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Control of wheeled platforms straight motions taking
into account jerk restrictions under speeding-up from
the state of rest

The generalized mathematical model of wheeled platforms straight motions
on the ideal horizontal plane under speeding-up from the state of rest mode
is proposed, and the controls satisfying the restrictions of motion jerks are fi-
nd. The pure mechanical and electromechanical wheeled platforms are consi-
dered, as well as the computer simulations of the researched processes are
made. The jerks restrictions are reduced to limiting the value of the wheeled
platform acceleration time derivative. The proposed approaches are based
on the holonomic systems mechanics and on the electromechanical analogi-
es allowing to consider the different kinds of the wheeled platforms taking
into account the electric on-board systems like the drive electric motors and
the control systems by using the Lagrange equations of second kind. The
examples of the proposed approaches using to define the controls satisfying
the jerks restrictions under speeding-up from the state of rest are consi-
dered for the pure mechanical and electromechanical wheeled platforms. It
is obtained the inequality allowing to chose the instantly supplied drivi-
ng mechanical couple which will provide the admissible jerks of the moti-
on of the wheeled platform under speeding-up from the state of rest. It
is shown that the rolling friction and the viscous damping are the princi-
pal causes of the wheeled platforms jerks under speeding-up from the state
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of rest. It is obtained the inequality defining the voltage instantly suppli-
ed on the drive electric motors which will provide the admissible jerks of
the motion of the electromechanical wheeled platform during speeding-up
from the state of rest, and it is shown that the proposed general approaches
are suitable for considering the different kinds of wheeled platforms. The
computer simulations of the processes of speeding-up from the state of
rest for the electromechanical wheeled platform are considered to show
results correctness and to illustrate satisfying the restrictions of the moti-
on jerks. The obtained results of the computer simulations are in the
full agreement with the well-known fundamental property inherent for the
wheeled platforms. The results for the jerks show that the maximum value
of the jerk is really at the initial time as was suggested before, and it
is shown that the jerks values at the initial time obtained by using the
computer simulations are in full agreement with the theoretically defined
correspondent exact values. The big jerks of the considered electromechani-
cal wheeled platform are due to the voltage instantly supplying on the drive
electric motors at the initial time, and it is understandable that limiting of
such instantly supplied voltage value cannot provide any wished small jerks.
The smooth time depending for the voltages supplying on the drive electric
motors are required to provide any wished small jerks of the electromechani-
cal wheeled platforms.

Keywords: control; motion; jerk; wheeled platform; mathematical
modelling.

2010 Mathematics Subject Classification: 49K15; T0E60; 7T0E55.

1. Introduction

Different kinds of wheeled platforms are widely used for human operated
transportation systems, but last times it is existed the trend in using them also as
the carriers of the different autonomous mobile transportation and technological
systems for industrial, military, police, agriculture and house holding purposes.
The motions jerks can limit the implementing possibilities of the autonomous
wheeled platforms and other robotic systems for automated executing of some
kinds of operations. Du to this circumstance, restricting the motions jerks is in
current interest problem necessary to increase the operational quality and possi-
bilities of implementing of wheeled platforms [1] and of different kinds of robotic
systems. The theme of the proposed research deals with the particular problems
about control of wheeled platforms straight motions taking into account jerk
restrictions under speeding-up from the state of rest, and this theme is in current
interest, because of it is in agreement with the existed general trends in developing
the robotic systems directed to extensions of their implementing.

First principal reason for motions jerks limiting is due to the requirements
of motion smooth necessary for normal operating of different kinds of robotic
systems [2], [3]. The motions smoothness and excluding the jerks can be requi-
red for example for delicate or dangerous cargoes transportation [4] as well as for
providing the most accurate relative positioning of technological systems parts [5].
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It is necessary to note that excluding the motions jerks requires implementing the
mechanisms special designs [6], as well as implementing the special control algori-
thms [4], [5]. So, excluding the wheeled platforms motions jerks is the multidiscipli-
nary problem, and it requires the corresponded developing both the mechanical
design both the control systems which must be corresponded with the existed
imperfections of the mechanical joints due to the friction and the clearances.

Second principal reason for limiting the motions jerks is due to the moti-
on smooth requirements necessary to provide the normal operation conditions
for the sensitive components of on-board measuring systems |7], [8], including the
sensors and the complementary electronic devices like analog-to-digital converters
and computers for real time processing of the measured signals. Really, motions
jerks have influence on on-board sensors like accelerometers or tachometers, and
this influence is equivalent to noises disturbing measured signals used for positi-
oning and defining current state parameters like velocities and accelerations [8].
Due to these circumstances, the motions jerks can lead to failures in positioning,
in velocities and accelerations defining and in control of planed paths. As the
result of all these, normal operation can be broken, and, furthermore, a lot of di-
fferent dangerous can be created especially in using the fully autonomous wheeled
platforms. So, defining the admissible motions jerks providing the normal operati-
on of the wheeled platforms taking into account influencing on on-board measuri-
ng systems is the complicated problem required multidisciplinary approaches
providing opportunities to consider the interactions between the mechanical,
electromechanical and electronic parts [4], [8]. It is naturally that the motions
jerks are associated with the accelerations and their changes like was discussed
in the research [4] for example, so the quantitative measures of the motions jerks
are based on using accelerations and their first and higher derivatives [9]. At the
same time, the mechanical motions are represented by the differential equations of
second orders, so researching the accelerations derivatives is the special separate
problem [10].

To research the wheeled platforms motions jerks it is necessary to have some
general methodology which will allow considering different causes leading to the
jerks. There are a lot of causes leading to the wheeled platforms motions jerks
[1], and it is necessary to research all of them, but it is the complicated problem
not for one research. It is well-known [1] that the jerks are inherent especially for
transient modes of wheeled platforms motions. Thus, the purpose of this research
is in considering the particular problem about control of wheeled platforms strai-
ght motions on the ideal horizontal plane taking into account jerk restrictions
under speeding-up from the state of rest. It is understood that the speeding-up
is the particular case of transient modes of wheeled platforms, and jerks will be
necessarily presented on this mode. Choosing the state of rest as the initial state
is to simplify formulating the initial conditions, and such simplification is suitable
for obtaining the primary results for planning the further researches in the field of
the motion control under jerks restrictions. To realize the purpose of the research
the follows tasks will be considered:
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e the generalized approaches to define the controls satisfying the straight moti-
ons jerks restrictions of wheeled platforms will be developed for the speeding-up
from the state of rest modes;

e the examples of the proposed approaches using to define the permissible
controls satisfying the jerks restrictions under speeding-up from the state of
rest will be considered for the pure mechanical and electromechanical wheeled
platforms;

e computer simulations of the processes of speeding-up from the state of rest
will be executed for the electromechanical wheeled platforms to show the results
correctness and to illustrate satisfying the restrictions of the motions jerks.

Developing all noted above tasks will allow giving the clear imaginations about
the proposed generalized approaches and their using in the important particular
cases, as well as it will allow illustrating the influence of the researched control
processes on the motions jerks for the wheeled platforms under speeding-up from
the state of rest.

2. Generalized approaches

Developing the generalized approaches is more suitable than developing the
particular approaches for each particular task. The generalized approaches to defi-
ne the controls satisfying the wheeled platforms jerks restrictions under speeding-
up modes from the state of rest are reduced to mathematical modelling of the
researched modes and to resolving the formulated restrictions. The mathematical
modelling of the wheeled platforms speeding-up modes will be considered under
the most generalized assumptions that the researched wheeled platforms can be
reduced to the holonomic systems. It is really the serious simplification because of
the nonholonomic constraints are inherent for the wheeled platforms in general,
but we have the hope that considering the particular case of the straight motions
under speeding-up modes from the state of rest allow reducing to the holonomic
systems.

It is well-known [11], [12| that the state of the holonomic systems can be
defined by using the generalized coordinates:

Qk:qk(t)7k:]‘727"7N7 (1)

where g,k = 1,2,.., N are the generalized coordinates; N is the number of the
freedom degrees of the holonomic system; ¢t > 0 is the time.

It is necessary to note that not all generalized coordinates (1) will have the
mechanical sense like linear displacements or angles; and some of these coordinates
(1) can have the electrical sense like the electrical charges in the case of the
electromechanical wheeled platforms. The translational straight motions of the
wheeled platform can be imagined as the motions of its mass center, and it can
be represented in the natural coordinates, so that we will have for the holonomic
system the follows relation:

SZS(q1»Q27'“7qN)> (2)
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where s is the length of the arc of the trajectory of the mass center of the consi-
dered wheeled platform.

It is not unexpectedly to define the jerk as the time derivative of the accelerati-
on and as the time third derivative of the coordinate:

. 3
j=9%3, (3)

where j is the estimation of the jerk of the motion of the considered wheeled
platform.

Taking into account the used estimation of the motion jerk (3) and the relati-
ons (2), (1), we will have the follows:

N (N N _ N )

OEDY ( > oo e 43 Gl Ml %%) Y
k=1 \i=1j=1 i=1

Relation (4) shows that the jerks of the translational motions of the wheeled

platforms are depended on the generalized velocities, generalized accelerations

and the generalized accelerations time derivatives as well as on the building of the

wheeled platform.

The Lagrange equations of second kind give us one of the most general form
of the differential equations of dynamics of holonomic systems representing the
different kinds of wheeled platform under the different operational modes:

gL —fE — R 4 Qp, k=1,2,..,N, (5)
where £ is the Lagrange function defined as difference between the kinetic and
potential energies of the considered wheeled platform; ¢p = dqi/dt; R is the
generalized Raleigh function defining all the dissipation for the considered wheeled
platform; Q are the generalized forces corresponding with the relevant generali-
zed coordinates and defining all the driving forces and couples of the considered
wheeled platform.

The equations (5) are the differential equations of second order, so the
assumption about the initial state of rest for the considered wheeled platform
allows formulating the initial conditions:

q(0)=0, g =0, k=1,2,..,N. (6)

Thus, the differential equations (5) with the initial conditions (6) generally
represent the mathematical model of motion from the state of rest of the wheeled
platform considered under the restrictions leading to the correspondent holonomic
system with the generalized coordinates (1).

Taking into account the purpose of the research, we will consider further the
transient modes from the initial state (6) to some state of uniform motion with the
relative small velocity allowing the linearization of the differential equations (5) of
the dynamic of the wheeled platform which is considered as the holonomic system.
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Such linearization will allow represent the Lagrange £ and Raleigh functions R
in the follows form:

NN X
L=35> > Mpirdi — 5 Y > ChiGri (7)
f=1i=1 =1i=1
N o NN
R= > fedr+35 > > Bridnds, (8)
=1 =1i=1

where my; and cg; are the generalized inertia and stiffness constant parameters of
the considered wheeled platform parts; fi are the parameters defining the non-
viscous frictions not depending on the velocities; [g; are the generalized damping

N N
parameters satisfying the conditions: Br > 0, Sk = Bix and > > Bridrdi > 0
k=1i=1

and defining the linearized viscous damping.

It is naturally to imagine that motion control of the wheeled platforms is
realized thru the driving generalized forces. We will assume that the control of
the wheeled platform can be reduced to one time depended function:

u = u(t), (9)

where u is the parameter defining the control influence on the considered wheeled
platform.

The assumption (9) limits the possible class of the considered wheeled
platforms, but this theoretically limited class can represent the most of actually
existed and widely used wheeled platforms. Really, each wheeled platform has the
energy source, the transmission as well as the drive and supporting wheels, so that
the state of the energy source naturally defines the state of the wheeled platform.
Although, the physical essentials of the power produced by the energy source is
significantly depended on the type and on the design of the energy source, but it
is more principally for us to define the state of the energy source by the power
supplied to the transmission to move the drive wheels of the wheeled platform.
Due to the noted here circumstances, the assumption (9) seems as the natural
because of we have only one principal parameter defining the state of the consi-
dered wheeled platform and this parameter is the power supplied from the energy
source to the transmission. Of course, the supplied power can be defined by other
parameters like the torque, the position of the fuel valve or the voltage supplied
to drive electric motors. Exactly, the noted case is the typical for the most of
existed and used wheeled platforms. Considering the transient modes from the
initial state (6) to some state of the motion with the relative small velocity is
in agreement with the purposes of this research, and it allows linearization of
the differential equations (5) of the dynamics of the wheeled platform which is
considered as some holonomic system. Thus, the driving generalized forces can be
represented taking into account the assumption (9) in the follows linearized view:

N
Qk = ) oiGi + bpu(t),k=1,2,.., N, (10)

=1
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where ay; are the parameters defining the linearized velocity depending of the
driving generalized forces, but by are the constant parameters characterizing the
sensitivity of the control of the considered wheeled platform.

Taking into account the relations (7), (8) and (10) in the Lagrange equati-
ons of second kind (5), we will have the follows linearized differential equations
representing the dynamics of the considered wheeled platform:

N N N
> mgiGi = — > ckigi — . dkiGi — fr + bru(t), k=1,2,.., N, (11)
=1 =1 =1

where di; = Bri — Q.

Further, it will be suitable to have the vector-matrix representation of the
differential equations (11), and to have this representation, we will introduce the
follows vectors and matrices:

q1 f1 b1
q2 _ fo _ by
q= ) = . b= ) ;
gdN fN by
mi1p Mz - MIN 11 Ci2 ' CIN
m21  M22 -+ MaN €21 €2 -+ CaN
M = . ) . ] ,C = } . ) , (12)
mN1 MmN2 - MNN CN1 CN2 *** CNN
din  dip -+ din
dor  doa -+ don
D = } .
dnvt dn2 -+ dnN

The introduced above vectors and matrices (12) allow representing the differential
equations (11) and the initial conditions (6) in the suitable vector-matrix form:

M{ = —Cq — Dg — f+ bu(t), q(0) =0, q(0) =0, (13)

where 0 is the zero vector having the correspondent dimension.

Solving the initial-value problem (13) will give the opportunities to find the
jerks (4) corresponded to the given control (9), so in the form (13) we have the
mathematical model of the considered wheeled platform representing its dynami-
cal properties which must be taken into account to design the controls satisfying
the motions jerks restrictions. We will consider further one of the principal kinds
of the control (9) defined by the constant:

u(t) = ue, (14)

where u,. > 0 is the given constant corresponded to some quasi-stationary mode
of the motions of the considered wheeled platform characterized by the constant
velocity of its mass center.
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Considering the particular case (14) of the control (9) is really very important
from the point of view on designing the control of wheeled platforms speeding-
up from the state of rest taking account the motion jerks restriction. Really, the
motions defined by the differential equations and the initial conditions (13) for
the control (14) represent the transient characteristics of the considered wheeled
platform, and exactly these transient characteristics define the transient processes
including the jerks during speeding-up of the wheeled platform from the state of
rest. It is naturally to assume that the maximum jerks of the wheeled platform
are at the beginning of the motions, because of exactly in this moment the motion
is created from the state of rest, and further we will have only increasing of the
velocity of the already existed motion, until this velocity will achieve the steady
value, corresponded to the control (14). Taking into account the initial conditions
(6), the relation (4) allows defining the wheeled platform jerk at the initial time
of the speeding-up process:

. . . N .d3
7(0) = jo, jo= > Jr g (0), (15)
k=1

where jg is the jerk at the initial time; j; = é%sk 4;=0

i=1,2,...,N
To restrict the jerks of the considered wheeled platform it is naturally to limit

the initial jerk (15):
ljol < [41, (16)

where [j] > 0 is the admissible jerk of the considered wheeled platform.

Considering the transient process (13) during the wheeled platform speeding-
up for the control (14) will allow defining the control satisfying the jerk restriction
(16), but to do this it is principally more suitable to represent the mathematical
model (13) representing the considered wheeled platform in the form of the system
of first ordered differential equations. To represent the second ordered differential
equations (13) as the system of the first ordered differential equations we will
introduce the follows phase state space:

T1=q1, T2=¢2,..., TN =qn, TN+1 =1, TN42 = §2,..., TaN = Gn, (17)

where zp, k = 1,2,...2N are the phase coordinates.
It is suitable to represent the phase coordinate (17) as the vector:

X:(l‘l xro - In )T, (18)

where n = 2N is the dimension of the state phase space and T is the transpose
operation symbol.

The introduced vector (18) and the assumption (14) about the control allow
representing the differential equations and the initial conditions (13) in the follows
suitable form:

dx — Ax — f+ buc, x(0) =0, (19)
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where A is some matrix, f and b are some vectors; 0 is the zero vector.
Comparing the equation (19) and the equation (13) allow us to write the
matrix A and the vectors f and b included in the equation (19):

o) I 0 0
A( -M~'C -M™'D )’f<M‘1f>’b<M‘lb>’ (20

where O and I are the zero and unit matrix, but 0 is the zero vector of the
correspondent dimensions.

Taking into account the introduced above vector (17), (18), the initial jerk
(15) of the wheeled platform can be represented in the follows view:

. e d2 . . . .
Jo=3%F(0),j=]10 0 -+ 0 51 jo -+ jv |- (21)
N

Solution of the initial-value problem (19), (20) and the relation (21) allow finding
the initial jerk jo required for the jerk restriction (16) of the considered wheeled
platform. Really, the solution of the problem (19) can be represented in the follows
form:

x(t) = (eA 1) (A7 (bu. — 1)) . (22)

The solution (22) and the relation (21) allow finding the initial jerk of the motion
for the considered wheeled platform:

jo = JA (buc — ). (23)

Relation (23) and the the restriction (16) will allow defining the control (14) and
representing this control thru the primary linearized differential equations (13).
To do this, it is necessary to take into account the relations (20) and (21), so the
result of all these will lead to the restriction of the control (14) in the follow view:

JM'DM'f— (jJM'DM ™ 'b) u.| < [5], (24)

where j= (j1 jo -+ v )

The relation (24) is actually gave the restriction of the considered wheeled
platform control (14) providing speeding-up from the state of rest under the limi-
ted motion jerks. We can see from the relation (24) that the jerks can be only due
to existing the linear dissipative and gyroscopic generalized forces, because the
zero matrix D allows satisfying the jerk restriction (24) for any control (14). These
dissipative forces are usually the result of the aerodynamic and hydrodynamic fri-
ctions; the Coriolis forces are the example of the gyroscopic forces.

The constant generalized forces of the wheeled platform are represented by
the vector f and are had the significant influencing on the motions jerks. These
constant generalized forces are usually for example the gravity forces acting on
the wheeled platforms moved on the inclining road or the rolling friction couples
of the wheels interacting with the soil.
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3. Examples

The developed approaches reduced to the inequality (24) for control of the
straight motion under speeding-up from the state of rest mode taking into account
the jerks restrictions can be used for different kinds of the wheeled platforms.
Further, we will illustrate the mechanics foundations of the developed approaches
as well as we will consider the particular application of these developed approaches
deals with the control of autonomous electromechanical wheeled platform.

Example 1. The simple schematization (fig. 1a) of the four-wheeled platform
will be considered firstly to illustrate the mechanical foundations of the proposed
approaches reduced to the inequality (24). This schematization (fig. 1a) is based
on the assumption (1) about the generalized coordinates, and in this particular
case it will be assumed that the straight motion of the considered four-wheeled
platform can be defined by one generalized coordinate ¢; representing the rotation
angle of its wheels, so the straight motion can be defined as follows (fig. 1a):

s=qr, (25)

where s is the linear coordinate defining the straight motion; ¢; is the rotation
angle and r is the radius of the wheels of the considered platform.

J(@)

Fig. 1. Schematizing of the four-wheeled platform (a) with the housing-1
and the wheels-2, as well as the result for the jerk (b) of this platform
and the equivalent scheme of the drive electric motors (c)

The relation (25) actually is the particular case of the generalized form relation
(2), so the relation (4) defining the jerk (3) will have the more simple view:

. 3
Jt) = ri. (26)

For the assumed schematization (fig. 1a) of the considered four-wheeled platform
we will have the follows Lagrange function £, the Raleigh function R and the
driving generalized force @Q1:

L=13174 J=m,r?+4J,, 27
2 1 P
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R = 4M,r41 + 3843, (28)
Ql — 4Md; Ue = Mda (29)

where m,, is the total mass and J,, is the inertia moment of the wheel of the
considered platform (fig. 1a); M, = const is the rolling friction couple; f is the
parameter defining the viscous linear damping; My is the driving couple acting to
each of the wheels.

The relations (27)-(29) and the Lagrange equations (5) with the assumed
initial conditions (6) in the considered case of the system with one freedom degree
(N = 1) allow writing the follows differential equation and the initial conditions:

JG1 + Bgr =4 (Mg — M,y), qi1(0) =0, ¢1(0) =0. (30)

Solution of the Cauchy linear problem (30) can be represented in the follows view:

()= 4 (Ma—Mop) (t =4 (1-77")). (31)

The solution (32) allows finding the jerk of the considered wheeled platform using
the relation (26):

4 . B
(t) = =285 (Mg — Myp) e 7t (32)

Solution (32) shows (fig. 1b) that the maximal jerk of the motion is in the ini-
tial time moment corresponding to the beginning of speeding-up of the consi-
dered wheeled platform from the state of rest, and this circumstance in the full
agreement with the previously used limitation of the jerks which was represented
by the inequality (16). Thus, the maximal jerk of the considered wheeled platform
(fig. 1b) can be defined by the relation (32) at the initial time moment ¢ = 0:

§(0) = =2 (Mg — M,y). (33)

Due to the relation (33), it is possible to have the particular representation of the
generalized inequality (16):

B\ My — Myg| < [j). (34)

To provide the motion of the considered wheeled platform it is necessary to satisfy
the follows relation:
Mg > M,y. (35)

Due to the inequalities (34) and (35), it is possible to have the condition on the
driving couple:
2 .
My < Mys + 5[] (36)

The inequality (36) allows choosing the driving couple which will provide the
admissible jerks of the motion of the wheeled platform speeding up from the state
of rest. The inequality (36) shows that the rolling friction and the viscous damping
are the principal causes of the jerks of the wheeled platforms under speeding up
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from the state of rest. Besides, the obtained result (34) is the illustration of the
generalized approaches reduced to the inequality (24). Really, the result (34) can
be obtained by using the generalized inequality (24), if are will be assumed the
follows:

j=(), M=(J), D=(8), f=(4M,s), b= (4). (37)

Example 2. In the previously considered example, the control was reduced to the
drive couple (29) immediately acting on the wheel. At the same time, the drive
couples are often the results of some power source operating, and it is possible
only the indirect control of the drive couples due to the controlling of the power
source state. This circumstance make more difficult the wheeled platforms control
under the motions jerks restrictions because of the power sources have the own
inherent properties and can have additional influence on the wheeled platforms. To
show this, we will consider the same four-wheeled platform (fig. 1a), but driving
by means the direct current electric motors schematized as shown on the fig. lc.
In this case the generalized coordinate gy representing the electric charge in the
equivalent electric circuits of the electric motors actually defines the state of the
drive electric motors, and the voltage U = U(t) supplied to the each of these
drive electric motor actually controls the drive couple My on the wheels. So, the
Lagrange function, the generalized Raleigh function and the generalized forces
representing the four-wheeled platform (fig. 1a) with the driving electric couples
(fig. 1c) on each of the wheels will have the follows view:

L£=1J¢+ 34L43, (38)
R = 4M, ;g1 + 1843 + 34Rd3, (39)
Ql = 4Mda Md — BQQ, QQ — 4(U - Bql)v Ue = U7 (40)

where L is the inductance, R is the resistance of the equivalent electric circuit and
B is the electromechanical parameter of the drive direct current electric motor;
U is the supplied voltage on the drive electric motors.

The relations (38)-(40) and the Lagrange equations (5) with the assumed
initial conditions (6) in the considered case of the system with two freedoms
degree (N = 2) allow writing the follows differential equations and the initial
conditions:

Ji1 = —B¢1 +4Bgo — 4Mrf,4Ld2 = —4B¢; — 4Rqgs + 4U, (41)

q1(0) =0, ¢2(0) =0, ¢1(0) =0, ¢2(0) = 0. (42)

The differential equations (41) with the initial conditions (42) can be represented
in the generalized form (13) in which we will have the follows vectors and matrices:

(D) () () e
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(J 0 (00 _ 8 —4B
M=) c=(00)P=(up ) @
Substituting the vectors (43) and matrices (44) to the inequality (24) allows obtai-
ning the limitation on the supplied voltage on the drive electric motors providing

the required restriction of the jerk of the straight motion under the speeding-up
of the four-wheeled electromechanical platform:

jo="% (50 +5U) %

EM,;+ BU| <[5, (45)

The results (34) and (45) allow showing that increasing the inertia of the wheeled
platform represented by the generalized inertia moment J leads to decreasing the
straight motion jerks under speeding-up from the state of rest. So, in the case of
importance of limiting the jerks it is necessary to increase the mass of the wheeled
platform. The results (34) and (45) also showing that decreasing the radius of the
wheels of the platformn leads to decreasing the jerks of the straight motion under
speeding-up from the state of rest. Both the results (34) and (45) show that the
rolling friction will necessarily lead to the jerks. At the same time, the result (35)
shows that choosing the drive couple allows provide any wished small jerk, even
if the rolling friction is presented, but the result (45) shows that it is impossible
to have any wished small jerks of the electromechanical wheeled platform, if the
rolling friction is presented, and it is only possible to minimize the jerks. This
difference in the results (34) and (45) is due to that the properties of the sources
of the drive mechanical torque of the wheels are not considered in the result (34),
but this was considered in the result (45). So, properties of the the power source
have the significant influence on the control providing the jerks restrictions of the
straight motion under speeding-up from the state of rest of the wheeled platform.

4. Computer simulations

Further, we will consider the computer simulation of the wheeled electromecha-
nical platform defined by the mathematical model (41), (42). This computer si-
mulation will be reduced to the numerical solving of the initial value problem
(41), (42), which will be represented as the system of the first ordered differential
equations with the initial conditions (19). To have the required representation
(19) of the initial value problem (41), (42) we will use new variables (17) with the
N = 2 generalized coordinates and the control u. = U, as it was defined in the
last relation (40). Thus, taking into account the relations (20), (43) and (44), we
will have the vector x, the matrix A as well as the vectors f and b defining the
linear differential equations (19) in the follows view:

x=(xz1 2 x3 24 )T, (46)
0 0 1 0 0 0
0 0 0 1 0 0

A=l oo —g 4B "5 w027 0 (47)
0 0 —B/L —R/J 0 1/L
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The involved in the differential equations (41) numerical parameters representing
the characteristics of the wheeled electromechanical platform will be considered
as follows:

J=80kg-m2 r=0,15m, § =25 ken

S

, M,y =515N-m, (48)

L=26mH, R=1,18Q, B=4 X2 (49)

To workspace
’,@ x3 [128000000]

.—m’.
x4 [128000000]

N

{2 x3 > 0 » 1
' o ' &

B

&

MUX

Fig. 2. Graphical representation of the model of the electromechanical
wheeled platform in the Scilab free open source software

To solve the initial value problem (41), (42), (46)-(49) we will use the Scilab
free open source scientific software in which we will use the especially designed
graphical representation of the model of the considered electromechanical wheeled
platform as shown on the fig. 2. This computer model (fig. 2) allows having di-
fferent results, but further, we will consider only the follows:

v (t) =ras(t), (50)

J(t) = rigE (1), (51)
where v is the velocity and j is the jerk of the motion of the considered wheeled
electromechanical platform.

Numerical solving of the initial value problem (41), (42), (46)-(49) allows havi-
ng only the approximate solution for the 3 (), but this approximate solution will
be close to the exact solution of this problem, so we can have the correct results for
the velocity (50) of the considered wheeled platform. At the same time, it is well
known that differentiation of the approximate solution 3 (¢) is incorrect in the
Hadamard sense, and due to this we cannot have the correct results for the jerk
of the considered electromechanical wheeled platform, if the formula (51) will be
used directly. To exclude the Hadamard incorrectness to have the correct results
for the jerk (51) it is necessary to represent the derivative d?x3/dt? thru the x
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vector. It is not difficult in the considered example; really, taking into account
the relation x3 = ¢; and first differential equation (41), we will have the follows

relation:

2 . ..
Tos = L4+ L. (52)

Further, it is necessary to exclude the second derivatives of the generalized coordi-
nates from the obtained relation (52) using the differential equations (41). All
these and the definitions (17) will allow having the follows:

2 2 2 48 M,
= (5 ) (S ) e G U o
0,8 700
i \
600\
0,6 500\
© 2 400l
Z 400
S04 e
S / =300
= \ 1
0.2 200 \\
2\ 100\
N
%72 4 6 3 10 %5 10 15 20
l,s l,ms
a) b)

Fig. 3. Velocity (a) and jerk (b) of the electromechanical wheeled platform
corresponded to the voltages U = 60 V (curve 1) and U =40 V (curve 2)
supplied on the drive electric motors

It is necessary to note, that instead the particular result (53) it is possible to
use the generalized result obtained from the differential equations (19):
@2 — (AA)x — Af+ (A) bu,. (54)
The opportunities of representing the jerk thru the vector x in the general
form (54) for the linearized problem (19) are really very important to exclude
the differentiation of the x vector leading to the Hadamard incorrectness in the
case of using the numerical methods for finding the x vector. The most interested
quantitative results obtained by using the computer simulations (fig. 2) for the
velocity (50) and for the jerk (51), (53) of the considered wheeled electromechani-
cal platform are presented on the fig. 3. We can see (fig. 3a) that the velocity of the
wheeled platform is directed to the maximum value corresponding to equilibrium
between the viscous damping and the driving couples which are depended on the
voltage supplied to the drive electric motors. This is in the full agreement with
the well-known fundamental property inherent for the wheeled platforms. The
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results for the jerk (fig. 3b) show that the maximum value of the jerk is really
at the initial time moment as was suggested before in the relations (16) and
(24). The jerks values at the initial time moment (fig. 3b) obtained by using the
computer simulations are in full agreement with the correspondent exact values
defined theoretically by using first relation (45). Aspiration of the jerk’s value to
zero value during the time is in the agreement with aspiration of the accelerati-
on value to zero. We can see (fig. 3b) the significant values of the jerks of the
considered electromechanical wheeled platform due to instant voltage supplying
on the drive electric motors at the initial time moment, and it is understandable
that limiting of the value of the instantly supplied voltage cannot provide any
given small jerks. Thus, to provide any small given jerks of the electromechanical
wheeled platforms the smooth time’s depending for the voltages supplying on the
drive electric motors is required, and it is looked understandable.

Conclusion

The researches of the particular problem about control of wheeled platforms
straight motions on the ideal horizontal plane taking into account jerk restrictions
under speeding-up from the state of rest allowed obtaining some results, and due
to these results it is possible to have the follows conclusions.

First of all, the generalized approaches to define the controls satisfying the
straight motions jerks restrictions of wheeled platforms are developed for the
modes of speeding-up from the state of rest. The jerks restrictions are reduced to
limiting of the time derivative value of the wheeled platform acceleration. These
generalized approaches based on the holonomic systems mechanics and on the
electromechanical analogies allow considering the different kinds of the wheeled
platforms taking into account the electric on-board systems like the drive electric
motors and the control systems by using the Lagrange equations of second ki-
nd. Although, holonomic systems can represent only some particular motions of
the wheeled platforms, but such particular cases are really important for solving
the problems about the speeding-up and slowing-up straight motions of wheeled
platforms. Considering the nongolonomic systems which can represent all the
modes of the motions of wheeled platforms is planned for the future researches.

Secondly, the examples of the proposed approaches using to define the controls
satisfying the jerks restrictions under speeding-up from the state of rest are
considered for the pure mechanical and electromechanical wheeled platforms. It
is obtained the inequality which allows choosing the instantly supplied driving
mechanical couple which will provide the admissible motion jerks of the wheeled
platform under speeding-up from the state of rest. It is shown, the rolling friction
and the viscous damping are the principal causes of the motion jerks of the wheeled
platforms under speeding-up from the state of rest. It is obtained the inequality
defining the voltage instantly supplied on the drive electric motors which wi-
1l provide the admissible motion jerks of the electromechanical wheeled platform
under speeding-up from the state of rest, and it is shown that the proposed general
approaches are suitable also for considering the jerks of different kinds of wheeled
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platforms.

Thirdly, the computer simulations of the processes of speeding-up from the
state of rest for the electromechanical wheeled platform are considered to show
the results correctness and to illustrate satisfying the motions jerks restrictions.
The obtained results of the computer simulations are in the full agreement with
the well-known fundamental property inherent for the wheeled platforms. The
results for the jerk show that the maximum value of the jerk is really at the
initial time moment as was suggested before, and it is noted that the jerks values
at the initial time moment obtained by using the computer simulations are in
full agreement with the correspondent exact values defined theoretically. The big
values obtained for the jerks of the considered electromechanical wheeled platform
are due to instant voltage supplying on the drive electric motors at the initial
time moment, and it is understandable that limiting of the value of the instantly
supplied voltage cannot provide any wished small jerks. To provide any wished
jerks of the electromechanical wheeled platforms it is required to have the smooth
time depending for the voltages supplying on the drive electric motors.
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piBusab Jlarpam»ka npyroro pomay po3riisiaTd Pi3Hi THNH KOJIiCHUX 1aTdhOPM 3 ypaxy-
BAHHSIM €JIEKTPUIHUX OOPTOBUX CUCTEM, TAKUX SIK TIPUBO/IHI €JIEKTPOIBUTYHU TA CUCTEMHU
KepyBaHHA. X04a TOJIOHOMHI CHCTEMHU BiOOPasKalOTh JIWINE JIEsIKi OKPEeMi PyXu KOJICHUX
mwrardopM, ajie Taki OKpeMi BUIAJKW [ifiCHO BaXKJWBI JJjisd PO3B’sS3yBaHHS 3aa4 PO
MPUCKOPEHHsI Ta YIOBUIbHEHHS PYXiB KOJIICHUX TIaTdOpM 3 ypaxyBaHHSIM OOMEKeHb
Ha puBku. g CyTO MEXaHIYHUX Ta €JIEKTPOMEXAHIYHUX KOJICHUX I1arTdOpM PO3IJis-
HYTO MPUKJIAIN BUKOPUCTAHHS 3aTPOTIOHOBAHNX TIXO/IB JJIsT BU3HAMEHHS JIOTYCTUMUX
KEPYBaHb, IO 33I0BOJIbHIIOTH OOMEXKEHHsI HA PUBKHU MPU PO3TAHSIHHI 31 CTAHY CIIOKOO.
OTrpuMaHO HEPIBHICTD 11010 BUSHAYEHHS MUTTEBO MOJAHOI BEIyY0l MEXAHIYHOI TapH, SKa,
3a6€e3Me9nTh JOMYCTUMI PUBKH PYXY KOJICHOI m1aTgopMu, 10 TPUCKOPIOETHCS 31 CTAHY
cnokoio. [TokazaHno, mo Teprst KOYeHHs Ta B’sA3KUi OMip € OCHOBHUMU IIPUYNHAMEI PUBKIB
KoJlicHuX mraTgopM npu posraHsH#i 31 crany crnokow. OTpuMaHO HepiBHICTH, sKa BU-
3HAYAE €JEKTPUIHY HAMpYTy, IO MUTTEBO TOJAETHCA HA MPUBOIAHI €EKTPOIBUTYHU Ta,
3a0e3medye JOMyCTUMI PUBKH PYXY €JEeKTPOMEXaHIdHOI KOJIICHOI mraTdOopMu, IO MpH-
CKOPIOIOTHCS 31 CTaHy CIIOKOK. 3aBISKHU IBOMY MTOKA3aHO, IO 3aIPOIIOHOBAHI 3arajibHi
TI,AXOH IiIXOIATH TAKOXK JIJTsT TOCTIIXKEeHHSA KOMICHUX aaT¢opM pisHoro tumy. Po3ris-
JAETHCS KOMIT IOTEPHE MOJEJIOBAHHS IIPOIECIB PO3raHsAHHs 31 CTAHy CIOKOIO €JIEKTPO-
MEXaHIYHUX KOJIICHUX TLIAT(OPM 00 MaTH TiATBEP/IZKEHHS MOXKJIMBOCTI BUKOPUCTAHHS
3aMpPOMOHOBAHUX MOJEJeH Ta TPOLTIOCTPYBATH BUKOHAHHS OOMEXKEHb HA PUBKHU Mi Yac
pyxiB. OTpumasni pe3y/abTaTu KOMIT IOTEPHOIO MOEIIOBAHHS MOBHICTIO y3TOMKYIOTHCS 3
BimoMoOr0 QyHIAMEHTANIHHOIO BJIACTHUBICTIO, MPUTAMAHHOIO KOJiCHHM ImaTdopmam. Pe-
3yJIBTATH JJid PUBKIB MMOKA3yIOTh, 0 MAKCHMAJIbHE 3HAYEHHS PUBKA JIHCHO € B IOYa-
TKOBHUI MOMEHT 9acy, sik OyJIO 3aIIPOIOHOBAHO paHilie, i MOKa3aHo, M0 3HAYEHHS PUBKIB
y MOYATKOBUN MOMEHT Yacy, OTPUMAHI 33 JOMOMOrOK KOMIT'IOTEPHOTO MOJIE/TIOBAHHS,
TIOBHICTIO Y3TOKYIOTHCS 3 BiMOBLAHUME 3HAYEHHSIMHU, TOYHO BU3HAUEHUMU TEOPETH-
qH0. Benuki 3HavMeHHs, OTPUMAaHI /11 PUBKIB PO3TJISHYTOl €TeKTPOMEXAHITHOI KOTiCHOT
mwrarhopMu, 3yMOBJIEHI MUTTEBOIO IOJAYEI0 HANPYTU HA IPUBOIHI €JEKTPOIABUTYHHU B
MIOYATKOBUM MOMEHT 9acy, i, 3pO3yMiJio, M0 OOMEKEHHsT BEJIMYNHA MATTEBO OIaHOI Ha-
TMPYTHU HE MOXKe 3a0e3meunTr Oy Ib-aKuX DayKaHUX HEBEJIUKUX PUBKiB. /st 3abe3meuenns
OyIb-IKUX HEBEJIMKUX DAYKAHUX PUBKIB JIEKTPOMEXAHIIHUX KOJIICHUX T1aTdOpM HEoOXi-
JHO MATH IJIABHY 3aJI€’KUTD B/l 9acy HAIPYT, IO MOAAIOTH HA €JIeKTPOABUTYHU TPUBOLY.
Karowosi cro6a: KepyBaHHS; pyX; PUBOK; KOJIiICHA TIaT(opMa; MaTeMaTUdHe MO-
JeJIOBaHH4.

Icropisa crarri: orpumana: 21 6epe3us 2022; ocranniit Bapiant: 15 cepmasa 2022
npuitaaTa: 18 gucronaga 2022.
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Homogeneous approximation for minimal realizations

of series of iterated integrals

In the paper, realizable series of iterated integrals with scalar coefficients
are considered and an algebraic approach to the homogeneous approximati-
on problem for nonlinear control systems with output is developed. In the
first section we recall the concept of the homogeneous approximation of a
nonlinear control system which is linear w.r.t. the control and the concept
of the series of iterated integrals. In the second section the statement of the
realizability problem is given, a criterion for realizability and a method for
constructing a minimal realization of the series are recalled. Also we recall
some ideas of the algebraic approach to the description of the homogeneous
approximation: the free graded associative algebra, which is isomorphic to
the algebra of iterated integrals, the free Lie algebra, the Poincaré-Birkhoff-
Witt basis, the dual basis and its construction by use of the shuffle product,
the definition of the core Lie subalgebra, which defines the homogeneous
approximation of a control system. In the third section we show how to
find the core Lie subalgebra of the systems that is a realization of the one-
dimensional series of iterated integrals without finding the system itself.
The result obtained is illustrated by the example, in which we demonstrate
two methods for finding the core Lie subalgebra of the realizing system. In
the last section it is shown that for any graded Lie subalgebra of finite codi-
mension there exists a one-dimensional homogeneous series such that this Lie
subalgebra is the core Lie subalgebra for its minimal realization. The proof is
constructive: we give a method of finding such a series; we use the dual basis
to the Poincaré-Birkhoff-Witt basis of the free associative algebra, which is
built by the core Lie subalgebra, and the shuffle product in this algebra. As
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a consequence, we get a classification of all possible homogeneous approxi-
mations of systems that are realizations of one-dimensional series of iterated
integrals.

Keywords: homogeneous approximation; series of iterated integrals;
minimal realization; core Lie subalgebra.

2010 Mathematics Subject Classification: 93B15; 93B25; 93C10.

1. Introduction

The homogeneous approximation problem has attracted great attention of
experts in the control theory for several decades. We briefly recall the definition.
In this paper we restrict ourselves to the class of control systems, which are linear
w.r.t. the control, of the form

m
&= Xi(x)u;, (1)
i=1
where X1 (z), ..., X;n(z) are real analytic vector fields in a neighborhood of some

point z°. Under homogeneous system from this class we mean a system of the
polynomial form

m

. ik a . 9k-1,, ik _

Ty = E Zaql_"qk_lxl T Uiy Qg g ER, k=100, (2)
i=1

where the inner sum in the right hand side of (2) is taken over all integers
qis-..,qk—1 > 0 such that

quwi + -+ gp_1wi—1 + 1 = wy,

and 1 < wy; < --- < w, are some integers called weights of the coordinates
Z1,...,Tn. We note that a homogeneous system is feedforward, hence, if the
controls u;(t) are known, then the components of the trajectory zj(t) can be found
one by one by integrating known functions, without solving differential equations.
It is convenient to deal with a coordinate-free definition. So, we say that a system
is homogeneous if it takes the form (2) after some change of variables.

The concept of a homogeneous approximation can be introduced by di-
fferent ways. Using coordinates, we can explain the definition as follows. Let us
denote by x(t;u) and Z(t;u) the trajectories of the systems (1) and (2) starti-
ng at z° and at the origin respectively and corresponding to the same control
u(t) = (u1(t), ..., um(t)). We denote

U1) = {ut) = (ui(t), ..., um(®) : lwi(@®)| <1, i=1,....m, t €[0,1]}.

Finally, for any u € U(1), we denote by u'/?(t) the function u'/?(t) = u(t/6),
t € [0,6] (i.e., ut/?(t) is obtained from wu(t) by “shrinking” its domain [0,1] to
[0,6]).
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We say that a system of the form (2) is a homogeneous approzimation of the
system (1) if there exists a change of variables y = Q(z) such that Q(2°) = 0 and
for any u(t) € U(1)

0= ((QUa(B:u*))k — F(O:0/%)) 0 as 650, k=1,

Informally, this means that after some change of variables trajectories of the
initial system and of its approximation become equivalent at the origin for any
fixed control.

Many results concerning homogeneous approximation exploited differential-
geometric tools and language [3], [21], [1], [6], [2]; the results obtained within this
approach were summarized in [10]. As an example of usage for a local analysis of
a particular class of systems, we mention Goursat distributions [15].

Another fruitful way was initialized by M. Fliess [5]; it was based on interpreti-
ng control systems as formal series of noncommutative variables and used tools of
free algebras [11], [13], [17], [18]; an overview can be found in [12]. Namely, instead
of the system (1), one considers its trajectory as a series of iterated integrals

t rm Tk—1
x(t;u) = xo—l—zal___ik / / / wiy (1) -+ - w4y, (Tg)dTR - - - dT
0 JO 0

where ¢;, ;, € R"™ are expressed via values of the vector fields X;(x) and their
derivatives at z°. Therefore, Ci,..i, are constant vectors. Iterated integrals are
linearly independent functionals of u; and, therefore, can be interpreted as a basis
for a free associative algebra. We give more detailed explanations in the next
section.

In [7], [19] a complete classification of homogeneous approximations was obtai-
ned. It turned out that a homogeneous approximation is defined by some Lie
subalgebra in the free Lie algebra with m generators called a core Lie subalgebra,
which is defined by the system. As an important benefit of the algebraic way of
finding homogeneous approximations, we mention its convenience for computer
realization [20].

In the present paper we study an algebraic description of homogeneous
approximations for nonlinear control systems with output. More specifically, we
consider series of iterated integrals with scalar coefficients

t T1 Thk—1
y(tu) =y° + E Ci1...ik/ / / wiy (1) -+ - g, () dT) - - - (3)
o Jo 0

where ¢;;.;, € R. The series (3) is called realizable if these exists a system of
the form (1) and a function y = h(z) such that y(t;u) = h(z(t;u)) admits the
representation (3); it is known that the realization of the minimal possible di-
mension is unique up to a change of variables [9], [4], 8]

The main results of the paper can be outlined as follows. In Section 3 we show
that the core Lie subalgebra of the minimal realization can be found without
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finding the realization itself, i.e. directly from the series (3). In Section 4 we
prove the following classification theorem: any graded Lie subalgebra of finite
nonzero codimension can serve as a core Lie subalgebra of a realizing system of a
(homogeneous) series of the form (3).

2. Background

2.1. Realizability problem. The realizability problem for systems with
output is well known. This problem deals with a description of the output behavi-
or for analytic nonlinear control systems. Systems are represented as differential
equations of the form (1) defined in some neighborhood of a point zV, i.e., the
vector fields Xi(x),..., X (x) are defined and are analytic in a neighborhood of
2°. Let us consider also a function y = h(z) that is defined in a neighborhood of
20 and is analytic there.

We recall some basic concepts of the realizability theory. First we introduce
some notation.

Below we denote by M the set of multi-indices

M:{I:(zl,,zk)kZI, 1§21,,’Lk§m}

One of the most important concepts in this theory is the iterated integral,
which is defined as follows

0 rm Th—1
nr(0,u) = / / . / Wiy (11) « o, (T)dTge - .. dmy.
o Jo 0

It can be shown [5] that for any 6 > 0 iterated integrals are linearly
independent as functionals on the set

U0) = {u(t) = (ur(t), ..., um(®) : lui(t)| <1, i=1,...,m, t €[0,6]}.

We consider the set {n7(0,u) : I € M} for an arbitrary fixed 6 > 0. Since the
functionals n7(0,u) are linearly independent, they form a basis of some linear
space. Then their linear span is a free associative algebra with the concatenation
operation

N1, (9’ u) N1, (9’ u) =Nl (07 U);

we denote this algebra by Fy. Note that for all # > 0 the algebras Fy are
isomorphic to each other. Therefore, instead of the algebras Fy, it is conveni-
ent to consider an abstract free algebra F isomorphic to all of them, which is
generated by abstract independent elements 71, ..., 7m,. Also let us consider the
free Lie algebra £ generated by 71, ..., 7, with the bracket operation defined by
[a,b] = ab — ba.

Below we use a unitary algebra F¢ = F + R assuming that 1 is the unit in
F¢. In order to write elements from F and F€ in the same way, we complement
M by the “empty index”,

My=MU {@}
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and assume that g = 1.
Now we can formulate the realizability problem from a formal point of view.
Consider an arbitrary linear map

c: F¢—=R.
This map corresponds to a formal series S with scalar coefficients ¢; = ¢(nr)
S= Y cmr (4)
IeMy

Below we assume that the map c is nontrivial, i.e., ¢(F) # {0}; then the series S
has at least one nonzero term except a constant.

Definition 1. The series (4) is called realizable if there exist vector fields
Xi1(x), ..., Xm(x) and a function h(x), which are analytic in some neighborhood
of some point x°, such that the functional y(0;u) = h(x(0;u)) where z(0;u) is a
solution of the Cauchy problem

satisfies the equality

y(0;u) = Z crni (8, ).

IeMy

In this sense, (1) is a realizing system for (4).
To formulate a realizability criterion, we recall the following definition.

Definition 2 ([4], [8]). Let B denote the linear space of formal series of the form
(4). Consider the map F.: L — B of the form

Fo(t) =Y clulyn, L€L. (5)
IeMy

The Lie rank of a series S is defined by the equality
pr(c) =dim{F.(¢): L € L}.
Now we are ready to recall the following criterion of realizability.

Theorem 1 ([4], [8]). Suppose that the series S = > c(nr)nr satisfies the
IeMy
following growth conditions,

les| < Cy|I1CH! (6)

with some C,Cy > 0, where by |I| we denote the length of the multi-index I.
The series S is realizable if and only if pr(c) < oo. In this case n = pr(c) is the
minimal dimension of a realizing system. Moreover, a minimal realization (i.e.,
a realization of the minimal dimension) is unique up to a change of variables.
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In the language of the associative algebra F, the realizability condition can
be formulated as follows.

Theorem 2. Consider the free associative algebra F and the corresponding Lie
algebra L. A formal series S satisfying the growth condition (6) is realizable if

and only if there exist a natural number n and elements {1, ..., 0, € L satisfying
the following condition: for any element { € L there exist coefficients aq,...,ay
such that

cla(l — Z a;l;) =0
i=1
for any element a € F°.

One of the ways to construct a minimal realizing system for a given series S is
as follows [8]. Since the Lie rank is n, there exist n linearly independent elements
l1,..., 0, € L for which the series F.(¢1),...,F.(¢,) are linearly independent.
Consider the coefficients of all possible elements of the form n7¢;. As the series
F.(¢;) are linearly independent, there exist n multi-indices Ir,...,I, € My for
which the matrix

{C(Tlligj)}zj:l (M)
is non-singular. We define the linear map ¢ : F¢ — R" by the equality
N c(nrnr)
cnr) = . (8)
c(n1,,7m1)

and consider the corresponding series
S=> cnm (9)
IeMy

with n-dimensional coefficients. The unique system constructed by this series is a
minimal realization of the series S.

2.2. Grading in the algebra F and homogeneous approximations of
control systems. The free associative algebra F is graded, namely, it admits the
following representation

]-":Z]:k, F*=Lin{n; : I € M, |I| = k}.
k=1

This grading is justified by the following observation, which concerns iterated

integrals:
0 r7i Th—1
0 Jo 0

1 rn Th—1
:ek/o/o /0 wiy (110) - - ug, (11,0)dTy; - - - dy.
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Thus, 77(0,u"?) = 0Wnr(1,u), where u'/?(t) = u(t/6), t € [0,6]. In this sense,
|I| denotes the order of nr(#,u'/?) as a function of 6 as § — 0.
The Lie algebra £ inherits this grading,

L=>rr cF=rnc.
k=1

Below we say that a € F* is homogeneous and k is its order; in this case we write
ord(a) = k.
Let us consider a series with vector coefficients of the form

S=>emn, (10)

IeMy

where ¢; € R™; it defines a linear map ¢ : ¢ — R™ by ¢(n7) = ¢7. Assume that
this map satisfies the Rashevsky-Chow condition

(L) =R". (11)

Suppose also that the series S is realizable, that is, there exists a system of the

form (1) such that its trajectory z(0; ) is represented as z(0;u) = > ¢mr(0,u).
IeMy
It can be shown that this system is unique, and the condition (11) means that

the realizing system is locally controllable, i.e., the initial point z° belongs to the
interior of the set of all points that are reachable from z in a time 6 > 0.
The following definition takes into account the grading introduced above.

Definition 3 ([7],[19]). Suppose the series (10) corresponds to the system (1).
Let us define the subspaces

Pl={tec' :c)=0}, P={tecr.cq0)ect + -+, k>2

and

o0

§ :~k
£X17---7X7n = 7) °

k=1

Then Lx, ... x,, 15 a graded Lie subalgebra; it is called a core Lie subalgebra of the
system (1).

It can be shown that the core Lie subalgebra is of codimension n (in £) and
that it is invariant w.r.t. changes of variables in the system.

It turns out that the core Lie subalgebra is responsible for the homogeneous
approximation of the system [7], [19]. Namely, two control systems of the form (1)
have the same homogeneous approximation if and only if their core Lie subalgebras
coincide. Moreover, any graded Lie subalgebra of codimension n is a core Lie
subalgebra for some locally controllable system of the form (1).

In Section 3 we describe the core Lie subalgebra for a realizing system of a
series of the form (4).
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2.3. Basis in the algebra F. Suppose {/;}°, is a (homogeneous) basis of
L. Then, due to the Poincaré-Birkhoff-Witt Theorem [16], the set

{ggllgg:kZL 1<y <-ve < g, ql,...,quI} (12)

is a (homogeneous) basis of F, where £ = £--- ¢ (q times).

Let us introduce the inner product in F assuming the basis {n; : I € M}
is orthonormed. Also, let us introduce the shuffle product in F by the recursive
formula

7 WNj = Nij + Nji
Miydy W05 = 1 Wiy 1, = My (M1, Wn5) + Njiy 1y
Nix Iy Wis Ty = Miy (N1, Wi 1y) + Niy (Miy 1, WNI,)
for any I, Is € M. Denote by

{dql'"gk:kZL1§i1<"'<ik, 1y qr > 1} (13)

21...%%

a dual basis for (12) in the sense of the inner product introduced above. It can be
shown [14] that

dc‘n-u% — ;d}lﬂh T Lud"-u%
21...7% Q1'q1<;' 71 (23
where dW9 = dw --- wd (q times); here the notation d; = d} is used for brevity.

Therefore, we can rewrite the series S in the basis (13)

1
S =c(1) + Z mc(ggll I GET y dit:qk’

i /1
where the sum is taken over all k > 1and 1 < i3 < -+ < ik, q1,...,q > 1. In
Section 4 we apply an analogous representation to the series Fi.(¢).

3. Description of the core Lie subalgebras of realizing systems

In this section we show that the core Lie subalgebra of a realizing system
(Definition 3) can be found without finding the realizing system itself.

Theorem 3. Let S be a realizable series of the form (4) and an n-dimensional
system (1) be its minimal realization. Then the core Lie subalgebra Lx, . x,, of
this minimal realization can be found in the following way:

[o@)

k

Lx,,. . Xm= 273 ;
k=1

where
731:{EEEI:c(aE)zOforanyae]:e},
Pk = {E e LF: there exists 0 € LY+ -+ + LF1 such that

cla( =) =0 for anya € F¢}, k>2. (14)
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Proof. Take an element ¢ from the subspace Pk It suffices to show that this
element also belongs to the subspace P*. Let £ € P¥, then by formula (14) there
exists an element ¢ belonging to the sum of subspaces £' +--- + £¥~! such that
the equality

cla(l—10))=0 (15)

holds for any element a from F°. As an element a, we take those elements 7y, for
which the matrix (7) is nonsingular. Since equality (15) holds for any element a
then it is true that

cn,(t—20))=0, i=1,...,n. (16)

Consider the n-dimensional mapping (8), then
c(nn, (€= 1))

(g, (€ — )

Since the condition (16) holds for any row, then ¢(¢ — ¢') = 0. This means that
the element ¢ belongs to the subspace Pk,

Take an element ¢ from the subspace Pk Tt suffices to show that this element
also belongs to the subspace P¥. By definition, ¢(¢) € ¢(L 4 - -+ L), therefore,
there exists an element £/ € £! + --- + £F~1 such that ¢(¢ — ¢) = 0. This means
that c(nr,(¢ —¢')) = 0 for ¢ = 1,...,n. Since the series F.(¢ — ¢') is a linear
combination of the series F.(¢1),...,F.(¢,), there exist the numbers a;,...,ay,
such that for any I € M

A1) =

c(nr(t—1) Za] (nr4;).

In particular, substituting I = I;, for which the matrix (7) is nonsingular, we
obtain the following equality

c(nr, (€= 1)) n c(nn )

:ZO(]‘ :0

o -)) = \elmby)

Since the matrix (7) is non-singular, the vectors (c(n,¢;),...,c(n,¢;))" are li-
nearly independent. Hence, all coefficients «; are equal to zero. This means that

c(a(t =) =

for any element a € F¢, therefore, ¢ € P*. The theorem is proved.
Example. Let a one-dimensional series

S =m +n21 + 211
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be given. Let us show that the Lie rank of this series is equal to 2. To do this, we
write down all the nonzero series of the form (5):

F.(m) = 1+mn2+mn2,
Fo(Im,ne]) = -1,
Fe([m, [m,me]]) = 1

Since two of them are linearly independent, the Lie rank of S equals 2. We can
choose ¢4 = m, o = [m,n2] and I) = (@), Ix = (2), then the matrix (7) is
nonsingular. Then we get n-dimensional series of the form (9)

S (771 + 121 + 77211)
m + N

Using Definition 3, let us find the core Lie subalgebra for a realization of the
n-dimensional series S. Consider the subspace

Pl={ter' :t)=0}.

We have £! = Lin{ny, n2}. For the elements 7y, 72 we write down their coefficients

= (1) 2w = (g)- 17)

Then, obviously, the space Pl is a linear span of only one element 7y
P = Lin {1} .
For k = 2 we get B
P2 ={teL?:) ec(Lh}
and £2? = Lin{[ny, n2]}. For the element ¢ = [n1, n2] we find

c[m,m2]) = clma — n21) = <_01) :

Taking into account the form of the coefficients (17), we see that ¢(¢) ¢ ¢(L1).
That is, P2 = {0}.

Therefore, dim(Z(£! + £2)) = 2, which means that P* = £F for all k > 3.
Thus, we have found the core Lie subalgebra for the n-dimensional series S:

£Xl,X2 = Lin {772} + Z £k' (18)
k=3

Now we show how to use Theorem 3 and find this core Lie subalgebra using
only the one-dimensional series S. We write down the non-zero coefficients of this
series:

cm) =1, c(n1) =1, c¢(na11) = 1.
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Consider the subspaces (14). For k = 1 we have
PIZ{EGEI:c(af)zOforanyaG]:e}.

First, as an element £ we take 1. In particular, for a = 1 we get c(an;) = ¢(n1) = 1,
hence, 71 ¢ P'. Now we choose £ = 1, then c(ang) = 0 for all @ € F. This means
that P! = Lin {ne}. Now consider the subspace

P? = {te L% : there exists ¢ € £ such that c(a(¢ — ¢)) = 0 for any a € Fe}.

As an element £, we take the bracket [n1,n2] = 72 — 121, and ¢/ € L! is a linear
combination an; + fna, where «, § are numbers. In the definition (14) for k = 2,
we first take a = 1. Then

cla(t—0) =c(ma —no1 —am — Be) = -1 —a =0,
which means that « = —1. Now we choose a = 1, which gives
c(a(l — g’)) = c(n212 — N221 — a1 — Biae) = —a =0,

hence, o = 0. We have got a contradiction, therefore, [1,12] ¢ P2. This means
that P? = {0}. Finally, we consider the subspace

Pi= {te L3 : there exists £/ € L1 ++£? such that c(a(f — ¢')) = 0 for any a € Fe}

and take into account that £3 = Lin{[ny, [n1,m2]], [n2, [n1,m2]]}. First we take

= [ni, [, n2]] = Mz — 2mo1 + ne11 and £ = amy + B(m2 — n21). Then for
a =1 we get

c(a(l—0) = c(miz — 2ma21 +no11 —am — P2+ Bna1) =1—a+ =0
while for a = 1y we get

c(a(l —0') = c(n2112 — 2m2121 + M2211 — an21 — Bra12 + Pra21) = —a = 0.

This gives « = 0 and § = —1, that is, / = —n12 + 191. One easily checks that
c(al) = c(al’) for any a € F¢, hence, [n1, [m1,m2]] € P3. Using similar reasoning
for the element ¢ = [n2, [n1, 72]], we see that c¢(af) = 0 for any a € F¢. This means
that P3 = £3. Since ¢(LF) = 0 for k > 4, we get P¥ = L£*. Thus, we have obtained
the core Lie subalgebra (18) using only the initial one-dimensional series S.

One can check that a realization of the series S in a neighborhood of the point
2% = 0 can be chosen in the following form

T1 = U1 + ToUg,
To = +/1+ 2xouy,

Yy =T,
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that is, X1(z) = (1,v/T + 222) ", Xa2(2) = (22,0)", h(x) = z1. As a homogeneous
approximation for this system, we can choose a homogeneous system with the
same core Lie subalgebra

i:l = U1,

(ig = T1U2.

We observe that manipulating with the series for finding the core Lie subalgebra
is more convenient than with vector fields directly.

4. Description of all possible homogeneous approximations
of realizing systems

In this section we show that any graded Lie subalgebra of finite nonzero codi-
mension is the core Lie subalgebra of a realizing system of some series (3). We
introduce such a series using the dual basis (13); the corresponding linear map
is defined by formula (19) below. The following lemma describes one property of
this map.

Lemma 1. Suppose {{;}32, is a homogeneous basis of the Lie algebra L. Let a
linear map c : F — R be defined on the elements of the corresponding Poincaré-
Birkhoff- Witt basis (12) as follows: for any k > 1 and any 1 <iy < --- < iy

1 if k=n and (i1,...,1,) =(1,...,n),
clbiy - by) = ()
0 otherwise.
Consider any k-tuple (j1,...,jk) of natural numbers, where 1 < k <n. Then
c(éjl--~€jk):0 iflgkﬁn—l, (20)
1 if (J1,-.-,Jn) 18 a permutation of {1,...,n},
(b, -+ 4y,) = . (21)
0 otherwise.
Proof. Let us denote by inv(ji, ..., jx) the number of inversions in the tuple
(J15- -+, Jk), i.e., the number of pairs (s',s”) such that s < s’ and jg > jg.
If inv(j1,...,Jx) = r, then sorting the tuple in non-decreasing order requires r

adjacent transpositions. Below we use the notation

Nir ={01,-- -, Jk) 1inv(je, ..., jx) =7}, k>1, r>0.

For any k the maximal possible number of inversions is %k(k — 1) (this number of
inversions is achieved when the numbers in the tuple strictly decrease). Therefore,
if 7> %k(kz — 1), then N, = @. Hence, the set of all tuples of natural numbers
can be represented as a union of the sets N, where k> 1, 0 <r < %k(l{; —1).
We are interested in k£ such that 1 < k <n.

We use induction on the set of pairs (k,r) such that k> 1,0 <r < 2k(k—1)
ordered lexicographically. Namely, we assume

(K r"y < (K", r") it K <Kk'or k' =K"and r' <+".
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If k =1, then the required equalities (20), (21) follow from (19).

If 2 <k <nand (ji,...,Jk) € Nio, then j; <--- < ji. Therefore, ¢;, ---¢;,
belongs to the Poincaré-Birkhoff-Witt basis. Hence, equalities (20), (21) follow
from (19).

Let us consider any pair (k,r) such that 2 < k < nand 1 <r < %k(k - 1)
and suppose that the equalities (20), (21) hold for any element /g, --- £, , where
(q1,---,ax) € Ny and (K',7") < (k,r). This means that c(lg, ---£g,,) = 0
except the case when (K',r') = (n,r’) and {q1,...,qw} = {1,...,n}; in this case
c(lyy - Lg,) = 1.

Consider any (j1,...,jk) € Ng,. Since r > 1, there exists 1 < s < k — 1 such
that js > jsy1. Since

Ej Ejs+1 = [gjs7£js+l] + fjs+1€jsv
we can express
by - by = a1 + az,
where
ay =Ly, -4,y [gj Ejs+l]£js+2 Ly
Ciljorn Ly
First we consider a;. Since the element [(;,_,¢; . ] belongs to the Lie algebra L, it

equals a linear combination of basis elements, [¢;,,¢;,,,] = > a,fp, where o, € R.
Then

s

az = Ejl T ejsflgjsjq

ay = Z apgh e '£j3—1€p£js+2 o 'Ejk’

where (ji1, ..., Js—1, Jps Js+2, - - -» Jk) € Ng—1, for some r’. Since (k—1,7") < (k,7),

we get c¢(a1) = 0 by the induction supposition (we take into account that k < n).
Therefore, c(¢;, - - - ¢;,) = c(ag). Obviously, as € Ny ,_; and (k,r—1) < (k,7).

Hence, the equalities (20), (21) hold for the element ¢;, ---¢;, since, due to the

induction supposition, they hold for as. This completes the proof of Lemma 1.
The following theorem is the main result of this section.

Theorem 4. Let L' be a graded Lie subalgebra of codimension n > 1. Then there
erists a one-dimensional homogeneous series of Lie rank n such that L' is a core
Lie subalgebra of its (minimal) realization.

Proof. Since L' is a graded Lie subalgebra of codimension n, we can choose
homogeneous elements (1, ..., ¢, € L such that £’ +Lin{¢y,...,¢,} = L. Without
loss of generality we assume ord(¢;) < ord(¢;) if i < j. Then choose a homogeneous
basis {£;}52,,,; of £ and consider the corresponding Poincaré-Birkhoff-Witt basis
(12) and its dual basis (13). Introduce the series

S:dlLIJ'--LIJdn. (22)

We note that this series corresponds to a linear map ¢ : F¢ — R defined by (19)
and such that ¢(1) = 0.
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We show that the series (22) is of Lie rank n. In fact, its Lie rank is not greater
than n since the series has an n-dimensional realization, namely, the n-dimensional
system corresponding to the series

dq
S=1...
dn
with the output y = h(z) = x1 - - - x,. Such a system can be explicitly found as is
described in [19]. It satisfies the Rashevsky-Chow condition (11) since ¢(¢;) = ey,
i=1,...,n. Obviously, ¢(L£’) = 0, hence, the core Lie subalgebra of this system
equals £'. Now we show that this realization is minimal.

To this end, we show that the Lie rank of the series (22) is not less than n. By
definition, the Lie rank equals the dimension of the set of series of the form (5).
It is convenient to re-expand the series w.r.t. the dual basis (13). Thus, the Lie
rank equals the dimension of the set of series of the form

F()=c)+ > p !

| J1
J1<<Jk ! G

qr .. pdk wqy o g
'c(ﬁj1 CrO)d M w e wd
Now we show that the series F.(¢1),. .., F.(¢,) are linearly independent. For n = 1,
there is nothing to prove. Suppose n > 2. Let us introduce the notation

di=dyw - wdy, dp=diw - wdy,

dr=dyw - wd,_ywd,y1---wd,, r=2,...,n—1.

In other words, d, is the shuffle product of all elements di,...,d, except d,.
Analogously, define

U=ty by, 1

n :gl"'gn—lp
67‘ = 61 "’Er—lgr—‘rl c gn
o

r=2,...,n—1.

Then the coefficient of d,. in the series F.(¢;) equals c(¢.4;). Due to Lemma 1,

_ 1 if 7=
c(&n&):{ if ¢=m,

0 otherwise.

This means that the matrix n x n formed by the coefficients of elements dy, . . ., d,

in the series Fo({1),..., Fe(f,) is identity. Hence, series F.(¢1),..., Fc(¢y,) are li-

nearly independent, and therefore, the Lie rank of the series (22) is not less than n.
Thus, the series (22) is of Lie rank n, therefore, its minimal realization is

of dimension n. As was mentioned before, this series has a realization with the

core Lie subalgebra £'. Since the minimal realization is unique up to a change of

variables, the mentioned realization is minimal. The theorem is proved.
Theorem 4 has the following classification corollary close to [19].

Corollary 1. Any graded Lie subalgebra of a finite (nonzero) codimension is a
core Lie subalgebra of the minimal realization of some one-dimensional (nontrivi-
al) series, and the dimension of this realization equals the codimension of the Lie
subalgebra.
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Y cTaTTi pO3TIAIaIOTHCA PEATi30BHI PAIN iITEPOBAHNX IHTETPAJIIB 31 CKATAPHUMHI KO-
edimienTaMn i PO3BUBAETHCS aJAreOpaATIHUI MAXIA 0 331291 OTHOPIAHOT aITpOKCHMAIIIT
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HeJIHINHUX KePOBAHUX CUCTEM 3 BHUXOJOM. Y IEPHIOMY PO3JALIl MU HAray€MO IIOHST-
TS OTHOPITHOT ampoKcUMallii HeJTiHiiHOT KepoBaHOI CHCTEeMH, JIHIWHOI 33 KepyBaHHIM,
Ta MOHATTS PAMY iT€POBAHUX iHTErpaiB. Y APYroMy PO3/Iijli HaBEJEHO TTOCTAHOBKY 3a-
Jadi peasi30BHOCTI, HAaraJaHO KPUTEPiil peasi30BHOCTI pAmy iTepOBaHWX IHTErpaJiB Ta
croci6 mobymoBu MiHIMAIBHOI peasizartii psay. Takok Mu HAraayeMo AesKi imei anre-
OpaivHOro MiAXOMy /0 OMKMCY OJHOPITHOI AIIPOKCHMAIil: BiTbHA rpaayfioBaHa acoIiaTUB-
Ha, anrebpa, 1o i3omopdHa anrebpi irepoBaHnx iHTerpasis, BiIhbHA anredpa JIi, Gasuc
[Tyankape-Bipkroda-Birra, 6ioproronaasuuii 6a3uc i #toro mobymoBa 3a TOMOMOTOK Ta-
CYI090ro M00yTKYy, O3HAUYEHHs KOpeHeBol miganarebpu Jli, ska BU3HAYAE OTHOPIIHY ampo-
KCHUMAIII0 KEPOBAHOI cucreMu. Y TPETHOMY PO3/iI MH MMOKA3y€EMO, sk MOXKHA 3HANTH
KopeneBy mimanredpy JIi cucremm, sika € peasizaimi€io OJHOBHMIPHOIO Psiy iTePOBAHUX
inrerpais, He 3naxoigun camoi cucremu. OTpuMaHuil Pe3yabTAT IPOLTIOCTPOBAHO MIPU-
KJIAJOM, B SKOMY TTPOJIEMOHCTPOBAHO [IBA CIOCOOW 3HAXOMKEHHsT KOPEHEBOI Tigaarebpu
JIi peasizyro4oi cucremu. B ocraHHROMY pO3/Iijii MOKA3aHO, IO It OyIb-KOI IpaLyito-
Bauoi miganrebpu JIi ckindeHHOT KOBUMIPHOCTI iCHY€ Takwil OJHOBUMIDHUN OXHOPIIHUN
psan, mo g migaiaredpa JIi € kopeneBoro mimanre6poro JIi itoro minimMaspHOI peastizari.
JloBeenns € KOHCTPYKTHBHUM: MU HABOJIUMO CIIOCIO 1100y/10BU TAKOI'O Ps/LY, B SKOMY BU-
KOPUCTOBYEThCsI OGioproronapHuit 6asuc no 6asucy Ilyamkape-Bipkroda-Bitra BisibHO
acoriaTuBHOI ajarebpu, mOOyIOBaHMIT 38 KOPEHEBOW miganrebporo Jli, i Tacyrounii 100y-
TOK B Miit asredpi. Kk HACTIIOK, OTpUMy€eMO KitacuiKaIliio BCiX MOXKIIUBUX OTHOPITHUX
aNpOKCUMAIIiil cucTeM, sIKi € peai3allisiMi OJIHOBUMIPDHUX PSIJIiB iTePOBAHUX IHTErPAJIiB.
Karwuosi crosa: omHOpigHA alpoOKCHMAallis; Psd IT€POBAHMX IHTErpajiB; MiHi-
MaJibHa peaJiizallig; KopeHeBa mimajreopa Jli.

Icropis crarTi: orpumana: 24 ceprasa 2022; ocranniit BapianT: 29 cepmaga 2022
npuitaara: 24 rpymgaa 2022.
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The explicit form of the switching surface in admissible

synthesis problem

In this article we consider the problem related to positional synthesis and
controllability function method and more precisely to admissible maxi-
mum principle. Unlike the more common approach the admissible maximum
principle method gives discontinuous solutions to the positional synthesis
problem. Let us consider the canonical system of linear equations &; =
Ziy1,4 = 1,n—1,&, = u with constraints |u| < d. The problem for an
arbitrary linear system & = Ax + bu can be simplified to this problem
for the canonical system. A controllability function ©(x) is given as a
unique positive solution of some equation ®(x,©®) = 0. The control is
chosen to minimize derivative of the function ©(z) and can be written as
u(z) = —d sign(s(z,0(z))). The set of points s(z,O(x)) = 0 is called the
switching surface, and it determines the points where control changes its sign.
Normally it contains the variable © which is given implicitly as the solution
of equation ®(z,0) = 0. Our aim in this paper is to find a representation
of the switching surface that does not depend on the function ©(z). We call
this representation the explicit form. In our case the expressions ®(z, ©) and
s(z,©) are both polynomials with respect to ©, so this problem is related
to the problem of finding conditions when two polynomials have a common
positive root. Earlier the solution for the 2-dimensional case was known. But
during the exploration it was found out that for systems of higher dimensi-
ons there exist certain difficulties. In this article the switching surface for the
three dimensional case is presented and researched. It is shown that this swi-
tching surface is a sliding surface (according to Filippov’s definition). Also
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the other ways of constructing the switching surface using the interpolati-
on and approximation are proposed and used for finding the trajectories of
concrete points.

Keywords: controllability; controllability function method; admissi-
ble maximum principle; switching surface.

2010 Mathematics Subject Classification: 93C05; 93B05; 93B40.

1. Introduction

Let us consider the system of differential equations

= f(z,u),zr e R",ue QCR", (1)

and let @ be a neighbourhood of the origin. Our aim is to construct a control
u=u(z),u € Q, such that the trajectory of the system

&= f(z,u(z)), (2)
starting at an arbitrary point zg € @, transfers into the origin in a some finite time
T = T'(xp). This problem is called the admissible positional synthesis problem.

One of the ways to solve it is the admissible maximum principle [6]. We consi-
der constraints |u| < d and the linear canonical system

T1 = T2,
3}2 = I3,
(3)
Tn—1 = Tn,
Ty = U

In this case, the obtained control is discontinuous and takes only values
u = £ d, with trajectories of points sliding along the switching surface. The soluti-
on to this problem is known, but it is interesting to consider a problem of finding
explicit form of the switching surface. It was earlier solved for the two-dimensional
system|[7], and in this work we extend it to the three-dimensional case.

The conditions for reaching the equilibrium point are important problems of
mechanics and differential equations. Important results in this area were obtained
by O. M. Lyapunov, and subsequently they became a part of the foundation of
the mathematical theory of control.

The contributions to the development of the control theory were made
by L. S. Pontryagin, V. G. Boltayanskii, R. V. Gamkrelidze, E. F. Mishchenko,
R. Kalman, R. Bellman and many others. In particular, R. Bellman obtained the
equation that must be satisfied by the solution of the optimal synthesis problem
(finding the control that transfers an arbitrary point to the origin in the shortest

time):
) "L 0T (t, x)
11}16161 (Z (mfi(f’%u)) = -1, (4)
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where T'(¢,z) is a cost function and also a time needed to reach the origin.

In many cases, finding a control that is a solution to this equation is quite
difficult. This is one of the reasons why V. 1. Korobov introduced the problem of
admissible positional synthesis. Admissibility means that the chosen control does
not necessarily provide the given or the shortest time, but ensures its finiteness.

The solution of the admissible positional synthesis problem, called the
controllability function method, was proposed by V. I. Korobov in [4] and later
developed in many other works. This method is based on the construction of the
control u(x), such that for the system (2) there exists a function ©(z) which is
an analogue of the Lyapunov function in the stability theory, but also satisfi-
es a condition which ensures finiteness of the time. More precisely the following
theorem holds.

Theorem 1 ([4]). Suppose that in the system (1) at any set of points
Ki(p1,p2) = {(z,u) : 0 < p1 <||z|| < p2, u € Q} the vector function f(x,u) sati-
sfies the Lipschitz continuity condition:

(@' ') = f(@" ")l < Lapr, p2) (2" — 2| + [[u” = '),
for any (', ), (2", u") € K1(p1,p2).
And suppose that there exists a function O(x), such that the following condi-
tions hold:
1. ©(x) >0 if x # 0 and ©(0) =0;

2. O(x) is continuous everywhere and continuously differentiable at any point
except, perhaps, the point x = 0;

3. there exists a number ¢ > 0 such that the set Q = {z : ©(x) < ¢} is bounded
and there exists R > 0 such that Q C {z : ||z| < R};

4. there ezists a function u(x) : Q — €U, that satisfies the inequality

6= B fiwute)) < —p0'H (1)
=1

for some a >0, B> 0. And u(x) is Lipschitz continuous at any point of the
set K(p1,p2) ={z €Q:0<p1 <|z| < p2}, that is

[u(z”") — u(z")]| < La(p1, p2)[|2" — 2],
for any ', 2" € K(p1, p2).

Then the trajectory x(t) of the system © = f(x,u(x)), which starts at an
arbitrary point x € Q, ends at the point T = 0 at a certain finite moment of time
(which depends on xo) T(xo) < (a/B)Oa(x0). Moreover if & = oo, then x(t) — 0
as t — oo.
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The function O(z) is called the controllability function. The conditions 1-3
of this theorem coincide with the conditions of Lyapunov theorem on asymptotic
stability, and the condition 4 ensures the finiteness of the time for an arbitrary
point to reach the origin. In the case where a = oo the function ©(z) is a Lyapunov
function for the obtained system.

Also in the case when o = # = 1, and instead of inequality, equality is fulfilled,
ie.

390 ) = -1, )

ox;
i=1 ¢

the controllability function is also a motion time from an arbitrary point to the
origin. If, in addition, the Bellman equation is satisfied:

) ", 00(x) " 00(x)
min (Z o fi<a:,u>) - (Z o fi<a:,u<:c>>> -1 ()

i=1 i=1

the function O(x) is also an optimal time.

The function O(x) is naturally constructed implicitly as a solution of some
equation ®(x,©) = 0. It makes it different from the Lyapunov function which
is constructed in explicit form. On the other hand, in the linear optimal control
problem, the motion time is also found implicitly[5].

Let us consider the canonical system:

T1 = T2,
To = T3,
(7)
jjn—l = T,
Ty = U,

with the constraint on control |u| < d. It is a linear system & = Agz + bou, where

0 1 0 0
0 0 1 0 0
do= ... ... . L =10 (8)
o 0 0 1
0 0 0 0 1

An admissible position synthesis problem for an arbitrary linear system
& = Az + bu can be simplified to this problem for the canonical system[4].

Let us describe the algorithm of constructing the control using the admissible
maximum principle described in [7]. We determine the controllability function
©(z) at an arbitrary point = as a positive root of the equation

®(x,0) =2a00 — (D(O)FD(O)x,x) =0, (9)
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(it can be proved that this root is unique at every point [7]), where F' is a positive
definite matrix,

: (10)

P(6) = diag (65"

and numbers m € N, a > 1 are chosen so that the matrix

m+n—i—j+1 "
FO‘:<<1+ ! >fij>
o ij=1

is positive definite. In particular, we will consider m = n, a = 1. The number ag
is chosen to satisfy the constraint on control.
The derivative © of the function ©(z) can be written in the following form:

O((FAy+ AjF)y(x,0),y(z,0)) + 2u0(D(O)FD(O)z, by)
(Fey(z,©),y(z, )

6 — , (11)

where and y(z,0) = D(0)z. Let us denote
s(z,0(x)) = (D(O(2)) FD(O(x))z, bo), (12)
that is,

s(x1, 22, ..., Ty, O(z1,T2,...,2p)) =

13
= fnlml + fnge(xl,xg, .. .a:n)a:g + ...+ fnn@nfl(xl,xg, - ,xn)xn. ( )

We choose the control as u(x) = —dsign(s(xz,©(z))) and call the set of points
satisfying the equation
s(z,0(z)) =0 (14)

the switching surface S.

This control gives the minimum value of the derivative © of the function ©(x)
that can be obtained under given constraints. We note that this control is not
continuous. It takes only boundary values and has discontinuity at points of the
surface (14).

After substitution of the control to the system (7) we obtain:

T = X2,
T9 = w3,
(15)
Tp—1 = Tn,
Ty = —dsign s(x1, 22, ..., Tn, O(21, T2, ..., Ty)).

Algorithm of finding the concrete trajectory from the point zo to the point
x1 = 0 in the case when the switching surface is given by the equation (14) is the
following. At the point x¢ we find a unique positive solution ©q of the equation
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(9) and add the equation (11) to the system (15). After that we find the trajectory
(x1(t), x2(t),...xn(t)) as the solution of the Cauchy problem:

-ill = X2,
j:'Q = I3,
. (16)
Tn—1 = Tn,
&y = —dsign s(x1,x9, ..., Tn, O),
@ _ 20(F(©)z,Aox)—2dO|(D(O©)FD(O)x,by)|
(Fly(0,2),y(0,2)) ’
x1<0) = 210, {L'Q(O) = 20y - - ,a;n(O) = Tno, @(0) = @0. (17)

2. The explicit form of the switching surface

The formula s(z,©(z)) = 0 gives the implicit form of the switching surface,
that is, it contains the function ©(z) as an implicit solution of the equation (9).
We are considering the problem of finding the switching surface in the explicit
form. Hence, we need to exclude the variable © from the equation for the surface.

For this let us write the equation (9) and the formula for the switching surface
in the following form:

O(x,0) =2ag0™ — Y fi;0 Pwiz; =0, (18)
ij=1
$(2,0) = fu1z1 + fn2072 + . + f1n©" 'z, = 0. (19)

One way to remove a common factor from two equations is to use the resultant.
Let z € S,z # 0 be a fixed point, then ®(z,0), s(z,0) are the polynomials
of variable ©. If ®(x,0) and s(x,©) have a common root, then their resultant
R(®, s) is equal to zero. Hence, the set of all points where they have a common
root can be given by the equation:

R(®,s) =0. (20)

But the surface given by equation (20) is larger than the switching surface,
because it also contains points where ®(z, 0), s(x, ©) have common negative root,
or this root equals zero. Instead, the switching surface contains only those points
where a common root © > 0. Therefore, we have certain difficulties related to the
fact that we need to find a way to separate the points where ©(x) > 0 from the
entire set. Hence, further we will use the resultant only for obtaining this wider
set.

As an example let us consider the process of finding switching surface for the
case n = 2 described in [7].
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Let us determine © with the equation

®(0,x) = %@4 — 0223 — 20z129 — 327 =0 (21)

(the algorithm for finding such equations is described in |7]). Then the switching
surface has the equation:

S(@,ﬂ?) =1z + Oxo = 0. (22)

Using the formula (20) we obtain the surface given by resultant:

% 0 -3 —2mxy —322
Tro T 0 0 0
R(®,s)=|0 x2 x1 0 0 |= §x‘f — 2225 =0. (23)
0 0 T2 T 0
0 0 0 T2 I

To separate points where the common root of equations (21) and (22) is posi-
tive we use the fact that the equation (22) has only one root © = —%, which is
positive only when xj29 < 0. The part of surface (23) that satisfies this condition
can be written in the form:

Tr1 = —3%2‘%‘2’. (24)

This formula gives the equation of the switching surface. But for systems of
higher dimensions, overcoming such difficulties can be more complicated. Now we
give the explicit form of the switching surface in the case n = 3.

Let us determine the controllability function by the equation:

9 4 4 g 1
O(x,0) = @96—38@'%—303331302@—4@'1.%3@2—65:102@2—2302963@5—530%@4 =0.
(25)
Then the switching surface has the form:
s(x,©) = 10x; + 509 + ©%x3 = 0, (26)
and equation defined by the resultant is as follows:
R(®,s) = 27 (16021 — 162525 + 5200212573 — 4940232323 + 10402723 + )

+ 845x575 — 2366712375 + 16902725) = 0.

We are searching for the points where there exists a common root © > 0. Let
us show that the factor 27 can be discarded. Indeed, if 1 = 0 then

9 4 1
@(x, @) = @@6 — 651’2@2 — 2x2x3@3 — 51}364 = O, (28)

s(x,0) = 50z, + O%z3 = 0. (29)
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These polynomials always have a common root © = 0. The second root
-5 . . -
© = =2 of equation (29) is also a root for (28) if:
112525 4523
) (30)
13x3 T3
That is,
13
ri = %xé (31)

But the points {xl =0, x% = %—gwg} are also solutions for the equation

16027 — 162525 4 5200z 2523 — 4940222323 + 10402523 +

32
+ 845z324 — 2366112325 + 16902725 = 0. (32)

Hence the factor 23 does not add any non-zero roots to the equation (27) compared
to (32). There is also a case when {z1 =0, z2 =0, x3 # 0}. Then

9 1
> 2 @b =
(.0) = 16259 ~ 5

s(z,0) = 0%z3 = 0. (34)

2201 =0, (33)

In this case ®(z,0) and s(z,0) have common root ® = 0 and we do not
consider it. The surface that show all other solutions for equation (32) is shown
in Figure 1.

Fig. 1. Surface given by equation (32)

This surface consists of two parts. One of them (Part A) includes points
where the common root O(z) of equations (25) and (26) is positive, and the
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other (Part B) includes points corresponding to the negative root and this part
should be excluded.

If we find the switching surface we obtain the system of differential equati-
ons with a discontinuous right-hand side. The control u(z) equals —1 above the
switching surface and +1 below it.

Let us find the switching surface by examining the roots of the polynomial
s(z,0) = 10z + 50z + O%x3.

First, we consider the case when x3 = 0. Then

90°  34230* 15421220

®(z,0) = 6o e 5 — 3827, (35)
s(z,©) = 220 + 10x;. (36)
Then
R(®, s) = 22(160z7 — 162525) = 0. (37)
The equation (37) has solutions x; = 0 and 27 = (1\[(13) W)

Using the fact that s(x,©®) has a positive root only when z1z9 < 0 we obtain the
curve:

V5 ()1 /[ sign(az) =0, -

O /N

[\D\H
\

-

If 23 # 0, then s(x,0) is a quadratic polynomial, if 522 — 8z123 > 0 then it

has two roots ©1 9 = —5$2:i:\[v 5%_8““ . Now we are using the fact that ®(z, ©)
always has exactly one pOSlthQ root O, hence, any point on the switching surface
corresponds either to root ©1 or to root O5 and we can construct parts of switching
surface for this roots separately and then unite them.

_ [522—
By substituting the root ©; = 5$2+\/52x§x2 5173 into (25) we obtain the
surface given by equation:

1125x2 — 2700$1x2x3 + 1620.%'1.’,12‘21'3 144x1x3 585.%'2.1‘3 +

+ 11701:19521:3 468331:103 + 4/ 5:1:2 8:1:1303(—225\/5 + 360\/5$1x%x3 ~ (39)
702x1x2$§> _0

V5
—5z9+v54/bx3—8z 123
23

—108vV/5x2xwox? + 117v5x3as —

The root ©; is positive when > (0. We can rewrite this as:

5 2

if 3 > 0 then <<x2<0andx1<8$2> orx1<0>,
I:
2 ’ (40)

if x5 < 0 then (:1:2>Oand <x1<0>

83



Bicuuk XHY, Cep. «Maremaruka, IpuKkjaJHa MATEMATUKS I MexaHikay, Tom 96 (2022) 49

By constructing (39) only at points where these conditions hold we obtain
the part Aj of the switching surface. Similarly, considering the case of the root

0, — —5m2—\/5\/5z§—8x1x3
2= 2x3

> 0, with conditions

2

if £3 > 0 then (:U2<Oand0<x1§?>,

oy (41)

if 3 < 0 then ((x2>0andx1>ﬁ> or:c1>0),

83:3

we obtain the part As. By combining the parts Ay, As, the curve (38), (purple line

in Figure 2) and the point (0,0,0) we get the graph of the switching surface. It

also can be shown that in the neighborhood of the curve (38) the root © remains

continuous, hence we can consider that switching surface consists of two parts,
each corresponding to a separate root.

Fig. 2. Switching surface

The line separating these parts (blue line in Figure 2) consists of points where
01 =09 = _25;“;2 and can be found explicitly. By substituting root © = %’”32 into

®(x,0) and by using the fact that in this case 5x3 — 8r123 = 0, we can write as
follows:

112525 — 158602523 + 43264z 12325 — 316162725 = 0,
573 — 8r173 = 0.

The solutions of the form x; = 0,29 = 0,23 # 0 belong to case when the
common root © = 0, all other solutions can be written as

: 325 ) 25
x1 = —sign(zg) ¢ m\/ |zo|?, x3 = —&gn(mg){l/ %\/ |zo]. (42)
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Now let us denote:
Py (1, 29, x3) = 112525 — 2700 2323 + 1620230303 — 1442323 — 5852524 +
+ 117021 2325 — 4687725,

Py(x1, 29, 23) = —225V/5 4 360v/521 2323 — 108Vba2zoa? + 117V5a32s —

B 702x1$2x§

V5

Hence, the switching surface is written in the form s(x1,x2,x3) = 0, where:
1
s(x1,x9,23) = 11 + (%\/5 CIERY |:c2|3> sign(zg), if z3 =0,

s(x1, z2,x3) = P (21,22, 23) + \/5m% — 8x123P (21, 22, T3),
if 21 < —sign(m){‘/%\/\xﬂ?’ and (40), (43)

s(x1,x2,23) = Pi(x1, 22, 23) — \/525 — 8123 P2 (21, X2, X3),

if x1 > —51gn(x2),4/%\/|x2|3 and (41).

Now we show graphically that S is a sliding surface [8]. Consider an arbitrary
point x on the surface S and its velocity vectors f* and f~ when it approaches
the switching surface from above and from below respectively. And let o be a
tangent plane to the surface S at the point z (Fig. 3).

Fig. 3. Velocity vector on the switching surface
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We consider (Vs £

_ (Vs f™ b

In= |Vs| 7 In |Vs| 7

and build the graphs of fy = (Vs,f~) and f; = (Vs, f*) (Figures 4 and 5

respectively). We see that fy < 0 and fy >0 (and fy = 0 if and only if f3; = 0)

for an arbitrary point € S. This means that at any point the velocity vectors

are located on different sides of the plane o and, therefore, the resulting vector
always lies in this plane.

0

Fig. 5.

3. Approximation of the surface

Fig. 4. Graph of f;[

Graph of f;

To find specific trajectories, we propose to use an approximate surface that has
a simpler shape. One of the methods can be a construction with an interpolation
polynomial in the form z3 = L(z1, z2). By substituting numbers instead of x1, zo
in equation s(z1,x2,23) = 0 and finding the solution for x3, we can get any
number of points on the switching surface. For interpolation, we select the points
in such a way that they form a rectangular grid in the zix2 plane. Then the
interpolation polynomial is given by the formula

N M N Mo
1— T 2 — T2
L(.T1,$2) = Z Z 1‘3(1‘1i,$2j) H ¢ H St R . (45)
— T, Tln — T o, Tam — X2
n=1m=1 i=1,i#n j=1,j#m
The approximated control w(z) is given in the form: w(z) = —sign(xs —

L(z1,22)). The surface obtained by interpolation and the trajectory of the point
(—1,2.5,1) are shown in Figure 6.

Another method of approximation that can be used is the least-squares
approximation. As an example, we choose multiples with maximal power 3 for
1,22 and construct the approximating surface in the following form:

2
x3 = w(xy,r2) = a1r1 + agzry + agx? + a4xo + asriTo + -0 -+ a15x?x§, (46)

where a1, as, ..., a15 are unknown coefficients.

In this case, the points do not necessarily have to form a rectangular grid,
so the interpolating surface can be constructed for both parts of the surface S
separately (Fig. 7). In addition, if we take symmetrically located points, then the
resulting parts will also be symmetrical.
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Fig. 6. Interpolating surface and the trajectory

Fig. 7. Points for approximation

.,a15 are chosen to minimize the function

Numbers aq, as, . .

(47)

(z3i — L1, 22:))* .

S

B CL15)

J(ai,az,..
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Then in our case we have:

(—0.433897x;  —  0.0525327  —  0.00240945z7 —
—0.994791z2  + 0.170404x129 — 0.0174874a3z0 —
—0.000655178x3x9 — 0.11897623 — 0.0222263z173 —
—0.00191042z323 — 0.0000592797z323 — 0.00572649z5 —
— 0.000934956x1 73 — 0.000068384z w3 — 1.8162 - 10~ Cx3x3

if x> —sign(wg){‘/%\/]wgp,

—0.433897z1  +  0.052532z% —  0.00240945xF —
—0.994791z2 — 0.170404x129 — 0.0174874z3z0 +
+0.000655178z3z2 + 0.118976x3 — 0.0222263z173 +
+0.00191042z%x3 — 0.0000592797x3x3 — 0.0057264923 +
+0.000934956x1 25 — 0.000068384x3x3 + 1.8162 - 10~ x5

| ifz1 < —sign(22) {/ 522 \/|22]3.

w(xy, xe) &

Fig. 8. Approximating surface and the trajectory

The trajectory starting at the point (—1,2.5,1) is shown in Figure 8. We note
that the question whether the concrete obtained approximating or interpolating
surface is a sliding surface can be checked in the same way as for the surface S
and in general this can be not true. The problem which can be considered is how
to choose the interpolation nodes to obtain the sliding surface and to ensure that
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the trajectories reach the origin in a finite time, and if so, how much can time
increase comparing to the original surface.
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ABHuit BUTIsAA TTOBEPXHI MEepeMUKaHHA B 3a/a4i

JOMYCTUMOrO MO3UIIAHOI0 CUHTE3Y
Kopobor B. 1., Bozusik O. C.
Xapriecoruli noutonasvHul yrieepcumem imens B. H. Kapasina
61022, m. Xapwie, matid. Ceobodu, /

B miit crarTi po3rmsmaeTbesa mpobiema, MOB’d3aHa i3 331a9er0 JOIMYCTHMOTO MO3H-
MIHOrO CHHTE3y Ta MeToAoM (PYHKIII KEPOBAHOCTI, a came, 3 JIOMYCTHMHUM IIPUHIIAIIOM
MakcumyMmy. Ha Bigminy Bim Gibin 3BHYOr0 migxomy, ZOMYCTUMAN TPUHITATT MaKCUMYMY
JTa€ PO3pHUBHMIT PO3B’si30K 3ajadui cuaTe3y. Hexail 3a7aHa KaHOHIYHA KEPOBAHA, CUCTE-
Ma &; = Tijr1,i = 1,n—1,&, = u 3 oOMeKeHHAIMU Ha KepyBaHHs Buriaamy |u| < d.
Sazaua cuHTE3y s AOBLIbHOL JiHIMHOI cucremu Buriany & = Ax + bu moxke Oy-
Tu 3BeJeHa 10 KaHoniunol. PyHKuis keposaHocri O(x) 3asaHa gk €auHUN JHOHATHUI
pO3B’s130K Jesikoro pieHsiHHS P(2,0) = 0. KepyBaHHst 0OMpaeThCst TAKWUM YHHOM, 100
minimizyBaTu moxiany dbyskuil O(z) 3a yacom B KOXKHIil TodIl, 1 BOHO MOXKe OyTH 3aru-
cano y Buriani u(x) = —d sign(s(z, ©(x))). MuOXKKHA TOYOK, 10 33 I0BOJIHHIE PIBHOCTI
s(x,0(x)) = 0, HABUBAETHCA IOBEPXHEIO [IEPEMUKAHHS 1 BUBHAYAE TOYKH, J€ KepyBaHHs
3MIiHIOE CBill 3HaK. 3a3BUYail BOHA BKJIIOYAE 3MIHHY O, 1110 € HESIBHUM PO3B’SI3KOM DiBHSIH-
ust ®(z,0) = 0. B uiit pobori MU LIYyKAEMO siBHE [IPEICTABJIEHHS IOBEPXHI LIEPEMUKAHHS,
TOOTO Take, IO He BKJIHOYae 3MiHoi ©. B wamomy eunazaky supasu ®(x,0) rta s(x,©)
€ ToJIIHOMaM¥ BiTHOCHO O, TOMY 3a/a4a MOB’d33aHA 3 33/1a9€l0 3HAXOMKEHHSI yMOB IPHU
AKWX JBa MOJIHOMH MAlOTh CHLIBHHI JOJATHHH KOpiHb. Pamime Oymo Bimomo pimreHHs
JJIsL 2-BUMIpHOrO BULIAJKY. Ajie B X0l JOC/HIIKeHHs 3’CyBajocs, MO I CACTEeM Olib-
1ol po3MipHOCTI iCHYIOTH 1€BHI TPpyAHOII. ¥ IHiff CTATTi IPEICTaBJIEHO Ta JAOCJIi/ZKEHO
MTOBEPXHIO MEPEMUKAHHS IJIsT TPUBAMIPDHOTO BUMAAKY. TaK0XK MOKA3aHO, IO IIsT MTOBEPX-
He [EPEeMUKAHHS € MOBEPXHEI0 KOB3aHHA (3rimHo 3 BusHaueHHaMm Piminmosa). B pobori
TAKOXK 3AIMPONOHOBAHI iHIN CrrOcobM MOOYIOBY TOBEPXHI MEPEMUKAHHS 33 IOMOMOTOI0
inTepmonsrii Ta ampokcuMmariii. Ili crmocobm 3acTOCOBAHO 1T 3HAXOMXKEHHS TPAEKTOPIi
KOHKDPETHHUX [OYaTKOBUX TOYOK.

Karwuosi caosa: kepoBaHicTh; MeTo ] PYHKII KEPOBAHOCTI; JIOMYCTUMUNA TPUH-
ATl MAKCUMYMY; IIOBEPXH NEePEeMUKaHHSI.

Icropia crarri: orpumana: 28 kostHsa 2022; ocranniit Bapiant: 19 rpyausa 2022
npuitnara: 24 rpyaaa 2022.
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YK 929

BAYECJIAB OJIEKCIMOBUY PE3YHEHKO (mexpoutor)
15.02.1941 - 26.08.2022

26 cepmast 2022 poKy BimilnIoB y 3acBiTH A0IEHT Kadeapu Burrol MmareMaTukm
Ta iHdopMaTHKN XapKiBCHLKOr0 HAIlOHAJILHOTO yHiBepcuTery imeni B.H. Kapaai-

na Badecnas OJIeKcn/IOBHq PesyHeHKo Hapoausea Bin 15 mrotoro 1941 poky B
M. Bopownixk, ne iioro 6arbko, MosI0uit

d odinep, Buxsiagas y Bopowixkcbkomy
BifiChKOBOMY yYMJIHNIN 3B’53Ky. Barhko
1920 p.n. yxpaimerns, pogoMm 3 XapKiB-
cbKO1 obsacTi, maru pomom 3 Boponixk-
cekoi objacti. Bareko mponas 6e3 Bi-
cti ma Ppouti pyroi ceiToBoi Bifinu B
ceprai 1941 poky. Baxkki BoeHHI POKH,
eBaKyarlis, MCIIBOCHHUI TOJ0M, 3a/IH-
WA CBiHl BIAOMTOK Ha BCe KUTTA. Ba-
vecsap OMeKCiloBUY TMC/Is 3aKiHIeHHS
cemupiunoi ko, y 1955 nocrymnus 6e3
icrmTiB, $K BinMiHHMK, B XapKiBCbKuUii
OyiBebHMI TexXHIKYM (TeXHIKyM 3e1e-
HOro OymiBHUNTBA). TeXHIKYM 3aKiHUMB
3 BizgHakoio y 1959 pori Ta 3a Hampas-
B JlenHaAM T0ixaB npamosaT B M. Omecy.
YV 1962 - 1967 maBuaBcd HA MEXAHIKO-
MareMaTudHOMY (bakyabreTi XapKiB-
CBKOTO JIeP?KABHOTO VHIBepcHTeTy. 34 HANPaBICHHSM [T0YAB MPAIOBATA B YHi-
BepcuTeTi 3 BepecHs 1967 poky. Crnouyarky pobora MaTeMaTHKOM-IIPOTPaMiCTOM
na Ob6uncmosanbaomy entpi (OI1) yuisepcurery. IIporpamysanns Ta Bupire-
HHs NPUKJAaIHUX 331249 Ha pizuux EOM: cnouarky Ha Ypas-1, morim mHa M-20,
EC. ObuncitoBas 3ajad4i, 30kpeMa, i TypOiHHOrO 3aB0ojy, ABTOIOPO!KHBOTO

iHcTUTYTY, Pi3naHOTO, PaIiodi3uIHOTO (DPaKYIHTETIB HAIIOTO YHIBEPCUTETY.
Opanouacuo 3 pobororo Ha OlLl yuiBepcutery 6yB y 1969-1973 pokm gupek-
Topom 3aounoi toHarpKol Maremarnguoi mkoan (BEOMIIT) npu yuisepcureri
(mpoobpas cyaacnoro Masoro Kapasincekoro yaisepcenrery). 3KOMIIL oprasizo-
ByBaJIa Pa30M 3 MEXAHIKO-MaTeMaTUIHWM, pamiodizmaunm, (gizuaanm i Ghizuko-
TexHIYHUM (baKyJbTeTaMu MIKiabHI ojiMiiaan 7-10 kiacie 3 MaTeMaTuku i ¢izu-
ku. B oxivmiamax 6panu ygacts 00JaCHI KOMaHIW IMKOJIAPiB 3 HiibimocTi 0bra-
crelt YKpainm, a Takox 3 Ectonii, Bimopyci, Pocii. ¥V meaki poxku npuizanao o 500
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IIKOJISPIB Ta BUKIaAa4iB-KepiBHUKIB KoMana. IIKinTbHa MaTeMaTHKa 3aIAIATIaCh
B nosti 30py B.O. Bce itoro »kuTTs, 1po 10 CBiUaTh BUJAHI 9UCJIeH] TOCIOHUKY 3
MaTeMaTuKA JJIs ITKOJIAPIB.

Y 1973-1976 wapuaBca B acuipanTypi ymiBepcurery, B 1977 3axucTtuB KaH-
JUIATCHKY JucepTariio 3 (hi3uKo-MaTeMaTUIYHUX HAayK Ha Temy 'Po3cidnns ese-
KTPOMATHITHUX XBUJIb 30CEPEIKEHNX J2Kepes Ha cdepi 3 KPYyroBUM OTBOPOM .
HayxkoBuMm KepiBHEKOM OVB BHIYCKHHUK Kadeapn MEXaHIKK HAIIOI0 YHIBEPCHUTETY
mokTop diz.-mar. Hayk wieH-Kop. AH Ykpaiuu B.I1. Mlecromasos. Ilicns acmi-
pPaHTypH 33 HAllpaB/JEeHHIM paioBaB 1 pik HAYKOBUM CIIiBPOOITHUKOM Ha Kade/I-
pi TeoperwaHOT pasiodizuKu yHiBepCcHTETY. 32 3aMPOIIEHHSIM JTeKaHa MEXaHIKO-
MaTeMaTHIHOTO aKyabTeTy 3aBiayBada kadeapu Bumol maremarmkm [opmaes-
cokoro J1.3., y 1978 npuiiios i 3 Toro dacy 0e3nepepBHO MPAIFOBAB HA MEXMATI,
na Kadeapi Bumol maremarnku Ta, irdopmaruku. Crioyarky BUKJIA1ad, MTOTIM 3
1979 crapmmit BUK/1aad, 70 OCTAHHLOIO CBOTO JHS - HOIeHT Kadeapn. ¥ 1989 p.
OTPUMAB BYEHE 3BAHHS JTOTCHTA.

30 pokis (1978-2008) simmosigas 3a pobory Omnoprol kadeapu maremaTuku
(OKM) Xapkiseskoro BY3iscskoro nieatpy (XBL). OKM croisnpariioBasia 3 Ka-
deapamu mex-mary, diz-daky Ta diz-rexy yuiBepcurery Ta xadempamu BUIOL
Ta npukaaHol Maremaruku Oiabmr Hixk 20-tu BY3is XBII.

OcHOBHI HAIIpIMKU HAYKOBHUX JOCJIJIKEHb: MaTeMaTU4YHA Teopis maudpakiiil
eJIEKTPOMATHITHAX Ta aKYCTUYHWX XBUJIb, €JIEeKTPOCTATUKA, METOIN PETYIIpn3ar-
il iHTerpaJbHUX Ta CYMaTOPHUX PIiBHAHBL, O0OYHCIIOBAIBHI METOIM B €JIEKTPO-
muaamini. Omy6aikosano 134 waykoso-meroauani mparti (orcid: 0000-0003-4577-
4950). Bys wrenom maykosoro Tosapuctsa IEEE 3 1997 poky.

B mampaMky DOCTITKEHHS NPOCMoOposus PO3N0JiALe eAEKMPOCTGMUYHUL 10~
A16, CMBOPERUT CKAGORUMUY CUCTNEMAMY EACKMPUHHUL 3aPAJL6, OTPUMAB HACTYII-
Hi pe3y/bTaTh: &) 13 BUKOPUCTAHHAM METOJy PEry/sipu3alii BUJLIEHO i OTPUMAHO
IOJIOBHY YaCTHUHY OIEPATOPA 33129l eJIEKTPOCTATUKY [1Jisi C(OEPUIHOI0 CEIMEHTa,
3aHYPEHOI'0 y /JHEeJIEKTPUYHE 3a0KPYIJIEHHS KOHYCY Ta PO3B’¢3aHO 3ajla4y eJie-
KTPOCTATUKHU [yid CHEPUIHOTO CETMEHTA, eKPAHOBAHOTO 3aMKHEHUMHU CEKITiHOBa-
HUMHI cepamu; b) BUALIEHO i OTPUMAHO CHHTYJISIPHY YaCTUHY OMepaTopa 3a1adi
eIEKTPOCTATUKY JIisT CHEPUIHOTO CETMEHTA Ta, CEeKI[OBAHOr0 MPOBIIHOTO KOHY-
ca; €) 13 3aCTOCYBAHHSAM METOJIB IHTErPAJBHUX MEPEeTBOPEHDb, PETyISpH3aIil Ta
BUJTeHHS 1 0OepHEHHS TOJOBHOI YaCTUHU IHTErpAJbHUX i CyMaTOPHUX PIBHAHB
OTPUMAHO CTPOrUN PO3B’SI30K 3334l PO €JIeKTPOCTATHYHUN TOTEH AT cdepu 3
KOJIOBUM OTBOPOM Ta TIAKETY FOPU30HTAJBLHUX JUIIOJIE, eKpaHnoBauux cheporo; d)
OTPUMAHO TOTEHIa U cHEPUITHOrO CEIMEHTa, i eJIEKTPOCTATUIHOrO 3apsijia y MPHU-
CYTHOCTI KOHYCY Ta CeKIifioBanoi cdepu; e) i3 BUKOPUCTAHHAM METOLy 00epHEHHS
IHTerpaJbHOrO omneparopa i HamiBoOepHEHHS MaTPUUYHOTO OlepaTopa 3a/adi mo-
Oy0BAHO YMCETbHO-AHAIITUYHNN AJIrOPUTM JIOCIKEHHsT nOoTeHIiaxy cdepu 3
KOJIOBUM OTBOPOM 1 3apsiy, OTOYEHUX CTPIUYKOBAME CHEPAMMU.

B mHampaMKy posparynry esexmpomMaHimHUL NOAE, CMEOPEHUT CRAGIHUMU
CUCTNEMAMU EACKMPUHUT CMPYMEIG, OTPUMAB PE3YJIBTATH: &) 13 BUKOPUCTAHHSIM
METO[IIB peryaspu3aiiii mapuux (QyHKIIOHATBHUX CYMATOPHUX PIiBHAHBL, IHTEr-
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PaIbHUX [EepPeTBOPEHb 1 BUILIEHHA ¥ 0O0€pHEHHSA T'OJOBHUX YACTHH CYMATOPHHX
PiBHSIHb JIOCJIJI2KEHO €JIEKTPOMArHITHE 110JI€, 10 CTBOPEHO BUTKOM Pa/liaJbHOI0
€JIEKTPUYIHOTO CTPYMY, PO3CIIHOTO CIIpajbHO IPOBITHUM CEPUIHUM JIICKOM;
b) 3a momomorn MeTomy peryJspu3arii omepaTopa 3aJ1adi po3B’a3aH0 3a7a49y Tpo
eJIeKTPOMATHITHE TI0JI€, CTBOPIOBAHE BEPTUKAIHLHO PO3TAMIOBAHUM EIEKTPUIHUAM
JIATIOJIEM HAJ[ CIiPAJbHO MPOBIIHOK HE3aAMKHEHO Chepoio.

B mampavky dugparyii zeusv Ha 00 exmax ckaadHol POpMU, OTPUMAB PE3YITh-
TaTU: a) 13 BAKOPUCTAHHSAM IHTEIPAJBLHOTO MEePEeTBOpeHHs Ty Abesist BiIyKaHo
it 06epHEHO TOJIOBHY YaCTUHY MATPUUHOTO OMEPaTopa 3aaadi Audpakiiil mIocKol
akycTudaHOI XBWJ Ha cdepi 3 KOJOBUM OTBOPOM; b) i3 3aCTOCYBAHHSAM METOIY
peryagpu3ariii MaTpUYHOrO olepaTopa 3aJadl JOCHIAXKEHO TOTEHIaa IBUIKO-
cTelf ITOCKOI aKyCTHYIHOI XBIJIL, IO PO3CIIHO cdepoio, CKIAIEHOI0 3 M SIKOIO Ta
2KOPCTKOTO KOJIOBUX CEIMEHTIB Ta PO3B’d3aH0 3a7a4y AudPaKiil eIeKTPOMaraiT-
HOT'O II0JIsI, CTBOPEHOIO BEPTUKAJJILHO PO3TAIIOBAHUM JHUIIOJEM Oifs CIipagbHO
poBiAHoI cdepn y IPUCYTHOCTI KOHYCY.

Bauecias OsexcitioBud 3aB:xkau OyB TOTOBUIT TOTOMOTATH IHIIIMM, YaCTO, BiJl-
KJIaJIat04un cBol BjacHi cupapu. B mam’sTi 6araTbox BiH 3aJMINMATHCS SK aKTUBHA,
npaiterobHa, BiIKpUTA [0 CHIIKyBaHHS, 106pa JTIOIUHA.
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IlpaBuna ayis aBTOpiB
«Bicnuka XapKiBCbKOro HaliOHAJILHOI'O YHiBEpCUTETY
imeni B. H. Kapa3zina»,
Cepis «Maremaruka, n1puKJiaiHasi MaTeMaTuka i mexaHika»

Penakitist mpocuTh aBTOPIB IpM HAITPABJIEHH] cTaTell KepyBaTHUCI HACTYITHUMHI
MTPABUJIAMA.

1. B xypHami nybJiKyoThCS CTATTI, M0 MAOTh PE3YIBTATH MATEMATHIHUX
JOCTIKEHD (AHTTIHCHKOI0 200 YKPATHCHKOK) MOBAMMY).

2. llomaHHsiM cTaTTi BBasKAETHCsl OTPUMAHHs peAakiiero daiip crarTi
odopmnernx y perakropi LATEX (Bepcis 2e), amoraniit, BijomocTeit mpo aBropis
Ta apxiBa, mo Bkao9ae LATEX daiinu crarti Ta daiian mamonkis. Paitn-3pa3ox
odopmiienHs CTATTI MOXKHA 3HAWTH B PEIAKINl KypHAJYy Ta HA BeO-CTOpPIHIM
(http://vestnik-math.univer.kharkov.ua).

3. Crarrsa nOBUHHA NOYMHATUCS 3 PO3MMPEHOT aHoTanii (06csarom HE MEHII
Hi>xk 1800 3HakiB), B dkiii mopunHI OyTn wiTKO ChoOpMyaHLOBAHI MeTa Ta pe-
3ysbTaTH poboTH. AHOTAIS MOBUHHA GYTH TIEH0 MOBOIO (AHIVIHICEKOI ab0 yKpa-
THCBKOIO), SKOIO € OCHOBHHUII TEKCT CTaTTi. 3aKOPAOHHI aBTOPU MOXKYTh 3BEp-
HYTHCS JIO PEIaKIil 3a JOTOMOTOK 3 MEPEKIAJI0M aHOTAIllll Ha YKPATHCHKY MO-
By. loBunni 6yTy HaBemeni npizsuina, iHimiaan aBropis, Ha3Ba pPOOOTHU, KIOUOBI
CJIOBA Ta HOMEp 3a MiKHAPOJHOI MareMaTHdHOK Kiacudikarieno (Mathemati-
cs Subject Classification 2010). Anoraris He TOBUHHA MATH TTOCUIAHL HA JITEPaA-
Typy um MasrorKu. Ha meprmiit cropinmi Bkasyerbest Homep YK kimacudikariii.
B xinni crarTi Tpeba mogaru nepekaas anoraril (o6carom He MeHIn Hixk 1800
3HaAKIB) Ha JApyTy MOBY (AHIJIHCHKY 91 yKPATHCHKY ).

4. Crucox JjiTeparypu mMOBUHEH OyTu OMOPMJIEHUI JIATHHCHKAM MIPUGTOM.
[Mpukaagn odopMIEHHST CIIUCKA JTITEPATY PH:

1. A.M. Lyapunov. A new case of integrability of differential equations of motion

of a solid body in liquid, Rep. Kharkov Math. Soc., — 1893. — 2. V.4. — P. 81-85.

2. AM. Lyapunov. The general problem of the stability of motion. Kharkov
Mathematical Society, Kharkov. - 1892. - 251 p.

5. KoxHuil MaJ/IFOHOK ITOBUHEH OYTH NPOHYMEPOBAHUI Ta IIpEeJCTaB/IEHUI
okpemuM haitiiom B ogaomy 3 hopmaris: EPS, BMP, JPG. B daiiii crarri madio-
HOK MOBWHEH OyTw BCTaBaeHuit aBropom. Ilij MaoHKOM TOBUHEH OyTH ITimwuc.
Hazsu haitniB MamoHKIB TOBUHHI TOYMHATUCEH 3 TPU3UIIA IIEPIIOro aBTOPA.

6. BimomocTi mpo aBTOpiB MOBWHHI MicTHTH: MPi3BUINA, iMeHa, 0 HATHKOBI,
cayx00Bi asipecu Ta HOMepHu TesiedOHIB, HAYKOBUI CTYIIIHD, TOCATY, aJ[PECU eJie-
KTPOHHUX CKPMHBOK Ta iH(OpMArio npo Haykosl npodaiimm asropis (orcid.org,
www.researcherid.com, www.scopus.com) 3 BiamoBiHNMY mocHIansMu. 1Ipoxan-
Hd TAKOXK TOBITOMWUTH TIPI3BUINE aBTOPA, 3 9KUM Tpeba BECTH JINCTYBAHHI.

7. PekoMeHyeEMO BUKODHCTOBYBATH B SKOCTI 3pa3ka O(OpPMJIEHHSI OCTaHHI
Buycku »Kypraiy (vestnik-math.univer.kharkov.ua/currentv.htm).

8. YV BuIIaIKy HOPYIIEHHS TpaBuJl 0DOPMIIEHHA peJlaKiiid He OyJie Po3rsg aTu
CTaTTIO.

Enexrponna ckpunbka: vestnik-khnu@ukr.net

Enexkrponna ampeca B Inrepreri: http: //vestnik-math.univer.kharkov.ua
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