form
Kharitonov quadruples.

Note that the sufficient condition of Conjecture [3|is proven in Theorem [2]
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aHOTAaIIli, BIIOMOCTel PO aBTOPIB Ta apxira, 1o era04Yae LATEX ta PDF daiiim
cTaTTi Ta Qafan MATIOHKIB.

3. Pepaxiiia npuiiMae cTarTi yKpalHCHKOIO, POCIfICKOI0 800 aHT/IifiICHKOI0 MOBa-
mu. Crarrs mae 6yt odopmiena y pegakropi LATEX (Bepcig 2e). @aiin-3pa3ok
odopmieHHS CTATTI MOXKHO 3HAWTH B PEIAKINI KypHAJY Ta HA BeO-CTOpPIHIM
(http://vestnik-math.univer.kharkov.ua). Crarrss noBrHHA HOYHHATHCS 3 KOPOT-
kux aHoraiiii (ae 6inbire 10 cTpok), B gkux nouaHi OyTn 9iTKO chHOPMYIBOBaHI
ITb Ta pe3yabrarn poboTH. AHoTalii TOBUHHI OyTH TphOMa MOBaMuU (yKpaiHCh-
KO0, POCIHCKOI0 Ta AHT/IIHCHKO): MEPIIO MOBUHHA CTOATH AHOTAISA TIEK MOBO-
I0H, SKOI0 € OCHOBHUIT TekcT crarTi. B anoraril moBuHHi 6yTH TPU3BHUINA, iHIIHAIN
aBTOPiB, HA3Ba POOOTH, KJIIOUOB] CJI0BA, Mi?KHAPOIHA MaTeMaTHIHA KIacudikaris
(Mathematics Subject Classification 2010). AnoTarist He TOBUHHA MATH MOCHIAH-
Hsl Ha JITEPATypPy Ta MaIOHKH.

4. Tpukaamgm opOpMIEHHS CITUCKA JiTePATyPH:

1. JIamymos A.M. O6mast 3amada 06 yCTOWUMBOCTH TBUKEHUS. - XapbKOB: Xaph-
roBckoe Maremaruueckoe Obiectso, 1892. - 251 c.

2. Jlanynos A.M. O6 onnowm cBoiicTBe qudbpepeHnnaTbHbIX YPaBHEHUH 38491 O
JIBHZKEHUH TSXKEJI0r0 TBEP/Oro TeJla, MMEOIIero HenoasxkHyto 1ouky // Coob-
menust XapbkoBckoro mar. obmectsa. Cep. 2. — 1894. — T. 4. Ne 3. — C. 123-140.

5. Koxnwnit manoHOK moBHHEH OyTH NPOHYMEPOBAHWI Ta IIPEICTABICHUMN
okpemuM aitiiom B ogaomy 3 hopmaris: EPS, BMP, JPG. B daiiii crarti mastio-
HOK noBuHEeH OyTu BCrapaeruil apropom. Ilin mantonkoM moBuaer OyTy Iiiimuc.

6. BimomocTi mpo aBTOpiB MOBWHHI MICTUTH: NPi3BUIIa, iM’sl, 0 HATHKOBI,
cayx0oBa aapeca Ta HOMepa TeaedoHIB, agpeca eneKTporHol momTu. IIpoxaH-
Hd TAKOXK TOBITOMUTH TPI3BUINE aBTOPA, 3 AKUM Tpeba BECTH MePEeNuCKY.

7. PekoMmeHyeMO BHKODHCTOBYBATH OCTaHHI BHIYCKHM KypHasy ( vestnik-
math.univer.kharkov.ua/currentv.htm ) B sikocti 3paska odopmieHHs.

8. YV Buna Ky NOpYIeHHs MpaBuil opOPMIIEHHS PeJlaKiiid He OyJie PO3rsg aTu
CTATTIO.

Enextponna ckpunbka: vestnik-khnu@ukr.net

Enexrponna aapeca B Inrepreri: http: //vestnik-math.univer.kharkov.ua
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