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The Nevanlinna matrix of the truncated Hausdorff

matrix moment problem via orthogonal matrix

polynomials on [𝑎, 𝑏] for the case of an even number of

moments

The scalar moment problem was first introduced by T. J. Stieltjes in his work
“Recherches sur les fractions continues”, Annals of the Faculty of Sciences of
Toulouse 8, 1–122, (1895). He formulated it as follows: Given the moments
of order 𝑘 (𝑘 = 0, 1, 2, . . . ), find a positive mass distribution on the half-line
[0,+∞).

The study of matrix and operator moment problems was initiated by
M. G. Krein in his seminal paper “Fundamental aspects of the representation
theory of Hermitian operators with deficiency index (𝑚,𝑚)”, Translations
of the American Mathematical Society, Series II, 97, 75–143, (1949).

This paper is related to the truncated Hausdorff matrix moment (THMM)
problem: the truncated moment problem on a compact interval [𝑎, 𝑏] in
contrast to the Stieltjes moment problem on [0,+∞) and the Hamburger
moment problem on (−∞,+∞). Our approach relies on V. P. Potapov’s
method, which reformulates interpolation and moment problems as equi-
valent matrix inequalities and introduces auxiliary matrices that satisfy thẽ︀𝐽𝑞–inner function property of the Potapov class, together with a system of
column pairs.

The method begins by constructing Hankel matrices from the prescribed
moments. If these matrices are positive semidefinite, the THMM problem is
solvable. In the strictly positive definite case, known as the non-degenerate
case, we transform the associated matrix inequalities to derive the Nevanli-
nna (or resolvent) matrix of the THMM problem, which characterizes its
solutions.

This framework has been extensively applied, for instance in A. E. Choque
Rivero, Yu. M. Dyukarev, B. Fritzsche, and B. Kirstein, “A truncated matri-
cial moment problem on a finite interval”, in Interpolation, Schur Functions
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6 B. E. Medina-Hernandez

and Moment Problems, Operator Theory: Advances and Applications, Bi-
rkhäuser, Basel, 165, 121–173, (2006).

The main contribution of the present work is to represent the Nevanlinna
matrix of the THMM problem in terms of orthogonal matrix polynomials
(OMP) and their associated polynomials of the second kind at point 𝑏. Note
that the representation at point 𝑎 was obtained earlier in A. E. Choque
Rivero, “From the Potapov to the Krein–Nudel’man representation of the
resolvent matrix of the truncated Hausdorff matrix moment problem”
Bulletin of the Mexican Mathematical Society, 21(2), 233–259 (2015).

In addition, we establish new identities involving OMP and reformulate an
explicit relationship between the Nevanlinna matrices of the THMM problem
at points 𝑎 and 𝑏, through OMP.

Keywords: Truncated Hausdorff matrix moment problem; Nevanli-

nna matrix; orthogonal matrix polynomials.

2020 Mathematics Subject Classification: 76A11; 76B11; 76M11.

1. Introduction

The truncated Hausdorff matrix moment (THMM) problem is stated as
follows: Given an interval [𝑎, 𝑏] on the real axis and a finite sequence of 𝑞 × 𝑞
matrices (𝑠𝑗)

𝑚
𝑗=0, where 𝑞 and 𝑚 are natural numbers, find the set ℳ𝑞

≥[[𝑎, 𝑏],B∩
[𝑎, 𝑏]; (𝑠𝑗)

𝑚
𝑗=0] of all nonnegative Hermitian 𝑞 × 𝑞 measures 𝜎 defined on the 𝜎-

algebra of all Borel subsets of the interval [𝑎, 𝑏] such that

𝑠𝑗 =

∫︁
[𝑎,𝑏]

𝑡𝑗 𝑑𝜎(𝑡) (1)

is valid for each integer 𝑗 with 0 ≤ 𝑗 ≤ 𝑚.
The criteria for solving the THMM problem with an even number of moments

(resp. an odd number of moments) are provided in [12, Theorem 1.3] (resp. [13,
Theorem 1.3]). Following these results, for 𝑚 = 2𝑛 + 1 (resp. 𝑚 = 2𝑛), the
perturbed moments are defined as follows:

𝑠
(1)
𝑗 := 𝑠𝑗 , 0 ≤ 𝑗 ≤ 𝑚,

𝑠
(2)
𝑗 := −𝑎𝑏𝑠𝑗 + (𝑎+ 𝑏)𝑠𝑗+1 − 𝑠𝑗+2, 0 ≤ 𝑗 ≤ 𝑚− 2,

𝑠
(3)
𝑗 := 𝑏𝑠𝑗 − 𝑠𝑗+1, 0 ≤ 𝑗 ≤ 𝑚− 1,

𝑠
(4)
𝑗 := −𝑎𝑠𝑗 + 𝑠𝑗+1, 0 ≤ 𝑗 ≤ 𝑚− 1.

Based on these perturbed moments, we construct the block Hankel matrices

𝐻𝑟,𝑗 := (𝑠
(𝑟)
𝑗+𝑘)

𝑗
𝑗,𝑘=0 =

⎛⎜⎜⎜⎜⎝
𝑠
(𝑟)
0 𝑠

(𝑟)
1 . . . 𝑠

(𝑟)
𝑗

𝑠
(𝑟)
1 𝑠

(𝑟)
2 . . . 𝑠

(𝑟)
𝑗+1

...
...

. . .
...

𝑠
(𝑟)
𝑗 𝑠

(𝑟)
𝑗+1 . . . 𝑠

(𝑟)
2𝑗

⎞⎟⎟⎟⎟⎠ (2)
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for 𝑟 = 1, 2, 3 and 4.

It was proven in [13, Theorem 1.3] (resp. [12, Theorem 1.3]) that the THMM
problem has a solution if and only if the block matrices 𝐻1,𝑛 and 𝐻2,𝑛−1 (resp.
𝐻3,𝑛 and 𝐻4,𝑛) are both nonnegative Hermitian.

To characterize the solution set of the THMM problem ℳ𝑞
≥[[𝑎, 𝑏],B ∩

[𝑎, 𝑏]; (𝑠𝑗)
𝑚
𝑗=0] for 𝑚 = 2𝑛 and 𝑚 = 2𝑛+1, the problem is usually reformulated by

identifying an associated class of holomorphic matrix-valued functions given by

S𝑞
≥[[𝑎, 𝑏],B ∩ [𝑎, 𝑏]; (𝑠𝑗)

𝑚
𝑗=0] :=

{︃
𝑠(𝑧) =

∫︁
[𝑎,𝑏]

𝑑𝜎(𝑡)

𝑡− 𝑧
, 𝜎 ∈ ℳ𝑞

≥[[𝑎, 𝑏],B ∩ [𝑎, 𝑏]; (𝑠𝑗)
𝑚
𝑗=0]

}︃
.

A matrix function 𝑠(𝑧) ∈ S𝑞
≥[[𝑎, 𝑏],B ∩ [𝑎, 𝑏]; (𝑠𝑗)

𝑚
𝑗=0] is called the associ-

ated solution to the THMM problem. This technique, commonly referred to as
V. P. Potapov’s method [26], has been successfully applied in numerous works,
including [4, 5, 6, 14, 19, 20, 21] and others.

The THMM problem is said to be non-degenerate when both block matrices
𝐻1,𝑛 and 𝐻2,𝑛−1 (resp. 𝐻3,𝑛 and 𝐻4,𝑛) are positive definite Hermitian.

A description of the solution set of the THMM problem, which encompasses
both degenerate and non-degenerate cases, is provided in [24] through a
function-theoretic Schur-Nevanlinna-type algorithm. An algebraic version of this
procedure, which is applicable to (finite or infinite) sequences of complex 𝑞 × 𝑞
matrices, was developed based on the Schur analysis of matrix Hausdorff moment
sequences [22, 23]. See also [25].

Henceforth, we focus exclusively on the non-degenerate case.

Definition 1. [15, Definition 1.1]. Let [𝑎, 𝑏] be a finite interval on real axis R. The
sequence of 𝑞 × 𝑞 matrices (𝑠𝑗)

2𝑛
𝑗=0 (resp. (𝑠𝑗)

2𝑛+1
𝑗=0 ) is called a Hausdorff positive

definite sequence on [𝑎, 𝑏] if the block Hankel matrices 𝐻1,𝑛 and 𝐻2,𝑛−1 (resp. 𝐻3,𝑛

and 𝐻4,𝑛) are both positive definite matrices.

Throughout this paper, we restrict our attention to sequences that are
Hausdorff positive definite on [𝑎, 𝑏].

According to Definition 1, the THMM problem is also considered non-
degenerate when the sequence (𝑠𝑗)

𝑚
𝑗=0, for 𝑚 = 2𝑛 and 𝑚 = 2𝑛 + 1 is positive

definite on [𝑎, 𝑏]. In such cases, the corresponding solution 𝑠(𝑧) to the THMM
problem is given by

𝑠(𝑧) =
(︁
𝛼(𝑚)(𝑧)p(𝑧) + 𝛽(𝑚)(𝑧)q(𝑧)

)︁(︁
𝛾(𝑚)(𝑧)p(𝑧) + 𝛿(𝑚)(𝑧)q(𝑧)

)︁−1
, (3)

where p and q denote 𝑞 × 𝑞 matrix-valued functions of the complex variable
𝑧, which are defined in an appropriate domain in the complex plane. See [12,
Definition 5.2] and [13, Definition 5.2]. The functions 𝛼(𝑚)(𝑧), 𝛽(𝑚)(𝑧), 𝛾(𝑚)(𝑧),
and 𝛿(𝑚)(𝑧) are matrix-valued polynomials constructed from the given moment
sequence {𝑠𝑗}𝑚𝑗=0. These matrices 𝛼

(𝑚)(𝑧), 𝛽(𝑚)(𝑧), 𝛾(𝑚)(𝑧), and 𝛿(𝑚)(𝑧) collecti-



8 B. E. Medina-Hernandez

vely constitute the entries of the Nevanlinna matrix

𝑈 (𝑚)(𝑧) :=

[︂
𝛼(𝑚)(𝑧) 𝛽(𝑚)(𝑧)

𝛾(𝑚)(𝑧) 𝛿(𝑚)(𝑧)

]︂
, (4)

which is linked to the THMM problem. The Nevanlinna matrix was first generally
defined in [1, Definition 2.4.3, p. 55]. Within the THMM problem, this matrix is
also called the resolvent matrix associated with the THMM problem. The Nevanli-
nna matrix 𝑈 (𝑚)(𝑧) is a 2𝑞× 2𝑞 matrix polynomial defined on the entire complex
plane. This matrix is vital in analyzing the solution to the THMM problem; see
Equations (3) and (4).

As presented in [18], the Nevanlinna matrix of the THMM problem was
constructed regarding to point 𝑧 = 0. In the same work [18], both even and
odd number of moments were considered. In [12] and [13], the Nevanlinna matrix
for the THMM problem was examined at point 𝑧 = 𝑎, specifically for the even and
odd cases of moments, respectively. Furthermore, [15] introduced a novel Nevanli-
nna matrix that includes both even and odd moment cases and is constructed
with respect to point 𝑧 = 𝑏.

Similar procedures to those described in [12] and [13] can help construct the
Nevanlinna matrix regarding to point 𝑧 = 𝑏

̂︀𝑉 (𝑚)(𝑧) :=

[︃̂︀𝛼(𝑚)(𝑧) ̂︀𝛽(𝑚)(𝑧)̂︀𝛾(𝑚)(𝑧) ̂︀𝛿(𝑚)(𝑧)

]︃
. (5)

The representation of the Nevanlinna matrix at point 𝑧 = 𝑏 is crucial, as
its components define the solution set of the THMM problem (Equation (3)).
Furthermore, constructing the Nevanlinna matrix at 𝑧 = 𝑏 enables the derivation
of new relationships between OMP, Dyukarev-Stieltjes parameters, matrix conti-
nued fractions (see [2, 3, 4, 7, 8]), and Blaschke-Potapov factors [5, 6]. Moreover,
the admissible control problem and the time optimal control problem may be
solved by using the Nevanlinna matrix with respect to point 𝑧 = 𝑏. See [9], [10],
and [11].

For 𝑚 = 2𝑛 + 1 (resp. 𝑚 = 2𝑛), an explicit relationship was established
between the Nevanlinna matrix 𝑈 (𝑚) regarding to point 𝑧 = 𝑎, introduced in [12,
Proposition 6.10] (resp. [13, Proposition 6.10]), and the Nevanlinna matrix ̂︀𝑉 (𝑚)

constructed in [15, Definition 4.1] (resp. [15, Definition 3.1]) with respect to point
𝑧 = 𝑏. This relation takes the form

𝑈 (𝑚)(𝑧)D(𝑚) = ̂︀𝑉 (𝑚)(𝑧), (6)

where D(𝑚) is a constant invertible matrix. The relation (6) was proven in [15,
Theorem 4.3] (resp. [15, Theorem 3.8]).

Under specific conditions, an additional explicit connection was established
between the Nevanlinna matrices: one evaluated at point 𝑧 = 𝑎 [12], and the
other at 𝑧 = 0 [18].
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Next, regarding [14], we provide a brief review of general notation related to
matrix polynomials.

We will use R, and N0 to denote the set of real numbers, and nonnegative
integers, respectively. Through 0𝑞, and 𝐼𝑞, we denote the 𝑞 × 𝑞 zero matrix, and
the 𝑞 × 𝑞 identity matrix, respectively.

A matrix polynomial is an expression of the form 𝑃 (𝑡) = 𝐴0𝑡
𝑛 + 𝐴1𝑡

𝑛−1 +
. . . + 𝐴𝑛−1𝑡 + 𝐴𝑛, where 𝑡 ∈ R and each coefficient 𝐴𝑘 is a 𝑞 × 𝑞 matrix, with
𝐴0 ̸= 0. Here, the degree of 𝑃 is 𝑛, denoted by deg𝑃 := 𝑛. If 𝐴0 equals the
identity matrix, the polynomial is called monic. Note that if 𝑃 (𝑡) ≡ 0𝑞 for all
𝑡 ∈ R, then deg𝑃 := −∞. When deg𝑃 = 𝑛 ≥ 0, the matrix 𝐴𝑛 is referred to
as the leading coefficient of 𝑃 . For all ℓ ∈ N0 and 𝜅 ∈ N0 with ℓ ≤ 𝜅, we define
the index set Zℓ,𝜅 := {𝑛 ∈ N0 | ℓ ≤ 𝑛 ≤ 𝜅}.The following remark was partially
reproduced from [14, Definition 3.2] and [14, Remark 3.6].

Remark 1. Let 𝑛 ∈ N0 ∪ {∞}, and let (𝑠𝑗)
2𝑛
𝑗=0 be a Hausdorff positive definite

sequence: The corresponding block Hankel matrix 𝐻1,𝑛 is positive definite. Let 𝜎
be a nonnegative Hermitian 𝑞 × 𝑞 measure on R satisfying (1) for 0 ≤ 𝑗 ≤ 2𝑛.
A sequence (𝑃𝑗)

𝑛
𝑗=0 of complex 𝑞 × 𝑞 matrix polynomials is called a monic left

orthogonal system of matrix polynomials with respect to 𝜎 if the three conditions
below are fulfilled.

(I) deg𝑃𝑗 = 𝑗 for all 𝑗 ∈ Z0,𝑛.

(II) 𝑃𝑗 has the leading coefficient 𝐼𝑞 for all 𝑗 ∈ Z0,𝑛.

(III) The following equality is satisfied:∫︁
[𝑎,𝑏]

𝑃𝑗𝑑𝜎𝑃
*
𝑘 =

{︃ ̂︀𝐻1,𝑗 , if 𝑗 = 𝑘,

0𝑞, if 𝑗 ̸= 𝑘

for all 0 ≤ 𝑗, 𝑘 ≤ 𝑛 where ̂︀𝐻1,𝑗 denotes the Schur complement of 𝐻1,𝑗−1 in
𝐻1,𝑗. See Definition 4.

Let 𝜎 be a nonnegative Hermitian measure on the Borel sets of [𝑎, 𝑏], and let 𝐵
be a Borel set of [𝑎, 𝑏]. Denote 𝜎1 := 𝜎. Let us introduce the following perturbed
measures:

𝜎2(𝐵) :=

∫︁
𝐵
(𝑏− 𝑡)(𝑡− 𝑎)𝜎(𝑑𝑡),

𝜎3(𝐵) :=

∫︁
𝐵
(𝑡− 𝑎)𝜎(𝑑𝑡),

𝜎4(𝐵) :=

∫︁
𝐵
(𝑏− 𝑡)𝜎(𝑑𝑡).

In Definitions 2 and 3, we introduced four monic orthogonal systems of matrix
polynomials, (𝑃𝑟,𝑗)

𝑛
𝑗=0 for 𝑟 = 1, 2, 3, 4. As shown in Proposition 1, (𝑃𝑟,𝑗)

𝑛
𝑗=0 for
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𝑟 = 1, 3, 4 (resp. (𝑃2,𝑗)
𝑛−1
𝑗=0 ) are orthogonal with respect to 𝜎𝑟 for 𝑟 = 1, 3, 4, (resp.

𝜎2).

We now revisit key aspects of the Nevanlinna matrix (4) in relation to
OMP. The Nevanlinna matrix associated with the THMM problem was initi-
ally formulated by using OMP for an even number of moments in [28]; an odd
number of moments was first explored in [3]. Furthermore, [7] introduced alternati-
ve representations of the Nevanlinna matrix via OMP, specifically at point 𝑧 = 𝑎.

Moreover, explicit relationships between Nevanlinna matrices expressed with
OMP have been established.

In [17], an explicit relationship between Nevanlinna matrices through OMP
was presented. In this relationship, the Nevanlinna matrix, which was obtained in
[18] regarding to point 𝑧 = 0, was considered. Additionally, this relation involved
the Nevanlinna matrices introduced in [12] and [13], both with respect to point
𝑧 = 𝑎.

Main results of the work

In this work, we consider the case of an even number of given moments.

a) Every block of the Nevanlinna matrix of the THMM problem at point 𝑧 = 𝑏
admits an explicit representation via OMP on [𝑎, 𝑏] and their polynomials
of the second kind; see Theorem 2.

b) In [15, Theorem 4.3], an explicit relationship was obtained between the
Nevanlinna matrices of the THMM problem regarding to point 𝑧 = 𝑎 and
point 𝑧 = 𝑏. In the present work, we establish an explicit relation between
the Nevanlinna matrices of the THMM problem with respect to point 𝑧 = 𝑎
and point 𝑧 = 𝑏 via OMP.

This paper is organized as follows. In Sections 2 and 3, notations and algebraic
identities are introduced, respectively. Furthermore, the orthogonality of the
polynomials introduced in Definitions 2 and 3 appear in Section 4. In Section
5, we represent the Nevanlinna matrix of the THMM problem at point 𝑧 = 𝑏
through OMP for an even number of moments. In Section 6, we obtain identities
related to the OMP defined in Definitions 2 and 3. Finally, Section 7, presents an
explicit relation for an even number of moments between the Nevanlinna matrices
of the THMM problem regarding to point 𝑧 = 𝑎 and point 𝑧 = 𝑏 via OMP.

2. Notations and preliminaries

In this section, we reproduce some matrix notations from [17] that appear
throughout this work.

We will use C to denote the set of complex numbers. Through C𝑝×𝑞, and
0𝑝×𝑞, we denote the 𝑝 × 𝑞 complex-valued matrices, and the 𝑝 × 𝑞 zero matrix,
respectively. Let us recall that 0𝑞, and 𝐼𝑞, denote the 𝑞 × 𝑞 zero matrix, and the
𝑞 × 𝑞 identity matrix, respectively. In cases where the sizes of the null and the
identity matrix are clear, we will omit the indices.
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Let 𝑅𝑗 : C → C(𝑗+1)𝑞×(𝑗+1)𝑞 be defined by

𝑅𝑗(𝑧) := (𝐼(𝑗+1)𝑞 − 𝑧𝑇𝑗)
−1, 𝑗 ∈ N0, (7)

with

𝑇0 := 0𝑞, 𝑇𝑗 :=

(︂
0𝑞×𝑗𝑞 0𝑞
𝐼𝑗𝑞 0𝑗𝑞×𝑞

)︂
, 𝑗 ∈ N0. (8)

Additionally, for 𝑗 ∈ N0 let

𝑣0 := 𝐼𝑞, 𝑣𝑗 := column (𝐼𝑞, 0𝑗𝑞×𝑞) . (9)

For each positive integer 𝑗 such that 1 ≤ 𝑗 ≤ 𝑛, let

𝐿1,𝑗 := (𝛿𝑖,𝑘+1𝐼𝑞) 𝑖 = 0, . . . , 𝑗
𝑘 = 0, . . . , 𝑗 − 1

and 𝐿2,𝑗 := (𝛿𝑖,𝑘𝐼𝑞) 𝑖 = 0, . . . , 𝑗
𝑘 = 0, . . . , 𝑗 − 1

, (10)

where 𝛿𝑖,𝑘 denotes the Kronecker symbol defined by 𝛿𝑖,𝑘 := 1 if 𝑖 = 𝑘, and 𝛿𝑖,𝑘 := 0
if 𝑖 ̸= 𝑘.
For 0 ≤ 𝑗 ≤ 𝑘, we set

𝑦[𝑗,𝑘] := column (𝑠𝑗 , 𝑠𝑗+1, . . . , 𝑠𝑘) , ̂︀𝑦[𝑗,𝑘] := column
(︁
𝑠
(2)
𝑗 , 𝑠

(2)
𝑗+1, . . . , 𝑠

(2)
𝑘

)︁
. (11)

For 𝑗 ∈ N0, we define the following auxiliary matrices:̃︀𝐻1,𝑗 := (𝑠𝑘+ℓ+1)
𝑗
ℓ,𝑘=0,

̃︀𝐻2,𝑗 := (𝑠𝑘+ℓ+2)
𝑗
ℓ,𝑘=0, (12)

𝑢𝑗 := column (−𝑠0,−𝑠1, . . . ,−𝑠𝑗) . (13)

Let 𝑛 ∈ N, and let (𝑠𝑗)
2𝑛
𝑗=0 be a sequence of complex 𝑞 × 𝑞 matrices. Define

𝑢1,0 := 0𝑞, 𝑢1,𝑗 := column
(︀
0𝑞, −𝑦[0,𝑗−1]

)︀
, 1 ≤ 𝑗 ≤ 𝑛, (14)

𝑢2,0 := −(𝑎+ 𝑏)𝑠0 + 𝑠1,

𝑢2,𝑗−1 := column
(︀
𝑢2,0, −̂︀𝑦[0,𝑗−2]

)︀
, 1 ≤ 𝑗 ≤ 𝑛− 1. (15)

Now let (𝑠𝑗)
2𝑛+1
𝑗=0 be a sequence of complex 𝑞 × 𝑞 matrices. We set

𝑢3,0 := 𝑠0, 𝑢3,𝑗 := 𝑦[0,𝑗] − 𝑏 column
(︀
0𝑞, 𝑦[0,𝑗−1]

)︀
, 1 ≤ 𝑗 ≤ 𝑛, (16)

𝑢4,0 := −𝑠0, 𝑢4,𝑗 := −𝑦[0,𝑗] + 𝑎 column
(︀
0𝑞, 𝑦[0,𝑗−1]

)︀
, 1 ≤ 𝑗 ≤ 𝑛. (17)

Let 𝑦[𝑗,𝑘] and ̂︀𝑦[𝑗,𝑘] be as in (11). Define

𝑌1,𝑗 := 𝑦[𝑗,2𝑗−1], 1 ≤ 𝑗 ≤ 𝑛, 𝑌2,𝑗 := ̂︀𝑦[𝑗,2𝑗−1], 1 ≤ 𝑗 ≤ 𝑛− 1, (18)

𝑌3,𝑗 := 𝑏 𝑦[𝑗,2𝑗−1] − 𝑦[𝑗+1,2𝑗], 𝑌4,𝑗 := −𝑎 𝑦[𝑗,2𝑗−1] + 𝑦[𝑗+1,2𝑗], 1 ≤ 𝑗 ≤ 𝑛. (19)

Finally, let 𝐻𝑟,𝑗 and 𝑌𝑟,𝑗 , for 𝑟 = 1, 2, 3, and 4 be as in (2), (18), and (19). We
denote

Σ𝑟,𝑗 := column
(︁
−𝐻−1

𝑟,𝑗−1𝑌𝑟,𝑗 , 𝐼𝑞

)︁
(20)

for 𝑟 = 1, 3, 4 (resp. 𝑟 = 2), with 1 ≤ 𝑗 ≤ 𝑛 (resp. 1 ≤ 𝑗 ≤ 𝑛− 1).
In Theorem 2 we obtain a representation of the Nevanlinna matrix of the

THHM problem in terms of the matrix polynomials introduced below. These
polynomials were first defined in [3]. Their orthogonality will be discussed later
in Proposition 1.
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Definition 2. Let (𝑠𝑘)
2𝑗
𝑘=0 be a sequence that is Hausdorff positive definite on

[𝑎, 𝑏]. Let 𝑢𝑟,𝑗, Σ𝑟,𝑗 for 𝑟 = 1, 2, 𝑅𝑗, and 𝑣𝑗 be defined by (14), (15), (20), (7),
and (9), respectively. We define for all 𝑧 ∈ C

𝑃 *
1,0(𝑧) := 𝐼𝑞, 𝑄*

1,0(𝑧) := 0𝑞, 𝑃 *
2,0(𝑧) := 𝐼𝑞, 𝑄*

2,0(𝑎, 𝑏, 𝑧) := −(𝑢*2,0 + 𝑧𝑠0),

(21)

𝑃 *
1,𝑗(𝑧) := 𝑣*𝑗𝑅

*
𝑗 (𝑧)Σ1,𝑗 , 1 ≤ 𝑗 ≤ 𝑛, (22)

𝑄*
1,𝑗(𝑧) := −𝑢*1,𝑗𝑅*

𝑗 (𝑧)Σ1,𝑗 , 1 ≤ 𝑗 ≤ 𝑛, (23)

𝑃 *
2,𝑗(𝑎, 𝑏, 𝑧) := 𝑣*𝑗𝑅

*
𝑗 (𝑧)Σ2,𝑗 , 1 ≤ 𝑗 ≤ 𝑛− 1, (24)

𝑄*
2,𝑗(𝑎, 𝑏, 𝑧) := −(𝑢*2,𝑗 + 𝑧𝑠0𝑣

*
𝑗 )𝑅

*
𝑗 (𝑧)Σ2,𝑗 , 1 ≤ 𝑗 ≤ 𝑛− 1. (25)

The matrix polynomials 𝑄1,𝑗 and 𝑄2,𝑗 are polynomials of the second kind with
respect to 𝑃1,𝑗 and 𝑃2,𝑗.

Remark 2. For brevity, we will frequently omit the parameters 𝑎 and 𝑏 in 𝑃 *
2,𝑗

and 𝑄*
2,𝑗. Specifically, rather than writing 𝑃 *

2,𝑗(𝑎, 𝑏, 𝑧) and 𝑄
*
2,𝑗(𝑎, 𝑏, 𝑧), we use the

simplified expressions 𝑃 *
2,𝑗(𝑧) and 𝑄

*
2,𝑗(𝑧). In particular, when 𝑧 = 𝑎 or 𝑧 = 𝑏, we

will write 𝑃 *
2,𝑗(𝑎), 𝑄

*
2,𝑗(𝑎), 𝑃

*
2,𝑗(𝑏), and 𝑄

*
2,𝑗(𝑏), respectively.

The matrix polynomials introduced below will be employed in Lemma 6 of
Section 5. They were first defined in [28], and their orthogonality will be examined
later in Proposition 1.

Definition 3. Let (𝑠𝑘)
2𝑗+1
𝑘=0 be a sequence that is Hausdorff positive definite on

[𝑎, 𝑏]. Let 𝑢𝑟,𝑗, Σ𝑟,𝑗 for 𝑟 = 3, 4, 𝑅𝑗, and 𝑣𝑗 be defined by (16), (17), (20), (7),
and (9), respectively. We define for all 𝑧 ∈ C and 1 ≤ 𝑗 ≤ 𝑛

𝑃 *
3,0(𝑧) := 𝐼𝑞, 𝑄*

3,0(𝑧) := 𝑠0, 𝑃 *
4,0(𝑧) := 𝐼𝑞, 𝑄*

4,0(𝑧) := −𝑠0, (26)

𝑃 *
3,𝑗(𝑏, 𝑧) := 𝑣*𝑗𝑅

*
𝑗 (𝑧)Σ3,𝑗 , (27)

𝑄*
3,𝑗(𝑏, 𝑧) := 𝑢*3,𝑗𝑅

*
𝑗 (𝑧)Σ3,𝑗 , (28)

𝑃 *
4,𝑗(𝑎, 𝑧) := 𝑣*𝑗𝑅

*
𝑗 (𝑧)Σ4,𝑗 , (29)

𝑄*
4,𝑗(𝑎, 𝑧) := 𝑢*4,𝑗𝑅

*
𝑗 (𝑧)Σ4,𝑗 . (30)

The matrix polynomials 𝑄3,𝑗 and 𝑄4,𝑗 are polynomials of the second kind with
respect to 𝑃3,𝑗 and 𝑃4,𝑗.

As in the Remark 2, we will often omit the parameters 𝑎 and 𝑏 in the polynomi-
als 𝑃 *

3,𝑗 , 𝑄
*
3,𝑗 , 𝑃

*
4,𝑗 , and 𝑄

*
4,𝑗 .

3. Main algebraic identities

Here we present the identities that will express the Nevanlinna matrix of the
THMM problem through OMP in Section 5.

The following definition below is based on [7, Equations (2.9)–(2.10), (2.19)–
(2.20)].
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Definition 4. Let (𝑠𝑘)
𝑚
𝑘=0 for 𝑚 = 2𝑗 (resp. 𝑚 = 2𝑗 + 1) be a sequence that is

Hausdorff positive definite on [𝑎, 𝑏]. Let 𝐻𝑟,𝑗, 𝑌𝑟,𝑗 for 𝑟 = 1, 2, 3, and 4 be defined

by (2), (18), and (19). Let ̂︀𝐻𝑟,𝑗 denote the Schur complement of the block matrix
𝐻𝑟,𝑗−1 in 𝐻𝑟,𝑗:

̂︀𝐻𝑟,0 := 𝑠
(𝑟)
0 , ̂︀𝐻𝑟,𝑗 := 𝑠

(𝑟)
2𝑗 − 𝑌 *

𝑟,𝑗𝐻
−1
𝑟,𝑗−1𝑌𝑟,𝑗 , (31)

for 𝑟 = 1, 3, 4 (resp. 𝑟 = 2) and for 1 ≤ 𝑗 ≤ 𝑛 (resp. 1 ≤ 𝑗 ≤ 𝑛− 1).

In Lemmas 1, 2, and 3, we introduce a collection of auxiliary identities for the
block Hankel matrices and the block matrices introduced in (7)–(12), as well as
in Definition 4.
Lemma 1. Let (𝑠𝑘)

𝑚
𝑘=0 for 𝑚 = 2𝑗 (resp. 𝑚 = 2𝑗 + 1) be a sequence that is

Hausdorff positive definite on [𝑎, 𝑏]. Let 𝑇𝑗 and 𝐿2,𝑗 be defined as in (8) and (10).

Let 𝐻𝑟,𝑗, ̂︀𝐻𝑟,𝑗, and Σ𝑟,𝑗 for 𝑟 = 1, 2, 3, and 4 be defined by (2), (31), and (20).
Therefore, the following identities hold:

𝐻−1
𝑟,𝑗 =

(︂
𝐻−1

𝑟,𝑗−1 0

0 0

)︂
+Σ𝑟,𝑗

̂︀𝐻−1
𝑟,𝑗 Σ

*
𝑟,𝑗 , (32)

𝑇𝑗𝐻𝑟,𝑗Σ𝑟,𝑗 = 0, (33)

𝐿*
2,𝑗𝐻𝑟,𝑗Σ𝑟,𝑗 = 0, (34)

for 𝑟 = 1, 3, 4 (resp. 𝑟 = 2) and for 1 ≤ 𝑗 ≤ 𝑛 (resp. 1 ≤ 𝑗 ≤ 𝑛− 1).

Proof. The identity (32) can be proven as in [3, pages 935–936]. The identities
(33) and (34) are proven in [17, Corollary 2.2]. □

Lemma 2. Let 𝑇𝑗, 𝑣𝑗, 𝑢𝑗, 𝑢1,𝑗, 𝐿1,𝑗, 𝐿2,𝑗, ̃︀𝐻1,𝑗, ̃︀𝐻2,𝑗, and 𝐻1,𝑗 be defined by (8),
(9), (13), (14), (10), (12), and (2) for 𝑟 = 1, respectively. Thus, for 0 ≤ 𝑗 ≤ 𝑛
(resp. 1 ≤ 𝑗 ≤ 𝑛) the following identities are valid:

𝑇𝑗 ̃︀𝐻1,𝑗 −𝐻1,𝑗 + 𝑣𝑗𝑣
*
𝑗+1𝐻1,𝑗+1𝐿2,𝑗+1 = 0, (35)

𝑇𝑗 ̃︀𝐻2,𝑗 − ̃︀𝐻1,𝑗 + 𝑣𝑗𝑣
*
𝑗+1

̃︀𝐻1,𝑗+1𝐿2,𝑗+1 = 0, (36)

𝐿*
1,𝑗𝐻1,𝑗 − 𝐿*

2,𝑗
̃︀𝐻1,𝑗 = 0, (37)

𝐿*
2,𝑗𝐻1,𝑗 + 𝑢𝑗−1𝑣

*
𝑗 − ̃︀𝐻1,𝑗−1𝐿

*
1,𝑗 = 0, (38)

𝑇𝑗𝑢𝑗 − 𝑢1,𝑗 = 0, (39)

𝑢*𝑗 − 𝑢*𝑗+1𝐿2,𝑗+1 = 0, (40)

𝑢*𝑗 + 𝑣*𝑗𝐻1,𝑗 = 0, (41)

𝐿1,𝑗𝐿
*
1,𝑗 − 𝑇𝑗𝑇

*
𝑗 = 0, (42)

𝐿2,𝑗𝑇
*
𝑗−1 − 𝑇 *

𝑗 𝐿2,𝑗 = 0, (43)

𝑢*1,𝑗 + 𝑣*𝑗𝐻1,𝑗𝑇
*
𝑗 = 0, (44)

𝑣𝑗 − 𝐿*
2,𝑗+1𝑣𝑗+1 = 0, (45)

𝐿2,𝑗𝐿
*
1,𝑗 − 𝑇 *

𝑗 = 0. (46)
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Proof. The identities can be derived through direct calculations. □

Lemma 3. Let 𝑤, 𝑧 ∈ C. Let 𝑅𝑗, 𝑇𝑗, 𝑣𝑗, 𝑢𝑗, 𝑢1,𝑗, 𝑢2,𝑗−1, 𝑢3,𝑗, 𝑢4,𝑗, 𝐿1,𝑗, 𝐿2,𝑗,
and 𝐻1,𝑗 be defined by (7), (8), (9), (13), (14), (15), (16), (17), (10), and (2)
for 𝑟 = 1, respectively. Therefore, for 0 ≤ 𝑗 ≤ 𝑛 (resp. 1 ≤ 𝑗 ≤ 𝑛) the following
identities are valid:

𝑅𝑗(𝑧)−𝑅𝑗(𝑤) = (𝑧 − 𝑤)𝑅𝑗(𝑧)𝑇𝑗𝑅𝑗(𝑤), (47)

𝑧𝑅𝑗(𝑧)− 𝑤𝑅𝑗(𝑤) = (𝑧 − 𝑤)𝑅𝑗(𝑧)𝑅𝑗(𝑤), (48)

𝑅*−1

𝑗 (𝑧) + (𝑧 − 𝑎)𝑇 *
𝑗 −𝑅*−1

𝑗 (𝑎) = 0, (49)

𝑢*1,𝑗𝑅
*
𝑗 (𝑧)(𝑇

*
𝑗 𝐿1,𝑗 − 𝐿1,𝑗𝑇

*
𝑗−1) = 0, (50)

𝑢3,𝑗 = −𝑅−1
𝑗 (𝑏)𝑢𝑗 , 𝑢4,𝑗 = 𝑅−1

𝑗 (𝑎)𝑢𝑗 , (51)

𝑅*−1

𝑗 (𝑧)𝐿2,𝑗𝑅
*
𝑗−1(𝑧)− 𝐿2,𝑗 = 0, (52)

(𝑢*2,𝑗−1 + 𝑏𝑠0𝑣
*
𝑗−1)𝑅

*
𝑗−1(𝑏)− 𝑣*𝑗𝐻1,𝑗(𝐿1,𝑗 − 𝑎𝐿2,𝑗) = 0. (53)

Proof. The identities from (47) to (52) can be verified through direct calculati-
on. A similar identity to (53) is established in [2, Proposition 3.4]. □

We recall the linear relations between the block Hankel matrices 𝐻𝑟,𝑗 and

the auxiliary matrices ̃︀𝐻1,𝑗 , ̃︀𝐻2,𝑗 . These relations were introduced in [7, Equati-
ons (1.5)–(1.6)].

Remark 3. Let ̃︀𝐻1,𝑗, ̃︀𝐻2,𝑗, and 𝐻𝑟,𝑗 be defined by (12) and (2) for 𝑟 = 1, 2, 3,
and 4. Thus, for 0 ≤ 𝑗 ≤ 𝑛 the following identities hold:

𝐻2,𝑗 = −𝑎𝑏𝐻1,𝑗 + (𝑎+ 𝑏) ̃︀𝐻1,𝑗 − ̃︀𝐻2,𝑗 , (54)

𝐻3,𝑗 = 𝑏𝐻1,𝑗 − ̃︀𝐻1,𝑗 , (55)

𝐻4,𝑗 = −𝑎𝐻1,𝑗 + ̃︀𝐻1,𝑗 . (56)

In the following lemma, we obtain new coupling identities concerning the block
matrices that were introduced in (7)–(12), as well as the block Hankel matrices
introduced in (2).

Lemma 4. Let 𝑧 ∈ C. Let 𝑅𝑗, 𝑇𝑗, 𝑣𝑗, 𝑢𝑗, 𝑢1,𝑗, 𝑢2,𝑗−1, 𝐿1,𝑗, 𝐿2,𝑗, and 𝐻𝑟,𝑗 be
defined by (7), (8), (9), (13), (14), (15), (10), and (2) for 𝑟 = 1, 2, 3, and 4,
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respectively. For 0 ≤ 𝑗 ≤ 𝑛 (resp. 1 ≤ 𝑗 ≤ 𝑛) the following identities hold:

−𝑅*−1

𝑗 (𝑧) + (𝑏− 𝑧)𝑇 *
𝑗 +𝑅*−1

𝑗 (𝑏) = 0, (57)

− 𝑣*𝑗+1𝐿2,𝑗+1𝐻1,𝑗 + 𝑣*𝑗+1𝐻1,𝑗+1𝐿2,𝑗+1 = 0, (58)

𝐻1,𝑗−1𝐿
*
1,𝑗 − 𝐿*

2,𝑗𝐻1,𝑗𝑇
*
𝑗 = 0, (59)

𝑢*2,𝑗−1𝑇
*
𝑗−1 + 𝑠0𝑣

*
𝑗−1 + 𝑢*1,𝑗(𝐿1,𝑗(𝐼 − 𝑏𝑇 *

𝑗−1)− 𝑎(𝐼 − 𝑏𝑇 *
𝑗 )𝐿2,𝑗) = 0, (60)

𝑅*
𝑗−1(𝑏)𝐿

*
1,𝑗𝑅

*−1

𝑗 (𝑏)− 𝐿*
1,𝑗 = 0, (61)

𝑢𝑗−1𝑣
*
𝑗 +𝐻3,𝑗−1𝐿

*
1,𝑗 + 𝐿*

2,𝑗𝐻1,𝑗𝑅
*−1

𝑗 (𝑏) = 0, (62)

𝑢𝑗𝑣
*
𝑗+1𝑅

*
𝑗+1(𝑏) +𝐻3,𝑗𝑅

*
𝑗 (𝑏)𝐿

*
1,𝑗+1 + 𝐿*

2,𝑗+1𝐻1,𝑗+1 = 0, (63)

− 𝑣𝑗𝑣
*
𝑗+1𝐻1,𝑗+1(𝐿1,𝑗+1 − 𝑎𝐿2,𝑗+1) + (𝐼 − 𝑏𝑇𝑗)𝐻4,𝑗 + 𝑇𝑗𝐻2,𝑗 = 0, (64)

(𝑢*2,𝑗 + 𝑧𝑠0𝑣
*
𝑗 )𝑅

*
𝑗 (𝑧)− (𝑢*2,𝑗 + 𝑏𝑠0𝑣

*
𝑗 )𝑅

*
𝑗 (𝑏) + (𝑧 − 𝑏)𝑢*1,𝑗+1𝑅

*
𝑗+1(𝑧)

· (𝐿1,𝑗+1 − 𝑎𝐿2,𝑗+1) = 0. (65)

Proof. The identities (57)–(61) are established by straightforward computati-
on. Moreover, (62) is obtained from (55), (38), and (59). By combining (61) with
(62), we have (63). Identity (64) follows from (56), (54), (37), (35), and (36).

Let Δ(65) be the left-hand side of (65). By using (47) and (48), we have for all
𝑧 ∈ C

Δ(65) = 𝑢*2,𝑗−1(𝑅
*
𝑗−1(𝑏)−𝑅*

𝑗−1(𝑧)) + 𝑠0𝑣
*
𝑗−1(𝑏𝑅

*
𝑗−1(𝑏)− 𝑧𝑅*

𝑗−1(𝑧))

− (𝑧 − 𝑏)𝑢*1,𝑗𝑅
*
𝑗 (𝑧)(𝐿1,𝑗 − 𝑎𝐿2,𝑗)

= (𝑏− 𝑧)
[︀
(𝑢*2,𝑗−1𝑇

*
𝑗−1 + 𝑠0𝑣

*
𝑗−1)𝑅

*
𝑗−1(𝑧)𝑅

*
𝑗−1(𝑏) + 𝑢*1,𝑗𝑅

*
𝑗 (𝑧)(𝐿1,𝑗 − 𝑎𝐿2,𝑗)

= (𝑏− 𝑧)
(︀
−𝑢*1,𝑗 [𝐿1,𝑗(𝐼 − 𝑏𝑇 *

𝑗−1)− 𝑎(𝐼 − 𝑏𝑇 *
𝑗 )𝐿2,𝑗 ]𝑅

*
𝑗−1(𝑧)𝑅

*
𝑗−1(𝑏)

+𝑢*1,𝑗𝑅
*
𝑗 (𝑧)(𝐿1,𝑗 − 𝑎𝐿2,𝑗)

)︀
= (𝑏− 𝑧)𝑢*1,𝑗

(︀
−[𝐿1,𝑗 − 𝑎𝐿2,𝑗 ]𝑅

*
𝑗−1(𝑧) +𝑅*

𝑗 (𝑧)(𝐿1,𝑗 − 𝑎𝐿2,𝑗)
)︀

= 𝑧(𝑏− 𝑧)𝑢*1,𝑗𝑅
*
𝑗 (𝑧)

[︀
𝑇 *
𝑗 (𝐿1,𝑗 − 𝑎𝐿2,𝑗)− (𝐿1,𝑗 − 𝑎𝐿2,𝑗)𝑇

*
𝑗−1

]︀
𝑅*

𝑗−1(𝑧)

= 𝑧(𝑏− 𝑧)𝑢*1,𝑗𝑅
*
𝑗 (𝑧)(𝑇

*
𝑗 𝐿1,𝑗 − 𝐿1,𝑗𝑇

*
𝑗−1)𝑅

*
𝑗−1(𝑧)

= 0.

The third equality follows from (60), whereas (52) was used in the fourth equality.
The fifth equality follows from (43), whereas (50) was used in the last equality. □

4. Orthogonality of matrix polynomials

The proposition below presents the orthogonality of the matrix polynomials
𝑃𝑟,𝑗 for 𝑟 = 1, 2, 3, and 4 on the interval [𝑎, 𝑏] ⊂ R. This result is partially adapted
from [7, Proposition 2.5] where we restrict attention to parts 𝑎) and 𝑏).

Proposition 1. Let ̂︀𝐻𝑟,𝑗 for 𝑟 = 1, 2, 3, and 4 be as in (31). Let 𝑃𝑟,𝑗 and 𝑄𝑟,𝑗

for 𝑟 = 1, 2, 3, and 4 be the matrix polynomials introduced in Definitions 2 and 3.
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a) The polynomials 𝑃1,𝑗 and 𝑃2,𝑗 are OMP on [𝑎, 𝑏] with respect to 𝜎(𝑑𝑡) and
(𝑏− 𝑡)(𝑡− 𝑎)𝜎(𝑑𝑡), respectively. More precisely,∫︁

[𝑎,𝑏]
𝑃𝑟,𝑗(𝑡)((𝑏− 𝑡)(𝑡− 𝑎))𝑟−1𝑑𝜎(𝑡)𝑃 *

𝑟,ℓ(𝑡) =

{︃
0𝑞 𝑗 ̸= ℓ̂︀𝐻𝑟,𝑗 𝑗 = ℓ,

𝑟 = 1, 2.

b) The polynomials 𝑃3,𝑗 and 𝑃4,𝑗 are OMP on [𝑎, 𝑏] with respect to (𝑏− 𝑡)𝜎(𝑑𝑡)
and (𝑡− 𝑎)𝜎(𝑑𝑡), respectively. Specifically,∫︁

[𝑎,𝑏]
𝑃3,𝑗(𝑡)(𝑏− 𝑡)𝑑𝜎(𝑡)𝑃 *

3,ℓ(𝑡) =

{︃
0𝑞 𝑗 ̸= ℓ̂︀𝐻3,𝑗 𝑗 = ℓ,∫︁

[𝑎,𝑏]
𝑃4,𝑗(𝑡)(𝑡− 𝑎)𝑑𝜎(𝑡)𝑃 *

4,ℓ(𝑡) =

{︃
0𝑞 𝑗 ̸= ℓ̂︀𝐻4,𝑗 𝑗 = ℓ.

Proof. Part 𝑎) is proven in [3, Section 4]. Part 𝑏) is proven in [28, Theorems
2.12 and 2.13]. □

5. The Nevanlinna matrix of the THMM problem
at point 𝑧 = 𝑏 via OMP

This section focuses on the representation of the Nevanlinna matrix ̂︀𝑉 (2𝑗+1)

associated with the THMM problem through OMP regarding to point 𝑧 = 𝑏, for
an even number of moments and specifically when 𝑚 = 2𝑗 + 1 in the sequence
(𝑠𝑘)

𝑚
𝑘=0.

Let us reproduce the Nevanlinna matrix ̂︀𝑉 (2𝑗+1)(𝑧) for the case of an even
number of moments obtained in [15, Definition 4.1].

Definition 5. Let (𝑠𝑘)
2𝑗+1
𝑘=0 be a sequence that is Hausdorff positive definite on

[𝑎, 𝑏]. Let 𝐻𝑟,𝑗 for 𝑟 = 3, 4, 𝑅𝑗, 𝑣𝑗, 𝑢3,𝑗, and 𝑢4,𝑗 be defined as in (2) for 𝑟 = 3, 4,
(7), (9), (17), and (16), respectively. The 2𝑞 × 2𝑞 matrix polynomial

̂︀𝑉 (2𝑗+1)(𝑧) :=

(︃ ̂︀𝛼(2𝑗+1)(𝑧) ̂︀𝛽(2𝑗+1)(𝑧)̂︀𝛾(2𝑗+1)(𝑧) ̂︀𝛿(2𝑗+1)(𝑧)

)︃
, 0 ≤ 𝑗 ≤ 𝑛, (66)

with ̂︀𝛼(2𝑗+1)(𝑧) := 𝐼 + (𝑏− 𝑧)𝑢*4,𝑗𝑅
*
𝑗 (𝑧)𝐻

−1
4,𝑗𝑅𝑗(𝑏)𝑣𝑗 , (67)̂︀𝛾(2𝑗+1)(𝑧) := (𝑏− 𝑧)(𝑧 − 𝑎)𝑣*𝑗𝑅

*
𝑗 (𝑧)𝐻

−1
4,𝑗𝑅𝑗(𝑏)𝑣𝑗 , (68)̂︀𝛽(2𝑗+1)(𝑧) := −𝑢*3,𝑗𝑅*

𝑗 (𝑧)𝐻
−1
3,𝑗𝑅𝑗(𝑏)𝑢3,𝑗 , (69)̂︀𝛿(2𝑗+1)(𝑧) := 𝐼 − (𝑏− 𝑧)𝑣*𝑗𝑅
*
𝑗 (𝑧)𝐻

−1
3,𝑗𝑅𝑗(𝑏)𝑢3,𝑗 , (70)

is called the Nevanlinna matrix of the THMM problem with respect to point 𝑧 = 𝑏
in the case of an even number of moments.



ВiсникХНУ, Сер. «Математика, прикладна математика i механiка», том102 (2025)17

In the analysis that follows, which includes Definition 5, we omit the explicit
dependence on the parameters 𝑎 and 𝑏 in the notation for the matrix-valued
functions ̂︀𝛼(2𝑗+1), ̂︀𝛽(2𝑗+1), ̂︀𝛾(2𝑗+1), ̂︀𝛿(2𝑗+1), as well as in the Nevanlinna matrix̂︀𝑉 (2𝑗+1).

The lemma stated below is vital in deriving the results presented in Lemma 6.

Lemma 5. Let ̂︀𝐻𝑟,𝑗, for 𝑟 = 3, 4 be as in (31). Let ̂︀𝛼(2𝑗+1), ̂︀𝛽(2𝑗+1), ̂︀𝛾(2𝑗+1),

and ̂︀𝛿(2𝑗+1) be as in (67), (69), (68), and (70), respectively. Furthermore, let 𝑃𝑟,𝑗

and 𝑄𝑟,𝑗 for 𝑟 = 3, 4 be the OMP and their polynomials of the second kind in
Definition 3. Therefore, for all 𝑧 ∈ C and 1 ≤ 𝑗 ≤ 𝑛, the following identities hold:

̂︀𝛼(2𝑗+1)(𝑧)− ̂︀𝛼(2(𝑗−1)+1)(𝑧) = (𝑏− 𝑧)𝑄*
4,𝑗(𝑧) ̂︀𝐻−1

4,𝑗 𝑃4,𝑗(𝑏), (71)̂︀𝛽(2𝑗+1)(𝑧)− ̂︀𝛽(2(𝑗−1)+1)(𝑧) = −𝑄*
3,𝑗(𝑧) ̂︀𝐻−1

3,𝑗𝑄3,𝑗(𝑏), (72)̂︀𝛾(2𝑗+1)(𝑧)− ̂︀𝛾(2(𝑗−1)+1)(𝑧) = (𝑏− 𝑧)(𝑧 − 𝑎)𝑃 *
4,𝑗(𝑧) ̂︀𝐻−1

4,𝑗 𝑃4,𝑗(𝑏), (73)̂︀𝛿(2𝑗+1)(𝑧)− ̂︀𝛿(2(𝑗−1)+1)(𝑧) = −(𝑏− 𝑧)𝑃 *
3,𝑗(𝑧) ̂︀𝐻−1

3,𝑗𝑄3,𝑗(𝑏). (74)

Proof. The equalities follow from the technique used in [2, Proposition 2.1]. □

Each entry of the Nevanlinna matrix ̂︀𝑉 (2𝑗+1), as defined in Definition 5, can
be represented in an additive form.

Lemma 6. Under the same conditions as in Lemma 5, for all 𝑧 ∈ C and 0 ≤ 𝑗 ≤
𝑛, the following identities hold:

̂︀𝛼(2𝑗+1)(𝑧) = 𝐼 + (𝑏− 𝑧)

𝑗∑︁
𝑘=0

𝑄*
4,𝑘(𝑎, 𝑧)

̂︀𝐻−1
4,𝑘𝑃4,𝑘(𝑎, 𝑏), (75)

̂︀𝛽(2𝑗+1)(𝑧) = −
𝑗∑︁

𝑘=0

𝑄*
3,𝑘(𝑏, 𝑧)

̂︀𝐻−1
3,𝑘𝑄3,𝑘(𝑏, 𝑏), (76)

̂︀𝛾(2𝑗+1)(𝑧) = (𝑏− 𝑧)(𝑧 − 𝑎)

𝑗∑︁
𝑘=0

𝑃 *
4,𝑘(𝑎, 𝑧)

̂︀𝐻−1
4,𝑘𝑃4,𝑘(𝑎, 𝑏), (77)

̂︀𝛿(2𝑗+1)(𝑧) = 𝐼 − (𝑏− 𝑧)

𝑗∑︁
𝑘=0

𝑃 *
3,𝑘(𝑏, 𝑧)

̂︀𝐻−1
3,𝑘𝑄3,𝑘(𝑏, 𝑏). (78)
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Proof. We prove (75). From (67), we obtain

̂︀𝛼(2𝑗+1)(𝑧) = 𝐼𝑞 + (𝑏− 𝑧)𝑢*4,𝑗𝑅
*
𝑗 (𝑧)𝐻

−1
4,𝑗𝑅𝑗(𝑏)𝑣𝑗

= 𝐼𝑞 + (𝑏− 𝑧)
(︀
𝑢*4,𝑗−1 −𝑠𝑗 + 𝑎𝑠𝑗−1

)︀
⎛⎜⎜⎜⎝𝑅*

𝑗−1(𝑧)

𝑧𝑗 𝐼
...
𝑧𝐼

0 𝐼

⎞⎟⎟⎟⎠
(︂
𝐻−1

4,𝑗−1 0

0 0

)︂
(︂

𝑅𝑗−1(𝑏) 0
𝑏𝑗 𝐼 . . . 𝑏𝐼 𝐼

)︂(︂
𝑣𝑗−1

0

)︂
+ (𝑏− 𝑧)𝑢*4,𝑗𝑅

*
𝑗 (𝑧)Σ4,𝑗

̂︀𝐻−1
4,𝑗Σ

*
4,𝑗𝑅𝑗(𝑏)𝑣𝑗

= ̂︀𝛼(2(𝑗−1)+1)(𝑧) + (𝑏− 𝑧)𝑄*
4,𝑗(𝑎, 𝑧) ̂︀𝐻−1

4,𝑗 𝑃4,𝑗(𝑎, 𝑏)

= ̂︀𝛼(2(𝑗−2)+1)(𝑧) + (𝑏− 𝑧)[𝑄*
4,𝑗−1(𝑎, 𝑧) ̂︀𝐻−1

4,𝑗−1𝑃4,𝑗−1(𝑎, 𝑏)

+𝑄*
4,𝑗(𝑎, 𝑧) ̂︀𝐻−1

4,𝑗 𝑃4,𝑗(𝑎, 𝑏)]

= ̂︀𝛼(1)(𝑧) + (𝑏− 𝑧)

𝑗∑︁
𝑘=1

𝑄*
4,𝑘(𝑎, 𝑧)

̂︀𝐻−1
4,𝑘𝑃4,𝑘(𝑎, 𝑏)

= 𝐼 + (𝑏− 𝑧)

𝑗∑︁
𝑘=0

𝑄*
4,𝑘(𝑎, 𝑧)

̂︀𝐻−1
4,𝑘𝑃4,𝑘(𝑎, 𝑏).

In the second equality, we apply (32). The third equality follows from (29)
and (30). To derive the fourth equality, we consider the third equality evaluated at
𝑗−1 and invoke (71). By repeating this procedure recursively for 𝑗−2, 𝑗−3, . . . , 0,
we obtain the penultimate equality. Finally, the last equality is deduced using (67),
(17), (7), (2), and (9) for 𝑗 = 0, together with (26) and (31).

A similar line of reasoning establishes the identities (76)–(78). □

The polynomials given in (22)–(25) are connected to the structure of the
Nevanlinna matrix ̂︀𝑉 (2𝑗+1) as in Definition 5.

Lemma 7. Let ̂︀𝛼(2𝑗+1), ̂︀𝛽(2𝑗+1), ̂︀𝛾(2𝑗+1), and ̂︀𝛿(2𝑗+1) be as in (67), (69), (68), and
(70), respectively. Let 𝑃𝑟,𝑗 and 𝑄𝑟,𝑗 for 𝑟 = 1, 2 be the OMP and their polynomials
of the second kind introduced in Definition 2. Thus, for all 𝑧 ∈ C and 0 ≤ 𝑗 ≤ 𝑛,
the following identities hold:

̂︀𝛼(2𝑗+1)(𝑧)𝑄*
2,𝑗(𝑎, 𝑏, 𝑏)−𝑄*

2,𝑗(𝑎, 𝑏, 𝑧) = 0, (79)̂︀𝛽(2𝑗+1)(𝑧)𝑃 *
1,𝑗+1(𝑏) +𝑄*

1,𝑗+1(𝑧) = 0, (80)̂︀𝛾(2𝑗+1)(𝑧)𝑄*
2,𝑗(𝑎, 𝑏, 𝑏) + (𝑏− 𝑧)(𝑧 − 𝑎)𝑃 *

2,𝑗(𝑎, 𝑏, 𝑧) = 0, (81)̂︀𝛿(2𝑗+1)(𝑧)𝑃 *
1,𝑗+1(𝑏)− 𝑃 *

1,𝑗+1(𝑧) = 0. (82)
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Proof. We prove (79). From (67) and (25), we have

̂︀𝛼(2𝑗+1)(𝑧)𝑄*
2,𝑗(𝑎, 𝑏, 𝑏)−𝑄*

2,𝑗(𝑎, 𝑏, 𝑧)

= −[(𝑢*2,𝑗 + 𝑧𝑠0𝑣
*
𝑗 )𝑅

*
𝑗 (𝑏) + (𝑏− 𝑧)𝑢*4,𝑗𝑅

*
𝑗 (𝑧)𝐻

−1
4,𝑗𝑅𝑗(𝑏)𝑣𝑗(𝑢

*
2,𝑗 + 𝑧𝑠0𝑣

*
𝑗 )𝑅

*
𝑗 (𝑏)

− (𝑢*2,𝑗 + 𝑧𝑠0𝑣
*
𝑗 )𝑅

*
𝑗 (𝑧)]Σ2,𝑗

= −[𝑣*𝑗+1𝐻1,𝑗+1(𝐿1,𝑗+1 − 𝑎𝐿2,𝑗+1)− (𝑏− 𝑧)𝑣*𝑗+1𝐻1,𝑗+1𝐿2,𝑗+1𝑅
*−1

𝑗 (𝑎)𝑅*
𝑗 (𝑧)𝐻

−1
4,𝑗

·𝑅𝑗(𝑏)𝑣𝑗𝑣
*
𝑗+1𝐻1,𝑗+1(𝐿1,𝑗+1 − 𝑎𝐿2,𝑗+1)− 𝑣*𝑗+1𝐻1,𝑗+1𝑅

*−1

𝑗+1(𝑏)𝑅
*
𝑗+1(𝑧)

· (𝐿1,𝑗+1 − 𝑎𝐿2,𝑗+1)]Σ2,𝑗

= −(𝑏− 𝑧)𝑣*𝑗+1𝐻1,𝑗+1𝑅
*
𝑗+1(𝑧)[𝑇

*
𝑗+1 − 𝐿2,𝑗+1𝑅

*−1

𝑗 (𝑎)𝐻−1
4,𝑗𝑅𝑗(𝑏)𝑣𝑗𝑣

*
𝑗+1𝐻1,𝑗+1]

· (𝐿1,𝑗+1 − 𝑎𝐿2,𝑗+1)Σ2,𝑗

= −(𝑏− 𝑧)𝑣*𝑗+1𝐻1,𝑗+1𝑅
*
𝑗+1(𝑧)𝐿2,𝑗+1𝑅

*−1

𝑗 (𝑎)𝐻−1
4,𝑗𝑅𝑗(𝑏)[−𝑣𝑗𝑣*𝑗+1𝐻1,𝑗+1

· (𝐿1,𝑗+1 − 𝑎𝐿2,𝑗+1) + (𝐼 − 𝑏𝑇𝑗)𝐻4,𝑗 ]Σ2,𝑗

= −(𝑏− 𝑧)𝑣*𝑗+1𝐻1,𝑗+1𝑅
*
𝑗+1(𝑧)𝐿2,𝑗+1𝑅

*−1

𝑗 (𝑎)𝐻−1
4,𝑗𝑅𝑗(𝑏)𝑇𝑗𝐻2,𝑗Σ2,𝑗

= 0.

In the second equality, we use (53), (51), (41), (45), (58), (65), (44), and (49).
In the third equality, we use (52) and (57). The fourth equality is obtained with
(46) and (42). The penultimate equality follows from (64), and the last equality
follows from (33) for 𝑟 = 2.

We prove (80). From (68), (23), and (22), we havê︀𝛽(2𝑗+1)(𝑧)𝑃 *
1,𝑗+1(𝑏) +𝑄*

1,𝑗+1(𝑧)

= −
(︁
𝑢*𝑗+1𝐿2,𝑗+1𝑅

*−1

𝑗 (𝑏)𝑅*
𝑗 (𝑧)𝐻

−1
3,𝑗 𝑢𝑗𝑣

*
𝑗+1𝑅

*
𝑗+1(𝑏) + 𝑢*1,𝑗+1𝑅

*
𝑗+1(𝑧)

)︁
Σ1,𝑗+1

= −
(︁
𝑢*𝑗+1𝑅

*
𝑗+1(𝑧)𝐿2,𝑗+1𝑅

*−1

𝑗 (𝑏)𝐻−1
3,𝑗 𝑢𝑗𝑣

*
𝑗+1𝑅

*
𝑗+1(𝑏) + 𝑢*𝑗+1𝑇

*
𝑗+1𝑅

*
𝑗+1(𝑧)

)︁
Σ1,𝑗+1

= −𝑢*𝑗+1𝑅
*
𝑗+1(𝑧)𝐿2,𝑗+1𝑅

*−1

𝑗 (𝑏)𝐻−1
3,𝑗

(︀
𝑢𝑗𝑣

*
𝑗+1𝑅

*
𝑗+1(𝑏) +𝐻3,𝑗𝑅

*
𝑗 (𝑏)𝐿

*
1,𝑗+1

)︀
Σ1,𝑗+1

= −𝑢*𝑗+1𝑅
*
𝑗+1(𝑧)𝐿2,𝑗+1𝑅

*−1

𝑗 (𝑏)𝐻−1
3,𝑗𝐿

*
2,𝑗+1𝐻1,𝑗+1Σ1,𝑗+1

= 0.

In the second equality, we use (51) (40), (52), and (39). The third equality follows
from (46). The penultimate equality follows from (63), and the last equality follows
from (34) for 𝑟 = 1.

Equalities (81) and (82) follow by employing an analogous method. □

By taking into account Lemmas 6 and 7, we can now formulate the following
theorem.

Theorem 1. Let ̂︀𝐻𝑟,𝑗 for 𝑟 = 3, 4 be as in (31). Furthermore, let 𝑃𝑟,𝑗 and 𝑄𝑟,𝑗

for 𝑟 = 1, 2, 3, and 4 be the OMP and their polynomials of the second kind in
Definitions 2 and 3. Therefore, for all 𝑧 ∈ C and 0 ≤ 𝑗 ≤ 𝑛, the following
identities hold:
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𝑄*
2,𝑗(𝑎, 𝑏, 𝑧) =

(︃
𝐼 + (𝑏− 𝑧)

𝑗∑︁
𝑘=0

𝑄*
4,𝑘(𝑎, 𝑧)

̂︀𝐻−1
4,𝑘𝑃4,𝑘(𝑎, 𝑏)

)︃
𝑄*

2,𝑗(𝑎, 𝑏, 𝑏), (83)

𝑄*
1,𝑗+1(𝑧) =

(︃
𝑗∑︁

𝑘=0

𝑄*
3,𝑘(𝑏, 𝑧)

̂︀𝐻−1
3,𝑘𝑄3,𝑘(𝑏, 𝑏)

)︃
𝑃 *
1,𝑗+1(𝑏), (84)

𝑃 *
2,𝑗(𝑎, 𝑏, 𝑧) = −

(︃
𝑗∑︁

𝑘=0

𝑃 *
4,𝑘(𝑎, 𝑧)

̂︀𝐻−1
4,𝑘𝑃4,𝑘(𝑎, 𝑏)

)︃
𝑄*

2,𝑗(𝑎, 𝑏, 𝑏), (85)

𝑃 *
1,𝑗+1(𝑧) =

(︃
𝐼 − (𝑏− 𝑧)

𝑗∑︁
𝑘=0

𝑃 *
3,𝑘(𝑏, 𝑧)

̂︀𝐻−1
3,𝑘𝑄3,𝑘(𝑏, 𝑏)

)︃
𝑃 *
1,𝑗+1(𝑏). (86)

As a consequence, the following corollary establishes a connection between the
Schur complements ̂︀𝐻3,𝑗 and ̂︀𝐻4,𝑗 and the matrix polynomials 𝑃 *

1,𝑗+1, 𝑄3,𝑗 , 𝑄
*
2,𝑗 ,

and 𝑃4,𝑗 . Additionally, it justifies the existence of the inverses of these matrix
polynomials evaluated at the point 𝑧 = 𝑏.

Corollary 1. Under the same assumptions as in Theorem 1, for 0 ≤ 𝑗 ≤ 𝑛 the
following equalities hold: ̂︀𝐻3,𝑗 = 𝑄3,𝑗(𝑏, 𝑏)𝑃

*
1,𝑗+1(𝑏), (87)̂︀𝐻4,𝑗 = −𝑃4,𝑗(𝑎, 𝑏)𝑄

*
2,𝑗(𝑎, 𝑏, 𝑏). (88)

Moreover, the OMP 𝑃 *
1,𝑗+1 and 𝑃4,𝑗, as well as the polynomials of the second kind

𝑄3,𝑗 and 𝑄
*
2,𝑗, are invertible at the point 𝑧 = 𝑏.

Proof. Equalities (87) and (88) readily follow from (86) and (85) by compari-
ng the leading coefficients of the matrix polynomials. Since ̂︀𝐻3,𝑗 is inverti-
ble, we have that 𝑄3,𝑗(𝑏, 𝑏)𝑃

*
1,𝑗+1(𝑏) is invertible. Regarding determinanats,

det(𝑄3,𝑗(𝑏, 𝑏)𝑃
*
1,𝑗+1(𝑏)) ̸= 0. This implies det(𝑄3,𝑗(𝑏, 𝑏)) ̸= 0 and det(𝑃 *

1,𝑗+1(𝑏)) ̸=
0. Therefore, 𝑄3,𝑗(𝑏, 𝑏) and 𝑃

*
1,𝑗+1(𝑏) are invertible. Similarly, we conclude that

𝑄*
2,𝑗(𝑎, 𝑏, 𝑏) and 𝑃4,𝑗(𝑎, 𝑏) are invertible. □

By combining Lemma 7 and Corollary 1, we derive a novel representation of
the Nevanlinna matrix ̂︀𝑉 (2𝑗+1) that is associated with the THMM problem at
point 𝑧 = 𝑏 and that corresponds to an even number of moments.

Theorem 2. Let ̂︀𝑉 (2𝑗+1) be the Nevanlinna matrix given by Definition 5. Let 𝑃𝑟,𝑗

and 𝑄𝑟,𝑗 for 𝑟 = 1, 2 be the OMP and their polynomials of the second kind as in
Definition 2. Thus, for all 𝑧 ∈ C and 0 ≤ 𝑗 ≤ 𝑛, the following equality holds:

̂︀𝑉 (2𝑗+1)(𝑎, 𝑏, 𝑧)

=

(︃
𝑄*

2,𝑗(𝑎, 𝑏, 𝑧)𝑄
*−1

2,𝑗 (𝑎, 𝑏, 𝑏) −𝑄*
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑏)

−(𝑏− 𝑧)(𝑧 − 𝑎)𝑃 *
2,𝑗(𝑎, 𝑏, 𝑧)𝑄

*−1

2,𝑗 (𝑎, 𝑏, 𝑏) 𝑃 *
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑏)

)︃
. (89)
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6. Derivation of identities related to orthogonal matrix polynomials

By considering the result in Corollary 1, we apply it to derive identities at
points 𝑧 = 𝑎 and 𝑧 = 𝑏, involving the OMP introduced in Definitions 2 and 3.

We establish identities regarding to point 𝑧 = 𝑎 that involve OMP. To support
this, we must reproduce the Nevanlinna matrix 𝑈 (2𝑗+1) in terms of OMP, as
obtained in [7, Theorem 3.8]. Note that both matrices are formulated with respect
to point 𝑧 = 𝑎. For more detail, see Theorem 3.

Furthermore, we derive identities at point 𝑧 = 𝑏 for the OMP 𝑃1,𝑗 and 𝑃2,𝑗 ,
together with their polynomials of the second kind 𝑄1,𝑗 and 𝑄2,𝑗 . To substantiate

these findings, expressing the inverse of the Nevanlinna matrix ̂︀𝑉 (2𝑗+1) in terms
of these polynomials is necessary. See Theorem 4 for a precise statement.

We proceed to reproduce results analogous to Corollary 1, which were ori-
ginally established in [7, Corollary 3.10] in the context of the evaluation point
𝑧 = 𝑎.

Lemma 8. Let ̂︀𝐻𝑟,𝑗 for 𝑟 = 3, 4 be as in (31). Let 𝑃1,𝑗 and 𝑄2,𝑗 be introduced in
Definition 2, as well as, let 𝑃3,𝑗 and 𝑄4,𝑗 be introduced in Definition 3. Thus, for
0 ≤ 𝑗 ≤ 𝑛, the following identities are satisfied:̂︀𝐻3,𝑗 = 𝑃3,𝑗(𝑏, 𝑎)𝑄

*
2,𝑗(𝑎, 𝑏, 𝑎), (90)̂︀𝐻4,𝑗 = 𝑄4,𝑗(𝑎, 𝑎)𝑃
*
1,𝑗+1(𝑎). (91)

In the proposition below, we establish new identities at points 𝑧 = 𝑎 and 𝑧 = 𝑏
by involving the OMP.

Proposition 2. Let 𝑃𝑟,𝑗 and 𝑄𝑟,𝑗 for 𝑟 = 1, 2, 3, and 4 be the OMP and their
polynomials of the second kind in Definitions 2 and 3. Therefore, for 0 ≤ 𝑗 ≤ 𝑛,
the following identities are satisfied:

𝑄3,𝑗(𝑏, 𝑏)𝑃
*
1,𝑗+1(𝑏)− 𝑃3,𝑗(𝑏, 𝑎)𝑄

*
2,𝑗(𝑎, 𝑏, 𝑎) = 0, (92)

𝑃4,𝑗(𝑎, 𝑏)𝑄
*
2,𝑗(𝑎, 𝑏, 𝑏) +𝑄4,𝑗(𝑎, 𝑎)𝑃

*
1,𝑗+1(𝑎) = 0. (93)

Proof. Identities (92), and (93) are proven by using the identities obtained in
(87), (88), (90), and (91).

We next revisit the formulation of the Nevanlinna matrix 𝑈 (2𝑗+1) associated
with the THMM problem at point 𝑧 = 𝑎. This representation, originally from [7,
Theorem 3.8], expresses 𝑈 (2𝑗+1) in terms of the OMP and their corresponding
polynomials of the second kind.

Definition 6. Let 𝑃𝑟,𝑗 and 𝑄𝑟,𝑗 for 𝑟 = 1, 2 be the OMP and their polynomials
of the second kind in Definition 2. We introduce the Nevanlinna matrix of the
THMM problem with respect to point 𝑧 = 𝑎 in the case of an even number of
moments for all 𝑧 ∈ C and 0 ≤ 𝑗 ≤ 𝑛:

𝑈 (2𝑗+1)(𝑎, 𝑏, 𝑧)

:=

(︃
𝑄*

2,𝑗(𝑎, 𝑏, 𝑧)𝑄
*−1

2,𝑗 (𝑎, 𝑏, 𝑎) −𝑄*
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑎)

−(𝑧 − 𝑎)(𝑏− 𝑧)𝑃 *
2,𝑗(𝑎, 𝑏, 𝑧)𝑄

*−1

2,𝑗 (𝑎, 𝑏, 𝑎) 𝑃 *
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑎)

)︃
. (94)
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Remark 4. As established in [12, Proposition 6.10], the Nevanlinna matrix
𝑈 (2𝑗+1) is invertible for all 𝑧 ∈ C.

The next remark explicitly represents the inverse of 𝑈 (2𝑗+1) with OMP and
their corresponding polynomials of the second kind.

Remark 5. The inverse of (94) is

𝑈 (2𝑗+1)−1
(𝑎, 𝑏, 𝑧)

=

(︂
𝑃−1
1,𝑗+1(𝑎)𝑃1,𝑗+1(𝑧) 𝑃−1

1,𝑗+1(𝑎)𝑄1,𝑗+1(𝑧)

(𝑧 − 𝑎)(𝑏− 𝑧)𝑄−1
2,𝑗 (𝑎, 𝑏, 𝑎)𝑃2,𝑗(𝑎, 𝑏, 𝑧) 𝑄−1

2,𝑗 (𝑎, 𝑏, 𝑎)𝑄2,𝑗(𝑎, 𝑏, 𝑧)

)︂
. (95)

In the following theorem, we derive identities at point 𝑧 = 𝑎 by incorporating
the OMP 𝑃1,𝑗 and 𝑃2,𝑗 , together with their polynomials of the second kind 𝑄1,𝑗

and 𝑄2,𝑗 .

Theorem 3. Let 𝑃𝑟,𝑗 and 𝑄𝑟,𝑗, for 𝑟 = 1, 2 be the OMP and their polynomials
of the second kind in Definition 2. Therefore, for all 𝑧 ∈ C and 0 ≤ 𝑗 ≤ 𝑛, the
following identities are fulfilled:

𝑄*
2,𝑗(𝑧)𝑄

*−1

2,𝑗 (𝑎)𝑃−1
1,𝑗+1(𝑎)𝑃1,𝑗+1(𝑧)−(𝑏−𝑧)(𝑧−𝑎)

·𝑄*
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑎)𝑄
−1
2,𝑗(𝑎)𝑃2,𝑗(𝑧)= 𝐼𝑞, (96)

𝑄*
2,𝑗(𝑧)𝑄

*−1

2,𝑗 (𝑎)𝑃−1
1,𝑗+1(𝑎)𝑄1,𝑗+1(𝑧)−

𝑄*
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑎)𝑄
−1
2,𝑗(𝑎)𝑄2,𝑗(𝑧) = 0, (97)

(𝑏−𝑧)(𝑧−𝑎)[𝑃 *
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑎)𝑄
−1
2,𝑗(𝑎)𝑃2,𝑗(𝑧)−

𝑃 *
2,𝑗(𝑧)𝑄

*−1

2,𝑗 (𝑎)𝑃−1
1,𝑗+1(𝑎)𝑃1,𝑗+1(𝑧)]= 0, (98)

𝑃 *
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑎)𝑄
−1
2,𝑗(𝑎)𝑄2,𝑗(𝑧)−(𝑏−𝑧)(𝑧−𝑎)

· 𝑃 *
2,𝑗(𝑧)𝑄

*−1

2,𝑗 (𝑎)𝑃−1
1,𝑗+1(𝑎)𝑄1,𝑗+1(𝑧)= 𝐼𝑞. (99)

Proof. From (94), (95), and the following equality

𝑈 (2𝑗+1)(𝑎, 𝑏, 𝑧)𝑈 (2𝑗+1)−1
(𝑎, 𝑏, 𝑧) =

(︂
𝐼𝑞 0
0 𝐼𝑞

)︂
,

we obtain the identities (96)–(99). □
The following observation justifies the invertibility of the Nevanlinna matrix̂︀𝑉 (2𝑗+1).

Remark 6. Let ̂︀𝑉 (2𝑗+1) denote the Nevanlinna matrix introduced in Definition 5.
According to Remark 4, the matrix 𝑈 (2𝑗+1) is invertible for all 𝑧 ∈ C. Furthermore,
Remark 8 asserts that the constant matrix D(2𝑗+1) is also invertible. Consequently,
by the explicit relation given in (6), it follows that ̂︀𝑉 (2𝑗+1) is invertible for all
𝑧 ∈ C.



ВiсникХНУ, Сер. «Математика, прикладна математика i механiка», том102 (2025)23

The following remark explicitly expresses the inverses of the Nevanlinna matrix̂︀𝑉 (2𝑗+1), which is formulated in terms of OMP and their associated polynomials
of the second kind.

Remark 7. Let ̂︀𝑉 (2𝑗+1) be the Nevanlinna matrix given by (89). Furthermore, let
𝑃𝑟,𝑗 and 𝑄𝑟,𝑗, for 𝑟 = 1, 2 be the OMP and their polynomials of the second kind
in Definition 2. Thus, for all 𝑧 ∈ C and 0 ≤ 𝑗 ≤ 𝑛, the following equality holds :

̂︀𝑉 (2𝑗+1)−1
(𝑎, 𝑏, 𝑧)

=

(︂
𝑃−1
1,𝑗+1(𝑏)𝑃1,𝑗+1(𝑧) 𝑃−1

1,𝑗+1(𝑏)𝑄1,𝑗+1(𝑧)

(𝑏− 𝑧)(𝑧 − 𝑎)𝑄−1
2,𝑗 (𝑎, 𝑏, 𝑏)𝑃2,𝑗(𝑎, 𝑏, 𝑧) 𝑄−1

2,𝑗 (𝑎, 𝑏, 𝑏)𝑄2,𝑗(𝑎, 𝑏, 𝑧)

)︂
. (100)

In the theorem below, we derive identities at point 𝑧 = 𝑏 with the OMP 𝑃1,𝑗

and 𝑃2,𝑗 , together with their polynomials of the second kind 𝑄1,𝑗 and 𝑄2,𝑗 .

Theorem 4. Let 𝑃𝑟,𝑗 and 𝑄𝑟,𝑗, for 𝑟 = 1, 2 be the OMP and their polynomials
of the second kind in Definition 2. Therefore, for all 𝑧 ∈ C and 0 ≤ 𝑗 ≤ 𝑛, the
following identities are fulfilled:

𝑄*
2,𝑗(𝑧)𝑄

*−1

2,𝑗 (𝑏)𝑃−1
1,𝑗+1(𝑏)𝑃1,𝑗+1(𝑧)− (𝑏−𝑧)(𝑧−𝑎)

·𝑄*
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑏)𝑄
−1
2,𝑗(𝑏)𝑃2,𝑗(𝑧) = 𝐼𝑞, (101)

𝑄*
2,𝑗(𝑧)𝑄

*−1

2,𝑗 (𝑏)𝑃−1
1,𝑗+1(𝑏)𝑄1,𝑗+1(𝑧)−

𝑄*
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑏)𝑄
−1
2,𝑗(𝑏)𝑄2,𝑗(𝑧) = 0, (102)

(𝑏−𝑧)(𝑧−𝑎)[𝑃 *
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑏)𝑄
−1
2,𝑗(𝑏)𝑃2,𝑗(𝑧)−

𝑃 *
2,𝑗(𝑧)𝑄

*−1

2,𝑗 (𝑏)𝑃−1
1,𝑗+1(𝑏)𝑃1,𝑗+1(𝑧)] = 0, (103)

𝑃 *
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑏)𝑄
−1
2,𝑗(𝑏)𝑄2,𝑗(𝑧)− (𝑏−𝑧)(𝑧−𝑎)

· 𝑃 *
2,𝑗(𝑧)𝑄

*−1

2,𝑗 (𝑏)𝑃−1
1,𝑗+1(𝑏)𝑄1,𝑗+1(𝑧)= 𝐼𝑞. (104)

Proof. By using (89), (100), and the equality

̂︀𝑉 (2𝑗+1)(𝑎, 𝑏, 𝑧)̂︀𝑉 (2𝑗+1)−1
(𝑎, 𝑏, 𝑧) =

(︂
𝐼𝑞 0
0 𝐼𝑞

)︂
,

the identities (101)–(104) follow. □

7. Explicit relationships between Nevanlinna matrices via OMP

For 𝑚 = 2𝑗+1, the explicit relationship (6) between the Nevanlinna matrices
of the THMM problem regarding to points 𝑧 = 𝑎 and 𝑧 = 𝑏 was established in
[15, Theorem 4.3].

By using the Nevanlinna matrix from Theorem 2, together with Definition
6, we show the relation (6) in terms of OMP. Furthermore, we introduce and
we reformulate the constant matrix D(2𝑗+1), that was originally obtained in [15,
Theorem 4.3] also with OMP.
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Definition 7. Let (𝑠𝑘)
2𝑗+1
𝑘=0 be a Hausdorff positive definite sequence on [𝑎, 𝑏]. Let

𝑇𝑗, 𝑅𝑗, 𝑣𝑗, 𝑢𝑗, 𝑢4,𝑗, and 𝑢3,𝑗 be as in (8), (7), (9), (13), (17), and (16). We
introduce the following matrix:

D(2𝑗+1) :=

(︃
𝑎
(2𝑗+1)
11 0

0 𝑎
(2𝑗+1)
22

)︃
, 0 ≤ 𝑗 ≤ 𝑛 (105)

with

𝑎
(2𝑗+1)
11 := 𝐼 + (𝑏− 𝑎)𝑢*4,𝑗𝑅

*
𝑗 (𝑎)𝐻

−1
4,𝑗𝑅𝑗(𝑏)𝑣𝑗 , (106)

𝑎
(2𝑗+1)
22 := 𝐼 − (𝑏− 𝑎)𝑣*𝑗𝑅

*
𝑗 (𝑎)𝐻

−1
3,𝑗𝑅𝑗(𝑏)𝑢3,𝑗 . (107)

Remark 8. As established in [15, Lemma 4.4], the constant matrix D(2𝑗+1) is
invertible.

We now present a theorem that indicates an explicit relationship between the
Nevanlinna matrices of the THMM problem evaluated at points 𝑧 = 𝑎 and 𝑧 = 𝑏
and expressed with OMP for an even number of moments.

Theorem 5. Let 𝑃1,𝑗 be the orthogonal matrix polynomial, and let 𝑄2,𝑗 be the
polynomial of the second kind introduced in Definition 2. Moreover, let 𝑈 (2𝑗+1)

and ̂︀𝑉 (2𝑗+1) be the Nevanlinna matrices as in (94) and (89), respectively. If the

elements 𝑎
(2𝑗+1)
11 and 𝑎

(2𝑗+1)
22 of the matrix D(2𝑗+1) from Definition 7 are written

as

𝑎
(2𝑗+1)
11 = 𝑃−1

1,𝑗+1(𝑎)𝑃1,𝑗+1(𝑏), (108)

𝑎
(2𝑗+1)
22 = 𝑄−1

2,𝑗 (𝑎)𝑄2,𝑗(𝑏), (109)

then for all 𝑧 ∈ C the following equality is valid:

𝑈 (2𝑗+1)(𝑧)D(2𝑗+1) − ̂︀𝑉 (2𝑗+1)(𝑧) = 0. (110)

Proof. We prove that the left-hand side of (110) vanishes as follows:

𝑈 (2𝑗+1)(𝑧)D(2𝑗+1) − ̂︀𝑉 (2𝑗+1)(𝑧)

=

(︃
−𝑄*

2,𝑗(𝑧)𝑄
*−1

2,𝑗 (𝑏) 𝑄*
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑏)

(𝑧 − 𝑎)(𝑏− 𝑧)𝑃 *
2,𝑗(𝑧)𝑄

*−1

2,𝑗 (𝑏) −𝑃 *
1,𝑗+1(𝑧)𝑃

*−1

1,𝑗+1(𝑏)

)︃

·

(︃
−𝑄*

2,𝑗(𝑏)𝑄
*−1

2,𝑗 (𝑎)𝑃−1
1,𝑗+1(𝑎)𝑃1,𝑗+1(𝑏)+𝐼𝑞 0

0 −𝑃 *
1,𝑗+1(𝑏)𝑃

*−1

1,𝑗+1(𝑎)𝑄
−1
2,𝑗(𝑎)𝑄2,𝑗(𝑏)+𝐼𝑞

)︃
= 0.

The last equality is obtained by applying the identities (96) and (99) at 𝑧 = 𝑏. □

The elements 𝑎
(2𝑗+1)
22 and 𝑎

(2𝑗+1)
22 as in (108) and (109) are written at point

𝑧 = 𝑏. Thus, we consider the following remark.
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Remark 9. By using (108) and (109), the matrix D(2𝑗+1) from Definition 7
admits the following representation in terms of OMP with respect to point 𝑧 = 𝑏:

D(2𝑗+1) =

(︂
𝑃−1
1,𝑗+1(𝑎)𝑃1,𝑗+1(𝑏) 0

0 𝑄−1
2,𝑗 (𝑎)𝑄2,𝑗(𝑏)

)︂
. (111)

The following remark shows that the elements 𝑎
(2𝑗+1)
11 and 𝑎

(2𝑗+1)
22 can also be

represented with OMP regarding to point 𝑧 = 𝑎.

Remark 10. Let 𝑃1,𝑗 be the orthogonal matrix polynomial, and let 𝑄2,𝑗 be the

polynomial of the second kind introduced in Definition 2. Let 𝑎
(2𝑗+1)
11 and 𝑎

(2𝑗+1)
22

be as in (106) and (107), respectively. If the elements 𝑎
(2𝑗+1)
11 and 𝑎

(2𝑗+1)
22 of the

matrix D(2𝑗+1) from Definition 7 are written as

𝑎
(2𝑗+1)
11 = 𝑄*

2,𝑗(𝑎)𝑄
*−1

2,𝑗 (𝑏), (112)

𝑎
(2𝑗+1)
22 = 𝑃 *

1,𝑗+1(𝑎)𝑃
*−1

1,𝑗+1(𝑏), (113)

then Equality (110) is also satisfied for all 𝑧 ∈ C.

8. Conclusion

We have expressed the Nevanlinna (resolvent) matrix associated with the
truncated Hausdorff matrix moment (THMM) problem on the interval [𝑎, 𝑏]
in terms of orthogonal matrix polynomials (OMP) and their corresponding
polynomials of the second kind, at point 𝑏. Alongside this representation, we
obtained new identities involving OMP and established an explicit connection
between the Nevanlinna matrices of the THMM problem at points 𝑎 and 𝑏, which
was directly formulated through OMP.
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22. B. Fritzsche, B. Kirstein, C. Mädler. On the Structure of Hausdorff Moment
Sequences of Complex Matrices, In: Colombo, F., Sabadini, I., Struppa, D.,
Vajiac, M. (eds) Advances in Complex Analysis and Operator Theory. Trends
in Mathematics. Birkhäuser, Cham. – 2017.
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Матриця Неванлiнни усiченої задачi моментiв
матрицi Хаусдорфа через ортогональнi матричнi полiноми

на [a,b] для випадку парної кiлькостi моментiв
Медiна-Ернандес Б.Е.

Об’єднана аспiрантура з математичних наук Нацiонального автономного
унiверситету Мексики та Унiверситету Мiчоакана-де-Сан-Нiколас-де-

Iдальго, Iнститут фiзики та математики,
Будiвля C-3, 58060, Морелiя, Мiчоакан, Мексика

Скалярна проблема моментiв була вперше запропонована Т. Й. Стiлтьєсом у
роботi: “Recherches sur les fractions continues”, Annals of the Faculty of Sciences of
Toulouse 8, 1–122, (1895). Вiн сформулював її наступним чином: маючи моменти
порядку 𝑘 (𝑘 = 0, 1, 2, . . .), знайти додатний розподiл маси на пiвосi [0,+∞).

Дослiдження матричної та операторної проблем моментiв було розпочато
М. Г. Крейном у його основоположнiй роботi “Fundamental aspects of the representati-
on theory of Hermitian operators with deficiency index (𝑚,𝑚)”, Translations of the
American Mathematical Society, Series II, 97, 75–143, (1949).

Дана стаття пов’язана з усiченою проблемою моментiв Хаусдорфа (англ.
THMM): усiченою матричною проблемою моментiв Хаусдорфа на компактному iн-
тервалi [𝑎, 𝑏] на вiдмiну вiд проблеми моментiв Стiлтьєса на [0,+∞) та проблеми

https://doi.org/10.1007/s11785-024-01629-8
https://doi.org/10.1070/IM1984v022n03ABEH001452
https://doi.org/10.1090/trans2/097/06
https://doi.org/10.26565/2221-5646-2025-102-01
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моментiв Гамбургера на (−∞,+∞). Наш пiдхiд спирається на метод В. П. Пота-
пова, у якому задача iнтерполяцiї та проблема моментiв переформульовуються як
еквiвалентнi матричнi нерiвностi i вводяться допомiжнi матрицi, що задовольняють
властивiсть ̃︀𝐽𝑞-внутрiшньої функцiї класу Потапова разом iз системою пар стовпцiв.

Реалiзацiя методу починається з побудови матриць Ганкеля на основi заданих
моментiв. Якщо цi матрицi є додатно напiввизначеними, то THMM проблема є
розв’язною. У випадку строгої додатної визначеностi, який називають невиродже-
ним, ми перетворюємо вiдповiднi матричнi нерiвностi, щоб отримати матрицю Не-
ванлiнни (або резольвенту) THMM проблеми, яка характеризує її розв’язки.

Цей пiдхiд було широко застосовано, зокрема в роботi A. E. Choque Rivero,
Yu. M. Dyukarev, B. Fritzsche та B. Kirstein: “A truncated matricial moment problem
on a finite interval”, Interpolation, Schur Functions and Moment Problems, Operator
Theory: Advances and Applications, Birkhäuser , Basel, 165, 121–173, (2006).

Основний результат цiєї роботи полягає у представленнi матрицi Неванлiнни
THMM проблеми у термiнах ортогональних матричних полiномiв (англ. OMP) i
пов’язаних з ними полiномiв другого роду в точцi 𝑏. Зауважимо, що аналогiчне пред-
ставлення в точцi 𝑎 було отримано ранiше в роботi A. E. Choque Rivero, “From the
Potapov to the Krein–Nudel’man representation of the resolvent matrix of the truncated
Hausdorff matrix moment problem”, Bulletin of the Mexican Mathematical Society, 21(2),
233–259 (2015).

Крiм того, ми встановлюємо новi тотожностi, що стосуються OMP. i переформу-
льовуємо явний зв’язок мiж матрицями Неванлiнни THMM проблеми в точках 𝑎 та
𝑏 за допомогою OMP.
Ключовi слова: усiчена матрична проблема моментiв Хаусдорфа; матриця

Неванлiнни; ортогональнi матричнi полiноми.
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The Jacobi operator

and the stability of vertical minimal surfaces

in the sub-Riemannian Lie group ˜SL(2,R)

We consider oriented immersed minimal surfaces in three-dimensional sub-
Riemannian manifolds which are vertical, i.e., perpendicular to the two-
dimensional horizontal distribution of the sub-Riemannian structure. We
showed earlier that a vertical surface is minimal in the sub-Riemannian
sense if and only if it is minimal in the Riemannian sense and that its
sub-Riemannian stability implies its Riemannian stability. We introduce the
sub-Riemannian version of the Jacobi operator for such surfaces and prove
a sufficient condition for the stability of vertical minimal surfaces similar
to a theorem of Fischer-Colbrie and Schoen: if a surface allows a positive
function with the vanishing Jacobi operator then it is stable.

Next, we use the Jacobi operator technique to investigate vertical mini-

mal surfaces in the Lie group ˜SL(2,R) that can be described as the uni-
versal covering of the unit tangent bundle of the hyperbolic plane wi-
th the standard left-invariant Sasaki metric (that corresponds to one of
the Thurston geometries) and with two different types of sub-Riemannian
structures. First, we consider a family of non-left-invariant structures defined
by some parameters, find the values of parameters for which vertical mini-
mal surfaces exist, and describe such complete connected surfaces. These
are Euclidean half-planes and cylinders, and they all are stable in the sub-
Riemannian sense and thus in the Riemannian sense. In particular, this
gives us examples of structures that do not allow vertical minimal surfaces.
Then, we describe complete connected vertical minimal surfaces for another
sub-Riemannian structure that is left-invariant. These are half-planes and
helicoidal surfaces that also appear to be stable in the sub-Riemannian sense
and thus in the Riemannian sense.
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1. Introduction

The Jacobi operator of a minimal submanifold in a Riemannian manifold (see,
e.g., [1]) is a very useful tool that allows one to determine whether this submanifold
is stable. In particular, a well-known theorem by Fischer-Colbrie and Schoen ([2])
states that a complete non-compact minimal hypersurface is stable if and only if
there exists a positive function for which the Jacobi operator vanishes. It also can
be of use in sub-Riemannian geometry. For example, in [6] the Jacobi operator
of a minimal surface in the three-dimensional sub-Riemannian Heisenberg group
plays a crucial role in the proof of a Bernstein-like theorem. Note that, contrary to
the Riemannian case, for submanifolds in sub-Riemannian manifolds the first and
second sub-Riemannian volume variation formulas are not universal: they depend
on a sub-Riemannian structure and can be quite complicated. See [6] and [4]

for the examples of the Heisenberg group and the universal covering ̃︂E(2) of the
group of orientation-preserving Euclidean plane isometries respectively. Hence,
the Jacobi operators also depend on such structure.

Taking this into account, in [4] we started to look into so-called vertical
minimal surfaces in three-dimensional sub-Riemannian manifolds, a relatively
simple, but interesting class of surfaces. In [5] we found the first and second
sub-Riemannian area variation formulas for such surfaces (Proposition 1 in the
next section) showing that they can be written down in a way independent of
a sub-Riemannian structure. That allowed us to consider various classes of sub-
Riemannian manifolds and establish the stability of vertical minimal surfaces in
them. Here we continue this work. First of all, we derive the Jacobi operator
for a vertical minimal surface in any three-dimensional sub-Riemannian manifold
(Proposition 2) and prove a sufficient condition for stability similar to the one
of Fischer-Colbrie and Schoen: if a surface allows a positive function with the
vanishing Jacobi operator then it is stable (Theorem 1). Then we apply it to the

study of vertical minimal surfaces in the Lie group ˜SL(2,R) with two different
classes of sub-Riemannian structures (Theorems 2 and 3) obtaining some new
classes of such stable surfaces (note that they are also minimal and stable in the
Riemannian sense) and finding examples of structures that do not allow vertical
minimal surfaces.

2. Preliminaries and the Jacobi operator

A sub-Riemannian manifold is a smooth manifold 𝑀 together with a
completely non-integrable smooth distribution ℋ on𝑀 (a horizontal distribution)
and a smooth field of Euclidean scalar products ⟨·, ·⟩ℋ on ℋ (a sub-Riemannian
metric). In particular, ⟨·, ·⟩ℋ can be the restriction of some Riemannian metric
⟨·, ·⟩ on 𝑀 to ℋ. Here we will assume that all sub-Riemannian structures are of
this form. We will call a sub-Riemannian structure on a Lie group𝑀 left-invariant
if both ℋ and ⟨·, ·⟩ are left-invariant.

Let Σ be an oriented immersed surface (without boundary) in a three-
dimensional sub-Riemannian manifold 𝑀 with a two-dimensional horizontal di-
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stribution. If 𝑁ℎ is the orthogonal projection of the Riemannian unit normal field
𝑁 of Σ ontoℋ and 𝑑Σ is the Riemannian area form of Σ, then the sub-Riemannian
area of a domain 𝐷 ⊂ Σ (see, e.g., [3]) is defined as

𝐴(𝐷) =

∫︁
𝐷

|𝑁ℎ| 𝑑Σ.

The normal variation of the surface Σ defined by a smooth function 𝑢 with
compact support is the map

𝜙 : Σ× 𝐼 →𝑀 : 𝜙𝑠(𝑝) = 𝑒𝑥𝑝𝑝(𝑠𝑢(𝑝)𝑁(𝑝)),

where 𝐼 is an open neighborhood of 0 in R and 𝑒𝑥𝑝𝑝 is the Riemannian exponenti-
al map at 𝑝. Therefore, we construct the variation by drawing the Riemannian
geodesic through each point 𝑝 ∈ Σ in the direction of 𝑢(𝑝)𝑁(𝑝). Denote

𝐴(𝑠) =

∫︁
Σ𝑠

|𝑁ℎ| 𝑑Σ𝑠,

where Σ𝑠 = 𝜙𝑠(Σ). Then 𝐴
′(0) is called the first (normal) sub-Riemannian area

variation defined by 𝜙, and 𝐴′′(0) is called the second one. A surface Σ is called
minimal if 𝐴′(0) = 0 for any normal variations with compact support in Σ ∖ Σ0,
where Σ0 = {𝑝 ∈ Σ | 𝑁ℎ(𝑝) = 0} is the singular set of Σ. A minimal surface
Σ is called stable if 𝐴′′(0) ⩾ 0 for any normal variations with compact support
in Σ ∖ Σ0.

We will call a surface Σ in a three-dimensional sub-Riemannian manifold verti-
cal if 𝑇𝑝Σ is perpendicular to ℋ𝑝 for each 𝑝 ∈ Σ, i.e., the normal vectors of these
planes are orthogonal. In particular, for such surfaces 𝑁ℎ = 𝑁 and Σ0 = ∅. In [5]
we proved the following.

Proposition 1. A vertical surface Σ in a three-dimensional sub-Riemannian
manifold is minimal in the sub-Riemannian sense if and only if it is minimal in
the Riemannian sense. In this case its second sub-Riemannian area variation is

𝐴′′(0) =

∫︁
Σ

− (𝑋(𝑢)− ⟨∇𝑁𝑋,𝑁⟩𝑢)2 + |∇Σ𝑢|2 −
(︀
Ric (𝑁,𝑁) + |𝐵|2

)︀
𝑢2 𝑑Σ,

where 𝑢 is a smooth function with compact support that defines the normal variati-
on, ∇ and Ric are the Riemannian connection and the Ricci tensor of 𝑀 respecti-
vely, 𝑋 is the unit normal vector field of ℋ (which is tangent to Σ because it is
vertical), ∇Σ and 𝐵 are the Riemannian gradient and the second fundamental
form of Σ respectively. It follows that if Σ is stable in the sub-Riemannian sense
then it is also stable in the Riemannian sense.
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Define the characteristic vector field 𝑍 on Σ as the right angle rotation of 𝑁
in ℋ (in the orientation defined by 𝑋). Then {𝑋,𝑍} is an orthonormal frame on
Σ, so |∇Σ𝑢|2 = 𝑋(𝑢)2 + 𝑍(𝑢)2 and the second variation formula takes the form

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 + 2⟨∇𝑁𝑋,𝑁⟩𝑢𝑋(𝑢)−

−
(︀
⟨∇𝑁𝑋,𝑁⟩2 +Ric (𝑁,𝑁) + |𝐵|2

)︀
𝑢2 𝑑Σ,

(1)

Note that the divergence of the field ⟨∇𝑁𝑋,𝑁⟩𝑢2𝑋 on Σ has the vanishing
integral by the Stokes’ theorem because 𝑢 is with compact support. On the other
hand, this divergence equals

divΣ
(︀
⟨∇𝑁𝑋,𝑁⟩𝑢2𝑋

)︀
= 2⟨∇𝑁𝑋,𝑁⟩𝑢𝑋(𝑢)+

+ (𝑋 (⟨∇𝑁𝑋,𝑁⟩) + ⟨∇𝑁𝑋,𝑁⟩ divΣ𝑋)𝑢2,

where divΣ𝑋 = ⟨∇𝑋𝑋,𝑋⟩ + ⟨∇𝑍𝑋,𝑍⟩ = ⟨∇𝑍𝑋,𝑍⟩ due to the orthonormality
of {𝑋,𝑍}. It means that (1) can be rewritten as

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 − 𝑓 𝑢2 𝑑Σ (2)

for some function 𝑓 .

Proposition 2. Let Σ be a minimal surface in a three-dimensional sub-
Riemannian manifold whose second variation is of the form (2). Then it also
has a form

𝐴′′(0) = −
∫︁
Σ

𝑢𝐿(𝑢) 𝑑Σ (3)

where 𝐿 is the Jacobi operator on the space of smooth functions on Σ:

𝐿(𝑢) = 𝑍(𝑍(𝑢)) + ⟨∇𝑋𝑍,𝑋⟩𝑍(𝑢) + 𝑓 𝑢. (4)

Proof. Note that, similarly to divΣ𝑋 above, divΣ𝑍 = ⟨∇𝑋𝑍,𝑋⟩+⟨∇𝑍𝑍,𝑍⟩ =
⟨∇𝑋𝑍,𝑋⟩, so in (4)

𝐿(𝑢) = 𝑍(𝑍(𝑢)) + 𝑍(𝑢) divΣ𝑍 + 𝑓 𝑢 = divΣ(𝑍(𝑢)𝑍) + 𝑓 𝑢.

From this, as 𝑢 has compact support,

0 =

∫︁
Σ

divΣ(𝑢𝑍(𝑢)𝑍) 𝑑Σ =

∫︁
Σ

𝑍(𝑢)2 + 𝑢divΣ(𝑍(𝑢)𝑍) 𝑑Σ =

=

∫︁
Σ

𝑍(𝑢)2 + 𝑢(𝐿(𝑢)− 𝑓 𝑢) 𝑑Σ,

and that implies (3).
In particular, this Jacobi operator indeed is a linear operator on 𝐶∞(𝑀) as in

the Riemannian case. Now we will show that an analogue of the sufficiency part
in the Fischer-Colbrie–Schoen theorem ([2]) is true for this operator.
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Theorem 1. Let Σ be a minimal surface in a three-dimensional sub-Riemannian
manifold with the second variation of the form (2) and the Jacobi operator 𝐿
from (4). If there exists a smooth function 𝑢 > 0 on Σ such that 𝐿(𝑢) = 0 then Σ
is stable.

Proof. As 𝑢 > 0, we can define 𝑣 = ln𝑢 on Σ with derivatives

𝑍(𝑣) =
𝑍(𝑢)

𝑢
, 𝑍(𝑍(𝑣)) =

𝑍(𝑍(𝑢))

𝑢
− 𝑍(𝑢)2

𝑢2
.

This, (4), and 𝐿(𝑢) = 0 imply that

divΣ(𝑍(𝑣)𝑍) = 𝑍(𝑍(𝑣)) + ⟨∇𝑋𝑍,𝑋⟩𝑍(𝑣) = −𝑍(𝑣)2 − 𝑓. (5)

For any smooth function 𝑤 on Σ with compact support

divΣ
(︀
𝑤2𝑍(𝑣)𝑍

)︀
= divΣ(𝑍(𝑣)𝑍)𝑤

2 + 2𝑍(𝑣)𝑍(𝑤)𝑤

The integral of this divergence on Σ vanishes, thus by (5) and the Cauchy–Schwarz
inequality we have∫︁

Σ

(︀
𝑓 + 𝑍(𝑣)2

)︀
𝑤2 𝑑Σ = −

∫︁
Σ

divΣ(𝑍(𝑣)𝑍)𝑤
2 𝑑Σ =

=

∫︁
Σ

2𝑍(𝑣)𝑍(𝑤)𝑤 𝑑Σ ⩽
∫︁
Σ

𝑍(𝑣)2𝑤2 + 𝑍(𝑤)2 𝑑Σ,

hence for the variation defined by 𝑤 the second variation (2) is non-negative:

𝐴′′(0) =

∫︁
Σ

𝑍(𝑤)2 − 𝑓 𝑤2 𝑑Σ ⩾ 0,

and this means the stability of Σ.
Note that the statement also stays true for 𝑢 > 0 with 𝐿(𝑢) ⩽ 0 with almost

the same proof. It is interesting whether the necessity (hard) part of the Fischer-
Colbrie–Schoen theorem is also true for complete non-compact Σ, that is, whether
the stability implies the existence of 𝑢 > 0 with 𝐿(𝑢) = 0. Here and in the next
session by the completeness of a surface we mean the Riemannian completeness.

3. Vertical minimal surfaces in ˜SL(2,R)

The three-dimensional Thurston geometry ˜𝑆𝐿(2,R) can be described (see [8])
as the universal covering of the unit tangent bundle of the hyperbolic plane H2

with the Sasaki metric, that is, the half-space {(𝑥, 𝑦, 𝑧) ∈ R3 | 𝑦 > 0} with the
following orthonormal frame of vector fields:

𝑋1 = 𝑦 cos 𝑧
𝜕

𝜕𝑥
+ 𝑦 sin 𝑧

𝜕

𝜕𝑦
− cos 𝑧

𝜕

𝜕𝑧
,

𝑋2 = −𝑦 sin 𝑧 𝜕
𝜕𝑥

+ 𝑦 cos 𝑧
𝜕

𝜕𝑦
+ sin 𝑧

𝜕

𝜕𝑧
,𝑋3 =

𝜕

𝜕𝑧
.

(6)
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This manifold also is a Lie group (the universal covering of the special linear
group SL(2,R)) and the fields {𝑋1, 𝑋2, 𝑋3} are left-invariant. The corresponding
left-invariant metric is 1

𝑦2

(︀
𝑑𝑥2 + 𝑑𝑦2 + (𝑑𝑥+ 𝑦 𝑑𝑧)2

)︀
, so we can consider a simpler

orthonormal frame of

𝑌1 = 𝑦
𝜕

𝜕𝑥
− 𝜕

𝜕𝑧
= cos 𝑧 𝑋1 − sin 𝑧 𝑋2,

𝑌2 = 𝑦
𝜕

𝜕𝑦
= sin 𝑧 𝑋1 + cos 𝑧 𝑋2, 𝑌3 =

𝜕

𝜕𝑧
= 𝑋3,

(7)

where the fields 𝑌1 and 𝑌2 are not left-invariant. The non-zero Lie brackets of
the fields (6) are

[𝑋1, 𝑋2] = −[𝑋2, 𝑋1] = −𝑋3, [𝑋2, 𝑋3] = −[𝑋3, 𝑋2] = 𝑋1,
[𝑋3, 𝑋1] = −[𝑋1, 𝑋3] = 𝑋2,

and the only non-zero Lie bracket of (7) is [𝑌1, 𝑌2] = −𝑌1 − 𝑌3. Using the Koszul
formula as in [7], we derive from this that the Riemannian connection ∇ of the
left-invariant metric is defined by

∇𝑋1𝑋2 = −∇𝑋2𝑋1 = −𝑋3

2
, ∇𝑋2𝑋3 = −𝑋1

2
, ∇𝑋3𝑋2 = −3𝑋1

2
,

∇𝑋3𝑋1 =
3𝑋2

2
, ∇𝑋1𝑋3 =

𝑋2

2
, ∇𝑋1𝑋1 = ∇𝑋2𝑋2 = ∇𝑋3𝑋3 = 0,

(8)

hence

∇𝑌1𝑌2 = −𝑌1 −
𝑌3
2
, ∇𝑌2𝑌1 =

𝑌3
2
, ∇𝑌2𝑌3 = ∇𝑌3𝑌2 = −𝑌1

2
,

∇𝑌3𝑌1 = ∇𝑌1𝑌3 =
𝑌2
2
, ∇𝑌1𝑌1 = 𝑌2, ∇𝑌2𝑌2 = ∇𝑌3𝑌3 = 0.

(9)

It also follows from [7] that the Ricci tensor of this metric is defined by

Ric(𝑋1, 𝑋1) = Ric(𝑋2, 𝑋2) = Ric(𝑌1, 𝑌1) = Ric(𝑌2, 𝑌2) = −3

2
,

Ric(𝑋3, 𝑋3) = Ric(𝑌3, 𝑌3) =
1

2
, Ric(𝑋𝑖, 𝑋𝑗) = Ric(𝑌𝑖, 𝑌𝑗) = 0, 𝑖 ̸= 𝑗.

(10)

It follows from the Lie brackets above that the left-invariant distribution
orthogonal to 𝑋3 = 𝑌3 is completely non-integrable and so defines a sub-
Riemannian structure such that this distribution is horizontal. For this structure
complete connected vertical surfaces are well-known: they are cylinders over
geodesics in H2 (see, e.g., [9]). We showed in [5] that these surfaces are stable
in the sub-Riemannian sense and thus in the Riemannian sense. Let us consider
here a more general situation.

Theorem 2. A two-dimensional horizontal distribution ℋ = 𝑋⊥, whose unit
normal field 𝑋 is a linear combination of the fields 𝑌1, 𝑌2, 𝑌3 with constant

coefficients, defines a sub-Riemannian structure on ˜SL(2,R) (i.e., is its horizontal



36 I. O. Havrylenko

distribution) if and only if 𝑋 is of the form 1√
𝜆2+𝜇2+1

(𝜆𝑌1 + 𝜇𝑌2 + 𝑌3), where

𝜆 ̸= −1. This sub-Riemannian structure allows vertical minimal surfaces only for
𝜆 = 0 and 𝜆 = 1.

If 𝜇 ̸= 0 then a complete connected vertical surface is minimal if and only if
it is a Euclidean half-plane 𝑥 = 𝑥0 for 𝜆 = 0 or a Euclidean half-plane 𝑧 = 𝑧0 for
𝜆 = 1.

If 𝜇 = 0 and 𝜆 = 1 then a complete connected vertical surface is minimal if
and only if it is either a Euclidean half-plane 𝑧 = 𝑧0 or a cylinder that can be
parameterized as

𝑟(𝑠, 𝑡) =
(︁
𝑠, 𝑦0 cos 𝑡, 𝑧0 +

√
2 𝑡
)︁
, 𝑠 ∈ R, 𝑡 ∈

(︁
−𝜋
2
+ 2𝜋𝑘,

𝜋

2
+ 2𝜋𝑘

)︁
, (11)

where 𝑘 ∈ Z.
If 𝜇 = 𝜆 = 0 then a complete connected vertical surface is minimal if and only

if is a cylinder over a geodesic in H2.
All these surfaces are stable in the sub-Riemannian sense and thus in the

Riemannian sense.

Proof. If𝑋 is of the form 𝜆𝑌1+𝜇𝑌2 then 𝑌3 belongs to its orthogonal distributi-
on. As [𝑌1, 𝑌3] = [𝑌2, 𝑌3] = 0, this distribution is integrable. So indeed it should
be 𝑋 = 1√

𝜆2+𝜇2+1
(𝜆𝑌1 + 𝜇𝑌2 + 𝑌3) for ℋ = 𝑋⊥ to define a sub-Riemannian

structure. In this case {𝑌1 − 𝜆𝑌3, 𝑌2 − 𝜇𝑌3} is a frame of ℋ. The Lie bracket
−𝑌1 −𝑌3 of these fields forms with them a linearly independent triple if and only
if 𝜆 ̸= −1. This is the condition for ℋ to be completely non-integrable, so we get
the desired form of 𝑋. Substituting (7) into it yields

𝑋 = 1√
𝜆2+𝜇2+1

(︁
𝜆𝑦 𝜕

𝜕𝑥 + 𝜇𝑦 𝜕
𝜕𝑦 + (−𝜆+ 1) 𝜕

𝜕𝑧

)︁
. (12)

In the case 𝜇 ̸= 0 integral curves of this field are transversal to Euclidean planes
𝑦 = 𝑦0 (recall that 𝑦 > 0), so we can build any complete connected vertical surface
Σ of the sub-Riemannian structure by drawing these integral curves through poi-
nts of a curve 𝑡 ↦→ (𝑥(𝑡) + 𝜆/𝜇, 1, 𝑧(𝑡)) and obtain the following parameterization
for Σ:

𝑟(𝑠, 𝑡) =

(︂
𝑥(𝑡) +

𝜆

𝜇
𝑒𝜇𝑠, 𝑒𝜇𝑠, 𝑧(𝑡) + (−𝜆+ 1)𝑠

)︂
. (13)

Taking derivatives, we get

𝑟𝑠 =
√︀
𝜆2 + 𝜇2 + 1𝑋, 𝑟𝑡 = (𝑥′, 0, 𝑧′) = 𝑥′𝑒−𝜇𝑠𝑌1 + (𝑥′𝑒−𝜇𝑠 + 𝑧′)𝑌3.

From this and (9), the covariant derivatives are

∇𝑟𝑠𝑟𝑠 = (𝜆+ 1)(−𝜇𝑌1 + 𝜆𝑌2),

∇𝑟𝑡𝑟𝑠 = −𝜇
2
(3𝑥′𝑒−𝜇𝑠 + 𝑧′)𝑌1 +

1

2
(3𝜆𝑥′𝑒−𝜇𝑠 + 𝜆𝑧′ + 𝑥′𝑒−𝜇𝑠)𝑌2 −

𝜇

2
𝑥′𝑒−𝜇𝑠𝑌3,

∇𝑟𝑡𝑟𝑡 = 𝑥′′𝑒−𝜇𝑠𝑌1 + (2(𝑥′)2𝑒−2𝜇𝑠 + 𝑥′𝑧′𝑒−𝜇𝑠)𝑌2 + (𝑥′′𝑒−𝜇𝑠 + 𝑧′′)𝑌3.
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The unit normal field of Σ is

𝑁 =
1

Δ

(︀
(𝜇𝑥′𝑒−𝜇𝑠 + 𝜇𝑧′)𝑌1 − (𝜆𝑥′𝑒−𝜇𝑠 + 𝜆𝑧′ − 𝑥′𝑒−𝜇𝑠)𝑌2 − 𝜇𝑥′𝑒−𝜇𝑠𝑌3

)︀
,

where Δ =
√︀
(𝜇𝑥′𝑒−𝜇𝑠 + 𝜇𝑧′)2 + (𝜆𝑥′𝑒−𝜇𝑠 + 𝜆𝑧′ − 𝑥′𝑒−𝜇𝑠)2 + (𝜇𝑥′𝑒−𝜇𝑠)2. So, the

coefficients of the second fundamental form of Σ are

𝑏11 = ⟨∇𝑟𝑠𝑟𝑠, 𝑁⟩ = 𝜆+ 1

Δ

(︀
−(𝜆2 + 𝜇2)(𝑥′𝑒−𝜇𝑠 + 𝑧′) + 𝜆𝑥′𝑒−𝜇𝑠

)︀
,

𝑏12 = ⟨∇𝑟𝑡𝑟𝑠, 𝑁⟩ = 1

2Δ

(︀
−(𝜆2 + 𝜇2)(3𝑥′𝑒−𝜇𝑠 + 𝑧′)(𝑥′𝑒−𝜇𝑠 + 𝑧′)+

+(1 + 2𝜆+ 𝜇2)(𝑥′)2𝑒−2𝜇𝑠
)︀
,

𝑏22 = ⟨∇𝑟𝑡𝑟𝑡, 𝑁⟩ = 1

Δ

(︀
−𝑥′(2𝑥′𝑒−𝜇𝑠 + 𝑧′)((𝜆− 1)𝑥′𝑒−𝜇𝑠 + 𝜆𝑧′)𝑒−𝜇𝑠+

+𝜇(𝑥′′𝑧′ − 𝑥′𝑧′′)𝑒−𝜇𝑠) .

Taking into account the coefficients of the first fundamental form of Σ

𝑔11 = 𝜆2 + 𝜇2 + 1, 𝑔12 = (𝜆+ 1)𝑥′𝑒−𝜇𝑠 + 𝑧′, 𝑔22 = (𝑥′)2𝑒−2𝜇𝑠 + (𝑥′𝑒−𝜇𝑠 + 𝑧′)2,

we can rewrite the minimality condition 𝐻 = 0, that is, 𝑏11𝑔22−2𝑏12𝑔12+𝑏22𝑔11 =
0, in the form

𝑓3(𝑡)𝑒
−3𝜇𝑠 + 𝑓2(𝑡)𝑒

−2𝜇𝑠 + 𝑓1(𝑡)𝑒
−𝜇𝑠 + 𝑓0(𝑡) = 0, (14)

where 𝑓3 = (𝑥′)3(𝜆− 1)((𝜆− 1)2 + 𝜇2), so it should be 𝑥 = 𝑥0 or 𝜆 = 1.
If 𝑥 = 𝑥0 then the regularity of Σ implies 𝑧′ ̸= 0, so we can put without loss

of generality 𝑧(𝑡) = 𝑡. Then in (14) we have 𝑓0 = 𝜆(𝜆2 + 𝜇2), so 𝜆 = 0. Thus,
Δ = |𝜇| and for 𝑁 = 𝑌1

𝑏11 = −𝜇, 𝑏12 = −𝜇
2
, 𝑏22 = 0, 𝑔11 = 𝜇2 + 1, 𝑔12 = 𝑔22 = 1,

that clearly implies 𝐻 = 0. In this case (13) takes the form

𝑟(𝑠, 𝑡) = (𝑥0, 𝑒
𝜇𝑠, 𝑡+ 𝑠) .

This is a parameterization of a half-plane 𝑥 = 𝑥0, 𝑦 > 0. The characteristic field
𝑍 should be such that the frame {𝑋,𝑍,𝑁} is orthonormal. Then

𝑍 =
1√︀
𝜇2 + 1

(−𝑌2 + 𝜇𝑌3) = − 1

𝜇
√︀
𝜇2 + 1

𝑟𝑠 +

√︀
𝜇2 + 1

𝜇
𝑟𝑡,

so

⟨𝐵(𝑍), 𝑋⟩ = − 1

𝜇(𝜇2 + 1)
𝑏11 +

1

𝜇
𝑏12 =

−𝜇2 + 1

2(𝜇2 + 1)

and, taking into account ⟨𝐵(𝑋), 𝑋⟩+ ⟨𝐵(𝑍), 𝑍⟩ = 2𝐻 = 0,

⟨𝐵(𝑍), 𝑍⟩ = −⟨𝐵(𝑋), 𝑋⟩ = − 1

𝜇2 + 1
𝑏11 =

𝜇

𝜇2 + 1
.
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Therefore,

|𝐵|2 = ⟨𝐵(𝑋), 𝑋⟩2 + 2 ⟨𝐵(𝑋), 𝑍⟩2 + ⟨𝐵(𝑍), 𝑍⟩2 = 1

2
.

From (10) we have Ric(𝑁,𝑁) = −3
2 , and

∇𝑁𝑋 =
1√︀
𝜇2 + 1

(︂
−𝜇𝑌1 +

1

2
𝑌2 −

𝜇

2
𝑌3

)︂
from (9), so ⟨∇𝑁𝑋,𝑁⟩ = − 𝜇√

𝜇2+1
. Hence, the second variation formula (1) takes

the form

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 − 2𝜇√︀
𝜇2 + 1

𝑢𝑋(𝑢) +
1

𝜇2 + 1
𝑢2 𝑑Σ.

Let us rewrite this expression using the divergence, as was explained in a remark

after (1). From (9), ∇𝑍𝑋 = −𝜇2+1
2(𝜇2+1)

𝑌1, thus divΣ𝑋 = ⟨∇𝑍𝑋,𝑍⟩ = 0 and so

divΣ
(︀
𝑢2𝑋

)︀
= 2𝑢𝑋(𝑢). For a function 𝑢 with compact support the integral of this

divergence over Σ vanishes, which finally implies

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 +
1

𝜇2 + 1
𝑢2 𝑑Σ ⩾ 0,

which means that Σ is stable. Note that its Riemannian stability follows also
from the results of [5], but here we have shown its stability with respect to sub-
Riemannian structures different from the one considered in that paper.

In the case when 𝜆 = 1 it appears that 𝑓0 = (𝑧′)3(𝜇2 + 1) in (14), thus,
similarly to the previous case, 𝑧 = 𝑧0, 𝑥(𝑡) = 𝑡, and (13) becomes

𝑟(𝑠, 𝑡) =

(︂
𝑡+

1

𝜇
𝑒𝜇𝑠, 𝑒𝜇𝑠, 𝑧0

)︂
.

It means that Σ is a half-plane 𝑧 = 𝑧0, 𝑦 > 0. Here we have Δ =
√
2|𝜇|𝑒−𝜇𝑠 and

𝑏11 = −
√
2𝜇, 𝑏12 = −𝜇𝑒

−𝜇𝑠

√
2
, 𝑏22 = 0, 𝑔11 = 𝜇2 + 2, 𝑔12 = 2𝑒−𝜇𝑠, 𝑔22 = 2𝑒−2𝜇𝑠.

for𝑁 = 1√
2
(𝑌1−𝑌3). Again we clearly have the minimality of Σ. The characteristic

field is

𝑍 =
1

√
2
√︀
𝜇2 + 2

(𝜇𝑌1 − 2𝑌2 + 𝜇𝑌3) = −
√
2

𝜇
√︀
𝜇2 + 2

𝑟𝑠 +
𝑒𝜇𝑠
√︀
𝜇2 + 2√
2𝜇

𝑟𝑡.

From this we get

⟨𝐵(𝑍), 𝑋⟩ = −
√
2

𝜇(𝜇2 + 2)
𝑏11 +

𝑒𝜇𝑠√
2𝜇

𝑏12 =
−𝜇2 + 2

2(𝜇2 + 2)
,

⟨𝐵(𝑍), 𝑍⟩ = −⟨𝐵(𝑋), 𝑋⟩ = − 1

𝜇2 + 2
𝑏11 =

√
2𝜇

𝜇2 + 2
,
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thus

|𝐵|2 = 2 ⟨𝐵(𝑋), 𝑋⟩2 + 2 ⟨𝐵(𝑋), 𝑍⟩2 = 1

2
.

According to (9),

∇𝑁𝑋 =
1

√
2
√︀
𝜇2 + 2

(︁
−𝜇
2
𝑌1 + 𝑌2 −

𝜇

2
𝑌3

)︁
,

which implies ⟨∇𝑁𝑋,𝑁⟩ = 0. As Ric(𝑁,𝑁) = −1
2 from (10), (1) now takes the

form

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 𝑑Σ ⩾ 0,

and the stability of Σ follows.
If 𝜇 = 𝜆 = 0 then, as was mentioned earlier, Σ is minimal if and only if

is a cylinder over a geodesic in H2, and all such cylinders are stable in the sub-
Riemannian sense by known results. So we will assume 𝜆 ̸= 0 from now on. In this
case integral trajectories of 𝑋 are transversal to 𝑥 = 𝑥0 (see (12)), so we can draw
them through points of a curve 𝑡 ↦→ (0, 𝑦(𝑡), 𝑧(𝑡)) to get the parameterization

𝑟(𝑠, 𝑡) = (𝜆𝑦(𝑡)𝑠, 𝑦(𝑡), 𝑧(𝑡) + (−𝜆+ 1)𝑠) (15)

of a vertical complete connected surface Σ. Now we have

𝑟𝑠 =
√︀
𝜆2 + 1𝑋 = 𝜆𝑌1 + 𝑌3, 𝑟𝑡 = (𝜆𝑦′𝑠, 𝑦′, 𝑧′) =

𝜆𝑦′𝑠𝑌1 + 𝑦′𝑌2 + (𝜆𝑦′𝑠+ 𝑦𝑧′)𝑌3
𝑦

,

𝑔11 = 𝜆2 + 1, 𝑔12 =
𝜆(𝜆+ 1)𝑦′𝑠+ 𝑦𝑧′

𝑦
, 𝑔22 =

(𝑦′)2(2𝜆2𝑠2 + 1) + 2𝜆𝑦𝑦′𝑧′𝑠+ 𝑦2(𝑧′)2

𝑦2
,

𝑁 =
1

Δ

(︀
−𝑦′𝑌1 − 𝜆((𝜆− 1)𝑦′𝑠+ 𝑦𝑧′)𝑌2 + 𝜆𝑦′𝑌3

)︀
,

where Δ =
√︀
(𝑦′)2 + 𝜆2((𝜆− 1)𝑦′𝑠+ 𝑦𝑧′)2 + 𝜆2(𝑦′)2. From (9),

∇𝑟𝑠𝑟𝑠 = 𝜆(𝜆+ 1)𝑌2,

∇𝑟𝑡𝑟𝑠 =
1

2𝑦

(︀
−𝑦′𝑌1 + 𝜆((3𝜆+ 1)𝑦′𝑠+ 𝑦𝑧′)𝑌2 + 𝜆𝑦′𝑌3

)︀
,

∇𝑟𝑡𝑟𝑡 =
1

𝑦2
(︀
(𝜆(𝑦𝑦′′ − 3(𝑦′)2)𝑠− 𝑦𝑦′𝑧′)𝑌1 + (𝑦𝑦′′ − (𝑦′)2 + 𝜆𝑦′(2𝜆𝑦′𝑠+ 𝑦𝑧′)𝑠)𝑌2+

+(𝜆(𝑦𝑦′′ − (𝑦′)2)𝑠+ 𝑦2𝑧′′)𝑌3
)︀
,

and so

𝑏11 = −𝜆
2(𝜆+ 1)

Δ
((𝜆− 1)𝑦′𝑠+ 𝑦𝑧′),

𝑏12 =
1

2Δ𝑦

(︀
(𝜆2 + 1)(𝑦′)2 − 𝜆2((3𝜆+ 1)𝑦′𝑠+ 𝑦𝑧′)((𝜆− 1)𝑦′𝑠+ 𝑦𝑧′)

)︀
,

𝑏22 =
1

Δ𝑦2
(︀
−𝑦′(𝜆(𝑦𝑦′′ − 3(𝑦′)2)𝑠− 𝑦𝑦′𝑧′)− 𝜆(𝑦𝑦′′ − (𝑦′)2 + 𝜆𝑦′(2𝜆𝑦′𝑠+ 𝑦𝑧′)𝑠)·

·((𝜆− 1)𝑦′𝑠+ 𝑦𝑧′) + 𝜆𝑦′(𝜆(𝑦𝑦′′ − (𝑦′)2)𝑠+ 𝑦2𝑧′′)
)︀
.
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In this case the minimality condition 𝑏11𝑔22 − 2𝑏12𝑔12 + 𝑏22𝑔11 = 0 can be written
down as

ℎ3(𝑡)𝑠
3 + ℎ2(𝑡)𝑠

2 + ℎ1(𝑡)𝑠+ ℎ0(𝑡) = 0, (16)

where ℎ3 = (𝑦′𝜆(𝜆− 1))3, so for a minimal Σ it should be 𝑦 = 𝑦0 or 𝜆 = 1. But
for the first of these cases (putting 𝑧(𝑡) = 𝑡 and 𝑁 = −𝑌2)

𝑏11 = −𝜆(𝜆+ 1), 𝑏12 = −𝜆
2
, 𝑏22 = 0, 𝑔11 = 𝜆2 + 1, 𝑔12 = 𝑔22 = 1,

and from 𝐻 = 0 we get 𝜆 = 0, a contradiction. Therefore, 𝜆 = 1. Then, checking
that in this case ℎ1 = ℎ2 = 0 and calculating ℎ0 in (16), we obtain the minimality
condition for Σ:

2(𝑦′𝑧′′ − 𝑦′′𝑧′) = 𝑦(𝑧′)3.

We already know that half-planes 𝑧 = 𝑧0 are minimal, and the proof of their
stability above stays correct for 𝜇 = 0: |𝐵2| + Ric(𝑁,𝑁) = 0 independently of
a sub-Riemannian structure, and ⟨∇𝑁𝑋,𝑁⟩ = 0 (where 𝑁 = 1√

2
(𝑌1 − 𝑌3)) is

true for 𝜆 = 1 and any 𝜇, so the second variation stays the same. Therefore, in
the rest of this proof we can assume 𝑧′ ̸= 0 and rewrite the previous equation
as 𝑦′′ = −𝑦

2 for 𝑦 = 𝑦(𝑧). Hence, 𝑦 = 𝑦0 cos
𝑧−𝑧0√

2
. It means that we can put

𝑦 = 𝑦0 cos 𝑡 and 𝑧 = 𝑧0 +
√
2 𝑡 into (15), where 𝑦0 > 0 and 𝑧0 denote the values

of the corresponding functions at 0 and 𝑡 is such that 𝑦 > 0. Note that Σ is a
cylinder, whose parameterization can be rewritten as (11) by changing 𝑠, but here
we will continue using (15):

𝑟(𝑠, 𝑡) =
(︁
𝑠𝑦0 cos 𝑡, 𝑦0 cos 𝑡, 𝑧 = 𝑧0 +

√
2 𝑡
)︁
.

We now have Δ =
√
2 𝑦0, and, from the previous formulas,

𝑁 =
1√
2

(︁
sin 𝑡 𝑌1 −

√
2 cos 𝑡 𝑌2 − sin 𝑡 𝑌3

)︁
,

𝑏11 = −2 cos 𝑡, 𝑏12 =

√
2 𝑠 sin 2𝑡− cos 2𝑡√

2 cos 𝑡
,

𝑍 =
1√
2

(︁
− cos 𝑡 𝑌1 −

√
2 sin 𝑡𝑌2 + cos 𝑡 𝑌3

)︁
=

√
2 𝑠 sin 𝑡− cos 𝑡√

2
𝑟𝑠 + cos 𝑡 𝑟𝑡,

⟨𝐵(𝑍), 𝑋⟩ =
√
2 𝑠 sin 𝑡− cos 𝑡

2
𝑏11 +

cos 𝑡√
2
𝑏12 =

1

2
,

⟨𝐵(𝑍), 𝑍⟩ = −⟨𝐵(𝑋), 𝑋⟩ = −1

2
𝑏11 = cos 𝑡,

so we get |𝐵|2 = 1+4 cos2 𝑡
2 and Ric(𝑁,𝑁) = −1+2 cos2 𝑡

2 by (10). Finally, from (9),

∇𝑁𝑋 =
1

2
√
2

(︁
cos 𝑡 𝑌1 +

√
2 sin 𝑡 𝑌2 − cos 𝑡 𝑌3

)︁
,
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thus ⟨∇𝑁𝑋,𝑁⟩ = 0. Therefore, here we have the second variation

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 − cos2 𝑡 𝑢2 𝑑Σ.

Let us use here the sub-Riemannian Jacobi operator of Σ. By (9),

∇𝑋𝑍 =
1

2
√
2

(︁
3 sin 𝑡 𝑌1 −

√
2 cos 𝑡 𝑌2 + sin 𝑡 𝑌3

)︁
,

thus ⟨∇𝑋𝑍,𝑋⟩ = sin 𝑡. From Proposition 2, the Jacobi operator can then be
written down as

𝐿(𝑢) = 𝑍(𝑍(𝑢)) + sin 𝑡 𝑍(𝑢) + cos2 𝑡 𝑢 =
(
√
2 𝑠 sin 𝑡− cos 𝑡)2

2
𝑢𝑠𝑠 + cos2 𝑡 𝑢𝑡𝑡+

+
2 cos 𝑡(

√
2 𝑠 sin 𝑡− cos 𝑡)√

2
𝑢𝑠𝑡 +

√
2 𝑠(1 + sin2 𝑡)− sin 𝑡 cos 𝑡√

2
𝑢𝑠 + cos2 𝑡 𝑢.

In particular, we have for functions 𝑢 = 𝑢(𝑡) that are independent of 𝑠

𝐿(𝑢) = cos2 𝑡(𝑢𝑡𝑡 + 𝑢),

so among solutions 𝑢(𝑡) = 𝐶1 cos 𝑡 + 𝐶2 sin 𝑡 of the equation 𝐿(𝑢) = 0 there is
𝑢(𝑡) = cos 𝑡 > 0. Therefore, Σ is stable by Theorem 1, and this concludes the
proof.

In particular, this theorem gives examples of sub-Riemannian structures that
do not admit vertical minimal surfaces.

Note that sub-Riemannian structures from the previous theorem are not left-
invariant except for the case 𝜇 = 𝜆 = 0. On the other hand, as [𝑋2, 𝑋3] = 𝑋1, the
horizontal distribution ℋ = 𝑋⊥

1 defines a left-invariant sub-Riemannian structure

on ˜𝑆𝐿(2,R). For its vertical minimal surfaces we have the following (in fact, a
similar description up to an isometry will take place for any sub-Riemannian
structure of the form ℋ = (𝜆𝑋1 + 𝜇𝑋2)

⊥).

Theorem 3. A complete connected vertical surface in ˜SL(2,R) with the left-
invariant sub-Riemannian structure defined by the horizontal distribution ℋ = 𝑋⊥

1

is minimal if and only if it is either a half-plane 𝑧 = 𝜋
2 +𝜋𝑘, 𝑘 ∈ Z or a helicoidal

surface with one of the following parameterizations:

𝑟(𝑠, 𝑡) = (𝑥0 − 𝑡 sin 𝑠, 𝑡 cos 𝑠, 𝑠), 𝑡 ∈ (0,+∞),
𝑟(𝑠, 𝑡) = (𝑥0 ± 𝑡− 𝑡 sin 𝑠, 𝑡 cos 𝑠, 𝑠), 𝑡 ∈ (0,+∞),
𝑟(𝑠, 𝑡) = (𝑥0 + 𝑦0 sinh 𝑡− 𝑦0 cosh 𝑡 sin 𝑠, 𝑦0 cosh 𝑡 cos 𝑠, 𝑠), 𝑡 ∈ R,
𝑟(𝑠, 𝑡) = (𝑥0 ± 𝑦0 cosh 𝑡− 𝑦0 sinh 𝑡 sin 𝑠, 𝑦0 sinh 𝑡 cos 𝑠, 𝑠), 𝑡 ∈ (0,+∞),

𝑠 ∈
(︁
−𝜋
2
+ 2𝜋𝑘,

𝜋

2
+ 2𝜋𝑘

)︁
, 𝑘 ∈ Z.

(17)

All these surfaces are stable in the sub-Riemannian sense and thus in the Ri-
emannian sense.
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Proof. A vertical surface Σ for this structure is formed by integral curves of

𝑋 = 𝑋1 = 𝑦 cos 𝑧
𝜕

𝜕𝑥
+ 𝑦 sin 𝑧

𝜕

𝜕𝑦
− cos 𝑧

𝜕

𝜕𝑧
. (18)

Integrating this field, we get for the third coordinate 𝑧′ = − cos 𝑧, that is, either
𝑧 = 𝜋

2 + 𝜋𝑘, 𝑘 ∈ Z or 𝑧(𝜎) = 𝜋
2 − 2 arctan𝐶𝑒𝜎 + 2𝜋𝑘 for 𝐶 > 0 and 𝑘 ∈ Z

that monotonically decreases from 𝜋
2 + 2𝜋𝑘 to −𝜋

2 + 2𝜋𝑘, where 𝜎 is a natural
parameter. That means that in the latter case we can use 𝑧 as the parameter 𝑧 =
𝑠 ∈

(︀
−𝜋

2 + 2𝜋𝑘, 𝜋2 + 2𝜋𝑘
)︀
of this curve. In the former case Σ is a half-plane 𝑧 = 𝑧0

that was already considered in the previous theorem. In particular, we have shown
that these half-planes are indeed minimal and that for them |𝐵2|+Ric(𝑁,𝑁) = 0,
where the unit normal field is

𝑁 =
1√
2
(𝑌1 − 𝑌3) =

1√
2
(cos 𝑧 𝑋1 − sin 𝑧 𝑋2 −𝑋3) =

1√
2
(±𝑋2 −𝑋3)

due to (7) and 𝑧 = 𝜋
2 +𝜋𝑘. It then follows from (8) that ∇𝑁𝑋 = 1

2
√
2
(−3𝑋2±𝑋3),

hence ⟨∇𝑁𝑋,𝑁⟩ = ∓1, and (1) becomes

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 ∓ 2𝑢𝑋(𝑢)− 𝑢2 𝑑Σ.

Note that the field 𝑋 = 𝑋1 has zero divergence in ˜SL(2,R) by (8). On the
other hand, we can calculate this divergence at points of Σ using the orthonormal
frame {𝑋,𝑍,𝑁} and taking into account that ⟨∇𝑋𝑋,𝑋⟩ = 0 because |𝑋| = 1:
0 = ⟨∇𝑍𝑋,𝑍⟩+ ⟨∇𝑁𝑋,𝑁⟩. Therefore, divΣ𝑋 = ⟨∇𝑍𝑋,𝑍⟩ = −⟨∇𝑁𝑋,𝑁⟩ = ±1.
From this we get that divΣ

(︀
𝑢2𝑋

)︀
= 2𝑢𝑋(𝑢)± 𝑢2, and the integral of it vanishes

for functions 𝑢 with compact supports, which implies

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 𝑑Σ ⩾ 0,

so Σ is stable.
Thus, from now on we can consider surfaces Σ built from integral curves of (18)

with 𝑧 = 𝑠 as a parameter. In particular, these curves are transversal to 𝑧 = 𝑧0,
so we can draw them through points of a curve 𝑡 ↦→ (𝑥(𝑡), 𝑦(𝑡), 0), where 𝑦(𝑡) > 0.
Integrating (18), we can get a parameterization

𝑟(𝑠, 𝑡) = (𝑥(𝑡)− 𝑦(𝑡) sin 𝑠, 𝑦(𝑡) cos 𝑠, 𝑠) (19)

of Σ (note that 𝑦 in (18) corresponds to 𝑦(𝑡) cos 𝑠 here). Then, according to (6),

𝑟𝑠 = (−𝑦 cos 𝑠, −𝑦 sin 𝑠, 1) = − 1

cos 𝑠
𝑋1 = − 1

cos 𝑠
𝑋,

𝑟𝑡 = (𝑥′ − 𝑦′ sin 𝑠, 𝑦′ cos 𝑠, 0) =
𝑥′ cos 𝑠𝑋1 + (𝑦′ − 𝑥′ sin 𝑠)𝑋2 + (𝑥′ − 𝑦′ sin 𝑠)𝑋3

𝑦 cos 𝑠
,

𝑁 =
1

Δ

(︀
−(𝑥′ − 𝑦′ sin 𝑠)𝑋2 + (𝑦′ − 𝑥′ sin 𝑠)𝑋3

)︀
,
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where Δ =
√︀
(𝑥′ − 𝑦′ sin 𝑠)2 + (𝑦′ − 𝑥′ sin 𝑠)2. From (8) we get the covariant deri-

vatives

∇𝑟𝑠𝑟𝑠 = − sin 𝑠

cos2 𝑠
𝑋1,

∇𝑟𝑡𝑟𝑠 = − 1

2𝑦 cos2 𝑠

(︀
3(𝑥′ − 𝑦′ sin 𝑠)𝑋2 + (𝑦′ − 𝑥′ sin 𝑠)𝑋3

)︀
,

∇𝑟𝑡𝑟𝑡 =
1

𝑦2 cos2 𝑠

(︀
((𝑥′′𝑦 − 𝑥′𝑦′) cos2 𝑠− 2(𝑦′ − 𝑥′ sin 𝑠)(𝑥′ − 𝑦′ sin 𝑠))𝑋1

((𝑦′′ − 𝑥′′ sin 𝑠)𝑦 − (𝑦′ − 𝑥′ sin 𝑠)𝑦′ + 2𝑥′(𝑥′ − 𝑦′ sin 𝑠)) cos 𝑠𝑋2

((𝑥′′ − 𝑦′′ sin 𝑠)𝑦 − (𝑥′ − 𝑦′ sin 𝑠)𝑦′) cos 𝑠𝑋3

)︀
,

and thus the coefficients of the second fundamental form

𝑏11 = 0, 𝑏12 =
1

2Δ𝑦 cos2 𝑠

(︀
3(𝑥′ − 𝑦′ sin 𝑠)2 − (𝑦′ − 𝑥′ sin 𝑠)2

)︀
,

𝑏22 =
1

Δ𝑦2 cos 𝑠

(︀
(𝑥′′𝑦′ − 𝑥′𝑦′′)𝑦 cos2 𝑠− 2𝑥′(𝑥′ − 𝑦′ sin 𝑠)2

)︀
.

In particular, for minimal surfaces ⟨𝐵(𝑍), 𝑍⟩ = −⟨𝐵(𝑋), 𝑋⟩ = 0, hence |𝐵|2 =
2 ⟨𝐵(𝑍), 𝑋⟩2. As the coefficients of the first fundamental form are

𝑔11 =
1

cos2 𝑠
, 𝑔12 = − 𝑥′

𝑦 cos 𝑠
,

𝑔22 =
1

𝑦2 cos2 𝑠

(︀
(𝑥′)2 cos2 𝑠+ (𝑦′ − 𝑥′ sin 𝑠)2 + (𝑥′ − 𝑦′ sin 𝑠)2

)︀
,

the minimality condition 𝑏11𝑔22 − 2𝑏12𝑔12 + 𝑏22𝑔11 = 0 is equivalent to(︀
𝑥′′𝑦′ − 𝑥′𝑦′′

)︀
𝑦 + 𝑥′

(︀
(𝑥′)2 − (𝑦′)2

)︀
= 0. (20)

First, let us consider the solution 𝑥 = 𝑥0. Then we can put 𝑦(𝑡) = 𝑡 for
𝑡 > 0 and get from (19) the first parameterization in (17). In this case 𝑁 =
1
Δ (sin 𝑠𝑋2 +𝑋3), where Δ =

√︀
1 + sin2 𝑠, and

𝑏11 = 𝑏22 = 0, 𝑏12 =
3 sin2 𝑠− 1

2Δ𝑡 cos2 𝑠
, 𝑍 =

1

Δ
(𝑋2 − sin 𝑠𝑋3) =

𝑡 cos 𝑠

Δ
𝑟𝑡,

|𝐵|2 = 2 ⟨𝐵(𝑍), 𝑋⟩2 = 2𝑡2 cos4 𝑠

Δ2
𝑏212 =

(3 sin2 𝑠− 1)2

2Δ4
.

We also have Ric(𝑁,𝑁) = −3 sin2 𝑠+1
2Δ2 by (10) and ∇𝑁𝑋 = 1

2Δ (3𝑋2 + sin 𝑠𝑋3)

from (8), hence ⟨∇𝑁𝑋,𝑁⟩ = 2 sin 𝑠
Δ2 . Therefore, the second variation is

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 +
4 sin 𝑠

1 + sin2 𝑠
𝑢𝑋(𝑢)− 3 sin4 𝑠+ 1

(1 + sin2 𝑠)2
𝑢2 𝑑Σ.

by (1). Again, divΣ𝑋 = ⟨∇𝑍𝑋,𝑍⟩ = −⟨∇𝑁𝑋,𝑁⟩ = −2 sin 𝑠
Δ2 . Thus,

divΣ

(︂
sin 𝑠

1 + sin2 𝑠
𝑢2𝑋

)︂
=

(︂
𝑋

(︂
sin 𝑠

1 + sin2 𝑠

)︂
+

sin 𝑠

1 + sin2 𝑠
divΣ𝑋

)︂
𝑢2+

+
2 sin 𝑠

1 + sin2 𝑠
𝑢𝑋(𝑢) = − sin4 𝑠+ 1

(1 + sin2 𝑠)2
𝑢2 +

2 sin 𝑠

1 + sin2 𝑠
𝑢𝑋(𝑢).
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As the integral of this expression vanishes for 𝑢 with compact support,

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 +
cos2 𝑠

1 + sin2 𝑠
𝑢2 𝑑Σ ⩾ 0,

and Σ is stable.
For 𝑥′ ̸= 0 let us rewrite (20) for the function 𝑦 = 𝑦(𝑥) and get 𝑦𝑦′′+(𝑦′)2 = 1,

that is, (𝑦2)′′ = 2, so 𝑦2 = (𝑥 − 𝑥0)
2 + 𝐶. For 𝐶 = 0 we can put 𝑥(𝑡) = 𝑥0 ± 𝑡

and 𝑦(𝑡) = 𝑡 > 0, thus getting the second parameterization in (17) from (19). For
𝐶 > 0 we obtain the third parameterization in (17) with 𝑥(𝑡) = 𝑥0 + 𝑦0 sinh 𝑡
and 𝑦(𝑡) = 𝑦0 cosh 𝑡, where 𝑦0 > 0, and so 𝐶 = 𝑦20 > 0. Finally, the fourth
parameterization corresponds to 𝑥(𝑡) = 𝑥0 ± 𝑦0 cosh 𝑡 and 𝑦(𝑡) = 𝑦0 sinh 𝑡 for
𝑡 > 0, thus 𝐶 = −𝑦20 < 0. Therefore, in these last two cases the curves (𝑥, 𝑦) are
hyperbolas in the half-plane 𝑦 > 0.

For 𝑥(𝑡) = 𝑥0 ± 𝑡 and 𝑦(𝑡) = 𝑡 from the general formulas we obtain Δ =√
2(1∓ sin 𝑠), 𝑁 = 1√

2
(∓𝑋2 +𝑋3), and

𝑏11 = 0, 𝑏12 =
1∓ sin 𝑠√
2 𝑡 cos2 𝑠

, 𝑏22 =
∓2(1∓ sin 𝑠)√

2 𝑡2 cos 𝑠
,

𝑍 =
1√
2
(𝑋2 ±𝑋3) =

cos 𝑠 (cos 𝑠 𝑟𝑠 + 𝑡 𝑟𝑡)√
2(1∓ sin 𝑠)

,

|𝐵|2 = 2 ⟨𝐵(𝑍), 𝑋⟩2 = cos4 𝑠 (cos 𝑠 𝑏11 + 𝑡 𝑏12)
2

(1∓ sin 𝑠)2
=

1

2
.

As 𝑁 is (up to a sign) the same as in the case 𝑧 = 𝜋
2 + 𝜋𝑘 above, here also

Ric(𝑁,𝑁) = −1
2 and ⟨∇𝑁𝑋,𝑁⟩ = ∓1. The rest of the stability proof for Σ is

also literally the same as in that case.
For the third parameterization in (17) we have 𝑥(𝑡) = 𝑥0 + 𝑦0 sinh 𝑡, 𝑦(𝑡) =

𝑦0 cosh 𝑡, and for the fourth one we have 𝑥(𝑡) = 𝑥0 ± 𝑦0 cosh 𝑡, 𝑦(𝑡) = 𝑦0 sinh 𝑡.
Let us denote 𝛼 = 𝑥′ − 𝑦′ sin 𝑠, 𝛽 = 𝑦′ − 𝑥′ sin 𝑠 for all these cases. Then

𝑟𝑡 =
𝑥′ cos 𝑠𝑋1 + 𝛽𝑋2 + 𝛼𝑋3

𝑦 cos 𝑠
, 𝑁 =

1

Δ
(−𝛼𝑋2 + 𝛽𝑋3) ,

whereΔ =
√︀
𝛼2 + 𝛽2. Note that 𝛼2−𝛽2 = 𝑦20 cos

2 𝑠 for the third parameterization
in (17) and 𝛼2 − 𝛽2 = −𝑦20 cos2 𝑠 for the fourth one. From the general formulas
above,

𝑏11 = 0, 𝑏12 =
3𝛼2 − 𝛽2

2𝑦Δcos2 𝑠
, 𝑏22 = −3𝛼2 − 𝛽2

𝑦Δcos 𝑠
.

Recall that 𝑟𝑠 = − 1
cos 𝑠𝑋1 = − 1

cos 𝑠𝑋, so

𝑍 =
1

Δ
(𝛽𝑋2 + 𝛼𝑋3) =

cos 𝑠 (𝑥′ cos 𝑠 𝑟𝑠 + 𝑦 𝑟𝑡)

Δ
,

|𝐵|2 = 2 ⟨𝐵(𝑍), 𝑋⟩2 = cos4 𝑠 (𝑥′ cos 𝑠 𝑏11 + 𝑦𝑏12)
2

Δ2
=

(︀
3𝛼2 − 𝛽2

)︀2
2Δ4

.
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As Ric(𝑁,𝑁) = −3𝛼2+𝛽2

2Δ2 from (10) and ∇𝑁𝑋 = 1
Δ (3𝛽𝑋2 − 𝛼𝑋3) from (8), which

implies ⟨∇𝑁𝑋,𝑁⟩ = −2𝛼𝛽
Δ2 , the second variation (1) takes the form

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 − 4𝛼𝛽

Δ2
𝑢𝑋(𝑢)−

(︀
3𝛼2 − 𝛽2

)︀ (︀
𝛼2 − 𝛽2

)︀
+ 4𝛼2𝛽2

Δ4
𝑢2 𝑑Σ.

Once again, divΣ𝑋 = ⟨∇𝑍𝑋,𝑍⟩ = −⟨∇𝑁𝑋,𝑁⟩ = 2𝛼𝛽
Δ2 . By direct computation

we get 𝑋
(︁

𝛼𝛽
Δ2

)︁
=

𝑦40 cos4 𝑠
Δ4 = (𝛼2−𝛽2)2

Δ4 , hence

divΣ

(︂
𝛼𝛽

Δ2
𝑢2𝑋

)︂
=

(𝛼2 − 𝛽2)2 + 2𝛼2𝛽2

Δ4
𝑢2 +

2𝛼𝛽

Δ2
𝑢𝑋(𝑢),

and the integral of this expression vanishes for 𝑢 with compact support, so finally

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 − 𝛼2 − 𝛽2

Δ2
𝑢2 𝑑Σ.

For the fourth case in (17) the expression under this integral is always non-
negative, thus we already have the stability of Σ. For the third one we again will
use the sub-Riemannian Jacobi operator. As ∇𝑋𝑍 = 1

2Δ (𝛼𝑋2 − 𝛽𝑋3) from (8),
⟨∇𝑋𝑍,𝑋⟩ = 0. By Proposition 2, the Jacobi operator of Σ then is

𝐿(𝑢) = 𝑍(𝑍(𝑢)) +
𝑦20 cos

2 𝑠

Δ2
𝑢 =

=
𝑦0 cosh 𝑡 cos 𝑠

Δ

(︂
cos 𝑠

𝜕

𝜕𝑠
+
𝜕

𝜕𝑡

)︂(︂
𝑦0 cosh 𝑡 cos 𝑠

Δ
(cos 𝑠 𝑢𝑠 + 𝑢𝑡)

)︂
+
𝑦20 cos

2 𝑠

Δ2
𝑢 =

=
𝑦20 cos

2 𝑠

Δ2

(︀
cosh2 𝑡 cos2 𝑠 𝑢𝑠𝑠 + 2 cosh2 𝑡 cos 𝑠 𝑢𝑠𝑡 + cosh2 𝑡 𝑢𝑡𝑡+

+cos 𝑠 cosh 𝑡(sinh 𝑡− sin 𝑠 cosh 𝑡)𝑢𝑠 + cosh 𝑡 sinh 𝑡 𝑢𝑡 + 𝑢)

Again, let us restrict 𝐿 to functions of the form 𝑢 = 𝑢(𝑡). For them 𝐿(𝑢) = 0 if and
only if cosh2 𝑡 𝑢𝑡𝑡+sinh 𝑡 cosh 𝑡 𝑢𝑡+𝑢 = 0. Among solutions 𝑢(𝑡) = 𝐶1

cosh 𝑡+𝐶2 tanh 𝑡
of this Sturm–Liouville equation there is 𝑢(𝑡) = 1

cosh 𝑡 > 0. By Theorem 1, this
implies that Σ is stable, thus concluding the proof.
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Харкiвський нацiональний унiверситет iменi В. Н. Каразiна
майдан Свободи, 4, Харкiв, Україна, 61022

Ми розглядаємо орiєнтованi зануренi мiнiмальнi поверхнi у тривимiрних субрi-
манових многовидах, якi є вертикальними, тобто перпендикулярними до двовимiр-
ного горизонтального розподiлу субрiманової структури. Ранiше ми показали, що
вертикальна поверхня є мiнiмальною в субрiмановому сенсi тодi й тiльки тодi, ко-
ли вона мiнiмальна в рiмановому сенсi, i що з її субрiманової стiйкостi випливає
її рiманова стiйкiсть. Ми вводимо субрiманову версiю оператора Якобi для таких
поверхонь i доводимо достатню умову стiйкостi вертикальних мiнiмальних повер-
хонь, що аналогiчна до теореми Фiшер-Колбрi та Шоена: якщо поверхня допускає
додатну функцiю з нульовим оператором Якобi, то вона є стiйкою.

Далi ми використовуємо технiку операторiв Якобi для дослiдження вертикаль-

них мiнiмальних поверхонь у групi Лi ˜SL(2,R), яку можна описати як унiверсаль-
не накриття розшарування одиничних дотичних векторiв гiперболiчної площини зi
стандартною лiвоiнварiантною метрикою Сасакi (що вiдповiдає однiй з геометрiй
Терстона) та з двома рiзними типами субрiманових структур. Спочатку ми розгля-
даємо сiм’ю нелiвоiнварiантних структур, визначених деякими параметрами, знахо-
димо значення параметрiв, для яких iснують вертикальнi мiнiмальнi поверхнi, та
описуємо такi повнi зв’язнi поверхнi. Це евклiдовi напiвплощини та цилiндри, й усi
вони є стiйкими в субрiмановому сенсi, а отже i в рiмановому сенсi. Зокрема, це дає
нам приклади структур, що не допускають вертикальних мiнiмальних поверхонь.
Потiм ми описуємо повнi зв’язнi вертикальнi мiнiмальнi поверхнi для iншої субрiма-
нової структури, що є лiвоiнварiантною. Це напiвплощини та гелiкоїдальнi поверхнi,
якi також виявляються стiйкими в субрiмановому сенсi, а отже й у рiмановому сенсi.
Ключовi слова: субрiмановий многовид; лiвоiнварiантна метрика; мiнiмаль-

на поверхня; оператор Якобi; стiйкiсть.

Iсторiя статтi: отримана: 17 жовтня 2025; останнiй варiант: 19 листопада 2025
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Про диференцiювання вiдносно фiльтрiв
У статтi розглянуто узагальнення поняття похiдної функцiї однiєї дiйсної змiнної

на основi теорiї фiльтрiв. Запропоновано нову конструкцiю, що дозволяє визначи-
ти похiдну функцiї вiдносно фiльтра, який вiдображає спосiб зближення змiнної до
заданої точки. На вiдмiну вiд класичного означення, де границя визначається через
прямолiнiйне зближення аргументу, нове означення дозволяє враховувати ширший
спектр пiдходiв до точки, що забезпечує гнучкiший апарат для аналiзу локальної
поведiнки функцiй. Введене поняття охоплює класичне означення похiдної як час-
тковий випадок при виборi вiдповiдного фiльтра. Наведено доведення узагальнення
базових властивостей похiдної: лiнiйностi, правила добутку, частки. Зокрема, проде-
монстровано, що похiдна вiдносно фiльтра задовольняє тi самi формальнi правила
диференцiювання, що й класична похiдна, при збереженнi суттєвої гнучкостi у ви-
борi характеру зближення аргументу. Отриманi результати дозволяють розширити
сферу застосування диференцiального числення до випадкiв, де класичний пiдхiд
або не є застосовним, або втрачає точнiсть чи iнтерпретацiйну зручнiсть. Показа-
но, що у деяких ситуацiях похiдна за фiльтром краще вiдображає реальнi процеси
змiни величин, наприклад у задачах з асиметричними або обмеженими околами то-
чки. Запропонований пiдхiд вiдкриває новi перспективи для застосування в теорiї
узагальнених функцiй, теорiї мiри та функцiональному аналiзi. Також у статтi на-
ведено приклади застосування нового поняття та здiйснено порiвняльний аналiз з
класичною теорiєю. Представлений матерiал може бути корисним для дослiдникiв,
що працюють у галузi математичного аналiзу, а також для викладачiв, якi прагнуть
розширити традицiйний пiдхiд до диференцiювання. Робота має як теоретичну, так
i методологiчну цiннiсть, оскiльки вводить новий iнструмент для подальших дослi-
джень у галузi сучасної математичної теорiї границь.
Ключовi слова: похiдна; фiльтри; збiжнiсть за фiльтром.

2020 Mathematics Subject Classification: 26A24; 40A35; 54A20;.

1. Вступ

Нагадування: нехай 𝑓 : R → R – функцiя, неперервна в точцi 𝑥0 ∈ R.
Вiдомо, що похiдною функцiї 𝑓(𝑥) в точцi 𝑥0 називають

𝑑𝑓

𝑑𝑥
(𝑥0) = lim

ℎ→0

𝑓(𝑥0 + ℎ)− 𝑓(𝑥0)

ℎ
.
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Широко вiдомi умови iснування похiдної, критерiй диференцiйовностi,
правила диференцiювання, таблиця похiдних тощо. Дане поняття є одним iз
центральних (поруч iз iнтегралом) концепцiй математичного аналiзу. Похi-
дна має широкий спектр застосувань не тiльки в математичнiй науцi (теорiя
функцiй, теорiя ймовiрностей, диференцiальна геометрiя тощо), проте займає
одну iх провiдних ролей в прикладних дисциплiнах: рiзноманiтнi роздiли фi-
зики, бiологiя, економiка та економiчна статистика, наука про данi. Проте
поруч iз величезним спектром застосувань, звичайна похiдна функцiї має
кiлька недолiкiв: по-перше, функцiя має бути неперервною в точцi, по-друге,
”модулеподiбнi” функцiї не мають похiдної у своїх ”гострих” точках. Напри-
клад, добре вiдомо, що функцiя 𝑓(𝑥) = |𝑥| не диференцiйовна в точцi 𝑥0 = 0
в силу того, що одностороннi похiднi даної функцiї в данiй точцi є рiзними.
Звiсно, одностороння похiдна певним чином вирiшує цю проблему, проте для
її застосування потрiбнi два рiзнi поняття ”правої” та ”лiвої” похiдних. Так, цi
поняття дуже схожi та мають косметичнi вiдмiнностi, проте це два рiзних по-
няття. В нещодавнiй статтi [2] нами було запропоновано поняття визначеного
iнтеграла вiдносно фiльтра. Стаття мiстить докладний опис схеми побудови
iнтеграла вiдносно фiльтра, вивчено його властивостi та переваги, порiвняно
зi звичайним iнтегралом Рiмана по вiдрiзку. Визначення поняття похiдної
в термiнах фiльтрах – це абсолютно логiчний та природнiй крок, оскiльки
i похiдна функцiї, i iнтеграл Рiмана – концепцiї, якi для своєї побудови ви-
магають ”граничного переходу”. Тому в наступних роздiлах даної короткої
статтi ми опишемо загальну конструкцiї похiдної функцiї iз використанням
технiки фiльтрiв. Пiсля цього ми порiвняємо цю нову концепцiю iз вiдомим
визначенням похiдної i переконаємося в тому, що наша конструкцiя дiйсно
є узагальненням. Далi ми будемо вивчати властивостi похiдної за фiльтром,
зокрема, вiдповiмо на питання: чи працює для похiдної за фiльтром правило
диференцiювання добутку?

2. Необхiднi вiдомостi iз теорiї фiльтрiв

Нагадаємо, що фiльтром на непорожнiй множинi Ω називають таку сiм’ю
пiдмножин F ⊂ 2Ω, яка задовольняє наступним аксiомам:

1. ∅ /∈ F;

2. 𝐴,𝐵 ∈ F ⇒ 𝐴 ∩𝐵 ∈ F;

3. Якщо 𝐴 ∈ F, 𝐷 ⊃ 𝐴, то також 𝐷 ∈ F

Поруч iз поняттям фiльтра ми також будемо використовувати базу фiль-
тра. Сiм’ю B пiдмножин множини Ω називають базою фiльтра, якщо

1. ∅ /∈ B;

2. ∀𝐴,𝐵 ∈ B ∃𝐶 ∈ 𝐵 : 𝐶 ⊂ 𝐴 ∩𝐵.
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Говорять, що фiльтр F породжено базою B, якщо кожен елемент фiльтра
F мiстить хоча б один елемент бази фiльтра B. Через F(B) будемо позначати
фiльтр, породжений базою B.

Останнє визначення, яке нам варто пригадати – це визначення збiжностi
функцiї за фiльтром. Отож нехай 𝑋,𝑌 – топологiчнi простори, 𝑓 : 𝑋 → 𝑌
– функцiя, 𝑦 ∈ 𝑋, F – фiльтр на 𝑋. Говорять, що функцiя 𝑓 збiгається до 𝑦
за фiльтром F (позначення: 𝑦 = lim

F
𝑓), якщо для довiльного околу 𝑈 точки

𝑦 iснує елемент фiльтра 𝐴 ∈ F такий, що {𝑓(𝑡) : 𝑡 ∈ 𝐴} ⊂ 𝑈 . Бiльше про
теорiю фiльтрiв можна прочитати, наприклад у чудовому пiдручнику [1]. Те-
орiя фiльтрiв – вiдносно молода наука, яка зараз дуже активно розвивається.
За останнi роки було опублiковано чимало дослiджень з теорiї фiльтрiв та її
застосувань, наприклад статтi [3], [4], [5].

3. Похiдна функцiї за фiльтром

Нехай 𝑓 : R → R – функцiя, визначена в деякому околi точки 𝑥0 ∈ R.
Розглянемо функцiю:

𝐷𝑥0(𝑓, ·) : R → R,

яка дiє за наступним правилом:

𝐷𝑥0(𝑓, ℎ) =
1

ℎ
(𝑓(𝑥0 + ℎ)− 𝑓(𝑥0)) .

Очевидно, що

𝑑𝑓

𝑑𝑥
(𝑥0) = lim

ℎ→0
𝐷𝑥0(𝑓, ℎ).

Тепер ми готовi дати центральне визначення даної статтi.

Означення 1. Нехай 𝑓 : R → R – функцiя, визначена в деякому околi
точки 𝑥0 ∈ R. Нехай F – фiльтр на R, який мажорує фiльтр проколотих
околiв точки 0. Похiдною функцiї 𝑦 = 𝑓(𝑥) в точцi 𝑥0 вiдносно фiльтра F
будемо називати

𝑑𝑓

𝑑F
(𝑥0) = lim

F
𝐷𝑥0(𝑓, ℎ), (1)

якщо дана границя iснує.

Зауваження 1. Функцiї, у яких є похiдна в данiй точцi за певним фiль-
тром, будемо називати диференцiйовними за цим фiльтром в цiй точцi.

Покажемо тепер, що класичне визначення поняття похiдної є частковим
випадком Означення [1]. Дiйсно, розглянемо фiльтр F0 проколотих околiв
точки 0.

Очевидно, що в цьому випадку

𝑑𝑓

𝑑𝑥
(𝑥0) = lim

F0

𝐷𝑥0(𝑓, ℎ).
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4. Властивостi похiдної функцiї за фiльтром

Для ”класичної” похiдної можна сформулювати добре вiдомi усiм власти-
востi: вона задовольняє властивостям лiнiйностi та однорiдностi, визначено
правила диференцiювання добутку i частки двох функцiй. В даному роздi-
лi ми будемо вивчати узагальнення цих властивостей для похiдної функцiї
вiдносно фiльтра.

Теорема 1. Нехай 𝑓, 𝑔 : R → R – функцiї, визначенi в деякому околi
точки 𝑥0 ∈ R. Нехай F – фiльтр на R, 𝛼, 𝛽 ∈ R. Тодi

𝑑(𝛼𝑓 + 𝛽𝑔)

𝑑F
(𝑥0) = 𝛼

𝑑𝑓

𝑑F
(𝑥0) + 𝛽

𝑑𝑔

𝑑F
(𝑥0),

iншими словами, похiдна за фiльтром вiд суми двох функцiй – це сума похi-
дних за фiльтром вiд цих двох функцiй.

Доведення цього факту спирається на застосування властивостей лiнiйно-
стi та однорiдностi границi функцiї за фiльтром (див. [2]). Краще ми зосере-
димо свою увагу на дослiдженнi правил диференцiювання добутку i частки.

Зараз ми дамо одне технiчне визначення.

Означення 2. Нехай 𝑓 : R → R – функцiя, визначена в деякому околi
точки 𝑎 ∈ R, F – фiльтр на R. Будемо називати функцiю 𝑓 F-неперервною в
точцi 𝑎, якщо lim

F
𝑓(𝑎+ ℎ) = 𝑓(𝑎).

Теорема 2. Нехай 𝑓, 𝑔 : R → R – функцiї, визначенi в деякому околi
точки 𝑥0 ∈ R, F – фiльтр на R. Нехай iснують похiднi функцiй 𝑓, 𝑔 вiдносно
фiльтра F в точцi 𝑥0. Також нехай функцiї 𝑓 та 𝑔 є F-неперервними в точцi
𝑥0. Тодi (𝑓 · 𝑔) також є диференцiйовною в точцi 𝑥0 за фiльтром F, i

𝑑(𝑓 · 𝑔)
𝑑F

(𝑥0) =
𝑑𝑓

𝑑F
(𝑥0) · 𝑔(𝑥0) +

𝑑𝑔

𝑑F
(𝑥0) · 𝑓(𝑥0). (2)

Доведення. Дiйсно,

𝑑(𝑓 · 𝑔)
𝑑F

(𝑥0) = lim
F
𝐷𝑥0(𝑓 · 𝑔, ℎ) = lim

F

1

ℎ
((𝑓 · 𝑔)(𝑥0 + ℎ)− (𝑓 · 𝑔)(𝑥0)) =

lim
F

1

ℎ
(𝑓(𝑥0 + ℎ) · 𝑔(𝑥0 + ℎ)− 𝑓(𝑥0) · 𝑔(𝑥0)) =



52 Д. Д. Селютiн

lim
F

1

ℎ
(𝑓(𝑥0 + ℎ) · 𝑔(𝑥0 + ℎ) + 𝑓(𝑥0) · 𝑔(𝑥0 + ℎ)

−𝑓(𝑥0) · 𝑔(𝑥0 + ℎ)− 𝑓(𝑥0) · 𝑔(𝑥0)) =

lim
F

1

ℎ

[︂
𝑔(𝑥0 + ℎ)

(︀
𝑓(𝑥0 + ℎ)− 𝑓(𝑥0)

)︀
+ 𝑓(𝑥0)

(︀
𝑔(𝑥0 + ℎ)− 𝑔(𝑥0)

)︀]︂
=

lim
F

[︂
𝑔(𝑥0 + ℎ)

(︀
𝑓(𝑥0 + ℎ)− 𝑓(𝑥0)

)︀
ℎ

+
𝑓(𝑥0)

(︀
𝑔(𝑥0 + ℎ)− 𝑔(𝑥0)

)︀
ℎ

]︂
=

lim
F

[︂
𝑔(𝑥0 + ℎ)

(︀
𝑓(𝑥0 + ℎ)− 𝑓(𝑥0)

)︀
ℎ

]︂
+ lim

F

[︂
𝑓(𝑥0)

(︀
𝑔(𝑥0 + ℎ)− 𝑔(𝑥0)

)︀
ℎ

]︂
=

lim
F
𝑔(𝑥0 + ℎ) · lim

F

[︂(︀
𝑓(𝑥0 + ℎ)− 𝑓(𝑥0)

)︀
ℎ

]︂
+ 𝑓(𝑥0) · lim

F

[︂(︀
𝑔(𝑥0 + ℎ)− 𝑔(𝑥0)

)︀
ℎ

]︂
=

𝑑𝑓

𝑑F
(𝑥0) · 𝑔(𝑥0) +

𝑑𝑔

𝑑F
(𝑥0) · 𝑓(𝑥0).

Зауваження 2. Навiщо ми ввели поняття F-неперервностi? Для того,
аби у третьому знизу рядку цiєї теореми мати змогу перейти до добутку гра-
ниць. В умовi теореми ми вимагали F-неперервностi вiд обох функцiй, проте
фактично використали цю особливостi лише для функцiї 𝑔. Ми вимагаємо
того самого i вiд функцiї 𝑓 , оскiльки в доведеннi ми можемо додати i вiдняти
iнший доданок, а саме 𝑔(𝑥0) · 𝑓(𝑥0 + ℎ).

Переходимо тепер до правила диференцiювання за фiльтри частки фун-
кцiй.

Теорема 3. Нехай 𝑓, 𝑔 : R → R – функцiї, визначенi в деякому околi
точки 𝑥0 ∈ R, F – фiльтр на R. Нехай iснують похiднi функцiй 𝑓, 𝑔 вiдносно
фiльтра F в точцi 𝑥0. Також нехай функцiя 𝑔 є F-неперервною в точцi 𝑥0,

𝑔(𝑥0) ̸= 0. Тодi частка функцiй

(︂
𝑓/𝑔

)︂
також є диференцiйовною в точцi 𝑥0

за фiльтром F, i

𝑑

(︂
𝑓/𝑔

)︂
𝑑F

(𝑥0) =

𝑑𝑓
𝑑F(𝑥0) · 𝑔(𝑥0)−

𝑑𝑔
𝑑F(𝑥0) · 𝑔(𝑥0)

𝑔2(𝑥0)
(3)

Доведення. Дiйсно,

𝑑

(︂
𝑓/𝑔

)︂
𝑑F

(𝑥0) = lim
F

1

ℎ

[︂(︂
𝑓

𝑔

)︂
(𝑥0 + ℎ)−

(︂
𝑓

𝑔

)︂
(𝑥0)

]︂
=

lim
F

1

ℎ

[︂
𝑓(𝑥0 + ℎ)

𝑔(𝑥0 + ℎ)
− 𝑓(𝑥0)

𝑔(𝑥0)

]︂
= lim

F

1

ℎ

[︂
𝑔(𝑥0) · 𝑓(𝑥0 + ℎ)− 𝑓(𝑥0) · 𝑔(𝑥0 + ℎ))

𝑔(𝑥0) · 𝑔(𝑥0 + ℎ)

]︂
.
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В чисельнику додамо та вiднiмемо вираз 𝑔(𝑥0) · 𝑓(𝑥0). Отримаємо

lim
F

1

ℎ

[︂
𝑔(𝑥0) · 𝑓(𝑥0 + ℎ)− 𝑔(𝑥0) · 𝑓(𝑥0) + 𝑔(𝑥0) · 𝑓(𝑥0)− 𝑓(𝑥0) · 𝑔(𝑥0 + ℎ))

𝑔(𝑥0) · 𝑔(𝑥0 + ℎ)

]︂
=

lim
F

1

ℎ

[︂
𝑔(𝑥0)

(︀
𝑓(𝑥0 + ℎ)− 𝑓(𝑥0)

)︀
− 𝑓(𝑥0)

(︀
𝑔(𝑥0 + ℎ)− 𝑔(𝑥0)

)︀
𝑔(𝑥0) · 𝑔(𝑥0 + ℎ)

]︂
=

lim
F

[︂
𝑔(𝑥0)

(︀
𝑓(𝑥0 + ℎ)− 𝑓(𝑥0)

)︀
ℎ · 𝑔(𝑥0) · 𝑔(𝑥0 + ℎ)

−
𝑓(𝑥0)

(︀
𝑔(𝑥0 + ℎ)− 𝑔(𝑥0)

)︀
ℎ · 𝑔(𝑥0) · 𝑔(𝑥0 + ℎ)

]︂
=

lim
F

[︂
𝑔(𝑥0) · 𝑓(𝑥0+ℎ)−𝑓(𝑥0)

ℎ

𝑔(𝑥0) · 𝑔(𝑥0 + ℎ)
−
𝑓(𝑥0) · 𝑔(𝑥0+ℎ)−𝑔(𝑥0)

ℎ

𝑔(𝑥0) · 𝑔(𝑥0 + ℎ)

]︂
.

Оскiльки функцiя 𝑔 є F-неперервною в точцi 𝑥0, маємо:

lim
F

𝑔(𝑥0) · 𝑓(𝑥0+ℎ)−𝑓(𝑥0)
ℎ

𝑔(𝑥0) · 𝑔(𝑥0)
− lim

F

𝑓(𝑥0) · 𝑔(𝑥0+ℎ)−𝑔(𝑥0)
ℎ

𝑔(𝑥0) · 𝑔(𝑥0)
=

𝑔(𝑥0) · 𝑑𝑓
𝑑F(𝑥0)

𝑔2(𝑥0)
−
𝑓(𝑥0) · 𝑑𝑔

𝑑F(𝑥0)

𝑔2(𝑥0)
=

𝑑𝑓
𝑑F(𝑥0) · 𝑔(𝑥0)−

𝑑𝑔
𝑑F(𝑥0) · 𝑔(𝑥0)

𝑔2(𝑥0)

Зауваження 3. Таким чином, ми бачимо, що для похiдної функцiї вiд-
носно фiльтра мають мiсце всi властивостi, якi були притаманнi класичнiй
похiднiй.

Розглянемо ще один пункт, який ми трохи згадали у вступнiй частинi: ди-
ференцiювання функцiї 𝑓(𝑥) = |𝑥| в точцi 𝑥0 = 0. Так, в цiй точцi модуль не
має похiдної у звичайному розумiннi цього слова, проте має одностороннi по-
хiднi. Проте тепер, маючи такий iнструмент, як похiдна функцiї за фiльтром,
обчислення похiдної даної функцiї в данiй точцi стає набагато елегантнiшим.
Дiйсно, розглянемо сiм’ї множин

B0+ = ((0, 𝛿))𝛿>0, B0− = ((−𝛿, 0))𝛿>0.

Очевидно, що цi сiм’ї утворюють бази фiльтрiв.

Тодi
𝑑𝑓

𝑑F(B0+)
(0) = 1,

𝑑𝑓

𝑑F(B0−)
(0) = −1.

Наостанок сформулюємо очевидну теорему.

Теорема 4. Нехай 𝑓 : R → R – функцiя, визначена в деякому околi точки
𝑥0 ∈ R, F1,F2 – фiльтри на R, F1 ⊂ F2. Нехай iснує похiдна функцiї 𝑓 вiдносно
фiльтра F1 в точцi 𝑥0. Тодi iснує також похiдна функцiї 𝑓 вiдносно фiльтра
F2 в точцi 𝑥0.
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Доведення цього факту є елементарним наслiдком загальних властиво-
стей границi функцiї за фiльтром.

5. Додатковi приклади фiльтрiв та функцiй

Вище ми розглянули функцiю 𝑓(𝑥) = |𝑥|, та фiльтр, по якому дана фун-
кцiя є диференцiйовною. Розглянемо тепер функцiю 𝑓(𝑥) = 𝑥 sin 1

𝑥 , якщо
𝑥 ̸= 0, i 𝑓(0) = 0. З ”класичної точки зору” дана функцiя є недиферен-
цiйовною в 𝑥0 = 0, оскiльки lim

ℎ→0

1
ℎ(𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)) = lim

ℎ→0
sin 1

ℎ – грани-

ця не iснує. Наша задача полягає в тому, аби побудувати фiльтр F, який
одночасно мажорує проколотi околи 0 такий, що 𝑓(𝑥) була б диференцiйов-
ною за цим фiльтром. Для цього розглянемо таку послiдовнiсть множин:
𝐵𝑛 =

{︀
𝑥 > 0 : 1

𝑥 ∈ [𝜋𝑛;𝜋𝑛+ 𝜋
2 ]
}︀
. Нескладно перевiрити, що отримана система

множин утворює базу фiльтра на R. Нехай тепер F – фiльтр, породжений
базою (𝐵𝑛)𝑛. Фiльтр F мажорує фiльтр околiв точки 0, проте вiн ”вiдсiює”
множини, на яких функцiя 𝑓(𝑥) неконтрольовано коливається. Тодi

𝑑𝑓

𝑑F
(0) = lim

F
sin

1

ℎ
= 0.

6. Зв’язок мiж похiдною за фiльтром та збiжнiстю за Гейне

В класичному матаналiзу iснує еквiвалентний пiдхiд до визначення похi-
дної, а саме мовою послiдовностей (за Гейне). Кажуть, що функцiя 𝑓(𝑥) має
похiдну в точцi 𝑎, якщо для довiльної збiжної до 𝑎 числової послiдовностi
(𝑥𝑛), де для всiх 𝑛 ∈ N 𝑥𝑛 ̸= 𝑎 iснує границя

lim
𝑛→∞

𝑓(𝑥𝑛)− 𝑓(𝑎)

𝑥𝑛 − 𝑎
.

Маючи збiжну до 𝑎 ∈ R числову послiдовнiсть (𝑥𝑛), ми можемо побудувати
фiльтр F𝑥𝑛 , базою якого будуть наступнi множини: 𝐴𝑘 = {𝑥𝑛 − 𝑎 : 𝑛 ≥ 𝑘}.
Таким чином, нескладно побачити, що в такому випадку похiдна за фiльтром
F𝑥𝑛 буде спiвпадати з означенням похiдної ”за Гейне”.

5. Висновок

У данiй статтi запропоновано новий пiдхiд до диференцiювання функцiй
дiйсної змiнної шляхом узагальнення класичного означення похiдної за допо-
могою фiльтрiв. Концепцiя похiдної вiдносно фiльтра розширює традицiйне
розумiння границi, дозволяючи бiльш гнучко описувати процес наближення
змiнної до точки. Такий пiдхiд охоплює класичну похiдну як окремий випа-
док, водночас вiдкриваючи шлях до аналiзу функцiй у ситуацiях, де звичне
означення або непридатне, або недостатньо точне.

Запропоноване означення демонструє узгодженiсть iз основними прави-
лами диференцiювання — такими як лiнiйнiсть, правило добутку, частки та
складеної функцiї, що пiдтверджує його теоретичну строгiсть. Разом iз цим,
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нова конструкцiя забезпечує iнструментальну гнучкiсть, що дозволяє розгля-
дати задачi з обмеженими або асиметричними околами, де класичне дифе-
ренцiювання втрачає ефективнiсть або смислову iнтерпретованiсть.

Одержанi результати мають потенцiал до практичного застосування в те-
орiї узагальнених функцiй, теорiї мiри та функцiональному аналiзi. Порiв-
няльний аналiз iз класичним пiдходом, наведенi приклади та доведення вла-
стивостей нового означення пiдтверджують як методологiчну, так i прикла-
дну цiннiсть цiєї роботи. Запропонований iнструмент може слугувати основою
для подальших дослiджень у галузi математичного аналiзу та бути включе-
ним у дидактичнi пiдходи до викладання теми похiдної. Таким чином, робота
не лише поглиблює теоретичне розумiння локальної поведiнки функцiй, а й
пропонує новi перспективи для розвитку сучасної теорiї границь.

Подяки
Статтю пiдготовлено в рамках виконання держбюджетної теми Мiнiстерства
освiти i науки України № БФ/32-2021(11). Також автор висловлює безмежнi
слова вдячностi своїм батькам за постiйну пiдтримку. Окремi слова вдячностi
хочеться висловити Силам Безпеки та Оборони України в особi батька авто-
ра, якi в даний момент дають рiшучу вiдсiч росiйським окупантам. Автор
висловлює велику подяку анонiмним рецензентам даної роботи, якi надали
надзвичайно цiннi коментарi та поради та зауваження, завдяки яким стаття
стала коректнiшою та повнiшою.

Iсторiя статтi: отримана: 30 липня 2025; останнiй варiант: 20 листопада 2025
прийнята: 22 листопада 2025. Оприлюднено 11 грудня 2025.

Конфлiкт iнтересiв: Автори повiдомляють про вiдсутнiсть конфлiкту
iнтересiв.
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The article explores a generalization of the concept of the derivative of a
real-valued function of one variable based on filter theory. A new constructi-
on is proposed that allows the definition of a derivative of a function with
respect to a filter, which reflects the manner in which the variable approaches
a given point. Unlike the classical definition, where the limit is taken via a
linear approach of the argument, the new definition permits a wider range
of approaches to the point, thus providing a more flexible framework for
analyzing the local behavior of functions. The introduced concept includes
the classical definition of the derivative as a special case when an appropriate
filter is chosen. The paper presents proofs of generalized versions of basic
derivative properties: linearity, product rule, quotient rule. In particular,
it is shown that the derivative with respect to a filter satisfies the same
formal differentiation rules as the classical derivative while preserving greater
flexibility in how the argument approaches the point. The results obtained
expand the scope of differential calculus to cases where the classical approach
is either inapplicable or lacks precision or interpretative convenience. It is
demonstrated that, in some situations, the derivative with respect to a filter
better reflects real processes of change, such as in problems with asymmetric
or constrained neighborhoods of a point. The proposed approach opens new
perspectives for applications in the theory of generalized functions, measure
theory, and functional analysis. The article also provides examples illustrati-
ng the application of the new concept and offers a comparative analysis with
the classical theory. The presented material may be of interest to researchers
in the field of mathematical analysis as well as to educators seeking to extend
the traditional approach to differentiation. This work holds both theoretical
and methodological value, as it introduces a new tool for further research in
the field of modern limit theory.
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Closed equivalence relations on compact spaces and

pairs of commutative 𝐶*-algebras: a categorical

approach

In this paper, we study a categorical extension of the classical Gelfand–
Naimark duality between compact Hausdorff spaces and commutative unital
𝐶*-algebras. We establish an equivalence between the category of compact
Hausdorff spaces with closed equivalence relations and the category of pairs
consisting of a commutative unital 𝐶*-algebra together with one of its uni-
tal 𝐶*-subalgebras. The motivation is that Gelfand duality can be enriched
by additional structure: closed equivalence relations encode quotient spaces
and invariance on the topological side, while subalgebras reflect restricti-
ons and symmetries on the algebraic side. Shilov’s theorem, which identi-
fies closed unital self-adjoint subalgebras of 𝐶(𝑋) with algebras of functi-
ons invariant under closed equivalence relations, provides an essential link
between these settings. We introduce the category EqRel, whose objects
are compact Hausdorff spaces with closed equivalence relations and whose
morphisms are continuous trajectory-preserving maps, and the category
C*Pairs, whose objects are pairs (𝐴,𝐵) with 𝐴 a commutative unital 𝐶*-
algebra and 𝐵 ⊂ 𝐴 a unital 𝐶*-subalgebra, with morphisms given by unital

57

https://doi.org/10.26565/2221-5646-2025-102-04
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0005-0504-8518
https://orcid.org/0000-0001-5301-5087
https://orcid.org/0000-0002-1109-4247


58 R. Skurikhin, S. Gefter, E. Karolinsky

*-homomorphisms preserving 𝐵. Contravariant functors are defined in both
directions: (𝑋,𝑅) ↦→ (𝐶(𝑋), 𝐵𝑅), where 𝐵𝑅 consists of functions constant
on 𝑅-classes, and (𝐴,𝐵) ↦→ (Σ(𝐴), 𝑅𝐵), where Σ(𝐴) is the spectrum and
𝑅𝐵 relates characters agreeing on 𝐵. We verify that these constructions
are functorial and compatible with composition of morphisms. Using the
Kolmogorov–Gelfand theorem, the Gelfand transform, and Shilov’s theorem,
we show that these functors are mutually inverse up to morphism of functors
and thus prove the categorical equivalence EqRel ≃ C*Pairsop. This
result demonstrates that the geometric notion of closed equivalence relati-
ons on compact spaces is in perfect correspondence with the algebraic notion
of unital subalgebras of commutative 𝐶*-algebras.

Keywords: categorical equivalence; Gelfand duality; closed equi-

valence relation; commutative 𝐶*-algebra; invariant subalgebra;

Shilov theorem.

2020 Mathematics Subject Classification: 46L05; 46M15.

1. Introduction

This paper presents a categorical correspondence between two seemingly di-
stinct mathematical objects: topological spaces with closed equivalence relations
and pairs consisting of a commutative 𝐶*-algebra and its subalgebra.

Our motivation stems from the classical duality between compact Hausdorff
spaces and commutative unital 𝐶*-algebras established by the Gelfand–Naimark
theorem. Extending this idea, we explore how additional structure — in particular,
closed equivalence relations or subalgebras — can be encoded categorically and
translated between the topological and algebraic frameworks.

The paper is structured as follows. In Section 2, we review essential noti-
ons from category theory, topology, and 𝐶*-algebras. Section 3 introduces two
categories: one based on compact spaces with closed equivalence relations, another
based on commutative 𝐶*-algebra pairs, and defines natural functors between
them. Finally, in Section 4 we prove that the above mentioned functors establish
an equivalence of categories.

2. Preliminaries

Notions from Category Theory. We recall some standard definitions in
category theory (see, e.g., [1, Chapter II]).

Definition 1. A covariant functor 𝐹 : 𝒞 → 𝒟 between categories 𝒞 and 𝒟 assigns

� to each object 𝐴 ∈ 𝒞, an object 𝐹 (𝐴) ∈ 𝒟,

� to each morphism 𝜙 : 𝐴→ 𝐵 in 𝒞, a morphism 𝐹 (𝜙) : 𝐹 (𝐴) → 𝐹 (𝐵) in 𝒟,

such that

1. 𝐹 (id𝐴) = id𝐹 (𝐴),

2. 𝐹 (𝜙 ∘ 𝜓) = 𝐹 (𝜙) ∘ 𝐹 (𝜓) for all composable morphisms 𝜓,𝜙.
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Definition 2. A contravariant functor 𝐹 : 𝒞 → 𝒟 assigns

� to each object 𝐴 ∈ 𝒞, an object 𝐹 (𝐴) ∈ 𝒟,

� to each morphism 𝜙 : 𝐴→ 𝐵 in 𝒞, a morphism 𝐹 (𝜙) : 𝐹 (𝐵) → 𝐹 (𝐴) in 𝒟,

such that

1. 𝐹 (id𝐴) = id𝐹 (𝐴),

2. 𝐹 (𝜙 ∘ 𝜓) = 𝐹 (𝜓) ∘ 𝐹 (𝜙) for all composable morphisms.

Definition 3. Given a category 𝒞, its dual category (or opposite category),
denoted by 𝒞op, is defined as follows:

� the objects of 𝒞op are the same as those of 𝒞,

� for each morphism 𝜙 : 𝐴 → 𝐵 in 𝒞, there is a corresponding morphism
𝜙op : 𝐵 → 𝐴 in 𝒞op,

� composition in 𝒞op is given by reversing the order of composition in 𝒞, i.e.
(𝜙 ∘ 𝜓)op = 𝜓op ∘ 𝜙op.

Definition 4. Let 𝐹,𝐺 : 𝒞 → 𝒟 be two functors. A morphism of functors 𝜂 :
𝐹 → 𝐺 is a family of morphisms {𝜂𝑋 : 𝐹 (𝑋) → 𝐺(𝑋)}𝑋∈Ob(𝒞) such that for
every morphism 𝑓 : 𝑋 → 𝑌 in 𝒞, the following diagram commutes:

𝐹 (𝑋)
𝐹 (𝑓)−−−−→ 𝐹 (𝑌 )

𝜂𝑋

⎮⎮⌄ ⎮⎮⌄𝜂𝑌

𝐺(𝑋)
𝐺(𝑓)−−−−→ 𝐺(𝑌 )

Definition 5. A morphism 𝜙 : 𝑋 → 𝑌 in a category 𝒞 is an isomorphism if
there exists a morphism 𝜓 : 𝑌 → 𝑋 such that 𝜓 ∘ 𝜙 = id𝑋 and 𝜙 ∘ 𝜓 = id𝑌 .

Definition 6. Two categories 𝒞 and 𝒟 are said to be equivalent if there exist
functors 𝐹 : 𝒞 → 𝒟 and 𝐺 : 𝒟 → 𝒞 together with isomorphisms of functors

𝜂 : 𝐺 ∘ 𝐹 → id𝒞 , 𝜖 : 𝐹 ∘𝐺→ id𝒟.

Remark 1. A contravariant functor 𝐹 : 𝒞 → 𝒟 can be viewed as an ordinary
covariant functor 𝐹 : 𝒞op → 𝒟. In particular, when studying equivalences, it
is common to consider equivalences between a category and the dual of another.
Thus, equivalence can also be formulated in terms of contravariant functors once
one passes to opposite categories.

𝐶*-Algebras and Their Spectra. Let us recall some basic definitions from
the theory of Banach and 𝐶*-algebras (see, e.g., [3, Chapter 1]).
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Definition 7. A Banach algebra is a complex associative algebra 𝐴 equipped with
a norm ‖ · ‖ such that

� 𝐴 is a Banach space,

� ‖𝑎𝑏‖ ≤ ‖𝑎‖‖𝑏‖ for all 𝑎, 𝑏 ∈ 𝐴,

� 𝐴 has a multiplicative identity 1𝐴 such that 1𝐴𝑎 = 𝑎 = 𝑎1𝐴 for all 𝑎 ∈ 𝐴.

Definition 8. A character on a Banach algebra 𝐴 is a linear functional 𝜙 : 𝐴→ C
such that 𝜙(1𝐴) = 1 and 𝜙(𝑎𝑏) = 𝜙(𝑎)𝜙(𝑏) for all 𝑎, 𝑏 ∈ 𝐴.

Definition 9. The spectrum of a commutative Banach algebra 𝐴 is the set Σ(𝐴)
of all characters of 𝐴, equipped with the weak* topology (pointwise convergence).

It is well known that the spectrum Σ(𝐴) is a compact Hausdorff space.

Definition 10. A Banach algebra 𝐴 is called a 𝐶*-algebra if it is equipped with
an involution 𝑎 ↦→ 𝑎* satisfying

1. (𝛼𝑎+ 𝛽𝑏)* = 𝛼𝑎* + 𝛽𝑏*,

2. (𝑎𝑏)* = 𝑏*𝑎*,

3. (𝑎*)* = 𝑎,

4. ‖𝑎*‖ = ‖𝑎‖,

5. ‖𝑎𝑎*‖ = ‖𝑎‖2,

for all 𝑎, 𝑏 ∈ 𝐴 and 𝛼, 𝛽 ∈ C.

Example 1. Let 𝑋 be a compact Hausdorff space. The set 𝐶(𝑋) of complex-
valued continuous functions on 𝑋 is a commutative unital 𝐶*-algebra with

� pointwise operations,

� involution 𝑓*(𝑥) := 𝑓(𝑥),

� norm ‖𝑓‖ := max𝑥∈𝑋 |𝑓(𝑥)|.

Structure Theorems for Commutative 𝐶*-Algebras. The following
classical results establish a deep duality between commutative 𝐶*-algebras and
compact Hausdorff spaces.

Theorem 1 (Kolmogorov-Gelfand [4]). Let 𝑋 be a compact Hausdorff space. For
each 𝑥 ∈ 𝑋, define a character 𝜙𝑥 : 𝐶(𝑋) → C by 𝜙𝑥(𝑓) := 𝑓(𝑥). Then the map

𝐼 : 𝑋 → Σ(𝐶(𝑋)), 𝐼(𝑥) = 𝜙𝑥

is a homeomorphism. Thus, the spectrum of 𝐶(𝑋) is naturally identified with the
space 𝑋.
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Theorem 2 (Gelfand-Naimark [2], Theorem 11.18). Let 𝐴 be a commutative
unital 𝐶*-algebra. The Gelfand transform

Γ : 𝐴→ 𝐶(Σ(𝐴)), 𝑎 ↦→ 𝑎̂, 𝑎̂(𝜙) := 𝜙(𝑎),

is an isometric *-isomorphism of 𝐶*-algebras.

Categorical Reformulation of the Gelfand Duality. Let us make this
duality precise in categorical terms. Following [1, Section II.10], we writeHaus for
the category whose objects are compact Hausdorff spaces and whose morphisms
are continuous maps, and Ban for the category whose objects are commutative
unital 𝐶*-algebras and whose morphisms are unital *-homomorphisms.

Theorem 3. [1, Section II.10], The categories Haus and Banop are equivalent.

Proof. Define the contravariant functor

𝐶 : Haus → Ban, 𝑋 ↦→ 𝐶(𝑋), 𝑓 ↦→ 𝐶(𝑓) : 𝑔 ↦→ 𝑔 ∘ 𝑓.

Also define the contravariant functor

Σ : Ban → Haus, 𝐴 ↦→ Σ(𝐴), 𝐿 ↦→ Σ(𝐿) : 𝜙 ↦→ 𝜙 ∘ 𝐿.

These functors satisfy the required properties:

� Σ(𝐶(𝑋)) ∼= 𝑋 via the map 𝐼(𝑥) := 𝜙𝑥 (Theorem 1),

� 𝐶(Σ(𝐴)) ∼= 𝐴 via the Gelfand transform Γ (Theorem 2),

� both isomorphisms are functorial.

Hence, Haus ≃ Banop. □

Shilov’s Theorem on Invariant Subalgebras. Let us recall the definition
of closed equivalence relation:

Definition 11. Let 𝑋 be a compact Hausdorff space. An equivalence relation
𝑅 ⊂ 𝑋 ×𝑋 is said to be closed if 𝑅 is a closed subset of 𝑋 ×𝑋 [6, p. 52].

Example 2. Let 𝑋 = {(𝑥1, 𝑥2) ∈ R2 : 𝑥21 + 𝑥22 ≤ 1} (the closed unit disk), and
define (𝑥, 𝑦) ∈ 𝑅 if 𝑥21 + 𝑥22 = 𝑦21 + 𝑦22. Then

𝑅 = {((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ∈ 𝑋 ×𝑋 : 𝑥21 + 𝑥22 = 𝑦21 + 𝑦22}

is a closed equivalence relation.

Example 3. Let 𝑋 = {𝑧 ∈ C : |𝑧| = 1} (the unit circle), and fix 𝜃 ∈ R such that
𝜃/𝜋 /∈ Q. Define 𝑧1 ∼ 𝑧2 if 𝑧2 = 𝑒𝑖𝑛𝜃𝑧1 for some 𝑛 ∈ Z. Then the orbit of any
point under this relation is dense in 𝑋, and the graph of the relation is not closed
in 𝑋 ×𝑋.
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The following theorem is central in identifying the subalgebra 𝐵 with the
algebra of functions invariant under 𝑅𝐵, and it plays a key role in the proof of
our main result.

Theorem 4 (Shilov [5]). Let 𝑋 be a compact Hausdorff space, and let 𝐵 ⊂ 𝐶(𝑋)
be a closed unital self-adjoint subalgebra. Define an equivalence relation 𝑅𝐵 ⊂
𝑋 ×𝑋 by

(𝑥, 𝑦) ∈ 𝑅𝐵 ⇐⇒ ∀𝑓 ∈ 𝐵 : 𝑓(𝑥) = 𝑓(𝑦).

Then:

1. 𝑅𝐵 is a closed equivalence relation,

2. 𝐵 coincides with the algebra of functions invariant under 𝑅𝐵, i.e.,

𝐵 = {𝑓 ∈ 𝐶(𝑋) : 𝑓(𝑥) = 𝑓(𝑦) ∀(𝑥, 𝑦) ∈ 𝑅𝐵} =: 𝐵𝑅𝐵
.

3. Closed Equivalence Relations and Pairs of 𝐶*-Algebras

Definition 12. Let (𝑋1, 𝑅1) and (𝑋2, 𝑅2) be compact spaces equipped with equi-
valence relations. A continuous map 𝑓 : 𝑋1 → 𝑋2 is said to be trajectory-
preserving if whenever (𝑥, 𝑦) belongs to 𝑅1, the pair (𝑓(𝑥), 𝑓(𝑦)) belongs to 𝑅2.

We define the category EqRel as follows:

� objects are pairs (𝑋,𝑅), where 𝑋 is a compact Hausdorff space and 𝑅 is a
closed equivalence relation on 𝑋,

� morphisms are continuous trajectory-preserving maps.

Also, consider the category C*Pairs where

� objects are pairs (𝐴,𝐵), where 𝐴 is a commutative unital 𝐶*-algebra, and
𝐵 ⊂ 𝐴 a unital 𝐶*-subalgebra,

� morphisms 𝐿 : (𝐴1, 𝐵1) → (𝐴2, 𝐵2) are unital *-homomorphisms 𝐿 : 𝐴1 →
𝐴2 satisfying 𝐿(𝐵1) ⊂ 𝐵2.

Let (𝑋,𝑅) be an object in EqRel. Define

𝐵𝑅 := {𝑓 ∈ 𝐶(𝑋) : 𝑓(𝑥) = 𝑓(𝑦) whenever (𝑥, 𝑦) ∈ 𝑅}.

I.e., 𝐵𝑅 is the set of functions on 𝑋 which are constant on each equivalence class.

Lemma 1. 𝐵𝑅 is a unital 𝐶*-subalgebra of 𝐶(𝑋).
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Proof. It is closed under addition, multiplication, scalar multiplication, and
involution. The unit function 1 is clearly in 𝐵𝑅. Uniform limits of invariant functi-
ons are invariant, so 𝐵𝑅 is closed. □

Now let 𝑓 : (𝑋1, 𝑅1) → (𝑋2, 𝑅2) be a morphism in EqRel. Then 𝑓 induces a
unital *-homomorphism

𝐶(𝑓) : 𝐶(𝑋2) → 𝐶(𝑋1), 𝐶(𝑓)(𝜙) := 𝜙 ∘ 𝑓.

Lemma 2. The map 𝐶(𝑓) maps 𝐵𝑅2 into 𝐵𝑅1. Hence, 𝐶(𝑓) is a morphism of
pairs:

𝐶(𝑓) : (𝐶(𝑋2), 𝐵𝑅2) → (𝐶(𝑋1), 𝐵𝑅1).

Proof. Let 𝜙 ∈ 𝐵𝑅2 and (𝑥, 𝑦) ∈ 𝑅1. Since 𝑓 is trajectory-preserving, we have
(𝑓(𝑥), 𝑓(𝑦)) ∈ 𝑅2, so

𝐶(𝑓)(𝜙)(𝑥) = 𝜙(𝑓(𝑥)) = 𝜙(𝑓(𝑦)) = 𝐶(𝑓)(𝜙)(𝑦),

hence 𝐶(𝑓)(𝜙) ∈ 𝐵𝑅1 . □

Theorem 5. The assignment (𝑋,𝑅) ↦→ (𝐶(𝑋), 𝐵𝑅) and 𝑓 ↦→ 𝐶(𝑓) defines a
contravariant functor

𝐶 : EqRel → C*Pairs.

Proof. To prove that 𝐶 defines a contravariant functor, we must verify two
properties:

(i) Identity morphisms: For each object (𝑋,𝑅) in EqRel, the identity map
id𝑋 : 𝑋 → 𝑋 is trajectory-preserving. Then 𝐶(id𝑋) : 𝐶(𝑋) → 𝐶(𝑋) is
given by

𝐶(id𝑋)(𝜙) = 𝜙 ∘ id𝑋 = 𝜙.

Clearly, 𝐶(id𝑋) = id𝐶(𝑋), and it maps 𝐵𝑅 to itself.

(ii) Composition: Let

𝑓 : (𝑋1, 𝑅1) → (𝑋2, 𝑅2), 𝑔 : (𝑋2, 𝑅2) → (𝑋3, 𝑅3)

be morphisms in EqRel, i.e., both 𝑓 and 𝑔 are continuous and trajectory-
preserving. Then so is 𝑔 ∘ 𝑓 , and for any 𝜙 ∈ 𝐶(𝑋3) we have

𝐶(𝑔 ∘ 𝑓)(𝜙) = 𝜙 ∘ 𝑔 ∘ 𝑓 = (𝐶(𝑓) ∘ 𝐶(𝑔))(𝜙).

Furthermore, if 𝜙 ∈ 𝐵𝑅3 , then 𝐶(𝑔)(𝜙) ∈ 𝐵𝑅2 and 𝐶(𝑓)(𝐶(𝑔)(𝜙)) ∈ 𝐵𝑅1 .
Hence, 𝐶(𝑔 ∘ 𝑓) maps 𝐵𝑅3 into 𝐵𝑅1 , and

𝐶(𝑔 ∘ 𝑓) = 𝐶(𝑓) ∘ 𝐶(𝑔)

as morphisms in C*Pairs.
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Therefore, 𝐶 is a contravariant functor from EqRel to C*Pairs. □

On the other hand, let (𝐴,𝐵) be a pair in C*Pairs, i.e., 𝐴 is a commutative
unital 𝐶*-algebra and 𝐵 ⊂ 𝐴 is a unital 𝐶*-subalgebra.

Define an equivalence relation 𝑅𝐵 on the spectrum Σ(𝐴) by

(𝜙,𝜓) ∈ 𝑅𝐵 ⇐⇒ ∀𝑏 ∈ 𝐵 : 𝜙(𝑏) = 𝜓(𝑏).

Lemma 3. 𝑅𝐵 is a closed equivalence relation on the compact Hausdorff space
Σ(𝐴).

Proof. Reflexivity and symmetry are immediate. Transitivity follows from the
equality condition on 𝐵.

To prove closedness, suppose (𝜙𝛼, 𝜓𝛼) ∈ 𝑅𝐵 is a net converging to (𝜙,𝜓) in
Σ(𝐴)× Σ(𝐴) with the product of weak* topologies. Then for every 𝑏 ∈ 𝐵,

𝜙(𝑏) = lim
𝛼
𝜙𝛼(𝑏) = lim

𝛼
𝜓𝛼(𝑏) = 𝜓(𝑏),

so (𝜙,𝜓) ∈ 𝑅𝐵. □

Now let 𝐿 : (𝐴1, 𝐵1) → (𝐴2, 𝐵2) be a morphism in C*Pairs. Then 𝐿 : 𝐴1 →
𝐴2 is a unital *-homomorphism with 𝐿(𝐵1) ⊂ 𝐵2. Define

Σ(𝐿) : Σ(𝐴2) → Σ(𝐴1), Σ(𝐿)(𝜙) := 𝜙 ∘ 𝐿.

Lemma 4. Σ(𝐿) is continuous and trajectory-preserving with respect to the relati-
ons 𝑅𝐵2 and 𝑅𝐵1 .

Proof. Continuity of Σ(𝐿) follows from standard functional analysis: composition
with a continuous map is continuous in the weak* topology.

Let (𝜙,𝜓) ∈ 𝑅𝐵2 , i.e., 𝜙(𝑏2) = 𝜓(𝑏2) for all 𝑏2 ∈ 𝐵2. Then for any 𝑏1 ∈ 𝐵1,
since 𝐿(𝑏1) ∈ 𝐵2, we have

(Σ(𝐿)(𝜙))(𝑏1) = 𝜙(𝐿(𝑏1)) = 𝜓(𝐿(𝑏1)) = (Σ(𝐿)(𝜓))(𝑏1),

so (Σ(𝐿)(𝜙),Σ(𝐿)(𝜓)) ∈ 𝑅𝐵1 . □

Theorem 6. The assignment (𝐴,𝐵) ↦→ (Σ(𝐴), 𝑅𝐵) and 𝐿 ↦→ Σ(𝐿) defines a
contravariant functor

Σ : C*Pairs → EqRel.

Proof. As before, we verify the two functorial properties.

� Identity: For id𝐴 : 𝐴→ 𝐴, we have Σ(id𝐴)(𝜙) = 𝜙, so Σ(id𝐴) = idΣ(𝐴).

� Composition: Let 𝐿 : 𝐴1 → 𝐴2 and 𝑀 : 𝐴2 → 𝐴3 be morphisms in
C*Pairs. Then for any 𝜙 ∈ Σ(𝐴3),

Σ(𝑀 ∘ 𝐿)(𝜙) = 𝜙 ∘𝑀 ∘ 𝐿 = Σ(𝐿)(Σ(𝑀)(𝜙)),

so Σ(𝑀 ∘ 𝐿) = Σ(𝐿) ∘ Σ(𝑀).

Therefore, Σ is a contravariant functor from C*Pairs to EqRel. □
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4. Main Result

Theorem 7. The functors

𝐶 : EqRel → C*Pairs, Σ : C*Pairs → EqRel

establish an equivalence of categories

EqRel ≃ C*Pairsop.

Proof. We construct isomorphisms of functors in both directions.

(1) Let (𝑋,𝑅) be an object in EqRel. Consider the canonical map

𝐼𝑋 : 𝑋 → Σ(𝐶(𝑋)), 𝑥 ↦→ 𝜙𝑥, where 𝜙𝑥(𝑓) := 𝑓(𝑥).

This is a homeomorphism by the Kolmogorov–Gelfand theorem. We now show it
is also an isomorphism in the category EqRel.

Let (𝑥, 𝑦) ∈ 𝑅, and let 𝑓 ∈ 𝐵𝑅 (i.e., invariant under 𝑅). Then

𝜙𝑥(𝑓) = 𝑓(𝑥) = 𝑓(𝑦) = 𝜙𝑦(𝑓),

so (𝜙𝑥, 𝜙𝑦) ∈ 𝑅𝐵𝑅
. Hence, 𝐼𝑋 maps 𝑅 into 𝑅𝐵𝑅

, and similarly its inverse does
the reverse.

Thus, 𝐼𝑋 : (𝑋,𝑅) → (Σ(𝐶(𝑋)), 𝑅𝐵𝑅
) is an isomorphism in EqRel.

(2) Let (𝐴,𝐵) be an object in C*Pairs. Consider the Gelfand transform

Γ𝐴 : 𝐴→ 𝐶(Σ(𝐴)), 𝑎 ↦→ 𝑎̂, 𝑎̂(𝜙) := 𝜙(𝑎).

This is an isometric *-isomorphism. Moreover, by Shilov’s Theorem 4, we have
Γ𝐴(𝐵) = 𝐵𝑅𝐵

, hence

Γ𝐴 : (𝐴,𝐵) → (𝐶(Σ(𝐴)), 𝐵𝑅𝐵
)

is an isomorphism in C*Pairs.

(3) Naturality. Both families {𝐼𝑋} and {Γ𝐴} are compatible with morphisms in
their respective categories. In particular, for any morphism 𝑓 : (𝑋,𝑅1) → (𝑌,𝑅2)
in EqRel, the following diagram commutes:

𝑋
𝑓−−−−→ 𝑌

𝐼𝑋

⎮⎮⌄ ⎮⎮⌄𝐼𝑌

Σ(𝐶(𝑋))
Σ(𝐶(𝑓))−−−−−→ Σ(𝐶(𝑌 ))

and for any morphism 𝐿 : (𝐴1, 𝐵1) → (𝐴2, 𝐵2) in C*Pairs, the following diagram
also commutes:

𝐴1
𝐿−−−−→ 𝐴2

Γ𝐴1

⎮⎮⌄ ⎮⎮⌄Γ𝐴2

𝐶(Σ(𝐴1))
𝐶(Σ(𝐿))−−−−−→ 𝐶(Σ(𝐴2))

Hence, the functors 𝐶 and Σ establish an equivalence of categories. □
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Гельфанда-Наймарка мiж компактними хаусдорфовими просторами та комутатив-
ними унiтальними 𝐶*-алгебрами. Ми встановлюємо еквiвалентнiсть мiж категорiєю
компактних хаусдорфових просторiв iз замкненими вiдношеннями еквiвалентностi
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та категорiєю пар, що складаються з комутативної унiтальної 𝐶*-алгебри та однiєї
з її унiтальних 𝐶*-пiдалгебр. Мотивацiя полягає в тому, що дуальнiсть Гельфанда
може бути збагачена додатковою структурою: замкненi вiдношення еквiвалентностi
кодують фактор-простори та iнварiантнiсть з топологiчного боку, тодi як пiдалге-
бри вiдображають обмеження та симетрiї з алгебраїчного боку. Теорема Шилова,
яка ототожнює замкненi самоспряженi пiдалгебри з одиницею 𝐶(𝑋) з алгебрами
функцiй, iнварiантних вiдносно замкнених вiдношень еквiвалентностi, забезпечує
ключовий зв’язок мiж цими пiдходами. Ми вводимо категорiю EqRel, об’єктами
якої є компактнi хаусдорфовi простори iз замкненими вiдношеннями еквiвалентно-
стi, а морфiзмами — неперервнi вiдображення, що зберiгають траєкторiї, та ка-
тегорiю C*Pairs, об’єктами якої є пари (𝐴,𝐵), де 𝐴 — комутативна 𝐶*-алгебра
з одиницею, а 𝐵 ⊂ 𝐴 — 𝐶*-пiдалгебра з одиницею, причому морфiзмами є *-
гомоморфiзми, що зберiгають 𝐵. У обох напрямах визначаються контраварiантнi
функтори: (𝑋,𝑅) ↦→ (𝐶(𝑋), 𝐵𝑅), де 𝐵𝑅 складається з функцiй, сталих на 𝑅-класах,
i (𝐴,𝐵) ↦→ (Σ(𝐴), 𝑅𝐵), де Σ(𝐴) — спектр, а 𝑅𝐵 пов’язує характери, що збiгаються на
𝐵. Ми перевiряємо, що цi побудови є функторiальними та сумiсними зi складанням
морфiзмiв. Використовуючи теорему Колмогорова-Гельфанда, перетворення Гель-
фанда та теорему Шилова, ми показуємо, що цi функтори є взаємно оберненими з
точнiстю до iзоморфiзму функторiв, i тим самим доводимо що EqRel ≃ C*Pairsop.
Цей результат показує, що геометричне поняття замкнених вiдношень еквiвалентно-
стi на компактних просторах перебуває в повнiй вiдповiдностi з алгебраїчним поня-
ттям унiтальних пiдалгебр комутативних 𝐶*-алгебр.
Ключовi слова: еквiвалентнiсть категорiй; дуальнiсть Гельфанда; замкнене
вiдношення еквiвалентностi; комутативна 𝐶*-алгебра; iнварiантна пiдал-

гебра; теорема Шилова.
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