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The Nevanlinna matrix of the truncated Hausdorff
matrix moment problem via orthogonal matrix
polynomials on |[a,b] for the case of an even number of
moments

The scalar moment problem was first introduced by T. J. Stieltjes in his work
“Recherches sur les fractions continues”, Annals of the Faculty of Sciences of
Toulouse 8, 1-122, (1895). He formulated it as follows: Given the moments
of order k (k =0,1,2,...), find a positive mass distribution on the half-line
[0, +00).

The study of matrix and operator moment problems was initiated by
M. G. Krein in his seminal paper “Fundamental aspects of the representation
theory of Hermitian operators with deficiency index (m,m)”, Translations
of the American Mathematical Society, Series II, 97, 75-143, (1949).

This paper is related to the truncated Hausdorff matrix moment (THMM)
problem: the truncated moment problem on a compact interval [a,b] in
contrast to the Stieltjes moment problem on [0,+00) and the Hamburger
moment problem on (—o0,400). Our approach relies on V. P. Potapov’s
method, which reformulates interpolation and moment problems as equi-
valent matrix inequalities and introduces auxiliary matrices that satisfy the
Jg—inner function property of the Potapov class, together with a system of
column pairs.

The method begins by constructing Hankel matrices from the prescribed
moments. If these matrices are positive semidefinite, the THMM problem is
solvable. In the strictly positive definite case, known as the non-degenerate
case, we transform the associated matrix inequalities to derive the Nevanli-
nna (or resolvent) matrix of the THMM problem, which characterizes its
solutions.

This framework has been extensively applied, for instance in A. E. Choque
Rivero, Yu. M. Dyukarev, B. Fritzsche, and B. Kirstein, “A truncated matri-
cial moment problem on a finite interval”, in Interpolation, Schur Functions

© B. E. Medina-Hernandez, 2025; CC BY 4.0 license
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and Moment Problems, Operator Theory: Advances and Applications, Bi-
rkh#user, Basel, 165, 121-173, (2006).

The main contribution of the present work is to represent the Nevanlinna
matrix of the THMM problem in terms of orthogonal matrix polynomials
(OMP) and their associated polynomials of the second kind at point b. Note
that the representation at point a was obtained earlier in A. E. Choque
Rivero, “From the Potapov to the Krein—Nudel’man representation of the
resolvent matrix of the truncated Hausdorff matrix moment problem”
Bulletin of the Mexican Mathematical Society, 21(2), 233-259 (2015).

In addition, we establish new identities involving OMP and reformulate an
explicit relationship between the Nevanlinna matrices of the THMM problem
at points a and b, through OMP.

Keywords: Truncated Hausdorff matrix moment problem; Nevanli-
nna matrix; orthogonal matrix polynomials.

2020 Mathematics Subject Classification: T6A11; 76B11; 76M11.

1. Introduction

The truncated Hausdorff matrix moment (THMM) problem is stated as
follows: Given an interval [a,b] on the real axis and a finite sequence of ¢ x ¢
matrices (s7)72, where ¢ and m are natural numbers, find the set MY [[a, b], B N
[a, b]; (sj)g"’zo] of all nonnegative Hermitian ¢ X ¢ measures o defined on the o-
algebra of all Borel subsets of the interval [a, b] such that

sj = / t do(t) (1)

[a,b]

is valid for each integer j with 0 < 7 < m.

The criteria for solving the THMM problem with an even number of moments
(resp. an odd number of moments) are provided in [12, Theorem 1.3| (resp. |13,
Theorem 1.3]). Following these results, for m = 2n + 1 (resp. m = 2n), the
perturbed moments are defined as follows:

s&l) = sj, 0<j<m,

35-2) = —abs; + (a+b)sjy1 — Sj42, 0<j<m—2,
s§3) = bs; — sj41, 0<7<m—1,
35-4) = —as; + Sj+1, 0<j<m-—1.

Based on these perturbed moments, we construct the block Hankel matrices
RO R
" RCIRCIN )
Ho= (500 e 2)
CIG (7)

Sj [ ESEEEEE S?j
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for r =1,2,3 and 4.

It was proven in [13, Theorem 1.3] (resp. [12, Theorem 1.3]) that the THMM
problem has a solution if and only if the block matrices H;, and Ha,—1 (resp.
Hs, and Hy,,) are both nonnegative Hermitian.

To characterize the solution set of the THMM problem MY [[a,b],B N
[a, b]; (sj)’jnzo] for m = 2n and m = 2n+ 1, the problem is usually reformulated by
identifying an associated class of holomorphic matrix-valued functions given by

do(t)
t—z

&< [[a, 0], B N [a,b]; (s5)o] == {,s(z) = /[ ) , 0 € ML[[a,b],B N [a,b]; (sj);"_o]} .

A matrix function s(2) € &%[[a,b],B N [a,b]; (s5)72,] is called the associ-
ated solution to the THMM problem. This technique, commonly referred to as
V. P. Potapov’s method |26], has been successfully applied in numerous works,
including [4, 5, 6, 14, 19, 20, 21] and others.

The THMM problem is said to be non-degenerate when both block matrices
Hi, and Hy,_1 (resp. Hs, and Hy ) are positive definite Hermitian.

A description of the solution set of the THMM problem, which encompasses
both degenerate and mnon-degenerate cases, is provided in [24] through a
function-theoretic Schur-Nevanlinna-type algorithm. An algebraic version of this
procedure, which is applicable to (finite or infinite) sequences of complex g X ¢
matrices, was developed based on the Schur analysis of matrix Hausdorff moment
sequences [22, 23]. See also [25].

Henceforth, we focus exclusively on the non-degenerate case.

Definition 1. /15, Definition 1.1]. Let [a, ] be a finite interval on real azis R. The
sequence of q¢ X q matrices (s;-)?io (resp. (Sj)?i—gl) 1s called a Hausdorff positive
definite sequence on [a, b] if the block Hankel matrices Hy ,, and Ha 1 (resp. Hs

and Hy ) are both positive definite matrices.

Throughout this paper, we restrict our attention to sequences that are
Hausdorff positive definite on [a, b].

According to Definition 1, the THMM problem is also considered non-
degenerate when the sequence (sj)gnzo, for m = 2n and m = 2n + 1 is positive
definite on [a,b]. In such cases, the corresponding solution s(z) to the THMM
problem is given by

-1

s(2) = (a™(2)p(2) + 8™ (2)a(2)) (Y™ () p(z) + 6™ () a(=)) L ()

where p and q denote ¢ X ¢ matrix-valued functions of the complex variable
z, which are defined in an appropriate domain in the complex plane. See [12,
Definition 5.2] and [13, Definition 5.2]. The functions o™ (2), 8™ (2), 4™ (2),
and 8™ (2) are matrix-valued polynomials constructed from the given moment
sequence {s;}7". These matrices ™ (2), B (2), (™) (2), and 6™ (z) collecti-
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vely constitute the entries of the Nevanlinna matrix

my . [ (z) ()

UE = [y am(z)] W
which is linked to the THMM problem. The Nevanlinna matrix was first generally
defined in [1, Definition 2.4.3, p. 55]. Within the THMM problem, this matrix is
also called the resolvent matrix associated with the THMM problem. The Nevanli-
nna matrix U™ (z) is a 2¢ x 2¢ matrix polynomial defined on the entire complex
plane. This matrix is vital in analyzing the solution to the THMM problem; see
Equations (3) and (4).

As presented in [18], the Nevanlinna matrix of the THMM problem was
constructed regarding to point z = 0. In the same work [18], both even and
odd number of moments were considered. In [12] and [13], the Nevanlinna matrix
for the THMM problem was examined at point z = a, specifically for the even and
odd cases of moments, respectively. Furthermore, [15] introduced a novel Nevanli-
nna matrix that includes both even and odd moment cases and is constructed
with respect to point z = b.

Similar procedures to those described in [12] and [13] can help construct the
Nevanlinna matrix regarding to point z = b

S [ )
P () = [W(m) (Z; S (Z)]. (5)

The representation of the Nevanlinna matrix at point z = b is crucial, as
its components define the solution set of the THMM problem (Equation (3)).
Furthermore, constructing the Nevanlinna matrix at z = b enables the derivation
of new relationships between OMP, Dyukarev-Stieltjes parameters, matrix conti-
nued fractions (see [2, 3, 4, 7, 8]), and Blaschke-Potapov factors [5, 6]. Moreover,
the admissible control problem and the time optimal control problem may be
solved by using the Nevanlinna matrix with respect to point z = b. See (9], [10],
and [11].

For m = 2n + 1 (resp. m = 2n), an explicit relationship was established
between the Nevanlinna matrix U regarding to point z = a, introduced in |12,
Proposition 6.10] (resp. [13, Proposition 6.10]), and the Nevanlinna matrix V(™
constructed in [15, Definition 4.1] (resp. [15, Definition 3.1]) with respect to point
z = b. This relation takes the form

U (z)Dm = v (m) (2), (6)

where D™ is a constant invertible matrix. The relation (6) was proven in [15,
Theorem 4.3| (resp. [15, Theorem 3.8]).

Under specific conditions, an additional explicit connection was established
between the Nevanlinna matrices: one evaluated at point z = a [12], and the
other at z =0 [18].
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Next, regarding [14], we provide a brief review of general notation related to
matrix polynomials.

We will use R, and Ny to denote the set of real numbers, and nonnegative
integers, respectively. Through 0,4, and I, we denote the ¢ x ¢ zero matrix, and
the ¢ x ¢ identity matrix, respectively.

A matrix polynomial is an expression of the form P(t) = Agt™ + At" ' +
.+ A, 1t + Ay, where t € R and each coefficient Ay is a ¢ X ¢ matrix, with
Ag # 0. Here, the degree of P is n, denoted by deg P := n. If Ay equals the
identity matrix, the polynomial is called monic. Note that if P(¢) = 0, for all
t € R, then deg P := —oco. When deg P = n > 0, the matrix A,, is referred to
as the leading coefficient of P. For all £ € Ny and x € Ny with ¢ < &, we define
the index set Zy,, := {n € Ny | £ < n < k}.The following remark was partially
reproduced from [14, Definition 3.2] and [14, Remark 3.6].

Remark 1. Let n € Ny U {o0}, and let (Sj)?io be a Hausdorff positive definite
sequence: The corresponding block Hankel matriz Hy , is positive definite. Let o
be a nonnegative Hermitian q X q measure on R satisfying (1) for 0 < j < 2n.
A sequence (Pj)?:o of complex q X q matriz polynomials is called a monic left
orthogonal system of matriz polynomials with respect to o if the three conditions
below are fulfilled.

(I) deg P; = j for all j € Zo .

(II) Pj has the leading coefficient I, for all j € Zoy,.

(I1I) The following equality is satisfied:
Hi ., ifi=k
/ P]dO'P]:( _ 1,55 ij )
[a.0) Oy WJF#F

for all 0 < j, k <n where I?ILj denotes the Schur complement of Hy j_1 in
Hy ;. See Definition 4.

Let o be a nonnegative Hermitian measure on the Borel sets of [a, ], and let B
be a Borel set of [a,b]. Denote o1 := 0. Let us introduce the following perturbed
measures:

o3(B) ::/B(b—t)(t—a)a(dt),
o3(B) ::/B(t—a)a(dt),
o4(B) ::/B(b—t)a(dt).

In Definitions 2 and 3, we introduced four monic orthogonal systems of matrix
polynomials, (Pm-)?:O for r = 1,2,3,4. As shown in Proposition 1, (PV'J)?:O for
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r=1,3,4 (resp. (ngj);”:_ol) are orthogonal with respect to o, for r =1, 3,4, (resp.
0'2).

We now revisit key aspects of the Nevanlinna matrix (4) in relation to
OMP. The Nevanlinna matrix associated with the THMM problem was initi-
ally formulated by using OMP for an even number of moments in [28]; an odd
number of moments was first explored in [3]. Furthermore, [7] introduced alternati-
ve representations of the Nevanlinna matrix via OMP, specifically at point z = a.

Moreover, explicit relationships between Nevanlinna matrices expressed with
OMP have been established.

In [17], an explicit relationship between Nevanlinna matrices through OMP
was presented. In this relationship, the Nevanlinna matrix, which was obtained in
[18] regarding to point z = 0, was considered. Additionally, this relation involved
the Nevanlinna matrices introduced in [12] and [13], both with respect to point
z = a.

Main results of the work
In this work, we consider the case of an even number of given moments.

a) Every block of the Nevanlinna matrix of the THMM problem at point z = b
admits an explicit representation via OMP on [a,b] and their polynomials
of the second kind; see Theorem 2.

b) In [15, Theorem 4.3|, an explicit relationship was obtained between the
Nevanlinna matrices of the THMM problem regarding to point z = a and
point z = b. In the present work, we establish an explicit relation between
the Nevanlinna matrices of the THMM problem with respect to point z = a
and point z = b via OMP.

This paper is organized as follows. In Sections 2 and 3, notations and algebraic
identities are introduced, respectively. Furthermore, the orthogonality of the
polynomials introduced in Definitions 2 and 3 appear in Section 4. In Section
5, we represent the Nevanlinna matrix of the THMM problem at point z = b
through OMP for an even number of moments. In Section 6, we obtain identities
related to the OMP defined in Definitions 2 and 3. Finally, Section 7, presents an
explicit relation for an even number of moments between the Nevanlinna matrices
of the THMM problem regarding to point z = a and point z = b via OMP.

2. Notations and preliminaries

In this section, we reproduce some matrix notations from [17] that appear
throughout this work.

We will use C to denote the set of complex numbers. Through CP*?, and
Opxq, we denote the p x g complex-valued matrices, and the p x ¢ zero matrix,
respectively. Let us recall that 04, and I, denote the ¢ X g zero matrix, and the
q X q identity matrix, respectively. In cases where the sizes of the null and the
identity matrix are clear, we will omit the indices.



Bicuuk XHY, Cep. «Maremaruka, IpuKIaJHA MaTEeMATHKa i MexaHikay, Tom 102 (2025)11

Let Rj : C — CUTDaxU+1d be defined by

Rj(2) == (Ij41)q — 2T5) "1, J € No, (7)
with
Tp:=04, Tj:= < 0(}%]@ O,Oq ) ) J € No. (8)
j jaxq

Additionally, for j € Ny let
vo =1y, vj:=column (I, 0jgxq)- 9)

For each positive integer j such that 1 < j < n, let
Ll,j = (5i,k+1[q) i i=0,..., j and LQJ‘ = ((517;{1'(]) X i=0,..., j , (10)
R : :
where ¢; ;. denotes the Kronecker symbol defined by d; 5, := 1if i = k, and 6; , :== 0
if i £ k.
For 0 < j <k, we set

~ 2) (2 2
Ypj ) = column (85,8541, ..,5k),  Ypjk = column <5§ ), 5§‘+)17 e s,(C )) . (11)
For j € Ny, we define the following auxiliary matrices:
Hyji= (Skrer1)pgmor Hag = (Skrer2)p o (12)
uj := column (—sg, —S1,...,—5;) . (13)
Let n € N, and let (sj)?go be a sequence of complex g X ¢ matrices. Define
u1,0 = 0g, w1 := column (Oq, _y[o,j—l]) , 1<j<n, (14)
ug,0 = —(a + b)so + s1,
g j—1 = column (uz,, —’y\[o,j,Q]) , 1<j<n-1 (15)

Now let (sj)?ggl be a sequence of complex ¢ x ¢ matrices. We set
u30 = 80, U3; = Yo, — bcolumn (0g, y[o,j—l}) , 1<5<n, (16)
U4 = —S0, Uaj = —Y[p,] + acolumn (Oq, y[o,j—1]) , 1<j<n. (17)
Let y; ) and gz be as in (11). Define
Yiji=yyoi-1, 1<i<n, Ya;:=¥yj;2-1, 1<j<n-—-1, (18)
Ysj:=byjaj-1) — Yj+12j], Yaj = —ay2j-1 T Yj+12, 1<j<n. (19)
Finally, let H, ; and Y, ;, for r = 1,2,3, and 4 be as in (2), (18), and (19). We

denote

¥, ; = column <—HT_7].171YM-, Iq) (20)

for r =1,3,4 (resp. r =2), with 1 < j <n (resp. 1 <j<n-—1).

In Theorem 2 we obtain a representation of the Nevanlinna matrix of the
THHM problem in terms of the matrix polynomials introduced below. These
polynomials were first defined in [3]. Their orthogonality will be discussed later
in Proposition 1.
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Definition 2. Let (Sk);ijzo be a sequence that is Hausdorff positive definite on
la,b]. Let u,j, ¥, for r = 1,2, R;, and vj be defined by (14), (15), (20), (7),
and (9), respectively. We define for all z € C

Pro(z) =1y Q1o(2) =04, Pyg(2):=1; Q50(a,b,2):=—(uzg+ 250),

(21)

Pu( )= oiR(2)%,;,  1<j<n, (22)
g( z) = ul]R]( ¥ 1<j<n, (23)
j(a,b,2) == v; R} (2)X2,, 1<j<n-1, (24)
QQJ(a, ,2) = —(uy j + 2505 ) R (2) 22,5, 1<j<n-—1. (25)

The matriz polynomials QQ1; and Q2 are polynomials of the second kind with
respect to Py ; and P ;.

Remark 2. For brevity, we will frequently omit the parameters a and b in Py
and Q5 ;. Specifically, rather than writing PQ*J(a, b,z) and Qg’j(a, b, Z), we use the
simplified expressions Py ;(2) and Q3 ;(2). In particular, when z = a or z = b, we
will write Py ;(a), Q5 ;(a ) P;(b), and Q3 ;(b), respectively.

The matrix polynomials introduced below will be employed in Lemma 6 of
Section 5. They were first defined in 28], and their orthogonality will be examined
later in Proposition 1.

Definition 3. Let (Sk)k o be a sequence that is Hausdorff positive definite on
la,b]. Let u,j, X, for r = 3,4, R;j, and vj be defined by (16), (17), (20), (7),
and (9), respectively. We define for all z € C and 1 < j <mn

Pio(2) =14, @30(2) :=s0, Pyo(2):=1; Qio(2):= —s0, (26)
P5 (b, 2) == v; R;(2)X3 5, (27)
Q3,(b, 2) := u3 ;Rj(Z) X3 5, (28)
Py j(a,z) == vjRj(2)24;, (29)
Qi5(a, 2) = uy ;Rj(2)E4,5. (30)

The matriz polynomials Q3 ; and Q4 ; are polynomials of the second kind with
respect to P3; and Py ;.

Asin the Remark 2, we will often omit the parameters a and b in the polynomi-
als P, Q3 5, Py, and QF ;.
3. Main algebraic identities

Here we present the identities that will express the Nevanlinna matrix of the
THMM problem through OMP in Section 5.

The following definition below is based on [7, Equations (2.9)—(2.10), (2.19)-
(2.20)].
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Definition 4. Let (si)j, for m = 2j (resp. m = 2j 4+ 1) be a sequence that is
Hausdorff positive definite on [a,b]. Let H, j, Y, j for v =1,2,3, and 4 be defined
by (2), (18), and (19). Let ffm denote the Schur complement of the block matriz
HT,j—l mn Hr,j-'

Heoi=sg), Hyji=sy) =Y H L Ve, (31)

forr=1,3,4 (resp. r=2) and for 1 < j<mn (resp. 1 <j<n-1).

In Lemmas 1, 2, and 3, we introduce a collection of auxiliary identities for the

block Hankel matrices and the block matrices introduced in (7)-(12), as well as
in Definition 4.
Lemma 1. Let (s)], for m = 2j (resp. m = 2j + 1) be a sequence that is
Hausdorff positive definite on [a,b]. Let Tj and Lo ; be defined as in (8) and (10).
Let H, ;, ﬁ[r’j, and ¥, ; for r =1,2,3, and 4 be defined by (2), (31), and (20).
Therefore, the following identities hold:

H, 0 ~

-1 - — 1y

H ;= ( 7’8 1 0) + 2 H, 2 (32)

TjH, ;%5 =0, (33)
5 i Hr S =0, (34)

forr=1,3,4 (resp. r =2) and for 1 <j<mn (resp. 1 <j<n-1).

Proof. The identity (32) can be proven as in [3, pages 935-936]. The identities
(33) and (34) are proven in [17, Corollary 2.2]. O

Lemma 2. Let T’j, Vj, Uj, Ul,5, Ll,j; LQJ, I:rl,j; ﬁ2,j; and Hl,j be deﬁned by (8),
(9), (18), (14), (10), (12), and (2) for r = 1, respectively. Thus, for 0 < j <n
(resp. 1 < j < n) the following identities are valid:

TjHij — Hyj+ 005 Hijea Lo = 0, (35)
TjHsz;j — Hij+vjvj Hijn Lo =0, (36)

T,jHLj - Lz,jﬁl,j =0, ( )

50 +ujw — Hija Ly =0, (38)
Tiu; —uy; =0, (39)
u; —ujiqLoji1 =0, (40)
u; +viHy; =0, (41)
Ly ;Ly ; — T;T; =0, (42)
Lo 17 — T} L =0, (43)
uj ; +viHy T =0, (44)
vj = L3041 = 0, (45)
LojLy; —1T; =0. (46)
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Proof. The identities can be derived through direct calculations. g

Lemma 3. Let w,z € C. Let Rj, j}‘, Vj, Uj, UL, U2j—1, U3j, U4 j, L17j, L27j,
and Hyj be defined by (7), (8), (9), (13), (14), (15), (16), (17), (10), and (2)
for r =1, respectively. Therefore, for 0 < j < n (resp. 1 < j < n) the following
wdentities are valid:

Rj(z) — Rj(w) = (z — w) R ()T Rj(w), (47)
2R;(2) — wRj(w) = (2 — w)R;(2) R (w), (48)
R (2)+ (2 —a)Tf — R (a) =0, (49)
uy ;B (2)(T5 Ly ; — Ly ;T 1) =0, (50)
uzj = —R; (0)uj, ua; = R;H(a)uy, (51)
R (2)LojRi_1(3) — Laj =0, (52)
(u3,j_1 + bsovj_1) R _1(b) — v;Hyj(L1,; — alz ;) = 0. (53)

Proof. The identities from (47) to (52) can be verified through direct calculati-
on. A similar identity to (53) is established in |2, Proposition 3.4]. O
We recall the linear relations between the block Hankel matrices H, ; and

the auxiliary matrices ﬁlm, ﬁg,j. These relations were introduced in [7, Equati-
ons (1.5)-(1.6)].

Remark 3. Let fNILj, f]gﬂ-, and H, ; be defined by (12) and (2) for r = 1,2,3,
and 4. Thus, for 0 < j <mn the following identities hold:

Hy; = —abHy ; + (a+ b)ffl,j — ﬁg,j, (54)
Hs; =bH,; — Hy, (55)
H47j = —aHLj + ﬁ17j. (56)

In the following lemma, we obtain new coupling identities concerning the block
matrices that were introduced in (7)-(12), as well as the block Hankel matrices
introduced in (2).

Lemma 4. Let z € C. Let Rj, T’j, Vj, Uj, UL,j, U245—1, Lly]" Lg’j, and HTJ be
defined by (7), (8), (9). (13), (14), (15), (10), and (2) for r = 1,2,3, and 4,
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respectively. For 0 < j <n (resp. 1 < j < n) the following identities hold:

R (2)+(b—2)TF + RS (b) =0, (57)
— v Lo i1 Hyj+vi Hijrala i1 =0, (58)
Hyj 1L} — Ly ;Hy T =0, (59)
u§j,1T711 + sovj,l + u’{yj(LLj(I — be,l) —a(l — b’T;{)LQJ‘) =0, (60)
L (b)Li Ry (b)) — L, =0, (61)
wj—vt + Hy j Ly + L Hi RS (b) =0, (62)
ujvi R (b) + H R (D)LT jyq + L5 jy Hij41 =0, (63)
— v 1 Hy g1 (L — alajyr) + (I = bT)Hyj + TjHs j = 0, (64)
(uz’j + zsovj)R; (z) — (uzj + bsovj)R;‘(b) +(z— b)u’inRjH(é)
(Lijt1 —algj) = 0. (65)

Proof. The identities (57)-(61) are established by straightforward computati-
on. Moreover, (62) is obtained from (55), (38), and (59). By combining (61) with
(62), we have (63). Identity (64) follows from (56), (54), (37), (35), and (36).

Let Ags) be the left-hand side of (65). By using (47) and (48), we have for all
zeC
Aesy = us ;1 (Rj_1(b) — Rj_1(2)) + sovj_1 (bR_1(b) — 2Rj_,(2))

— (2 = b)ul ;R}(2)(L1; — aLlay)
=(b—2) [(U2,j—1Tj—1 + s0vj_1) R;_1(2) Rj_1(b) +uj ;R;(2)(L1j — ala ;)
=(b—2) (_U’f,j[LLj(I - ijtl) —a(l - be)LZj] jfl( z) jfl(b)
+ui ;R (2)(L1; — ala;))
:(b_z)ulj(_[Llj_aL2,j] _1(z )+R (z )(LIJ_aLQJ))
= 2(b = 2)uj ;R}(2) [T} (L1 — alaj) — (L1j — aLoj)T;1] Ri_1(2)
= 2(b = 2)uy ;R (2) (T} Lnj — L T 1) Rj_1(2)
=0.
The third equality follows from (60), whereas (52) was used in the fourth equality.
The fifth equality follows from (43), whereas (50) was used in the last equality. O
4. Orthogonality of matrix polynomials

The proposition below presents the orthogonality of the matrix polynomials
P, jforr =1,2,3, and 4 on the interval [a,b] C R. This result is partially adapted
from [7, Proposition 2.5] where we restrict attention to parts a) and b).

Proposition 1. Let .FAIm- forr=1,2,3, and 4 be as in (31). Let P.; and Q,;
forr=1,2,3, and 4 be the matriz polynomials introduced in Definitions 2 and 3.
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a) The polynomials Py ; and Paj; are OMP on [a,b] with respect to o(dt) and
(b—t)(t — a)o(dt), respectively. More precisely,

. _ —a r—1 o * — 0‘1 J#e r =
., PO =it =y sz (0 { Aol e

b) The polynomials P3 ; and Py j are OMP on [a,b] with respect to (b—t)o(dt)
and (t — a)o(dt), respectively. Specifically,

0, ¢

Hs; j={¢,

0, ¢

H4’j j==4.

/[ ROCIERCLACE {

/[ Pt —a)do(01Pi (1) = {

Proof. Part a) is proven in [3, Section 4|. Part b) is proven in |28, Theorems
2.12 and 2.13]. 0

5. The Nevanlinna matrix of the THMM problem
at point z = b via OMP

This section focuses on the representation of the Nevanlinna matrix V(2i+1)
associated with the THMM problem through OMP regarding to point z = b, for
an even number of moments and specifically when m = 25 + 1 in the sequence
(8k)ieo- R

Let us reproduce the Nevanlinna matrix V(%9 (2) for the case of an even
number of moments obtained in [15, Definition 4.1].

Definition 5. Let (sk)zj:gl be a sequence that is Hausdorff positive definite on
la,b]. Let H, j for r =3,4, Rj, vj, usj, and us; be defined as in (2) for r = 3,4,
(7), (9), (17), and (16), respectively. The 2q x 2q matriz polynomial

o A(2j+1)(z) §(2J’+1)(Z)
V(2j+1) = o . s ) 0<j< ) 66
(Z) 7y\(2]+1)(Z) 5(2]+1)(Z) SN ( )

with

QD () =T 4 (b— Z)quR;(E)H;;R]’(b)Uj, (67)
A (2) 1= (b 2)(= — a)o; R ()} Ry (), (68)
BRI () = _u;jR;%(g)Hg;Rj(b)u&j, (69)
SR () = T — (b — 2 R}(2)Hy ) Ry (b)us, (70)

1s called the Nevanlinna matriz of the THMM problem with respect to point z =0
i the case of an even number of moments.
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In the analysis that follows, which includes Definition 5, we omit the explicit
dependence on the parameters a and b in the notation for the matrix-valued
functions @2+ B2+ 52+ 52+ ag well as in the Nevanlinna matrix
V(2]+1)_

The lemma stated below is vital in deriving the results presented in Lemma 6.

Lemma 5. Let ﬁr,j: for v = 3,4 be as in (31). Let a%+1), BRi+1)  3(25+1)
and Y be as in (67), (69), (68), and (70), respectively. Furthermore, let P, ;
and Q. for v = 3,4 be the OMP and their polynomials of the second kind in
Definition 3. Therefore, for all z € C and 1 < j < n, the following identities hold:

A%t () — @RIV (1) = (b — Z)QM( VH{ 1Py ;(b), (71)
BRI () — BRI (2) = —Q3 ;(2) Hs 1 Qs,4(b), (72)
523+ (73)

(74)

) = ACUTIIDG) = (b 2)(z — a) P (2) H, P (b),
)

(
5‘(2j+1)(2 _ 3(2(j—1)+1)(z) =—(b— z)P3’j(Z)H37j Qs3,5(b). &

Proof. The equalities follow from the technique used in |2, Proposition 2.1]. O

2j41)

Fach entry of the Nevanlinna matrix Ve , as defined in Definition 5, can

be represented in an additive form.

Lemma 6. Under the same conditions as in Lemma 5, for all z € C and 0 < 5 <
n, the following identities hold:

J

A (z) =T+ (b—2) Z Qi k(e 2) Hyp Pi(a,b), (75)
J
B (2 ZQ3 k(b 2) Hy Qs (0, 0), (76)
J
,’-Y\(zj'i‘l) (Z) — (b — Z)(Z — a,) Z Pﬁtk’(a’ E)ﬁ;;le’k(a’ b>7 (77)
k=0

J
FE () =T — (b—2) > Pyy(b,2)H; 1 Qu (b, D). (78)
k=0
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Proof. We prove (75). From (67), we obtain

aPt(2) = I+ (b— 2)uj ;R (2 Z)H, R;(b)v;

2T

. * (7)) - HY 0
+(b—2) (ui;y —sj+asj1)| 7 1(2) z.I ( 48 ! O)

0 I
<bj R ?) (Ujo_ 1)
+ (b — 2)u} ;R (2)Sa jHy ;35 R (b)v;
— qU- )+1)( Y+ (b—2)Q 4J(a,z)H47jP4,j(a,b)
— AU+ () 4 (b 2)[Q 4].71(@,g)ﬁ;;_1P47j_1(a,b)
+ Qj5(a, 2)H43P4J( ,b)]

—aW () + (b-2) Z Qi (a, ) Hy Py g(a,b)
k=1
i

=T+ (b—2)Y Qirla,2)H}-Pyy(a,b).
k=0

In the second equality, we apply (32). The third equality follows from (29)
and (30). To derive the fourth equality, we consider the third equality evaluated at
j—1 and invoke (71). By repeating this procedure recursively for j—2,7—3,...,0,
we obtain the penultimate equality. Finally, the last equality is deduced using (67),
(17), (7), (2), and (9) for j = 0, together with (26) and (31).

A similar line of reasoning establishes the identities (76)—(78). O

The polynomials given in (22)-(25) are connected to the structure of the
Nevanlinna matrix V(21 as in Definition 5.

Lemma 7. Let a(27+1), B(Qj“), 7@+ and 5@i+1) pe s in (67), (69), (68), and
(70), respectively. Let P, ; and Q,; forr =1,2 be the OMP and their polynomials
of the second kind introduced in Definition 2. Thus, for all z € C and 0 < j < n,
the following identities hold:

a%t ) (2)Q3 ;(a,b,b) — Q3 ;(a,b, ) (79)
B (2) Py J+1( )+ Q1 11(2) = (80)
I (2)Q5 5(a,b,b) + (b — 2)(z — )PQ*,j(avb7 z) =0, (81)
QJH)(Z)Pl 1(0) = Pij4(2) = (82)
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Proof. We prove (79). From (67) and (25), we have

a0 (2)Q3 5(a,b,b) — Q5 ;(a,b, 2)
—[(us ; + zs0v} ) R5 (b) + (b — 2)uj ; R} (2) H,y R (b)vj(u5 ; + zsov)) RS (b)
— (u3j + zsovj ) R; (2)] 32,5

= —[vf 1 Hyjr1(L1je1 — alager) — (b— 2)vi Hijra Lo R (a)Rj(2)H,
“Rj(b)vjvi 1 Hijy1(L1jy1 — alaji1) — U;+1H1,j+1R;:1(b) 1(2)
(L1j+1 — aLlajy1)]32,

= —(b— 2 Hi 1 Ri (D) [Ty — Lo R (a) Hy ) Ry(b)vjulyy Hyj]
(L1 g1 — aLlaj11)E2,

= —(b— 2 Hijs1 Ry (2) Lo R (a) Hp ) Ry (b)[~vjvly Hi
(L1 — alajir) + (I — bTj) Hy j]%0

= —(b—2)v} Hij41 Ry 1 (2) Loy R (a)Hy ) Rj(0)THa s

=0.

In the second equality, we use (53), (51), (41), (45), (58), (65), (44), and (49).
In the third equality, we use (52) and (57). The fourth equality is obtained with
(46) and (42). The penultimate equality follows from (64), and the last equality
follows from (33) for r = 2.

We prove (80). From (68), (23), and (22), we have

(
B(Qjﬂ)(z)Pf,jH( )+ Q7 j+1(2)
— (Wi Lagr B O R] (2 Hy Juyof 1 B () + it 111 R} 41 (2)) By
- (“;+1R;+1(5)L2,j+1 (b)H:aj ujvi R (b) +uj T R (2 )) Y15+
= —uj 1 R (%)L J+1R (b) (“jijrlj“Tf 1(b) + H,j R (D) T,j+1) X1+
)Hj

= —uj 1 R (2 )L2J+1R (b
=0.

L2 ]+1H1 ]+1217]+1

In the second equality, we use (51) (40), (52), and (39). The third equality follows
from (46). The penultimate equality follows from (63), and the last equality follows
from (34) for r = 1.

Equalities (81) and (82) follow by employing an analogous method. O

By taking into account Lemmas 6 and 7, we can now formulate the following
theorem.

Theorem 1. Let ﬁr,j for v = 3,4 be as in (31). Furthermore, let P, ; and Q,;
forr = 1,2,3, and 4 be the OMP and their polynomials of the second kind in
Definitions 2 and 3. Therefore, for all z € C and 0 < j < n, the following
sdentilies hold:
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J
Q5 i(a,b,2) ( - z)z%(a, £)H, Py la, b)) Q5;(a,b,0),  (83)
J
Q7 j11(2) (ZQ 5.0(b, 2)Hy Qs 1 (b, b)) Py (b), (84)
k=0
J
P; ;(a,b,2) <Z P;y(a, %) Hy p Pyi(a, b)) Q3 (a,b,b), (85)
k=0

J

Pl*,j+1(2) = ( — =2z ZP 3,k 3kQ3 k (0, b)) P1*7j+1(b)' (86)

k=0

As a consequence, the following corollary establishes a connection between the
Schur complements H3 ; and Hy ; and the matrix polynomials Py, 4, Q3.5, Q3
and P ;. Additionally, it justifies the existence of the inverses of these matrix
polynomials evaluated at the point z = b.

Corollary 1. Under the same assumptions as in Theorem 1, for 0 < j < n the
following equalities hold:

Hs ;= Q3,j<b7 b)Pl*,jJrl(b)7 (87)
ﬁ4,j = _P4,j (CL, b)Q;,j(aa bv b) (88)

Moreover, the OMP Py ;. and Py, as well as the polynomials of the second kind
Q3,; and Q;j, are invertible at the point z = b.

Proof. Equalities (87) and (88) readily follow from (86) and (85) by compari-
ng the leading coefficients of the matrix polynomials. Since I:T;g,j Is inverti-
ble, we have that Q3 ;(b, b)Pf7j+1(b) is invertible. Regarding determinanats,
det(Qs3,;(b,b) Py ;1 (b)) # 0. This implies det(Qs3,(b, b)) # 0 and det(Py (b)) #
0. Therefore, Q3,;(b,b) and Py, ,(b) are invertible. Similarly, we conclude that
@5 ;(a,b,b) and Py j(a,b) are invertible. O

By combining Lemma 7 and Corollary 1, we derive a novel representation of
the Nevanlinna matrix V(&*D that is associated with the THMM problem at
point z = b and that corresponds to an even number of moments.

Theorem 2. Let V2t pe the Nevanlinna matriz gwen by Definition 5. Let P, ;
and Qr; for r = 1,2 be the OMP and their polynomials of the second kind as in
Definition 2. Thus, for all z € C and 0 < 5 < n, the following equality holds:

V@t (g, b, 2)
_ ( Q3 5(a.b,2)Q3, (a,b.b) ~Q1n (P () ) (s9)
~(b—2)(z — )3 ;(a,b,2)Q3 ;' (a,b.0)  Pi (P14 (0)
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6. Derivation of identities related to orthogonal matrix polynomials

By considering the result in Corollary 1, we apply it to derive identities at
points z = a and z = b, involving the OMP introduced in Definitions 2 and 3.

We establish identities regarding to point z = a that involve OMP. To support
this, we must reproduce the Nevanlinna matrix U®*1 in terms of OMP, as
obtained in |7, Theorem 3.8|. Note that both matrices are formulated with respect
to point z = a. For more detail, see Theorem 3.

Furthermore, we derive identities at point z = b for the OMP Py ; and P j,
together with their polynomials of the second kind ()1 ; and Q2 ;. To substantiate
these findings, expressing the inverse of the Nevanlinna matrix V@t in terms
of these polynomials is necessary. See Theorem 4 for a precise statement.

We proceed to reproduce results analogous to Corollary 1, which were ori-
ginally established in [7, Corollary 3.10] in the context of the evaluation point
z = a.

Lemma 8. Let fAIm- for r=3,4 be as in (31). Let P; ; and Q2 be introduced in
Definition 2, as well as, let P3; and Q4 ; be introduced in Definition 3. Thus, for
0 < j < n, the following identities are satisfied:

Hszj = Ps j(b,a)Q5 ;(a,b,a), (90)
Hyj = Qu,(a, G)Pl*,jﬂ(a)- (91)
In the proposition below, we establish new identities at points z = aand z = b

by involving the OMP.

Proposition 2. Let P.; and Q,; for r = 1,2,3, and 4 be the OMP and their
polynomials of the second kind in Definitions 2 and 3. Therefore, for 0 < j < n,
the following identities are satisfied:

QS,j(ba b)Pl*,j—i-l(b) - P3,j(bv a)Q;,j(aa bv CL) =0, (92)
P47j (CL, b)QE,j (a7 b, b) + Q4,j (a7 a)Pl*,jJrl (a’) =0. (93)

Proof. Identities (92), and (93) are proven by using the identities obtained in
(87), (88), (90), and (91).

We next revisit the formulation of the Nevanlinna matrix UZ/+1) associated
with the THMM problem at point z = a. This representation, originally from [7,
Theorem 3.8|, expresses U (27+1) in terms of the OMP and their corresponding
polynomials of the second kind.

Definition 6. Let P.; and Q,; for r = 1,2 be the OMP and their polynomials
of the second kind in Definition 2. We introduce the Nevanlinna matriz of the
THMM problem with respect to point z = a in the case of an even number of
moments for all z € C and 0 < j < n:

U (a,b,2)

_ Q3,4(a:0,2)Q3,; (a,b,a) Qi@ @) gy
—(z—a)(b— z)P2*,j(a, b, Z)Q;yj (a,b,a) Pfj+1(Z)Pf7j+1(a)

,
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Remark 4. As established in [12, Proposition 6.10], the Nevanlinna matriz
U®RItY) s invertible for all z € C.

The next remark explicitly represents the inverse of U*1 with OMP and
their corresponding polynomials of the second kind.

Remark 5. The inverse of (94) is

g+~ (a,b, 2)
_ < Pil+1(a)P17j+1(Z) Pf‘1+1(a)Q1,j+l(Z) > .

)

(z—a)(b— z)QQ_’}(a, b,a)Ps j(a,b,z) QQ_JI-(&, b,a)Q2,(a,b, z) (95)

In the following theorem, we derive identities at point z = a by incorporating
the OMP Py ; and P j, together with their polynomials of the second kind @1 ;
and QQJ‘.

Theorem 3. Let P.; and Q. j, for r = 1,2 be the OMP and their polynomials
of the second kind in Definition 2. Therefore, for all z € C and 0 < j < n, the
following identities are fulfilled:

Q3 ()@, (@) P11 (a)Pyjia (2)— (b—2)(2—a)

Qi (P11 (0)Q5 H(a) Py (2) = I, (96)
Q3,()Q5; ()Pl ()Qujr1(2)—
Qi 11 (2P 11(0)Q5 5 (a)Qa,5(2) = 0, (97)
(b=2)(z=a) [P} ;11 ()P} 11(a) Q5 1 (a) Pa j ()~
P31 (2)Q5; ()P} (a)Prjia(2)] =0, (98)
P} 1 (2)PF 41 (0)Q5 5 (a) Qa4 (2) — (b—2)(z—a)
P (@55 ()P (@)Qu i (2) = I, (99)

Proof. From (94), (95), and the following equality

UCHD (a,b, U@ (0, 2) = (11 0
0 I

we obtain the identities (96)—(99). O

The following observation justifies the invertibility of the Nevanlinna matrix
7 (2i+1).

Remark 6. Let VD denote the Nevanlinna matriz introduced in Definition 5.
According to Remark 4, the matriz U2V is invertible for all z € C. Furthermore,
Remark 8 asserts that the constant matriz D7+ 4s also invertible. Consequently,
by the explicit relation given in (6), it follows that V@it s invertible for all
z € C.
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The following remark explicitly expresses the inverses of the Nevanlinna matrix
V@D which is formulated in terms of OMP and their associated polynomials
of the second kind.

Remark 7. Let V%+D be the Nevanlinna matriz given by (89). Furthermore, let
P.; and Q,;, for r = 1,2 be the OMP and their polynomials of the second kind
in Definition 2. Thus, for all z € C and 0 < j < n, the following equality holds :

VD™ (a,b, 2)
_ P (b)Prjga(2) P (0)Quj11(2) (100)
B (b_ Z)(Z - a)Q;j(C% ba b)PQ’j((I, ba Z) Qijl((l, ba b)QQ,j(a>b7 Z) ‘

In the theorem below, we derive identities at point z = b with the OMP P ;
and P, ;, together with their polynomials of the second kind @1 ; and Q2 ;.

Theorem 4. Let P.; and Q. j, for r = 1,2 be the OMP and their polynomials
of the second kind in Definition 2. Therefore, for all z € C and 0 < j < n, the
following identities are fulfilled:

Q5 ;(2)Q3s; (O)PL} 1 (B)Prj1(2)— (b—2)(2—a)

Qi (P (0)Q B P (2) = I, (101)
Q3,()Q5, )P, (0)Q1 41 (2)-
Qi 11 (D) P11 (0)Q53 (5)Q2,(2) =0, (102)
(b=2)(z=a)[P{ ;11 ()P} 11 (D)Q3 () Py (2)—
P;(2)Q5; (0) Py} (B) Py (2)] =0, (103)
Py i1 ()P (0)Q7 1 (0)Qa,5(2) — (b—2)(2—a)
P (D)@, B)P (D)Q1 41 (2)= 1. (104)

Proof. By using (89), (100), and the equality
7(25+1) i7(2j+1)~1 _ Iy 0
% (a,b,2)V (a,b,2) (0 1)

the identities (101)-(104) follow. O
7. Explicit relationships between Nevanlinna matrices via OMP

For m = 25+ 1, the explicit relationship (6) between the Nevanlinna matrices
of the THMM problem regarding to points z = a and z = b was established in
[15, Theorem 4.3].

By using the Nevanlinna matrix from Theorem 2, together with Definition
6, we show the relation (6) in terms of OMP. Furthermore, we introduce and
we reformulate the constant matrix ©*1 | that was originally obtained in [15,
Theorem 4.3| also with OMP.
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Definition 7. Let (sk)Zj:E)l be a Hausdorff positive definite sequence on [a,b]. Let
Tj, Rj, vj, uj, uaj, and ug; be as in (8), (7), (9), (13), (17), and (16). We

wntroduce the following matriz:

sy (a2 0 '
D J = (25+1) | » OS] Sn (105)
0 a22]
with
2541 * % _
a7 = I+ (b— a)uj ;R (a)Hy 1 R;(b)v;, (106)
asy ™V =1 — (b— a)viR;(a)Hy 1 R;(b)us . (107)

Remark 8. As established in [15, Lemma 4.4], the constant matriz ®+1 s
wnvertible.

We now present a theorem that indicates an explicit relationship between the
Nevanlinna matrices of the THMM problem evaluated at points z =a and z = b
and expressed with OMP for an even number of moments.

Theorem 5. Let Py be the orthogonal matriz polynomial, and let Q2 ; be the
polynomial of the second kind introduced in Definition 2. Moreover, let U2+
and V2*D) be the Nevanlinna matrices as in (94) and (89), respectively. If the

elements aﬁjﬂ) and a(222j+1) of the matriz DY from Definition 7 are written
as
2j+1 -
Ay = P ()P () (108)
azy " = Q3 (@)Q24(0). (109)

then for all z € C the following equality is valid:
U@t ()@@t _ it () = 0. (110)
Proof. We prove that the left-hand side of (110) vanishes as follows:

U@ ()@ _ 2t (1)

_ ( ~Q,(0Q5, ) Qi) 0) )
(z—a)(b—2)P;5 ;(2)Q5 ; (b) —Pf,;1(2)Pr;.(b)
. (—Qz,j<b>c2;,; (@) Py} 11 (@) Py ya (0)+ 1, 0 )
0 _Pf,j+1(b)Pf,j+1(a)Q£; (a)Q2,;(b)+1,
= 0.

The last equality is obtained by applying the identities (96) and (99) at z = b. O

The elements agjﬂ) and agjﬂ) as in (108) and (109) are written at point

z = b. Thus, we consider the following remark.
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Remark 9. By using (108) and (109), the matriz ©2*V) from Definition 7
admits the following representation in terms of OMP with respect to point z = b:

1
@j+1) _ (Prjp(a) Prjyi(b) 0 >
o ( ’ 0 Q;}(a)Q27j(b) : (111)

(25 1)

The following remark shows that the elements a;; ) and a( i
represented with OMP regarding to point z = a.

can also be

Remark 10. Let Py ; be the orthogonal matriz polynomial, and let (Q2; be the

(23—1—1) (2j+1)

polynomial of the second kind introduced in Definition 2. Let a; and ay

be as in (106) and (107), respectively. If the elements aglﬁ_l) and A5y (27+1) of the
matriz Y from Definition 7 are written as

*—1
2j+1 QQJ( )QQ,j (b>> (112)
é%“” Py (@) P (b), (113)

then Equality (110) is also satisfied for all z € C.

8. Conclusion

We have expressed the Nevanlinna (resolvent) matrix associated with the
truncated Hausdorff matrix moment (THMM) problem on the interval [a,b]
in terms of orthogonal matrix polynomials (OMP) and their corresponding
polynomials of the second kind, at point b. Alongside this representation, we
obtained new identities involving OMP and established an explicit connection
between the Nevanlinna matrices of the THMM problem at points @ and b, which
was directly formulated through OMP.
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momenTis Tambyprepa na (—oo,+00). Haw niaxix cuupaersca va meron B. II. Iora-
MOBa, Y SKOMY 33Ja4a 1HTEPIOJIAlii Ta mpobaeMa MOMEHTIB mepedOpMyIbOBYIOThHCS K
€KBiBAJICHTHI MATPWYHI HEPIBHOCTI i BBOAATHCS TOMOMiKHI MATPWILL, MO 33I0BOJIBHSIOTH
BJIACTHBICTH J -BHYTpimHboI dynKIil Kiaacy lloTamosa pa3oM i3 crucTeMoro map CTOBIIIIB.

Peanizamia merony moumHaeThes 3 moOymoBu MaTpuilb [aHKens Ha OCHOBI 3aJaHUX
MomenTiB. Zkmo mi marpuni € momarHo HamiBBm3HadeHuMu, To THMM mpobrema €
PO3B’SI3HOI0. Y BUMAJAKY CTPOTOI JTOAATHOI BU3HAYEHOCTI, AKWiI HA3WBAIOTH HEBUPOIKE-
HUM, MU TIEPETBOPIOEMO BiATOBIIHI MATPWYHI HEPIBHOCTI, m00 oTpumaTu MarTpuio He-
Banjinau (abo pesonbserTy) THMM npobGiemu, ska xapakTepusye il po3s’sa3Ku.

Heit miaxix 6ymo mmpoko 3acrocoBano, 3okpema B pobori A. E. Choque Rivero,
Yu. M. Dyukarev, B. Fritzsche ra B. Kirstein: “A truncated matricial moment problem
on a finite interval”, Interpolation, Schur Functions and Moment Problems, Operator
Theory: Advances and Applications, Birkhduser , Basel, 165, 121-173, (2006).

OcHoBHuit pe3ynbrar i€l poboTH moaArae y mpeacraBieHHi marpuri HeBanminau
THMM npobiemu y TepMmiHax OpTOroHaJIbHUX MarpudHux mosinomis (anria. OMP) i
OB’ I3aHUX 3 HUMHY [MOJIHOMIB IPYTrOrO POy B TOUI b. 3ayBayKuMO, 110 AHAJIOTI9HE TP/
cTaBjieHHs B TOYIi a Oysio orpumano pasnime B pobori A. E. Choque Rivero, “From the
Potapov to the Krein—Nudel’man representation of the resolvent matrix of the truncated
Hausdorff matrix moment problem”, Bulletin of the Mexican Mathematical Society, 21(2),
233-259 (2015).

KpiMm Toro, Mmu BCTaHOBJIIOEMO HOBI TOTOXKHOCTI, 10 cTrocytoThes OMP. i mepedopmy-
JIbOBYEMO sABHUM 3B 130K Mik Marpungavmu Hesamminan THMM npobiemu B Toukax a ta
b 3a nonomoroo OMP.

Karwuosi caosa: ycidena marpudHa mpobsema momeHTiB Xaycaopda; maTpuils
HeBaH1iHHN; OPTOTrOHAJIbHI MATPUYHI IMOJIHOMH.

Icropisa crarri: orpumana: 10 Bepecus 2025; ocransiit Bapiant: 11 aucromana 2025
npuitasra: 13 smcromaga 2025. Oupustonneno 11 rpyaus 2025.
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The Jacobi operator
and the stability of vertical minimal surfaces

in the sub-Riemannian Lie group SL(2,R)

We consider oriented immersed minimal surfaces in three-dimensional sub-
Riemannian manifolds which are vertical, i.e., perpendicular to the two-
dimensional horizontal distribution of the sub-Riemannian structure. We
showed earlier that a vertical surface is minimal in the sub-Riemannian
sense if and only if it is minimal in the Riemannian sense and that its
sub-Riemannian stability implies its Riemannian stability. We introduce the
sub-Riemannian version of the Jacobi operator for such surfaces and prove
a sufficient condition for the stability of vertical minimal surfaces similar
to a theorem of Fischer-Colbrie and Schoen: if a surface allows a positive
function with the vanishing Jacobi operator then it is stable.

Next, we use the Jacobi operator technique to investigate vertical mini-

mal surfaces in the Lie group SL(2,R) that can be described as the uni-
versal covering of the unit tangent bundle of the hyperbolic plane wi-
th the standard left-invariant Sasaki metric (that corresponds to one of
the Thurston geometries) and with two different types of sub-Riemannian
structures. First, we consider a family of non-left-invariant structures defined
by some parameters, find the values of parameters for which vertical mini-
mal surfaces exist, and describe such complete connected surfaces. These
are FEuclidean half-planes and cylinders, and they all are stable in the sub-
Riemannian sense and thus in the Riemannian sense. In particular, this
gives us examples of structures that do not allow vertical minimal surfaces.
Then, we describe complete connected vertical minimal surfaces for another
sub-Riemannian structure that is left-invariant. These are half-planes and
helicoidal surfaces that also appear to be stable in the sub-Riemannian sense
and thus in the Riemannian sense.

Keywords: sub-Riemannian manifold; left-invariant metric; minimal
surface; Jacobi operator; stability.

2020 Mathematics Subject Classification: 53C17; 53C30; 53C42.

© I O. Havrylenko, 2025; CC BY 4.0 license

30


https://doi.org/10.26565/2221-5646-2025-102-02
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0003-4226-8603

Bicuuk XHY, Cep. «Maremaruka, IpuK/IaJHA MaTEMATHKa 1 MexaHikay, Tom 102 (2025)31

1. Introduction

The Jacobi operator of a minimal submanifold in a Riemannian manifold (see,
e.g., [1]) is a very useful tool that allows one to determine whether this submanifold
is stable. In particular, a well-known theorem by Fischer-Colbrie and Schoen ([2])
states that a complete non-compact minimal hypersurface is stable if and only if
there exists a positive function for which the Jacobi operator vanishes. It also can
be of use in sub-Riemannian geometry. For example, in [6] the Jacobi operator
of a minimal surface in the three-dimensional sub-Riemannian Heisenberg group
plays a crucial role in the proof of a Bernstein-like theorem. Note that, contrary to
the Riemannian case, for submanifolds in sub-Riemannian manifolds the first and
second sub-Riemannian volume variation formulas are not universal: they depend
on a sub-Riemannian structure and can be quite complicated. See [6] and [4]

for the examples of the Heisenberg group and the universal covering E(2) of the
group of orientation-preserving Euclidean plane isometries respectively. Hence,
the Jacobi operators also depend on such structure.

Taking this into account, in [4] we started to look into so-called vertical
minimal surfaces in three-dimensional sub-Riemannian manifolds, a relatively
simple, but interesting class of surfaces. In [5] we found the first and second
sub-Riemannian area variation formulas for such surfaces (Proposition 1 in the
next section) showing that they can be written down in a way independent of
a sub-Riemannian structure. That allowed us to consider various classes of sub-
Riemannian manifolds and establish the stability of vertical minimal surfaces in
them. Here we continue this work. First of all, we derive the Jacobi operator
for a vertical minimal surface in any three-dimensional sub-Riemannian manifold
(Proposition 2) and prove a sufficient condition for stability similar to the one
of Fischer-Colbrie and Schoen: if a surface allows a positive function with the
vanishing Jacobi operator then it is stable (Theorem 1). Then we apply it to the

e

study of vertical minimal surfaces in the Lie group SL(2,R) with two different
classes of sub-Riemannian structures (Theorems 2 and 3) obtaining some new
classes of such stable surfaces (note that they are also minimal and stable in the
Riemannian sense) and finding examples of structures that do not allow vertical
minimal surfaces.

2. Preliminaries and the Jacobi operator

A sub-Riemannian manifold is a smooth manifold M together with a
completely non-integrable smooth distribution H on M (a horizontal distribution)
and a smooth field of Euclidean scalar products (-, ) on H (a sub-Riemannian
metric). In particular, (-,-) can be the restriction of some Riemannian metric
(,-) on M to H. Here we will assume that all sub-Riemannian structures are of
this form. We will call a sub-Riemannian structure on a Lie group M left-invariant
if both H and (-, -) are left-invariant.

Let ¥ be an oriented immersed surface (without boundary) in a three-
dimensional sub-Riemannian manifold M with a two-dimensional horizontal di-
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stribution. If NV}, is the orthogonal projection of the Riemannian unit normal field
N of ¥ onto ‘H and dX is the Riemannian area form of 3, then the sub-Riemannian
area of a domain D C X (see, e.g., [3]) is defined as

AD) = [ |Ny| d.
/

The normal variation of the surface ¥ defined by a smooth function uw with
compact support is the map

p: X xI—=M:psp)=exp,(su(p)N(p)),

where I is an open neighborhood of 0 in R and exp, is the Riemannian exponenti-
al map at p. Therefore, we construct the variation by drawing the Riemannian
geodesic through each point p € ¥ in the direction of u(p)N(p). Denote

A(s) = / INy| d5s,
s

where X5 = ¢4(X). Then A’(0) is called the first (normal) sub-Riemannian area
variation defined by ¢, and A”(0) is called the second one. A surface X is called
minimal if A’(0) = 0 for any normal variations with compact support in 3\ X,
where g = {p € ¥ | Np(p) = 0} is the singular set of ¥. A minimal surface
Y is called stable if A”(0) > 0 for any normal variations with compact support
in X \ 20.

We will call a surface ¥ in a three-dimensional sub-Riemannian manifold verti-
cal if T,,¥ is perpendicular to H, for each p € ¥, i.e., the normal vectors of these
planes are orthogonal. In particular, for such surfaces N = N and ¥y = @. In |5]
we proved the following.

Proposition 1. A wvertical surface ¥ in a three-dimensional sub-Riemannian
manifold is minimal in the sub-Riemannian sense if and only if it is minimal in
the Riemannian sense. In this case ils second sub-Riemannian area variation s

A(0) = /— (X(u) — (VaX, Nyu)? + [Vsul® - (Ric (N, N) + [B) u? d<,
by

where u 1s a smooth function with compact support that defines the normal variati-
on, V and Ric are the Riemannian connection and the Ricci tensor of M respecti-
vely, X is the unit normal vector field of H (which is tangent to ¥ because it is
vertical), Vy, and B are the Riemannian gradient and the second fundamental
form of ¥ respectively. It follows that if ¥ is stable in the sub-Riemannian sense
then it is also stable in the Riemannian sense.



Bicuuk XHY, Cep. «Maremaruka, IpuKJIaIHa MATEMATUKa i MexaHikay, Tom 102 (2025)33

Define the characteristic vector field Z on ¥ as the right angle rotation of N
in H (in the orientation defined by X). Then {X, Z} is an orthonormal frame on
3, so |Vsul? = X (u)? + Z(u)? and the second variation formula takes the form

A'(0) = / Z()? + 2(Vy X, N)uX (u)—
(1)
by
— ((VNX,N)? + Ric (N, N) + |BJ?) v* d%,

Note that the divergence of the field (VyX, N)u?X on X has the vanishing
integral by the Stokes’ theorem because u is with compact support. On the other
hand, this divergence equals

divy (VN X, N)u?X) = 2(VNX, N)uX (u)+
+(X (VN X, N)) + (VN X, N) diveX) v,
where divy X = (Vx X, X) + (VzX,Z) = (VzX, Z) due to the orthonormality
of {X,Z}. It means that (1) can be rewritten as

A”(0) = / Z(u)? — fu?dx (2)
%
for some function f.
Proposition 2. Let ¥ be a minimal surface in a three-dimensional sub-

Riemannian manifold whose second variation is of the form (2). Then it also
has a form

A'(0) = — / WL () d5) )

%
where L s the Jacobi operator on the space of smooth functions on 3:
Lu)=2Z(Z(u)+(VxZ,X) Z(u) + f u. (4)

Proof. Note that, similarly to divy X above, divyZ = (VxZ, X)+(VzZ,7Z) =
(VxZ,X),s0in (4)

L(u)=2Z(Z(u)) + Z(u)diveZ + fu =dive(Z(u)Z) + fu.

From this, as u has compact support,

0= /divz(uZ(u)Z) dy = /Z(u)2 +udivs(Z(u)Z) d¥ =
b b
- [ 2@+ k) - fu as,
b
and that implies (3).
In particular, this Jacobi operator indeed is a linear operator on C*°(M) as in

the Riemannian case. Now we will show that an analogue of the sufficiency part
in the Fischer-Colbrie-Schoen theorem (|2]) is true for this operator.
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Theorem 1. Let X be a minimal surface in a three-dimensional sub-Riemannian
manifold with the second variation of the form (2) and the Jacobi operator L
from (4). If there exists a smooth function v > 0 on X such that L(u) = 0 then X
1s stable.

Proof. As u > 0, we can define v = Inu on ¥ with derivatives

This, (4), and L(u) = 0 imply that
divs(Z(0)2) = Z(Z(v)) + (Vx 2, X) Z(v) = —Z(v)* — f. (5)
For any smooth function w on ¥ with compact support
divy (ZUQZ(U)Z) =divs(Z(v)Z) w? + 2Z(v) Z(w)w

The integral of this divergence on X vanishes, thus by (5) and the Cauchy-Schwarz
inequality we have

/ (f+Z(v)?)w? dE = — /divE(Z(v)Z) w? dY =

b2 >

= / 2Z(v)Z(w)w d¥ < / Z(v)*w? + Z(w)? d%,
z by

hence for the variation defined by w the second variation (2) is non-negative:

A"(0) = /Z(w)2 — fw?de >0,
¥

and this means the stability of X.

Note that the statement also stays true for v > 0 with L(u) < 0 with almost
the same proof. It is interesting whether the necessity (hard) part of the Fischer-
Colbrie-Schoen theorem is also true for complete non-compact X, that is, whether
the stability implies the existence of v > 0 with L(u) = 0. Here and in the next
session by the completeness of a surface we mean the Riemannian completeness.

—_—

3. Vertical minimal surfaces in SL(2,R)

The three-dimensional Thurston geometry SL(2,R) can be described (see [8])
as the universal covering of the unit tangent bundle of the hyperbolic plane H?
with the Sasaki metric, that is, the half-space {(x,y,2) € R? | y > 0} with the
following orthonormal frame of vector fields:

X1 :yCOSZ%-ﬁ-ysinza—y —cosza7 "
9 0
Xo = —ysinz% —I—ycosza—y —|—sinz$7)(3 - 5
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This manifold also is a Lie group (the universal covering of the special linear
group SL(2,R)) and the fields { X7, X2, X3} are left-invariant. The corresponding
left-invariant metric is y% (d:lc2 +dy? + (dz +y dz)Q), so we can consider a simpler
orthonormal frame of

Y = yg — g = cos z X1 — sin z Xo,
Yo =y— =sinz X; +cosz Xg, Y3 = — = X3,
y 0z

where the fields Y7 and Y5 are not left-invariant. The non-zero Lie brackets of

the fields (6) are

(X1, Xo] = —[X2, X1] = — X3, [X2, X3] = —[X3, Xo] = Xi,
(X3, X1] = —[X1, X3] = Xo,

and the only non-zero Lie bracket of (7) is [Y1, Y] = —Y1 — Y3. Using the Koszul
formula as in [7], we derive from this that the Riemannian connection V of the
left-invariant metric is defined by
X X 3X
Vi Xo = -V, X1 = =, VX5 = — 50, Vx, Xp = — =7, .
3X X
Vx, X1 = 72, Vix, X3 = 72, Vx, X1 =Vx, X2 =Vx, X3 =0,

hence
Y- Y- Y
Vy, Yo = —Y] — 33 Vy, V1 = 53 Vy,V3 = Vy,Ys = —71, o)
Y-
Vy, Y1 = Vy, Y3 = 32 Vy, Y1 = Ya, Vy,Ys = Vy, Y3 = 0.

It also follows from [7] that the Ricci tensor of this metric is defined by

RiC(Xl,Xl) = RiC(XQ,XQ) = RiC(}/l,Yl) = RiC(YQ,YVQ) = —§

2 (10
1
RiC(Xg,X3) = RiC(Y}g,Yg) = 5, RiC(XZ',Xj) = RIC(YZ,Y}) = 0, 1 75 ]

It follows from the Lie brackets above that the left-invariant distribution
orthogonal to X3 = Y3 is completely non-integrable and so defines a sub-
Riemannian structure such that this distribution is horizontal. For this structure
complete connected vertical surfaces are well-known: they are cylinders over
geodesics in H? (see, e.g., [9]). We showed in [5] that these surfaces are stable
in the sub-Riemannian sense and thus in the Riemannian sense. Let us consider
here a more general situation.

Theorem 2. A two-dimensional horizontal distribution H = X, whose unit
normal field X is a linear combination of the fields Y1, Yo, Y3 with constant

coefficients, defines a sub-Riemannian structure on SL(2,R) (i.e., is its horizontal
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distribution) if and only if X is of the form ﬁ()\iﬁ + pYs + Y3), where
m

A # —1. This sub-Riemannian structure allows vertical minimal surfaces only for
A=0and A=1.

If i # 0 then a complete connected vertical surface is minimal if and only if
it is o Fuclidean half-plane x = xqg for A =0 or o Fuclidean half-plane z = 2y for
A=1.

If £ =0 and A = 1 then a complete connected vertical surface is minimal if
and only if it is either a Fuclidean half-plane z = zy or a cylinder that can be
parameterized as

r(s,t) = (s,yo cost, zg + \@t) , SER, te (—g + 2mk, g + 27Tl<:> , (11)
where k € 7.
If u = X =0 then a complete connected vertical surface is minimal if and only
if is a cylinder over a geodesic in H?.
All these surfaces are stable in the sub-Riemannian sense and thus in the
Riemannian sense.

Proof. If X is of the form \Y;+1Ys then Y3 belongs to its orthogonal distributi-
on. As [Y7,Y3] = [Y2,Y3] = 0, this distribution is integrable. So indeed it should
be X = ﬁ(ﬂﬁ + puYs + Ys) for H = X+ to define a sub-Riemannian
structure. In this case {Y1 — AY3,Ys — pY3} is a frame of H. The Lie bracket
—Y7 — Y3 of these fields forms with them a linearly independent triple if and only
if A # —1. This is the condition for H to be completely non-integrable, so we get

the desired form of X. Substituting (7) into it yields

— 1 0 0 0
X= o (W +py +(-A+ 1)L ). (12)

In the case p # 0 integral curves of this field are transversal to Euclidean planes
y = yo (recall that y > 0), so we can build any complete connected vertical surface
Y. of the sub-Riemannian structure by drawing these integral curves through poi-
nts of a curve ¢t — (x(t) + \/u, 1, 2(t)) and obtain the following parameterization
for X:

r(s,t) = (a:(t) +

Taking derivatives, we get

rs =N+ p2+1X, rp= (2,0, 2) =2"e Y] + (/e ™ + ') V3.

From this and (9), the covariant derivatives are

A s S . s
;e“,e”,z(t)%—( /\+1)>. (13)

VTSTS = ()\ + 1)(—/,LY1 + )\Yg),
1
Vo, rs = —ﬁ(?)a:'e_“s + 2+ 5(3)\1’,6_“8 + X + e Y, — %x'e_“s}/;57
vrtrt — xlle—usyl 4 (2(.7}/)26_2MS + [L‘,Zle_us)}/é + (xlle—us + Z”)ng.
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The unit normal field of ¥ is

1
N = x ((pa'e™™ 4+ pz") Y1 — (Aa'e ™ + X2 — 2'e )Yy — pa'e #Y3)

where A = \/(ua’e=#s + p2')2 + (Ar'e=+s + X2/ — 2'e=15)2 + (uz'e—#)2. So, the
coeflicients of the second fundamental form of ¥ are

1
b = (Vy,rs,N) = % (=W + p?) (@' e+ 2') + Male ™)
1
bio = (Vy,rs, N) = oA (—()\2 + 1) (32 e + 2 ) (a'e T + )+
+(1 L2\ MZ)(x/)Qe—Q/LS) ,
1
bo = (Vi1 N) = % (=2 (2'e™ 4+ 2') (A = 1)ae ™ + Al)e ™+
+u(x’2 — a2 e ).

Taking into account the coefficients of the first fundamental form of 3
g1 = X b2+ 1, gis = (A 1) 2, gap = (a!)2e7 0 4 (ale T 4 2P,

we can rewrite the minimality condition H = 0, that is, b11g22 — 2b12g12 +b22g911 =
0, in the form

f3(t)e™3H5 4 fo(t)e ™ 2HS 4 f1(t)e ™ + fo(t) =0, (14)

where f3 = (2/)3(A — 1)((A — 1) + p?), so it should be z = zg or A = 1.

If = x¢ then the regularity of ¥ implies 2’ # 0, so we can put without loss
of generality z(t) = t. Then in (14) we have fo = A(A\%2 + u?), so A = 0. Thus,
A =|u| and for N =Y

bi1 = —u, bz = —g, by =0, g11 =p°+1, gia =g =1,

that clearly implies H = 0. In this case (13) takes the form
r(s,t) = (zg, ", t+s).

This is a parameterization of a half-plane z = xg, y > 0. The characteristic field
Z should be such that the frame {X, Z, N} is orthonormal. Then

1 1 Vi +1
Z=———(~Ya+u¥s) = — rot+ T,
Vi +1 pn/ 2 41 1%
SO 9
1 1 —+1
B(Z),X)=———— b+ —bp=-——"—
\B(2). X) p(p2+1) T T 202+ 1)
and, taking into account (B(X),X) + (B(Z),Z) =2H =0,
1 %
<B(Z)7Z>:_<B(X)7X>: b1 =

RS pr+1
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Therefore,
2 2 2 2 1
|BI” = (B(X), X)" +2(B(X), 2)" +(B(2),2)" = 3.
From (10) we have Ric(N,N) = —2, and
1 1
VX = ——— (—u¥i+ Y2 - LYy
V2 +1 2 2
- u fotd
from (9), so (VNX,N) = T Hence, the second variation formula (1) takes
the form
A(0) = /Z(u)2 A X))+ —— 2 dy
J Viz+1 p? 41
Let us rewrite this expression using the divergence, as was explained in a remark
2
after (1). From (9), VzX = %Yh thus divy X = (VzX,Z) = 0 and so

divs ('LL2X> = 2uX (u). For a function u with compact support the integral of this
divergence over ¥ vanishes, which finally implies

A0) = [ 2 + 5

2
s > 0,
RS

b

which means that X is stable. Note that its Riemannian stability follows also
from the results of [5], but here we have shown its stability with respect to sub-
Riemannian structures different from the one considered in that paper.

In the case when A\ = 1 it appears that fy = (2/)3(u? + 1) in (14), thus,
similarly to the previous case, z = zg, z(t) = t, and (13) becomes

1
r(s,t) = (t + —ets, ets, zo> .
1

It means that ¥ is a half-plane z = zg, y > 0. Here we have A = v/2|ule ™ and
s

e
bii = —V2p, bz = —%

for N = %(Yl —Y3). Again we clearly have the minimality of ¥. The characteristic
field is

7 1 V2 erS\/ 2 + 2

, bae =0, gi1 = > +2, gia = 2715, gog = 2e7 25,

—=5—= (1 =22+ pY3) = ————=rs + Tt.
V212 +2 w2’ V2u
From this we get
V2 ets —p?+2
B(Z),X) = b1 + b ,
GO = M g T e 1)
1 2u
B(Z),Z) =—(B(X),X b1 = —5——=
< ( )7 > < ( )7 > 2+2 11 ,U2+2’
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thus )
B> =2(B(X), X)* +2(B(X),2)" = 5.
According to (9),

1 2 Iz
VyX = W (—§Y1+Y2—§Y:i)a
which implies (Vy X, N) = 0. As Ric(N,N) = —3 from (10), (1) now takes the
form
A"(0) = / Z(u)? d% > 0,
b
and the stability of X follows.

If 4w = XA = 0 then, as was mentioned earlier, > is minimal if and only if
is a cylinder over a geodesic in H?, and all such cylinders are stable in the sub-
Riemannian sense by known results. So we will assume A # 0 from now on. In this
case integral trajectories of X are transversal to z = x¢ (see (12)), so we can draw
them through points of a curve t — (0, y(¢), 2(f)) to get the parameterization

r(s,t) = (Ay(t)s, y(t), 2(t) + (A + 1)s) (15)
of a vertical complete connected surface . Now we have

Ny sY1+y' Yo + (Ny's + y2')Y3

I

ry = \/)\274_1)( =A\Y1+Ys, = (Ayls, v, Z,)

y
AA+1)y's +y2' NZ(2X262 + 1) + 201/ 2's + 42(2/)2
g = N1 gy = )yy v W )y2 yy y()?
1
N== (Y1 = M= 1)y's+yz')Ya+ NyY3),

where A = /(y)2 + A2((A — 1)y/'s + y2)2 + A2(y')2. From (9),

Vs = A(A+1)Yo,

1
Virs = 5 (S0 H B+ 1Y + 52V + ')

1
Vi = 7 ((Awy" = 3)%)s —yy/'2" WY1 + (wy" — (¥)* + M (2\'s + y2')s) Yo+
+(Ayy" — ()?)s +y22")Ys)

and so
AA+1
b = —(AH((A —1)y's +y2'),
1
b2 = 75 (W + D)) = X (BA+1)y's +y2) (A —1)y's +y2)),

1
bz = 75 (/A" = 3(/)%)s —vy/'s) = Muy” = ()" + X/ (20/s +y2)s):
(A =1y's +y2') + X' (Ayy" — ()%)s +y22")) .
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In this case the minimality condition b1;gos — 2b12g12 4+ ba2g11 = 0 can be written
down as

ha(t)s® + ha(t)s” + hu(t)s + ho(t) = 0, (16)

where hg = (y’A\(A — 1))3, so for a minimal ¥ it should be y = yo or A = 1. But
for the first of these cases (putting z(t) =t and N = —Y3)

A
bir = =AA+1), b2 = —5 boo =0, g11 = A\ + 1, gia = g2o = 1,
and from H = 0 we get A = 0, a contradiction. Therefore, A = 1. Then, checking
that in this case hy = hy = 0 and calculating hg in (16), we obtain the minimality

condition for X:
I/ "3

2(y'2" —y'2) = y(2')".
We already know that half-planes z = zy are minimal, and the proof of their
stability above stays correct for u = 0: |B?| + Ric(N, N) = 0 independently of
a sub-Riemannian structure, and (Vy X, N) = 0 (where N = %(Yl —Y3)) is
true for A = 1 and any p, so the second variation stays the same. Therefore, in
the rest of this proof we can assume 2’ # 0 and rewrite the previous equation

as y" = —% for y = y(2). Hence, y = yocos % It means that we can put

y =yocost and z = zg + V2t into (15), where yo > 0 and 2y denote the values
of the corresponding functions at 0 and ¢ is such that y > 0. Note that X is a
cylinder, whose parameterization can be rewritten as (11) by changing s, but here
we will continue using (15):

r(s,t) = (syo cost,ygcost,z = zg + \/575) .
We now have A = /21y, and, from the previous formulas,

1
N=— (sintY —V2costY: —sintY),
NG 1 2 3
V2 ssin 2t — cos 2t

b1 = —2cost, big =
11 12 Vo cost
1 2ssint — t
J = — (— costY] — \@sinth +costY},> = V2ssin cos rs + costry,
2 /3 V2
2ssint — cost cost 1
(B(Z),X) = b1 + b2 = -,

2 N5 2
(B(2),Z) = — (B(X), X) = f% by = cost,

s0 we get |B|? = 14t and Ric(N, N) = —1#2¢5°¢ by (10). Finally, from (9),

1
\Y% Xz—(costY +\@sintY—costYr),
N WG 1 2 3
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thus (Vy X, N) = 0. Therefore, here we have the second variation

A"(0) = /Z(u)2 —cos? tu? dX.
)

Let us use here the sub-Riemannian Jacobi operator of X. By (9),

1 . .
VxZ = W) (3sth1 —V2costYs —i—sthg) ,

thus (VxZ, X) = sint. From Proposition 2, the Jacobi operator can then be
written down as

(V2ssint — cost)?

L(u) = Z(Z(u)) +sint Z(u) + cos® tu = 5 Uss + COS? t U+
+2cost(\/§ssint—cost) n V2 5(1 +sin?t) — sint cost
u
V2 * V2

In particular, we have for functions u = u(t) that are independent of s

Ug + cos® tu.

L(u) = cos® t(ug + u),

so among solutions u(t) = Cjcost + Cysint of the equation L(u) = 0 there is
u(t) = cost > 0. Therefore, ¥ is stable by Theorem 1, and this concludes the
proof.

In particular, this theorem gives examples of sub-Riemannian structures that
do not admit vertical minimal surfaces.

Note that sub-Riemannian structures from the previous theorem are not left-
invariant except for the case p = A = 0. On the other hand, as [ X9, X3] = X7, the
horizontal distribution H = X f defines a left-invariant sub-Riemannian structure

—_—

on SL(2,R). For its vertical minimal surfaces we have the following (in fact, a
similar description up to an isometry will take place for any sub-Riemannian
structure of the form H = (AX1 + uX2)*).

—_—~—

Theorem 3. A complete connected vertical surface in SL(2,R) with the left-
invariant sub-Riemannian structure defined by the horizontal distribution H = XlL
is minimal if and only if it is either a half-plane z = 5+ 7k, k € Z or a helicoidal
surface with one of the following parameterizations:

r(s,t) = (xg — tsin s, tcos s, s), t € (0,+00),
r(s,t) = (xo £t —tsins,tcoss,s), t € (0,+00),
r(s,t) = (zo + yosinht — yp cosh tsin s, yg coshtcos s, s), t € R, (17)
r(s,t) = (xo = yo cosht — yg sinh ¢sin s, yg sinh tcos s, s), ¢ € (0, +00),

se (—g+27rk,g+27rk>, ke

All these surfaces are stable in the sub-Riemannian sense and thus in the Ri-
emannian sense.
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Proof. A vertical surface X for this structure is formed by integral curves of

X:X1:ycoszc,inLysinz(%—coszi. (18)
Integrating this field, we get for the third coordinate 2’ = — cos z, that is, either
z =745 +mk, k € Zor 2(0c) = § — 2arctanCe? 4 27k for C' > 0 and k € Z
that monotonically decreases from 5 + 27k to —F + 27k, where o is a natural
parameter. That means that in the latter case we can use z as the parameter z =
s € (—g + 27k, 5 + 27rk‘) of this curve. In the former case ¥ is a half-plane z = zg
that was already considered in the previous theorem. In particular, we have shown
that these half-planes are indeed minimal and that for them |B?|+Ric(N, N) = 0,
where the unit normal field is

1 1 1
— (Y1 —Y3) = —=(cosz X1 —sinz Xy — X3) = —
\/5( 1—Y3) \/5( 1 2 — X3) 7
due to (7) and z = § +nk. It then follows from (8) that Vy X = ﬁ(—3X2iX3),
hence (Vy X, N) = F1, and (1) becomes

A(0) = / Z(w)? T 2uX (u) — v dX.
b

Note that the field X = X; has zero divergence in SL(2,R) by (8). On the
other hand, we can calculate this divergence at points of ¥ using the orthonormal
frame {X, Z, N} and taking into account that (VxX, X) = 0 because | X| = 1:
0=(VzX,Z)+(VnX,N). Therefore, divy X = (VzX,Z) = —(VyX,N) = £1.
From this we get that divy (uQX) = 2uX (u) + u?, and the integral of it vanishes
for functions u with compact supports, which implies

A"(0) = [ Z(u)* d >0,
/

so X is stable.

Thus, from now on we can consider surfaces ¥ built from integral curves of (18)
with z = s as a parameter. In particular, these curves are transversal to z = zg,
so we can draw them through points of a curve t — (z(t),y(¢),0), where y(¢t) > 0.
Integrating (18), we can get a parameterization

r(s,t) = (x(t) — y(t)sins, y(t) cos s, s) (19)
of ¥ (note that y in (18) corresponds to y(t) cos s here). Then, according to (6),

1 1
rs = (—ycoss, —ysins, 1) = ———X; = ——X,

x' coss Xy + (cps_sx/ sin s))%osf (' — ¢/ sins) X,
re = (2’ —y'sins, y coss, 0) = 1T 2 Y 3
’ . ' 1 COS § ’

N =5 (—(@' ¢ sins)Xo + (¢ —o'sins)X3).
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where A = /(2’ — y'sins)2 + (y/ — 2/ sin 5)2. From (8) we get the covariant deri-
vatives

sin s
Vi, rs = —
. sTs cos? s
Vit = 5o (86— sing)Xo + (1 ' sin )Xy)
Vit = ooy (@7 = @'y cos®s = 2(y/ = a'sins)(a’ = o/ sins) X,

((y" — 2" sins)y — (v — 2’ sins)y’ + 22'(2' — 3y sin s)) cos s X
((2" — y"sins)y — (¢ — y'sin s)y’) cos s X3) ,

and thus the coefficients of the second fundamental form

1
bi1 =0, bip = YAy s (3(x’ —y'sins)? — (y — 2’ sin 3)2) ,
byy = Afcoss ((="y" — 2"y )y cos® s — 22/ (2 — ¢/ sin 8)2)

In particular, for minimal surfaces (B(Z),Z) = — (B(X), X) = 0, hence |BJ? =
2(B(Z), X)%. As the coefficients of the first fundamental form are

1 x!
g1 = 5 912 = — )
1 COS“ s Y CcoS s
"2 2 / /s 2 / ! 2
= — X COS™ S — X Sln s xr — Sin s 5
922 ygcosgs(( ) +(y )7+ ( y ))

the minimality condition b11g20 — 2b12g12 + b22g11 = 0 is equivalent to

(m”y/ _ //) Y+ (( )2 - (y/)2) —0. (20)

First, let us consider the solution x = zp. Then we can put y(t) = ¢t for
t > 0 and get from (19) the first parameterization in (17). In this case N =

% (sins X5 + X3), where A = /1 +sin? s, and

3sin?s — 1 1 ) tcos s
bi1 = by =0, b1z = Ateols L= A (X2 —sins X3) = Tt
2At cos 2 ) 4A (3 ) 1)2
t* cos™ s sin“ s —
2 _ 2 _
We also have Ric(N, N) % by (10) and VyX = ok (3X +sins X3)

from (8), hence (VNX,N) = Qsms . Therefore, the second variation is

. . 4
A(0) = /Z(u)2 b ASImS Ny - SIS L 2 e

1 +sin?s (1 + sin? 5)2
b)
by (1). Again, divy X = (VzX,Z) = —(VyX,N) = — 2585 Thus,
sin s sin s sin s
divg ( ———5—u’X ) = (X + dive X | u’+
VE<1+sin2s > < <1+sin2s> 1 +sin’s e )
2sins sints+1 2sins

X(u) =—

— U u® + uX(u).
1+ sin?s (1 + sin? 5)2 1 +sin?s ()
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As the integral of this expression vanishes for v with compact support,

COS2 S

e u? d > 0,
S~ s

A"(0) = / Z(u)? +

X

and X is stable.

For 2/ # 0 let us rewrite (20) for the function y = y(x) and get yy" +(v')? = 1,
that is, (y2)” = 2, s0 y> = (x — 20)?> + C. For C = 0 we can put z(t) = zg £ ¢
and y(t) =t > 0, thus getting the second parameterization in (17) from (19). For
C > 0 we obtain the third parameterization in (17) with z(t) = x¢ + yosinht
and y(t) = yocosht, where yo > 0, and so C = y2 > 0. Finally, the fourth
parameterization corresponds to z(t) = o £ ypcosht and y(t) = ypsinht for
t >0, thus C' = —y(Q) < 0. Therefore, in these last two cases the curves (z,y) are
hyperbolas in the half-plane y > 0.

For z(t) = z9 £t and y(t) = ¢ from the general formulas we obtain A =
V2(1 Fsins), N = % (FX2 + X3), and

bt = 0. bro — 1Fsins _ F2(1 Fsins)
= 127\/§tcos2s’ 2 V2t2coss
Z:i(ng:Xg): cos s (cossrs +try)

V2 V2(1 F sin s)
BP = 2(B(2), x)? = © s (cossbu +1h)” 1
’ (1 F sin s)? 2

As N is (up to a sign) the same as in the case z = § + mk above, here also
Ric(N,N) = —1 and (VnX,N) = F1. The rest of the stability proof for ¥ is
also literally the same as in that case.

For the third parameterization in (17) we have x(t) = z¢ + yosinht, y(t) =
yo cosht, and for the fourth one we have z(t) = xg & yg cosht, y(t) = ypsinht.
Let us denote o = 2’ — ¢/ sins, § =1y — 2/ sin s for all these cases. Then

2 cos s X1 + Xo + aX 1
re = L+ A X 3N = = (—aXy + X3),
1 COS § A
where A = y/a? + 32. Note that a?— 32 = y2 cos? s for the third parameterization
in (17) and o? — % = —y? cos? s for the fourth one. From the general formulas
above,
b — 0. b _30&2—,32 B 3a? — 32
=5 2= o Acos?s’ 22 yAcoss
1 1
Recall that rs = — = X1 = — X, so

1 cos s (z' cossrs +yry)

45 (@ cossby +ybia)? (30— B7)°
BQZQBZXQZCOS s (2’ cos s byy 12)°
BP =2(B(2).X) > -
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As Ric(N,N) = 73;‘2;“82 from (10) and VN X = % (38X2 — aX3) from (8), which

implies (VyX,N) = —228 the second variation (1) takes the form

T A2 (
2 2 2 2 2 92
A”(O):/Z(uﬁ—‘ffu)((u)— (B 5)(0‘& F) + 408 2 gy,

3

Once again, divy X = (VzX,Z) = —(VNyX,N) = 2&”—?. By direct computation

4 4 2 2\2
we get X <%§) = yozof s_ o ;46 ) , hence

) af (@ - 12 +2a282 ,  2ap
divy (AQ’U, X) = A u +F“X<“)’

and the integral of this expression vanishes for v with compact support, so finally

A"(0) = / Z(u)? — O‘tfz u? ds.
b

For the fourth case in (17) the expression under this integral is always non-
negative, thus we already have the stability of 3. For the third one we again will

use the sub-Riemannian Jacobi operator. As VxZ = 7k (aXs — 8X3) from (8),
(VxZ,X) =0. By Proposition 2, the Jacobi operator of ¥ then is

L(w) = Z(Z(u)) + 3’32"5‘25 w=

cosht coss 0 0 cosht coss 2 cos? s
_ YoCOSUT CORS A (coss D5 + 875) <yo A (cossus + ut)> 4 o2 2 AT U=
2 .2
cos
= % (cosh2 t cos® sugs + 2cosh?t cos s ug + cosh? t uy+

+ cos s cosh t(sinh ¢ — sin s cosh t)ug + cosh ¢ sinh ¢ u; + u)

Again, let us restrict L to functions of the form v = u(t). For them L(u) = 0 if and
only if cosh? t uy +sinh ¢ cosh ¢ u;+u = 0. Among solutions u(t) = —Si— +Cj tanh ¢

cosht

of this Sturm-Liouville equation there is u(t) = ﬁ > (0. By Theorem 1, this

implies that X is stable, thus concluding the proof.
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Xapriscoruti noutonasvrull ynisepcumem imens B. H. Kapasina
matidarn Ceobodu, 4, Xapxie, Yxpaina, 61022

Mu po3rasggaeMo Opi€HTOBaHI 3aHypeHi MiHIMAIbHI MMOBEPXHI Y TPUBUMIPHUX CyOpi-
MaHOBHX MHOTOBH/IAX, sIKi € BEPTUKAJIbHUME, TOOTO MEPIEHINKYIAPHUMUA 10 JTBOBAMID-
HOI'O TMOPHU30HTAJBHOTO PO3IOIiIY cyOpiManoBol cTpykrypu. Panime mMu mokasanu, 1o
BEPTUKAJIbHA TTOBEPXHS € MiHIMAJIBHOIO B CYOPIMAHOBOMY CEHCI TOMAL ¥ TIJIBKYM TOIi, KO-
JIM BOHA MiHIMAJIbHA, B PIMaHOBOMY CeHCi, i 1m0 3 ii cyOpiMaHOBOI CTIHiKOCTI BUILIMBAE
ii pimaHoBa cTifikicTb. Mu BBOZUMO cyOpiMaHOBY Bepcito omeparopa IKobi a1 Takux
IIOBEPXOHb 1 JIOBOJIMMO JOCTATHIO YMOBY CTiMKOCTI BEPTHKAJIbHUX MIHIMAJIBHUX IOBEP-
XOHB, O anagoridyna no Teopemu @imep-Konbpi ta [Mloena: Ko moBepXHS TOIMYCKAE
JonaTtHy (GYHKINO 3 HYJIBOBUM OmepaTopoM 71kobi, TO BOHA € CTIHKOIO.

Jlayri MU BUKOPHCTOBYEMO TEXHIKY onep/aI%)iB 2IK00I 1711 MOCITiIPKEHHST BEP THKAJIb-

HuX MinimMasibHux nosepxonb y rpymi JIi SL(2,R), siky moxkHa onucaru gk yHiBepcasib-
HE HAKPUTTS PO3IIAPYBAHHA OJUHUYHHUX JOTHIHUX BEKTOPIB rimepOo/ivHOl miomuan 3i
CTaHIAPTHOIO JiiBoiHBapianTHOI Merpukoio Cacaki (1o Bimmosimae ommiit 3 reomerpiit
Tepcrona) Ta 3 nBOMa pi3HUMHU TUnaMu CyOpiMaHOBUX CTpyKTyp. Crodarky mMu po3riid-
JAEMO CiM 10 HE/TIBOIHBApPIAaHTHUX CTPYKTYP, BU3HAUECHUX IETKUMA TapaMeTpaMu, 3HAXO-
JUMO 3HA4YEHHS IapaMerpiB, /Ui SKUX ICHYIOTb BEPTUKAJIbHI MiHIMaJIbHI MOBEPXHi, Ta
OnuCyeMO Taki moBHi 3B ’a3Hi noBepxHi. Ile eBK/Ii 0Bl HamiBILIONUAN Ta MUIHAPH, i yci
BOHU € CTifiIKUMU B CyOpiMaHOBOMY CEHCi, & OTKe i B piMaHOBOMY CeHCi. 30Kpema, IIe Ja€
HaM TPHUKJAJW CTPYKTYpP, IO HE JOMYyCKAIOTh BEPTUKATBHUX MiHIMATbHUX TTOBEPXOHb.
[ToTtim Mu onucyeMo MOBHI 3B’s13Hi BepTUKAJIbHI MiHIMAJIbHI TIOBEPXHI 715 iHIIOI CyOpima-
HOBOI CTPYKTYPH, IO € JiBoiHBapianTHO. e HamiBILIOMMAN Ta reTiKola IbHI MOBEPXHI,
SKi TAKOK BUSBJIAIOTHCA CTIfiIKuMu B CyOpIMAHOBOMY CEHCi, & OTKe f y piMaHOBOMY CEHCI.
Karwuosi caosa: cybpiMaHOBHMIT MHOTOBU/I; JIIBOIHBapiaHTHA MeTPUKa; MiHIMAJIb-
Ha MoBepxHd; onepatrop Akobi; cTifikicTb.

Icropisa crarri: orpumana: 17 »kostasa 2025; ocranwniit Bapiant: 19 aucromanza 2025
npuitagara: 20 sucromaga 2025. Oupustonneno 11 rpyaus 2025.
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IIpo mudepenmniroBaHHA BiIHOCHO (PijIbTPIB

V cTarTi pO3TISAHYTO y3araJbHEHHS TOHATTS TOXiTHOT (bYHKIIIT OXHIET MilicHOT 3MiIHHOT
Ha OCHOBI Teopil (digbTpiB. 3aTPOMOHOBAHO HOBY KOHCTPYKINIO, IO [TO3BOJISE BU3HATM-
T noxiaHy MyHKII BiTHOCHO (DinbTpa, skuii BimoOpaxkae crocid 30ukeHHs 3MIHHOT 0
3a7aHol Touku. Ha BigMiHy Bia KTACHIHOrO O3HAYEHHSI, /1€ TPAHUIS BU3HATAETHCS depes
npsMoTiHifiHe 30/MKEHHS apIyMEeHTY, HOBE O3HAYEHHs I03BOJISE€ BPAXOBYBAaTHU IIUPIIAN
CIIEKTP MiAXOMIB 0 TOYKH, IO 3abe3Iedye IHydKImmuil anapar /i aHaTIi3y JJOKAIbHOL
noBemiHku (hyHKIINH. BBemeHe MOHSITTS OXOMJTIOE KTACUYHE O3HAYEHHS TOXiTHOI K dac-
TKOBUI BUIAIO0K TIpU BUOOpI BiamosigHoro dinbrpa. HaBemeno moBenents y3arajibHeHHS
6a30BUX BIACTUBOCTEH TOXiIHOL: JiHIHOCTI, TpaBuIa JOOYTKY, 9aCTKH. 30KpPeMa, Ipojie-
MOHCTPOBAHO, IO MOXiAHA BiZIHOCHO (bifbTpa 3am0BOMbHSIE Ti cami POPMAIbHI TPABHIIA
maudepeHIioBanHs, Mo i KJIACHIHA IOXiIHA, Ipu 30eperKeHHl CyTTEBOI I'HYyIKOCTi y BU-
Oopi xapakTepy 30auKkeHHsT aprymenTy. OTpuMaHi pe3yabTaTH T03BOJAIOTH POSITHPUTH
cdepy 3acrocyBannas AudEPEHITIATBHOIO YUCJIEHHS 10 BUMAJKIB, 1€ KJIACHIHUHN ITiaxiT
abo He € 3acTOCOBHWM, ab0 BTPAYa€ TOUYHICTH 9M iHTepmperariiiny 3py4HicTh. [lokaza-
HO, IO ¥ JeAKHX CHUTYyaIlifX MOXigHa 3a (PiIbTpoM Kpale BimoOparkae peasbHi mporecu
3MiHM BEJIUYUH, HAIPUKIA/L ¥ 337a9aX 3 aCHMETPUYHAME 200 0OMEKEeHUMU OKOJIAMH TO-
9ku. 3ampPOMOHOBAHUN MiaXia BiAKPUBAE HOBI MEPCIEKTHBU MIJIsT 3aCTOCYBAHHS B TEOPil
y3arajbHenux GbyHKIIH, Teopil Mipu Ta dyHKIIOHAIbHOMY anaji3i. Takox y crarTi Ha-
BeJIEHO TIPUKJIQ/IA 3aCTOCYBAHHSA HOBOTO MOHATTS Ta 3A1MICHEHO TOPIBHANBHUN aHAJI3 3
KJIacuIHOI0 Teopieo. [Ipeacrasiennit Mmarepiaa Moxke 6yTH KOPUCHAM s TOCTTHUKIB,
IO MIPAIIOI0TH y IaJjly3i MATEMATUYHOIO aHAJI3Y, a TAKOXK JIJI BUKJIAJIA4iB, AKi IPArHyTh
po3IIupUTH TPaaUIifiaWi miaxis 10 audepenmniioBadisa. Pobora Mae SK TEOPETUUHY, TaK
1 METOIOJIOTIYHY IIHHICTH, OCKLTLKYM BBOANUTH HOBUH iHCTPYMEHT IJId TOJAJIBINTAX JTOCTi-
JPKEHDb y TaJy3l Cy4acHOI MaTeMaTHIHOI Teopil TPaHUIb.
Kmouwosi crosa: moxigHa; piabTpu; 301KHICTE 3a (DLIBTPOM.

2020 Mathematics Subject Classification: 26A24; 40A35; 54A20;.

1. Beryn
Haragysanns: wexait f : R — R — ¢ynkniga, nemepepsraa B Todri zg € R.

Binowmo, 1o noxinuoro dyskii f(z) B TOUni ) HA3WBAIOTH

df f(@o +h) — f(z0)

dx (wo) = %13%) h ’
© Cemorin 1. /1., 2025; CC BY 4.0 license
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Ilupoko BimoMmi yMOBH ICHYBaHHS MHOXiAHOI, KpUTEpiii mudepeHIiiioBHOCTI,
mpaBuia JudepeHItiroBaHHs, TAOJIHUIT TOXIAHUX TOIO. Jlare TOHATTS € OJHAM i3
IeHTpaabHuX (TOpYyd 13 iHTerpasoM) KOHIEII MaTeMaTHIHOoro aHasizy. lloxi-
JTHA Ma€ MUPOKHUii CIIEKTP 3aCTOCYBaHb He TLILKW B MaTeMaTHUHIHA Hayti (Teopis
dbymkiit, reopis fimoBipHOCTE#, MUdEpEHTTIATEHA FeOMETPis TOIIO), MPoTe 3aiiMae
OJIHY iX MPOBIMHUX poJieil B TPUKJIAJAHUX JUCIUILIIHAX: PIBHOMAHITHI po3miin ]i-
3ukm, 6i00TidA, eKOHOMIKA Ta €KOHOMIYHA CTATHCTHMKA, Hayka npo mami. [Ipore
IOpPydY 13 BEJMYE3HHM CIEKTPOM 3aCTOCYBaHb, 3BHYaiiHa moximHa (byHKI Mae
KiTbKa HEIOMIKIB: To-miepiie, PyHKINA Mae OyTH HemepepBHOIO B TOUIN, MO-APYTe,
"mopystentonibui” byHKINT He MaTh MOXiAHOT y ¢BOTX "rocTpux’ Toukax. Hampu-
ka1, pobpe Bigomo, mo dyukuis f(z) = |x| ne qudepenuifioBna B Touni xo = 0
B CHJIy TOTO, IO OJHOCTOPOHHI ITOXITHI JaHol (DyHKINI B JaHiit TOYIN € pi3HIMH.
3BiCHO, OJHOCTOPOHHS MMOXI/IHA IEBHUM YUHOM BHUPIIIYE 10 TTPODIEMY, ITPOTe JIst
ii 3acTocyBanHs MOTPiOHI /Ba Pi3Hi MOHATTH "ipaBoi” Ta "aiBol” noxinuux. Tak, i
TTOHATTS Jy>Ke CXO0XKi Ta MalTh KOCMETHUYHI BIAMIHHOCTI, IPOTE TIe ABa PI3HUX IO~
HaTTst. B wemonasuiit crarTi [2] namu 6yJ10 3apONIOHOBAHO MOHATTS BU3HAYEHOTO
inTerpaJja BigHOCHO bisbTpa. CTaTTs MICTUTH TOKIAIHUN OMUC CXeMU MOOYI0BU
inTerpasa BimHocHO (iIbTPA, BUBYEHO HOTO BJIACTUBOCTI TA TMEPEBArd, TOPIBHAHO
3l 3BmuaifinuM iHTerpasoM Pimana mo Binpisky. BusnavenHs TMOHATTS TOXiTHOT
B TepMminax (piabTpax — 1e abCOJIOTHO JOTIYHUN Ta MPUPOIHIN KPOK, OCKIJIBKH
i moxinna dyHKIil, i inTerpas Pimana — koHmenmii, sxi jjs cBO€El moOy10BU BU-
MaraioTh TPAHUIHOTO mepexoy’. ToMy B HACTYTHUX PO3ALAaxX AaHOI KOPOTKOL
CTATTI MH OIHUIIEMO 3arajJbHy KOHCTPYKINI HOXiaHol (PYHKINI 13 BUKOPHCTAHHIM
rexuiku Ginbrpis. Ilicasg mMporo Mu NOPIBHAEMO 10 HOBY KOHIIEHINIO 13 BioMuUM
BU3HAUYEHHSM ITOXiJTHOI 1 ITepeKOHaEMOCd B TOMY, IO HAIlla KOHCTPYKIUA JIHACHO
€ y3aragpHenuaaM. asi Mu OymeMo BUBUATH BJIACTUBOCTI MOXiTHOL 33 (hiIbTPOM,
30KpeMa, BiAMOBIMO Ha MUTAHHS: UW TTPAITIOE IJIsT TTOX1AHOT 32 (PIALTPOM TTPABUIIO
IucepeHIioBanis 106y TKy !

2. Heobxiani Binomocti i3 Teopii dinprpis
Haranaemo, 1110 iibTpoM Ha HETTOPOKHIHT MHOXKMHI ) HA3UBAIOTH TAKY CiM t0
MAMHOXKTH § C 29, sIKa, 33/I0BOJIbHAE HACTYITHUM aKCIOMaM:

L 0¢3;
2. ABeF=ANBEGF;
3. dxmo A€ F, DDA, rorakoxx D € §

Tlopyu i3 momarTam dinbTpa Mu TakoxK OyIeMO BUKOPUCTOBYBaTH 0a3y (hinb-
tpa. Cim'to B nigMuokuH MHOKNUHK ) Ha3uBarOThL Hazor diAkTpa, SIKIIO

1. 0 ¢ B;

2.VA,BeB$3ICeB: CCANB.
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loBopsTs, 1110 GiabTp § mMOpoKkeHo 6Haz0t0 B, AKINO KOXKEH ejgeMeHT diabTpa
§ micTurh x09a 6 onun enement 6a3u diabrpa B. Yepes F(B) Oyaemo noznauaTn
dinbTp, nopomkenuit 6azot0 B.

Ocranne BU3HAYEHHS, AK€ HAM BapTO MPUTraJaTh — 1Ie BU3HAYEHHs 3612KHOCTI
dyukmii 3a diaprpom. OTox Hexait X,Y — Tomosoriuni npocropu, f : X — Y
— dyukiisg, y € X, § — giaerp Ha X. Tosopars, mo dyHKIig f 36iraethes 10 y
3a dbirbTpoM § (MO3HAUEHHS: Y = lién f), gk st moBlibHOTO OKOIy U TOUYKM

y icaye enement disbrpa A € § takuit, mo {f(t) : t € A} C U. Binbme npo
Teopiro GITBTPIB MOKHA TPOYNUTATH, HAIIPUK/IAT ¥ IyI0BOMY THapyIHuKY [1]. Te-
opist piAbTPiB — BIAHOCHO MOJIOIa HAYKA, AKa 3apa3 IyKe aKTUBHO PO3BUBAETHCH.
3a ocranui poku 6ys0 onybIJIKOBAHO YMMAJIO JIOCJII2KEHD 3 Teopil (bijgbTpiB Ta i1
3aCTOCYBaHb, HAUpUK/Ia crarti (3], [4], [5].

3. Hoxigna dpyukuil 3a digbrpom

Hexait f : R — R — ¢yHKIlis, BusHaueHa B JedKOMY OKOJ Toukm Ty € R.
Poszrnsguemo dyukIiio:
Dyo(fy) R =R,

dKa ;ue 3d HACTYITHUM TTPABUJIOM!

Dy (£.h) = 3 (o + 1)~ f(0)).

Od4eBuaHO, 110

d
U (29) = 1im Duy (1, 1).

Temep M¥ TOTOBI AaTH TEHTPAIbHE BU3HAYCHHST TAHOT CTATTI.

O3znavenns 1. Hexait f : R — R — ¢dynkiiga, Busnadena B 1eIKOMY OKOJI
Toukn g € R. Hexait § — dinerp wva R, gxkwmii makopye (DiabTp ITPOKOJIOTHX
okomiB touku 0. [Mozionor dynxuii y = f(r) 6 mouui xo 6idhocno dirvmpa §F
OyaeMo Ha3HBATH

daf L
%(1'0) _hénDoco(fa h)v (1)

SAKITIO JIaHa, TPAHUILA 1ICHYE.

3ayBakenHst 1. Oyuxiil, y dxkux € moxijgHa B Aauiit Todri 3a neBHuM Piib-
TpoM, DysemMo HazuBaTU JAUQEPEHIIHOBHUMY 33 TTUM (DiIbTPOM B il TOUIIL.

[Tokaxkemo Temep, M0 KIACUYHE BU3HAYEHHA MOHATTS MOXITHO! € YACTKOBUM
sunagrom Osnadenns [1]. diiicHo, posrisHemMo bigibTp Fo TPOKOIOTHX OKOJIB
Toukm 0.

OueBHUIHO, 10 B HOMY BUIAJKY

d
T w) = n Day (£, 1),
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4. Buiactubocrti noxinnol pyukuii 3a ginprpom

Jlns "kyracuanoi” moximuoi MoxkHA cdopMmysoBaT J00pe BimoMi yciM BIacTH-
BOCTI: BOHa 3aJ0BOJIBHSE BJIACTHBOCTSM JIHIHHOCTI Ta OJHOPITHOCTI, BU3HAYEHO
npasuaa gudepen ioBanig 106yTKy i acTku apox dyukmiit. B mamomy posi-
Ji My OyaeMo BHBYATH y3araJIbHEHHS IIHX BJIACTHBOCTEH /I MOXiAHOI (pyHKIT
BigHOCHO BiabTpA.

Teopema 1. Hexait f, ¢ : R — R — dyHKil, BU3HAYEHI B JeIKOMY OKOJI
Toukn xg € R. Hexait § — dinerp va R, o, 8 € R. Toxi

mwzaguw+ﬁg@@

d(af + Bg)
dg

IHITUMU CJI0BaMU, TIOXiTHA 3a (biabTpoM Bin cymu nBox yHKIIH — e cyMa Mmoxi-
IHWX 33 DITBTPOM Bifg uX ABOX (DYHKITIH.

JoBenents 1b0TO (baKTy CIUPAETHCS HA 3aCTOCYBAHHS BJIACTUBOCTEN JHIHHO-
cri Ta oxHOpigHocTi rpanui dyHkil 3a dinsrpom (aus. [2]). Kpaie mu 30cepe-
JIUMO CBOIO yBary Ha JOCJIIKEHH] MpaBuJ JugepeHIliioBaHH JOOYTKY 1 JaCTKH.

Bapa3 MU JaMO OJHE TeXHiYHEe BU3HAUEHHSI.

O3znavenns 2. Hexait f : R — R — dynkria, Buznadena B IeIKOMY OKOJI
Touku ¢ € R, § — dinerp Ha R. Bynemo nasusatu dyukiio f §-nenepepsroio 6
mouYl a, TKIIO li%n fla+h) = f(a).

Teopema 2. Hexait f, ¢ : R =& R — dyHKil, BU3Ha4YeH] B JIEIKOMY OKOJIi
Touku g € R, §F — disbrp va R. Hexait icayrors noxigui dyaxiiit f, g BigHOCHO
dinprpa § B Toumi xo. Takoxk Hexait (pyukiii f Ta ¢ € F-HEMEpEPBHUMH B TOYII
xo. Toxi (f - g) Takoxk € auepeH iioBHOW B TOUI T 3a MIIBTPOM §, i

d(f-g)
T@O)

_ 4
-2

(@0) - 9(w0) + 52 (w0) - o) @)

Hosedenna. iiicho,

d(f-g)

7 0) =l D (£ gu1) =l - (5 - 9)(an + ) — (£ - 9)a0) =

h?iquwwwy@wHw—ﬂm%Mmﬂz
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l%nflb (f(zo+h)-g(xog+ h)+ f(zo) - g(xo + h)

—f(wo) - g(wo + h) — f(x0) - g(x0)) =

lim 1 [g(xo + 1) (f(wo +h) = f(w0)) + f(wo0) (g(z0 + k) — g(x0)) | =

5 h |
lim [9(360 + ) (f (w0 + R) — f(20)) N f(x0) (g9(zo + h) — g(x0)) | _
I h |
. [g(zo+h)(f(xo+ h) — f(z0)) [ fzo)(g(zo +h) —g(x0))]
hén [ Y ] —1—11?1 [ h | =
. . [(f(@o+ k) — f(z0)) . [(g(xo+h)—g(z0))]
héng(zo +h) - hén [ . ] + f(z0) .hén [ =

@

h m
L (a0) - glaw) + 2 o) - Flao).

O]

SayBakeuust 2. Hagimo Mu BBen TOHATTA §-HemepepsHocTi? st Toro,
abu y TPeThOMY 3HHU3Y PAJIKY 1€l TeOpeMu MaTH 3MOI'y nepeiiTu /10 J00yTKY rpa-
Hulb. B yMOBi Teopemu Mu BuMaraJiu §-HernepepsHocTi Bif 06ox dyHKII, npoTe
daxTUIHO BUKOPHUCTAAN 110 0CobamBOCTI jmine miag dyukmnii g. Mu Bumaraemo
TOro ¢aMoro i Bix pyHKIii f, OCKIIbKE B JOBEIEHHI MA MOYKEMO JIOJATH 1 BiIHITH
it gjomanok, a came g(xg) - f(xo + h).

[Tepexonmmo Temep no mpasuaa audepeHiioBants 3a GirbTpy gacTku hyH-
KIILit.

Teopema 3. Hexait f, ¢ : R — R — ¢bysKii, Bu3Ha4YeHi B JIesIKOMY OKOJI
Toukn xg € R, § — disprp ma R. Hexait icayrors noxigai dyukmii f, g BigHOCHO
dinmbrpa § B Toumi xg. Taxkoxk Hexait dyHKIA ¢ € §-HEIEPEepBHOIO B TOYUI Xy,

g(zo) # 0. Toni wacrka byukmiit | f/g | Takox € mudepeHIiitoBHO0 B TOUI T

3a inbTpoM §, i

d<f/g>(a:0) = i (20) - g(x0) — (o) - (o)
a3 g (o)

Hosedenna. [iiicho,




Bicuuk XHY, Cep. «Maremaruka, IpuKJIa Ha MATEMATUKa i MexaHikay, Tom 102 (2025)53

B uuncenpruky momamo ta BimaimMemo Bupas g(zo) - f(xg). Orpumaemo

lim 1 {g(%) - f(xo + h) — g(w0) - f(x0) + g(x0) - f(20) — f(20) - g(w0 + h))] _

5 h g(wo) - g(wo + h) ]
i [9(1‘0) (f(xo+ h) = f(z0)) — flxo)(g(xo + h) — g(x0)) ] _

5 h 9(zo) - (900 + h) ]
lim [g(xo)(f(ﬂco +h) = f(x)) ( z0 + h) — g(20)) ] _

3 h-g(xo) - g(xo + h) -g(zo) - g(zo + h)
. {g(lio) ) f(xo-&-h})l—f(xo) - F(zo) - 9(9004-72—9(500)
§ | 9(zo) - g(zo+h) 9(z0) - g(zo + h)

Ockinbku dyHKIA ¢ € F-HENEPEPBHOIO B TOYIN X(, MAEMO:

o g(xo) - f(l’o+h})1—f(¢60) y F(z0) - 9($0+h}3—9($0)
BT e g 5 g0 o)
g(wo) - %(ﬂfo) B f(xo) - %(ﬂfo) _
9%(xo) 9%(x0)
3’;( 0) - 9(wo) — %(xo) -g(2o)
9%(z0)

O

3ayBaxkenns 3. Takum yuHOM, MU 6A4UMO, IO JJIA TTOXiIHOT DYHKIIT Bij-
HOoCcHO (biIbTPA MAIOTh MICIEe BCl BJIACTMBOCTI, 9Ki Oy/im mpwTaManHi KJIACHIHIH
TIOX1JTHIM.

Posrnsgnemo 1ie oJiuH 0yHKT, SKAH MU TPOXU 3TaJaJi y BCTYIIHIN YacTuHi: Ju-
dbepennitoBanns Gyuknii f(x) = |z| B Touni o = 0. Tak, B niit Touri Mmoay L HE
Ma€ TMOXITHOI ¥ 3BUYAffHOMY PO3YMIHHI ITHOTO CJIOBA, TPOTE Ma€ OHOCTOPOHH] MO-
xigai. Ilpore Temep, marouun Takuit incTpyMenT, sk 1moxigua MyHKIil 3a GlabrpoM,
obunc/IeHHs MOXiMHOI JaHol MYHKINT B JaHii TOUIN cTae HAOATATO eJeraHTHIIIIM.
iticHo, po3ryisineMo CiM’T MHOXKUH

Bot = ((0,0))s5>0, Bo— = ((—4,0))s>0-
OueBunO, 10O 111 ciM’T YyTBOPIOOTEL 6a3u MiIbTPIB.

Tomi of of
HE VL w7

Haocranok copmy/itoemo o4eBUIHY TeOpeMy.

Teopema 4. Hexait f : R — R — dyuxiis, Bu3Hadena B JeIKOMY OKOJII TOYKH
xo € R, §1,82 — dbinsrpu va R, §1 C §2. Hexait icaye moxigna dyukii [ BigHOCHO
diaprpa §1 B Toumi x9. Tomi icaye Tako:x moxigua yukmil f BimHOCHO (iabTpa
§o B TOUT X(.
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HoBesienns: 1b0ro GakTy € eJeMEHTAPHUM HACJIIKOM 3arajbHUX BJIACTHUBO-
creit rpanuni GyHKINT 38 GLIBTPOM.

5. HomarkoBi npukiaaun diabTpiB Ta pyHKITiii

Bume Mu posriagaynu dbyskmio f(x) = |z|, Ta diasrp, no skoMy maxa byH-
kiis € gudepennifiosrow. Posrisremo renep dynkmio f(x) = xsin%, AKIIO
x # 0,1 f(0) = 0. 3 "knacuuanoi Touxu 30py” MaHa (yHKIisS € HemudepeH-
uiitosnoro B xg = 0, 0CKLIbKK }lbig%%(f(xo + h) — f(xg)) = }llli% sin% — rpaHu-
ns He icuye. Hama 3amavda mosisitae B ToMmy, abu nobyayBatu puibTp §, sSKuit
OJIHOYACHO Mazkopye 1pokoJori okosm 0 Takwii, mo f(z) 6yna 6 audepenniios-
HOIO 3a 1uM binbrpoM. it MO0 po3ryIsHEMO TaKy MTOC/ITOBHICTE MHOYKUH:
B, = {ac >0: % € [mn;mn + %]} Heckia no nepesipuTi, 110 OTpUMaHa CUCTEMA
MHOXKUH yTBOpoe 6azy dinerpa Ha R. Hexaii remep § — dinbrp, mopojkennit
6azot0 (By)n. @inerp § maxopye dinbrp oxkonis Touku 0, mpore BiH "Bijciroe”
MHOKUHH, Ha dKUX QyHKIs f(2) HEKOHTPOTHOBAHO KOMUBAETHCs. Tosi

d—f(()) = limsin 1 0.
ds 5 h
6. 3B’ga30K MixXk TIOXi/IHOIO 3a (piabTpPOM Ta 30i>KHIiCcTIO 3a [eiine
B knacuanomy maraHasizy iCHye eKBiBaJCHTHWH HifxXij 10 BU3HAYEHHA TOXi-
THOT, a came MOBOIO TocioBHocTelt (3a Leitne). KaxyTs, mo dynkmia f(z) mae
[MOXiJHY B TOHUII @, SKIIO JJjis AOBLIbHOI 3012KHOI 70 @ YMCJI0BOI IIOCJIOBHOCTI
(zn), ne mas Beix n € Nz, # a icHye TpaHuIs

i ) = fla)

n—00 In —Qa

Matoun 36ixkHy 10 @ € R uncaoBy nocainosHictsb (), MU MOXKeMO moBymyBaTH
dbinbrp §s,, 623010 groro OyayTh HacTymHi MHOXKUHE: A = {2, —a : n > k}.
Takum 9wHOM, HECKIAIHO MODAYNTH, IO B TAKOMY BUIAAKY MOXiAHA 33 (PlIbTPOM
Sz, Oyle cuiBIa/aTH 3 0O3HAYEHHAM NOXiTHOT "3a leitne”.

5. Bucunosok

Y nmamiii cTaTTi 3aIpPOMOHOBAHO HOBHUI MiAXim 10 AudepeHIiioBaHHA PYHKITIH
JifiCHOT 3BMIHHOI TIJIIXOM y3araJbHeHHS KJIACHIHOTO O3HAYEeHHS MOX1IHOI 33 JI0TTO-
MOT010 pinbTpiB. KoHIemniisa moxiaHol BiAHOCHO (biabTpa PO3IIUPIOE TPaInIiiiHe
POBYMiHHS TPAHWUII, JO3BOJIAIOYN BLIBINT THYYKO OMUCYBATH ITPOIEC HAOIUIKEHHST
3MIHHOI 0 ToukM. Taxmil Miaxi/T OXOIJIIOE KJIACHUIHY MTOXITHY 9K OKpeMUit BUITa-
JIOK, BOJAHOYAC BIAKPUBAIOYHN ILIAX 0 aHAAI3Y (DYHKIH y CHTyaIlisax, /16 3BUYIHE
o3HavYeHHs ab0 HeNpuIaTHe, a0 HEJIOCTATHLO TOYHE.

3ampornonoBane O3HATEHHS JEMOHCTPYE Y3TOMKEHICTh i3 OCHOBHUMHU TIPABHU-
JlaMu JudepEeHIiI0BaHHs — TAKUMU SIK JIHIHHICTE, TPABUIO J00YTKY, YACTKHU Ta
ckJageno] hyHKIMI, M0 mATBepIKYEe HOTO TeopeTndHy CcTporicTh. PaszoMm i3 muwM,
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HOBa KOHCTPYKIIig 3a6e311edye iHCTPYMEHTAIbHY IHY9KICTD, IO JT03BOJISIE PO3TJIs-
JaTu 3ajadi 3 00MeKeHHMHU a00 aCHMMEeTPUYHUMU OKOJAMU, Je KJjacudaHe aude-
peHIliloBaHHs BTpadae epeKTUBHICTb ab0 CMUC/IOBY iHTEPIPETOBAHICTD.

OstepxkaHi pe3y/ibraTu MalTh MOTEHIAJ JI0 TTPAKTUIHOIO 3aCTOCYBAHHS B Te-
opii y3arasbHeHux (QyHKIiN, Teopil mipu Ta dyHkIionanpHoMy anasizi. Ilopis-
HSJIBHUN aHAJI3 13 KJACHIHUM TIiIX0T0M, HaBeJIeH] TPUKIa N Ta JOBEJeHHS BJa-
CTUBOCTEN HOBOTO O3HAYEHHS TIITBEP/KYIOTH 9K METOJO0JIOTIYHY, TaK 1 TTpUKJIa-
JIHY THHICTB T1i€l poO0TH. 3alIpOTIOHOBAHNI IHCTPYMEHT MOXKE CJIYTYBATH OCHOBOIO
JUTA TOJAIBINNX TOCTIKEHb ¥ Ta/Jy3l MATeMaTUIHOTO aHAMI3Y Ta OyTH BKIIOUE-
HUM Y JUJAKTHIHI MIXOIN 10 BUKIJAAHHS TeMU moxigHol. TakuM anmnoMm, pobora
HE JIWITe TOrInOI0€ TeOPETUYIHE PO3YMIHHA JIOKAJIHHOI TMTOBEIIHKY (PYHKINH, a i
ITPOTIOHYE HOBi MEPCIEKTUBH JIJI PO3BUTKY CYYaCHOI Teopil I'paHUllb.

Ioasiku

CrarTio mAroToBIEHO B paMKaxX BUKOHAHHA Jep2KkOio/keTHOl Temu MinicTepcrBa
oceitu i Hayku Ykpainu Ne B®/32-2021(11). Takoxk aBTop BUCIOBIIIOE Ge3MerxKH]
CJIOBA BJISTYHOCTI CBOIM DarhkaM 3a nocTiftay miarpumky. Okpemi cjioBa BJISIHOCTI
xouerbcs BucsoBuTu Cunam Besneku ta Oboponu Ykpainu B 0cobi 6arbka aBro-
pa, 9Ki B JaHuil MOMEHT JaloTh PIIIydy Biacid pociiicbKuM OKymaHTaMm. ABTOpP
BUCJIOBJIIOE€ BEJIMKY ITOJSKY QHOHIMHAM PENeH3eHTaM JaHol poboru, 9kl Hajaa/iu
Ha/[3BUYAMHO TIHHI KOMEHTapi Ta 10Pa/id Ta 3ayBarKeHHs, 3aBJAAKHN SIKUM CTATTS
cTajga KOPEKTHINIO Ta TMOBHIIIOH.

IcTopia crarTti: orpuMmana: 30 qumasa 2025; ocrannift BapianT: 20 mucronaga 2025
npuiiasra: 22 gucronaga 2025. Oupuaogaero 11 rpyaas 2025.

Koudutikr inrepeciB: ABTopy TOBITOMISAIOTE PO BiACYTHICTH KOHMIIKTY
IHTEpeCiB.
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On differentiation with respect to filters
D. Seliutin
Department of Fundamental mathematics
V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, 61022, Ukraine

The article explores a generalization of the concept of the derivative of a
real-valued function of one variable based on filter theory. A new constructi-
on is proposed that allows the definition of a derivative of a function with
respect to a filter, which reflects the manner in which the variable approaches
a given point. Unlike the classical definition, where the limit is taken via a
linear approach of the argument, the new definition permits a wider range
of approaches to the point, thus providing a more flexible framework for
analyzing the local behavior of functions. The introduced concept includes
the classical definition of the derivative as a special case when an appropriate
filter is chosen. The paper presents proofs of generalized versions of basic
derivative properties: linearity, product rule, quotient rule. In particular,
it is shown that the derivative with respect to a filter satisfies the same
formal differentiation rules as the classical derivative while preserving greater
flexibility in how the argument approaches the point. The results obtained
expand the scope of differential calculus to cases where the classical approach
is either inapplicable or lacks precision or interpretative convenience. It is
demonstrated that, in some situations, the derivative with respect to a filter
better reflects real processes of change, such as in problems with asymmetric
or constrained neighborhoods of a point. The proposed approach opens new
perspectives for applications in the theory of generalized functions, measure
theory, and functional analysis. The article also provides examples illustrati-
ng the application of the new concept and offers a comparative analysis with
the classical theory. The presented material may be of interest to researchers
in the field of mathematical analysis as well as to educators seeking to extend
the traditional approach to differentiation. This work holds both theoretical
and methodological value, as it introduces a new tool for further research in
the field of modern limit theory.

Keywords: derivative; filters; convergence with respect to flilter.

How to cite this article:

D. Seliutin, On differentiation with respect to filters, Visnyk of V. N.
Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics
and Mechanics, Vol. 102, 2025, p. 48-56 (in Ukrainian). DOI: 10.26565/2221-
5646-2025-102-03



https://doi.org/10.1016/j.jmaa.2019.05.001
https://doi.org/10.26565/2221-5646-2025-102-03
https://doi.org/10.26565/2221-5646-2025-102-03

ISSN 2221-5646(Print) 2523-4641(Online)

Visnyk of V.N.Karazin Kharkiv National University
Ser. “Mathematics, Applied Mathematics

and Mechanics”

2025, Vol. 102, p. 57-67
DOI: 10.26565/2221-5646-2025-102-04
VIIK 517.986.32

Roman Skurikhin

PhD student

Department of Pure Mathematics

V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, Ukraine, 61022

Bicumk XapKiBCHKOTO HAIIOHAJIBLHOTO
yuiBepcurery imeni B.H. Kapasina
Cepist "MaTemaTnka, IPUKIATIHA
MaTeMaTHKa i Mexanika'

2025, Tom 102, c. 57-67

roman. skurikhin@karazin.ua (2 http://orcid.org/0009-0005-0504-8518

Sergiy Gefter

PhD in mathematics, Senior Research Fellow

B. Verkin Institute for Low Temperature Physics and Engineering of the National

Academy of Sciences of Ukraine
47 Nauky Ave., Kharkiv, Ukraine, 61103

gefter@karazin.ua http://orcid.org/0000-0001-5301-5087

Eugene Karolinsky

PhD in mathematics, Associate Professor
Department of Pure Mathematics

V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, Ukraine, 61022

karolinsky@karazin.ua (2 hitp://orcid.org/0000-0002-1109-4247

Closed equivalence relations on compact spaces and

pairs of commutative C*-algebras: a categorical
approach

In this paper, we study a categorical extension of the classical Gelfand—
Naimark duality between compact Hausdorff spaces and commutative unital
C*-algebras. We establish an equivalence between the category of compact
Hausdorff spaces with closed equivalence relations and the category of pairs
consisting of a commutative unital C*-algebra together with one of its uni-
tal C*-subalgebras. The motivation is that Gelfand duality can be enriched
by additional structure: closed equivalence relations encode quotient spaces
and invariance on the topological side, while subalgebras reflect restricti-
ons and symmetries on the algebraic side. Shilov’s theorem, which identi-
fies closed unital self-adjoint subalgebras of C(X) with algebras of functi-
ons invariant under closed equivalence relations, provides an essential link
between these settings. We introduce the category EqRel, whose objects
are compact Hausdorff spaces with closed equivalence relations and whose
morphisms are continuous trajectory-preserving maps, and the category
C*Pairs, whose objects are pairs (A, B) with A a commutative unital C*-
algebra and B C A a unital C*-subalgebra, with morphisms given by unital
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sx-homomorphisms preserving B. Contravariant functors are defined in both
directions: (X, R) — (C(X), Bg), where Bp consists of functions constant
on R-classes, and (A, B) — (X(A), Rp), where X(A) is the spectrum and
Rp relates characters agreeing on B. We verify that these constructions
are functorial and compatible with composition of morphisms. Using the
Kolmogorov—Gelfand theorem, the Gelfand transform, and Shilov’s theorem,
we show that these functors are mutually inverse up to morphism of functors
and thus prove the categorical equivalence EqRel ~ C*Pairs®®. This
result demonstrates that the geometric notion of closed equivalence relati-
ons on compact spaces is in perfect correspondence with the algebraic notion
of unital subalgebras of commutative C*-algebras.

Keywords: categorical equivalence; Gelfand duality; closed equi-
valence relation; commutative (C*-algebra; invariant subalgebra;
Shilov theorem.

2020 Mathematics Subject Classification: 46L05; 46M15.

1. Introduction

This paper presents a categorical correspondence between two seemingly di-
stinct mathematical objects: topological spaces with closed equivalence relations
and pairs consisting of a commutative C*-algebra and its subalgebra.

Our motivation stems from the classical duality between compact Hausdorff
spaces and commutative unital C*-algebras established by the Gelfand-Naimark
theorem. Extending this idea, we explore how additional structure — in particular,
closed equivalence relations or subalgebras — can be encoded categorically and
translated between the topological and algebraic frameworks.

The paper is structured as follows. In Section 2, we review essential noti-
ons from category theory, topology, and C*-algebras. Section 3 introduces two
categories: one based on compact spaces with closed equivalence relations, another
based on commutative C*-algebra pairs, and defines natural functors between
them. Finally, in Section 4 we prove that the above mentioned functors establish
an equivalence of categories.

2. Preliminaries

Notions from Category Theory. We recall some standard definitions in
category theory (see, e.g., [1, Chapter II|).

Definition 1. A covariant functor F' : C — D between categories C and D assigns
e to each object A € C, an object F(A) € D,
e to each morphism ¢ : A — B in C, a morphism F(p) : F(A) — F(B) in D,
such that
1. F(ida) = idp(a),
2. F(pov)=F(p)o F(¢) for all composable morphisms 1, ¢.
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Definition 2. A contravariant functor F': C — D assigns

e to each object A € C, an object F(A) € D,

e to each morphism ¢ : A — B in C, a morphism F(p) : F(B) — F(A) in D,
such that

1. F(ida) = idpa),

2. F(potp)=F()o F(p) for all composable morphisms.

Definition 3. Given a category C, its dual category (or opposite category),
denoted by C°P, is defined as follows:

e the objects of C°P are the same as those of C,

e for each morphism @ : A — B in C, there is a corresponding morphism
©°P: B — A in C°P,

e composition in C°P is given by reversing the order of composition in C, i.e.
(0 9h)°P = pP 0 p°P.

Definition 4. Let ;G : C — D be two functors. A morphism of functors 7 :
F — G is a family of morphisms {nx : F(X) — G(X)}xcob(c) such that for
every morphism f: X — Y in C, the following diagram commutes:

Fx) 29 poyy

| ”
GX) —=

Definition 5. A morphism ¢ : X — Y in a category C is an isomorphism if
there exists a morphism ¢ 'Y — X such thalt ¥ o ¢ = idx and oy =idy.

Definition 6. Two categories C and D are said to be equivalent if there exist
functors F': C = D and G : D — C together with isomorphisms of functors

n:GoF —ide, €: FoG —idp.

Remark 1. A contravariant functor F' : C — D can be viewed as an ordinary
covariant functor F : C°P — D. In particular, when studying equivalences, it
s common to consider equivalences between a category and the dual of another.
Thus, equivalence can also be formulated in terms of contravariant functors once
one passes to opposite categories.

C*-Algebras and Their Spectra. Let us recall some basic definitions from
the theory of Banach and C*-algebras (see, e.g., |3, Chapter 1]).



60 R. Skurikhin, S. Gefter, E. Karolinsky

Definition 7. A Banach algebra is a complex associative algebra A equipped with
a norm || - || such that

e A is a Banach space,
o [[ab] < [lalll|b]l for all a,b < A,
o A has a multiplicative identity 14 such that 1ya = a = aly for all a € A.

Definition 8. A character on a Banach algebra A is o linear functional ¢ : A — C
such that p(14) =1 and @(ab) = p(a)p(b) for all a,b € A.

Definition 9. The spectrum of a commutative Banach algebra A is the set ¥(A)
of all characters of A, equipped with the weak* topology (pointwise convergence).

It is well known that the spectrum 3(A) is a compact Hausdorff space.

Definition 10. A Banach algebra A is called a C*-algebra if it is equipped with
an imvolution a — a* satisfying

1. (a + Bb)* = @a* + Bb*,
2. (ab)* = b*a*,

3. (a*)* =a,

4- ™[l = llall,

5. llaa*|| = [lall?,

for all a,b € A and o, 5 € C.

Example 1. Let X be a compact Hausdorff space. The set C(X) of complex-
valued continuous functions on X s a commutative unital C*-algebra with
e pointwise operations,

e involution f*(x) := f(x),

e norm ||f| := max,ex | f(x)].

Structure Theorems for Commutative C*-Algebras. The following
classical results establish a deep duality between commutative C*-algebras and
compact Hausdorff spaces.

Theorem 1 (Kolmogorov-Gelfand [4]). Let X be a compact Hausdorff space. For
each x € X, define a character ¢, : C(X) — C by ¢y (f) := f(x). Then the map

I:X = 3CX)), Iz)=ps

is a homeomorphism. Thus, the spectrum of C(X) is naturally identified with the
space X.



Bicuuk XHY, Cep. «Maremaruka, IpuKIaJHA MaTEeMATHKa i MexaHikay, Tom 102 (2025)61

Theorem 2 (Gelfand-Naimark [2|, Theorem 11.18). Let A be a commutative
unital C*-algebra. The Gelfand transform

F:A—C(E4), a—a, ale):=¢(a),
s an isometric *-isomorphism of C*-algebras.

Categorical Reformulation of the Gelfand Duality. Let us make this
duality precise in categorical terms. Following [1, Section I1.10], we write Haus for
the category whose objects are compact Hausdorff spaces and whose morphisms
are continuous maps, and Ban for the category whose objects are commutative
unital C*-algebras and whose morphisms are unital *-homomorphisms.

Theorem 3. /1, Section I1.10], The categories Haus and Ban®® are equivalent.
Proof. Define the contravariant functor
C :Haus - Ban, X —(C(X), f—C(f):g—gof.
Also define the contravariant functor
Y :Ban — Haus, A~ 3(A), L—X(L): ¢+~ polL.
These functors satisfy the required properties:
e X(C(X)) = X via the map I(x) := ¢, (Theorem 1),
e C(X(A)) = A via the Gelfand transform I' (Theorem 2),

e both isomorphisms are functorial.

Hence, Haus ~ Ban®P. 0

Shilov’s Theorem on Invariant Subalgebras. Let us recall the definition
of closed equivalence relation:

Definition 11. Let X be a compact Hausdorff space. An equivalence relation
R C X x X is said to be closed if R is a closed subset of X x X [6, p. 52].

Example 2. Let X = {(z1,72) € R? : 22 + 23 < 1} (the closed unit disk), and
define (z,y) € R if 22 + 22 =y} +y3. Then

R={((z1,22), (y1,52)) € X x X 12 + 25 = y] + 3}

18 a closed equivalence relation.

Example 3. Let X = {z € C: |z| = 1} (the unit circle), and fir 0 € R such that
0/ ¢ Q. Define z1 ~ zo if 2o = €21 for some n € Z. Then the orbit of any
point under this relation is dense in X, and the graph of the relation is not closed
in X x X.



62 R. Skurikhin, S. Gefter, E. Karolinsky

The following theorem is central in identifying the subalgebra B with the
algebra of functions invariant under Rp, and it plays a key role in the proof of
our main result.

Theorem 4 (Shilov [5]). Let X be a compact Hausdorff space, and let B C C(X)
be a closed unital self-adjoint subalgebra. Define an equivalence relation Rp C
X x X by

(r,y) € Rp <= VfeB: f(z)=f(y).
Then:

1. Rp 1s a closed equivalence relation,

2. B coincides with the algebra of functions invariant under Rp, i.e.,

B={feC(X): f(x) = f(y) ¥(z,y) € R} = Bry.

3. Closed Equivalence Relations and Pairs of C*-Algebras

Definition 12. Let (X1, R1) and (X2, R2) be compact spaces equipped with equi-
valence relations. A continuous map f : X1 — Xo is said to be trajectory-
preserving if whenever (x,y) belongs to Ry, the pair (f(z), f(y)) belongs to Rs.

We define the category EqRel as follows:

e objects are pairs (X, R), where X is a compact Hausdorff space and R is a
closed equivalence relation on X,

e morphisms are continuous trajectory-preserving maps.
Also, consider the category C*Pairs where

e objects are pairs (A, B), where A is a commutative unital C*-algebra, and
B C A a unital C*-subalgebra,

e morphisms L : (A1, By) — (A2, By) are unital x-homomorphisms L : A; —
Ay satisfying L(B1) C Ba.

Let (X, R) be an object in EqRel. Define
Br:={fe€C(X): f(x) = f(y) whenever (z,y) € R}.
L.e., Bpr is the set of functions on X which are constant on each equivalence class.

Lemma 1. Bp is a unital C*-subalgebra of C(X).
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Proof. 1t is closed under addition, multiplication, scalar multiplication, and
involution. The unit function 1 is clearly in Bgr. Uniform limits of invariant functi-
ons are invariant, so Bp is closed. O

Now let f: (X1, R1) — (X2, R2) be a morphism in EqRel. Then f induces a
unital *-homomorphism

C(f): C(X2) = C(X1), C(f)(p) :=¢pof.

Lemma 2. The map C(f) maps Bg, into Br,. Hence, C(f) is a morphism of
paIrs:
C(f) : (C(X2)7BR2) — (C(Xl)vBRl)'

Proof. Let ¢ € Bg, and (z,y) € R;. Since f is trajectory-preserving, we have

(f(x))f(y)) € Ry, so

hence C(f)(¢) € Br, . O

Theorem 5. The assignment (X, R) — (C(X),Bgr) and f — C(f) defines a
contravariant functor
C : EqRel — C*Pairs.

Proof. To prove that C' defines a contravariant functor, we must verify two
properties:

(i) Identity morphisms: For each object (X, R) in EqRel, the identity map
idx : X — X is trajectory-preserving. Then C(idx) : C(X) — C(X) is
given by

Cidx)(p) = poidy = .
Clearly, C(idx) = id¢(x), and it maps Bg to itself.
(ii) Composition: Let

f : (Xl,Rl) — (XQ,RQ), g: (XQ,RQ) — (Xg,Rg)

be morphisms in EqRel, i.e., both f and g are continuous and trajectory-
preserving. Then so is g o f, and for any ¢ € C(X3) we have

C(go f)(w) =¢pogof=(C(f)oC(9)(p).

Furthermore, if ¢ € Bp,, then C(g)(¢) € Bgr, and C(f)(C(g)(¢)) € Bg,.
Hence, C(g o f) maps Bpg, into Bg,, and

Clgo f) =C(f)oC(g)

as morphisms in C*Pairs.
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Therefore, C' is a contravariant functor from EqRel to C*Pairs. O

On the other hand, let (A, B) be a pair in C*Pairs, i.e., A is a commutative
unital C*-algebra and B C A is a unital C*-subalgebra.
Define an equivalence relation Rp on the spectrum 3(A) by

(p, ) e Rp <= Vbe B: p(b) =¢(b).

Lemma 3. Rp is a closed equivalence relation on the compact Hausdorff space

2(A).

Proof. Reflexivity and symmetry are immediate. Transitivity follows from the
equality condition on B.

To prove closedness, suppose (¢a, %) € Rp is a net converging to (¢, ) in
Y(A) x X(A) with the product of weak* topologies. Then for every b € B,

¢ (b) = lim pq (b) = lim e (b) = P (b),

so (¢, %) € Rp. O

Now let L : (A1, By) — (A2, B2) be a morphism in C*Pairs. Then L : A} —
As is a unital x-homomorphism with L(B;) C Bs. Define

(L) £(As) = S(A1), S(L)(p) = o L.

Lemma 4. X(L) is continuous and trajectory-preserving with respect to the relati-
ons Rp, and Rp,.

Proof. Continuity of (L) follows from standard functional analysis: composition
with a continuous map is continuous in the weak* topology.

Let (¢,v) € Rp,, i.e., p(b2) = ¥(be) for all by € By. Then for any b; € By,
since L(b1) € Ba, we have

(X(L) () (b1) = @(L(b1)) = p(L(b1)) = (X(L)(¥))(b1),
50 (B(L)(#), 2(L)(¥)) € Rp,. U

Theorem 6. The assignment (A,B) — (X(A),Rp) and L — X(L) defines a
contravariant functor
Y : C*Pairs — EqRel.

Proof. As before, we verify the two functorial properties.
e Identity: For ids : A — A, we have ¥(ida)(¢) = ¢, so ¥(ida) = idy4).

e Composition: Let L : Ay — Ay and M : Ay — As be morphisms in
C*Pairs. Then for any ¢ € X(A3),

N(MoL)(¢)=poMoL=3(L)(E(M)(p)),
s0 (Mo L) = %(L) o S(M).

Therefore, ¥ is a contravariant functor from C*Pairs to EqRel. O
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4. Main Result

Theorem 7. The functors

C : EqRel — C*Pairs, Y : C*Pairs — EqRel
establish an equivalence of categories

EqRel ~ C*Pairs.

Proof. We construct isomorphisms of functors in both directions.
(1) Let (X, R) be an object in EqRel. Consider the canonical map

Ix: X = 3(C(X)), x> pg, where o (f) = f(x).

This is a homeomorphism by the Kolmogorov—Gelfand theorem. We now show it
is also an isomorphism in the category EqRel.
Let (z,y) € R, and let f € Bp (i.e., invariant under R). Then

e (f) = f(z) = fy) = ¢y(f),

s0 (¢@z,9y) € Rpy,. Hence, Ix maps R into Rp,, and similarly its inverse does
the reverse.
Thus, Iy : (X, R) — (X(C(X)), Rp,,) is an isomorphism in EqRel.

(2) Let (A, B) be an object in C*Pairs. Consider the Gelfand transform
Fy: A= C(XA), a—a, alp):=¢(a).
This is an isometric *-isomorphism. Moreover, by Shilov’s Theorem 4, we have
I'a(B) = Bgy, hence
I'a:(A,B)— (C(2(A)), Bry)
is an isomorphism in C*Pairs.

(3) Naturality. Both families {Ix} and {T'4} are compatible with morphisms in
their respective categories. In particular, for any morphism f : (X, R1) — (Y, R2)
in EqRel, the following diagram commutes:

X Iy
| [
S(e(x)) 2 se(y))

and for any morphism L : (41, B1) — (Ag, B2) in C*Pairs, the following diagram

also commutes:
L
A1 e A2

T4y l lFAz

C(=(L
c(2(41) 2 O(5(49))
Hence, the functors C' and ¥ establish an equivalence of categories. O
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3aMKHEH1 BiHOIIIEHHs €KBIBAJIEHTHOCTI Ha KOMIIAKTHNX MPOCTOPax
i mapu komyrarupaux C*-ajrebp: Kareropuuii 1migxis
P. Ckypixia', C. Tedrep?, €. Kaposmincokuii'
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lenpdanga-Hajimapka Mizk KOMmakTHUMEU XayCA0PGhOBAME IPOCTOPAMU Ta KOMYTATUB-
HuMu yHiTaapauMu C*-anrebpamu. My BCTAHOBIIOEMO €KBIBAIEHTHICTH MiK KaTeropiero
KOMIIAKTHUX XayCAOP(MOBUX MPOCTOPIB i3 3aMKHEHUMHU BiTHOIEHHSIMHU €KBiBAJIEHTHOCTI
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Ta KATeropi€ero map, Mo CKIAJAI0ThCA 3 KOMYTaTUBHOI yHiTaiabHOT C*-anrebpu ta oaHiel
3 11 yHitanpaux C*-migaarebp. MoTusallis mojsirag€ B TOMY, IO ayajbHicTh [eabdania
MoOzKe OyTH 30araveHa JI0IJaTKOBOIO CTPYKTYPOIO: 3aMKHEHI BiIHOIIEHHS eKBiBaJ€HTHOCTI
KOIYIOTh (hbaKTOP-IPOCTOPY Ta IHBAPIAHTHICTH 3 TOMOJIOTIIHOrO OOKY, TO/I sIK Mi/aJjire-
Opu BimoOpazkaoTh OOMeXKeHHs Ta cuMeTpii 3 amrebpaiumoro 60ky. Teopema IIImmosa,
K& OTOTOXKHIOE 3aMKHEHI camocupsizkeni miganre6pu 3 oguuunero C(X) 3 anrebpamu
dbyHKIiH, IHBApIaHTHUX BiJIHOCHO 3aMKHEHWX BiTHOIIEHL E€KBIBAJEHTHOCTI, 3abe3medye
KJIIOYOBHH 3B’gI30K MiK mmmu migxomamu. Mwu BBoamMo kareropiio EqRel, o6’ekramn
KOl € KOMIIAKTHI XaycaopdoBi MpOCTOPH i3 3aMKHEHUMY BiJHOMIEHHIMHU €KBiBAJIEHTHO-
cri, a MopdizmMamMn — HemepepBHI BimoOparkeHHsI, M0 30€piraloTb TPAEKTOPil, Ta Ka-
reropito C*Pairs, o6’ekramu sikoi € napu (A, B), ne A — komyrarupia C*-anrebpa
3 opmuuuieio, a B C A — C*-uiganrebpa 3 oaununeo, upudomy mopdizmMamu € k-
romomopdismu, 1o 36epiraiors B. Y 000X HampsaMax BH3HAYAIOTHCS KOHTpaBapiaHTHI
dbyurropu: (X, R) — (C(X), Bgr), ne Br cknagaerbes 3 GyHKIH, crannx Ha R-Kjacax,
i(A,B)— (2(A),Rp), ne X(A) — cuekrp, a Rp nos’sa3ye xapakrepu, 110 30iraioTbCs Ha
B. Mu niepesipsiemo, 110 11i mo0y10BH € (DYHKTOPIATbHAMA Ta CYMICHUMU 31 CKJIQJAHHIM
Mopdismis. Bukopucrosyoun teopemy Kommoroposa-lT'enbdanga, nepersopenns [enn-
danga ta Teopemy IllumoBa, Mu moKas3yemMo, 110 11i GYHKTOPU € B3AEMHO OOEPHEHUMU 3
TOUHICTIO 710 i30MOpdi3My GyHKTOPIB, i TUM camum gosogumo mo EqRel ~ C*Pairs®.
[eit pe3yapraT mokasye, M0 reOMETPUIHE MIOHATTS 3aAMKHEHUX BiIHOIIIEHDb €KBiBAJIEHTHO-
CTi HA KOMIAKTHHUX IIPOCTOPax mepedyBa€ B MOBHIH BiAMOBIAHOCTI 3 amreOpaidHuM MOHS-
TTAM YHITAJIBHUX TMigairedbp KomyraruHux C*-anredp.

Karowo6i cro6a: eKBIBaJIEHTHICTh KaTeropii; aAyanbHicTh lenbdanga; 3aMKHeHe
BI/THOIIIEHHs e€KBiBaJIeHTHOCTi; KoMmyTtaTuBHa C*-ajirebpa; iHBapiaHTHA ITigaJI-
rebpa; reopema Illunosa.

Icropisa crarri: orpumana: 10 »kosTHsa 2025; ocranwniit Bapiant: 19 aucromaza 2025
npuitagra: 20 sucromnaga 2025. Oupustonneno 11 rpyaus 2025.



IIpaBusia njisi aBTOpPiB
«Bicnuka XapKiBCbKOro HalL[iOHAJILHOI'O yHiBEpCUTETY
imeni B. H. Kapazsiua»,
Cepis «Maremaruka, npukJjaagHasi MareMaruka i mexanika»

Pepnaxkiiisi npocuTh aBTOPIB 1IpK HANIPABJIEHH] CTaTell KEPYyBaTUCH HACTYITHUMU
TIPABUJIAMI.

1. B xypnaji myb/ikyloThCa CTATTI, 0 MAOTh PE3YABTATH MATEMATUIHUX
JOCTIKEHb (AHNTIHCHKOI0 200 yKPATHCHKOK) MOBAMMY).

2. llomanHsM cTaTTi BBaXKAETbCS OTPUMAHHS penakiieto dailaiB crarTi
odopmenux v pemakropi LaTeX, amorarmiit, BimomocTeil mpo aBTOPiB Ta apxiBa,
o Brirouae LaTeX aiimm crarTi Ta aitin masttonkis. Paiiy-3pazok odopmiie-
HHS CTATTI MOXKHA 3HaliTH Ha odimiiiniii Beb-cTopinmi KypHATY
(http://periodicals. karazin.ua/mech _math ). ABropam HeoOximHO 3apeecTpyBa-
TUCH TA 3aBAHTA>KUTU TMOJAHHH HA I[ili CTOPiHIl. Byabre yBaXKHUME, 3AIIOBHIO-
10un (HOpMy MOJAHHS JABOMa MOBaMu (yKPAlHCBKOIO Ta aHJICHKOIO).

3. Crarrst NOBUHHA MOYMHATUCH 3 PO3MIMPEHOT aHoTanii (06cAroMm HE MEHII
Hi>k 1800 3HakiB), B #Kiii moBWHHI GyTn wiTKO ChopMyaIHLOBAHI MeTa Ta pe-
3yJbTaTH po6OTH. AHOTAIS TTIOBUHHA OYTH Ti€H0 MOBOIO (AHIJIHCEKOIO abo yKpa-
THCHKOIO), SKOI0 € OCHOBHHI TEKCT CTATTi. 3aKOPAOHHI aBTOPH MOXKYTh 3BED-
HYTHCS /10 PEJAKINl 33 JIOTIOMOTOK 3 MEPEKIAJOM AHOTAIN Ha YKPATHCBKY MO-
By. IloBurui 6yTu HaBemeni npizsuina, iHimiaan aBTopiB, Ha3Ba POOOTH, KJIIOUOBI
CJIOBa Ta HOMEp 3a MIXKHAPOIHOI MareMaTHuHOK Kiacudikarieo (Mathemati-
cs Subject Classification 2020). Anoraris He MOBUHHA MATH TTOCUIAHL HA JIiTEPa-
Typy uu MmagroHku. Ha meprriit cropinmi Bkaszyerbes Homep YK kiacudikarii.
B xinni crarri Tpeba mogaru nepeksaj anorarii (o6carom He MeHIn Hixk 1800
3HAKIB) Ha JAPyTy MOBY (AHIJHHCHKY UM YKPAIHCBKY ).

4. Cuucok Jiteparypu moBuHeH OyTu 0OPMJIEHMIT JIATHHCHKUM MIPUGTOM.
[Mpuknaan odopmIeHHST CIUCKA JITEPATYPHU:

1. A.M. Lyapunov. A new case of integrability of differential equations of motion

of a solid body in liquid, Rep. Kharkov Math. Soc., — 1893. — 2. V.4. — P. 81-85.

2. AM. Lyapunov. The general problem of the stability of motion. Kharkov
Mathematical Society, Kharkov. - 1892. - 251 p.

5. Koxkuwnit MagoHok moBuHeH OyTw MPOHYMEDPOBAHUN Ta ITPEICTABICHUN
okpemuM aitiom B ogroMy 3 hopmarie: EPS, BMP, JPG. B ¢aiini crarti madtto-
HOK TMOBWHEH OyTw BCTaBjieHuit aBropom. [lig mMamoHKOM moBHMHEH OyTH ITiIITHC.
HazBu baiiniB Ma/IOHKIB TOBUHHI MOYMHATUCH 3 IPI3BHUIIA IEPIIOrO aBTOPA.

6. BigomocTti mpo aBTOpiB mMOBWHHI MicTHUTH: OPi3BHINA, iMeHAa, IO HATHLKOBI,
cay2k00Bi agpecn Ta HOMepH TeeOHIB, HAYKOBHH CTYINHD, IIOCAIY, aIpecu eje-
KTPOHHUX CKPUMHBOK Ta iH(OpMaIio npo Haykosl npodaitin asropis (orcid.org,
www.researcherid.com, www.scopus.com) 3 BignoBimHuMu nocunansyu. IIpoxan-
HsT TAKOXK TIOBIIOMUTH MPI3BUITE ABTOPA, 3 IKUM Tpeba BECTH JTUCTYBAHHSI.

7. PexomemnayemMo BUKOPHUCTOBYBATH B AKOCTI 3pa3ka OQMOPMJIEHHS OCTAHHI
sunycku )kyprauay (http://periodicals.karazin.ua/mech _math ).

8. VY Bumanky mopyineHHsd mpaBua 0hOPMICHHS PeIaKIlis He Oyae po3raaiaTu
CTaTTIO.

Esekrponna ckpunbka: vestnik-khnu@ukr.net
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®opmar 70 x 108/16. Manip odcernuii. Ipyk mudposuii.
VM. apyK. apk. 2,8

O06s1.— Bua. apk. 3,5

Hakman 100 op. Bam. Ne 37/25

Beskowmrrosno.

Bunasens i BuroropsmoBad XapKiBChKNU HAIOHAJTBHNUN YHIBEPCUTET
imeni B. H. Kapasina, 61022, m. Xapkis, maiigan Cpobosu, 4

CeimonTso cy6’ekta umapaudoi cipasu JIK Ne3367 sig 13.01.09

BunmapannTeo XapKiBCHKOTO HalllOHAJIBHOTO yHiBepcuTeTy iMeHi B. H. Kapazina



