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Control of wheeled platforms straight motions taking

into account jerk restrictions under speeding-up from

the state of rest

The generalized mathematical model of wheeled platforms straight motions
on the ideal horizontal plane under speeding-up from the state of rest mode
is proposed, and the controls satisfying the restrictions of motion jerks are �-
nd. The pure mechanical and electromechanical wheeled platforms are consi-
dered, as well as the computer simulations of the researched processes are
made. The jerks restrictions are reduced to limiting the value of the wheeled
platform acceleration time derivative. The proposed approaches are based
on the holonomic systems mechanics and on the electromechanical analogi-
es allowing to consider the di�erent kinds of the wheeled platforms taking
into account the electric on-board systems like the drive electric motors and
the control systems by using the Lagrange equations of second kind. The
examples of the proposed approaches using to de�ne the controls satisfying
the jerks restrictions under speeding-up from the state of rest are consi-
dered for the pure mechanical and electromechanical wheeled platforms. It
is obtained the inequality allowing to chose the instantly supplied drivi-
ng mechanical couple which will provide the admissible jerks of the moti-
on of the wheeled platform under speeding-up from the state of rest. It
is shown that the rolling friction and the viscous damping are the princi-
pal causes of the wheeled platforms jerks under speeding-up from the state
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of rest. It is obtained the inequality de�ning the voltage instantly suppli-
ed on the drive electric motors which will provide the admissible jerks of
the motion of the electromechanical wheeled platform during speeding-up
from the state of rest, and it is shown that the proposed general approaches
are suitable for considering the di�erent kinds of wheeled platforms. The
computer simulations of the processes of speeding-up from the state of
rest for the electromechanical wheeled platform are considered to show
results correctness and to illustrate satisfying the restrictions of the moti-
on jerks. The obtained results of the computer simulations are in the
full agreement with the well-known fundamental property inherent for the
wheeled platforms. The results for the jerks show that the maximum value
of the jerk is really at the initial time as was suggested before, and it
is shown that the jerks values at the initial time obtained by using the
computer simulations are in full agreement with the theoretically de�ned
correspondent exact values. The big jerks of the considered electromechani-
cal wheeled platform are due to the voltage instantly supplying on the drive
electric motors at the initial time, and it is understandable that limiting of
such instantly supplied voltage value cannot provide any wished small jerks.
The smooth time depending for the voltages supplying on the drive electric
motors are required to provide any wished small jerks of the electromechani-
cal wheeled platforms.

Keywords: control; motion; jerk; wheeled platform; mathematical

modelling.

2010 Mathematics Subject Classi�cation: 49K15; 70E60; 70E55.

1. Introduction

Di�erent kinds of wheeled platforms are widely used for human operated
transportation systems, but last times it is existed the trend in using them also as
the carriers of the di�erent autonomous mobile transportation and technological
systems for industrial, military, police, agriculture and house holding purposes.
The motions jerks can limit the implementing possibilities of the autonomous
wheeled platforms and other robotic systems for automated executing of some
kinds of operations. Du to this circumstance, restricting the motions jerks is in
current interest problem necessary to increase the operational quality and possi-
bilities of implementing of wheeled platforms [1] and of di�erent kinds of robotic
systems. The theme of the proposed research deals with the particular problems
about control of wheeled platforms straight motions taking into account jerk
restrictions under speeding-up from the state of rest, and this theme is in current
interest, because of it is in agreement with the existed general trends in developing
the robotic systems directed to extensions of their implementing.

First principal reason for motions jerks limiting is due to the requirements
of motion smooth necessary for normal operating of di�erent kinds of robotic
systems [2], [3]. The motions smoothness and excluding the jerks can be requi-
red for example for delicate or dangerous cargoes transportation [4] as well as for
providing the most accurate relative positioning of technological systems parts [5].
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It is necessary to note that excluding the motions jerks requires implementing the
mechanisms special designs [6], as well as implementing the special control algori-
thms [4], [5]. So, excluding the wheeled platforms motions jerks is the multidiscipli-
nary problem, and it requires the corresponded developing both the mechanical
design both the control systems which must be corresponded with the existed
imperfections of the mechanical joints due to the friction and the clearances.

Second principal reason for limiting the motions jerks is due to the moti-
on smooth requirements necessary to provide the normal operation conditions
for the sensitive components of on-board measuring systems [7], [8], including the
sensors and the complementary electronic devices like analog-to-digital converters
and computers for real time processing of the measured signals. Really, motions
jerks have in�uence on on-board sensors like accelerometers or tachometers, and
this in�uence is equivalent to noises disturbing measured signals used for positi-
oning and de�ning current state parameters like velocities and accelerations [8].
Due to these circumstances, the motions jerks can lead to failures in positioning,
in velocities and accelerations de�ning and in control of planed paths. As the
result of all these, normal operation can be broken, and, furthermore, a lot of di-
�erent dangerous can be created especially in using the fully autonomous wheeled
platforms. So, de�ning the admissible motions jerks providing the normal operati-
on of the wheeled platforms taking into account in�uencing on on-board measuri-
ng systems is the complicated problem required multidisciplinary approaches
providing opportunities to consider the interactions between the mechanical,
electromechanical and electronic parts [4], [8]. It is naturally that the motions
jerks are associated with the accelerations and their changes like was discussed
in the research [4] for example, so the quantitative measures of the motions jerks
are based on using accelerations and their �rst and higher derivatives [9]. At the
same time, the mechanical motions are represented by the di�erential equations of
second orders, so researching the accelerations derivatives is the special separate
problem [10].

To research the wheeled platforms motions jerks it is necessary to have some
general methodology which will allow considering di�erent causes leading to the
jerks. There are a lot of causes leading to the wheeled platforms motions jerks
[1], and it is necessary to research all of them, but it is the complicated problem
not for one research. It is well-known [1] that the jerks are inherent especially for
transient modes of wheeled platforms motions. Thus, the purpose of this research
is in considering the particular problem about control of wheeled platforms strai-
ght motions on the ideal horizontal plane taking into account jerk restrictions
under speeding-up from the state of rest. It is understood that the speeding-up
is the particular case of transient modes of wheeled platforms, and jerks will be
necessarily presented on this mode. Choosing the state of rest as the initial state
is to simplify formulating the initial conditions, and such simpli�cation is suitable
for obtaining the primary results for planning the further researches in the �eld of
the motion control under jerks restrictions. To realize the purpose of the research
the follows tasks will be considered:
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• the generalized approaches to de�ne the controls satisfying the straight moti-
ons jerks restrictions of wheeled platforms will be developed for the speeding-up
from the state of rest modes;
• the examples of the proposed approaches using to de�ne the permissible

controls satisfying the jerks restrictions under speeding-up from the state of
rest will be considered for the pure mechanical and electromechanical wheeled
platforms;
• computer simulations of the processes of speeding-up from the state of rest

will be executed for the electromechanical wheeled platforms to show the results
correctness and to illustrate satisfying the restrictions of the motions jerks.

Developing all noted above tasks will allow giving the clear imaginations about
the proposed generalized approaches and their using in the important particular
cases, as well as it will allow illustrating the in�uence of the researched control
processes on the motions jerks for the wheeled platforms under speeding-up from
the state of rest.

2. Generalized approaches

Developing the generalized approaches is more suitable than developing the
particular approaches for each particular task. The generalized approaches to de�-
ne the controls satisfying the wheeled platforms jerks restrictions under speeding-
up modes from the state of rest are reduced to mathematical modelling of the
researched modes and to resolving the formulated restrictions. The mathematical
modelling of the wheeled platforms speeding-up modes will be considered under
the most generalized assumptions that the researched wheeled platforms can be
reduced to the holonomic systems. It is really the serious simpli�cation because of
the nonholonomic constraints are inherent for the wheeled platforms in general,
but we have the hope that considering the particular case of the straight motions
under speeding-up modes from the state of rest allow reducing to the holonomic
systems.

It is well-known [11], [12] that the state of the holonomic systems can be
de�ned by using the generalized coordinates:

qk = qk(t), k = 1, 2, .., N, (1)

where qk, k = 1, 2, .., N are the generalized coordinates; N is the number of the
freedom degrees of the holonomic system; t ≥ 0 is the time.

It is necessary to note that not all generalized coordinates (1) will have the
mechanical sense like linear displacements or angles, and some of these coordinates
(1) can have the electrical sense like the electrical charges in the case of the
electromechanical wheeled platforms. The translational straight motions of the
wheeled platform can be imagined as the motions of its mass center, and it can
be represented in the natural coordinates, so that we will have for the holonomic
system the follows relation:

s = s(q1, q2, ..., qN ), (2)



8 I. Sh. Nevliudov, Yu. V. Romashov

where s is the length of the arc of the trajectory of the mass center of the consi-
dered wheeled platform.

It is not unexpectedly to de�ne the jerk as the time derivative of the accelerati-
on and as the time third derivative of the coordinate:

j = d3s
dt3
, (3)

where j is the estimation of the jerk of the motion of the considered wheeled
platform.

Taking into account the used estimation of the motion jerk (3) and the relati-
ons (2), (1), we will have the follows:

j(t) =
N∑
k=1

(
N∑
i=1

N∑
j=1

∂3s
∂qk∂qi∂qj

dqk
dt

dqi
dt

dqj
dt + 3

N∑
i=1

∂2s
∂qk∂qi

dqk
dt

d2qi
dt2

+ ∂s
∂qk

d3qk
dt3

)
. (4)

Relation (4) shows that the jerks of the translational motions of the wheeled
platforms are depended on the generalized velocities, generalized accelerations
and the generalized accelerations time derivatives as well as on the building of the
wheeled platform.

The Lagrange equations of second kind give us one of the most general form
of the di�erential equations of dynamics of holonomic systems representing the
di�erent kinds of wheeled platform under the di�erent operational modes:

d
dt

∂L
∂q̇k
− ∂L

∂qk
= − ∂R

∂q̇k
+Qk, k = 1, 2, .., N, (5)

where L is the Lagrange function de�ned as di�erence between the kinetic and
potential energies of the considered wheeled platform; q̇k ≡ dqk/dt; R is the
generalized Raleigh function de�ning all the dissipation for the considered wheeled
platform; Qk are the generalized forces corresponding with the relevant generali-
zed coordinates and de�ning all the driving forces and couples of the considered
wheeled platform.

The equations (5) are the di�erential equations of second order, so the
assumption about the initial state of rest for the considered wheeled platform
allows formulating the initial conditions:

qk(0) = 0, q̇k = 0, k = 1, 2, .., N. (6)

Thus, the di�erential equations (5) with the initial conditions (6) generally
represent the mathematical model of motion from the state of rest of the wheeled
platform considered under the restrictions leading to the correspondent holonomic
system with the generalized coordinates (1).

Taking into account the purpose of the research, we will consider further the
transient modes from the initial state (6) to some state of uniform motion with the
relative small velocity allowing the linearization of the di�erential equations (5) of
the dynamic of the wheeled platform which is considered as the holonomic system.
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Such linearization will allow represent the Lagrange L and Raleigh functions R
in the follows form:

L = 1
2

N∑
k=1

N∑
i=1

mkiq̇kq̇i − 1
2

N∑
k=1

N∑
i=1

ckiqkqi, (7)

R =
N∑
k=1

fkq̇k + 1
2

N∑
k=1

N∑
i=1

βkiq̇kq̇i, (8)

where mki and cki are the generalized inertia and sti�ness constant parameters of
the considered wheeled platform parts; fk are the parameters de�ning the non-
viscous frictions not depending on the velocities; βki are the generalized damping

parameters satisfying the conditions: βk ≥ 0, βki = βik and
N∑
k=1

N∑
i=1

βkiq̇kq̇i ≥ 0

and de�ning the linearized viscous damping.
It is naturally to imagine that motion control of the wheeled platforms is

realized thru the driving generalized forces. We will assume that the control of
the wheeled platform can be reduced to one time depended function:

u = u(t), (9)

where u is the parameter de�ning the control in�uence on the considered wheeled
platform.

The assumption (9) limits the possible class of the considered wheeled
platforms, but this theoretically limited class can represent the most of actually
existed and widely used wheeled platforms. Really, each wheeled platform has the
energy source, the transmission as well as the drive and supporting wheels, so that
the state of the energy source naturally de�nes the state of the wheeled platform.
Although, the physical essentials of the power produced by the energy source is
signi�cantly depended on the type and on the design of the energy source, but it
is more principally for us to de�ne the state of the energy source by the power
supplied to the transmission to move the drive wheels of the wheeled platform.
Due to the noted here circumstances, the assumption (9) seems as the natural
because of we have only one principal parameter de�ning the state of the consi-
dered wheeled platform and this parameter is the power supplied from the energy
source to the transmission. Of course, the supplied power can be de�ned by other
parameters like the torque, the position of the fuel valve or the voltage supplied
to drive electric motors. Exactly, the noted case is the typical for the most of
existed and used wheeled platforms. Considering the transient modes from the
initial state (6) to some state of the motion with the relative small velocity is
in agreement with the purposes of this research, and it allows linearization of
the di�erential equations (5) of the dynamics of the wheeled platform which is
considered as some holonomic system. Thus, the driving generalized forces can be
represented taking into account the assumption (9) in the follows linearized view:

Qk =
N∑
i=1

αkiq̇i + bku(t), k = 1, 2, .., N, (10)
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where αki are the parameters de�ning the linearized velocity depending of the
driving generalized forces, but bk are the constant parameters characterizing the
sensitivity of the control of the considered wheeled platform.

Taking into account the relations (7), (8) and (10) in the Lagrange equati-
ons of second kind (5), we will have the follows linearized di�erential equations
representing the dynamics of the considered wheeled platform:

N∑
i=1

mkiq̈i = −
N∑
i=1

ckiqi −
N∑
i=1

dkiq̇i − fk + bku(t), k = 1, 2, .., N, (11)

where dki = βki − αki.
Further, it will be suitable to have the vector-matrix representation of the

di�erential equations (11), and to have this representation, we will introduce the
follows vectors and matrices:

q =


q1

q2
...
qN

 , f̄ =


f1

f2
...
fN

 , b̄ =


b1
b2
...
bN

 ,

M =


m11 m12 · · · m1N

m21 m22 · · · m2N
...

...
. . .

...
mN1 mN2 · · · mNN

 ,C =


c11 c12 · · · c1N

c21 c22 · · · c2N
...

...
. . .

...
cN1 cN2 · · · cNN

 ,

D =


d11 d12 · · · d1N

d21 d22 · · · d2N
...

...
. . .

...
dN1 dN2 · · · dNN

 .

(12)

The introduced above vectors and matrices (12) allow representing the di�erential
equations (11) and the initial conditions (6) in the suitable vector-matrix form:

Mq̈ = −Cq−Dq̇− f̄+ b̄u(t), q(0) = 0, q̇(0) = 0, (13)

where 0 is the zero vector having the correspondent dimension.
Solving the initial-value problem (13) will give the opportunities to �nd the

jerks (4) corresponded to the given control (9), so in the form (13) we have the
mathematical model of the considered wheeled platform representing its dynami-
cal properties which must be taken into account to design the controls satisfying
the motions jerks restrictions. We will consider further one of the principal kinds
of the control (9) de�ned by the constant:

u(t) = uc, (14)

where uc > 0 is the given constant corresponded to some quasi-stationary mode
of the motions of the considered wheeled platform characterized by the constant
velocity of its mass center.
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Considering the particular case (14) of the control (9) is really very important
from the point of view on designing the control of wheeled platforms speeding-
up from the state of rest taking account the motion jerks restriction. Really, the
motions de�ned by the di�erential equations and the initial conditions (13) for
the control (14) represent the transient characteristics of the considered wheeled
platform, and exactly these transient characteristics de�ne the transient processes
including the jerks during speeding-up of the wheeled platform from the state of
rest. It is naturally to assume that the maximum jerks of the wheeled platform
are at the beginning of the motions, because of exactly in this moment the motion
is created from the state of rest, and further we will have only increasing of the
velocity of the already existed motion, until this velocity will achieve the steady
value, corresponded to the control (14). Taking into account the initial conditions
(6), the relation (4) allows de�ning the wheeled platform jerk at the initial time
of the speeding-up process:

j(0) = j0, j0 =
N∑
k=1

jk
d3qk
dt3

(0), (15)

where j0 is the jerk at the initial time; jk = ∂s
∂qk

∣∣∣∣ qi=0

i=1,2,...,N

.

To restrict the jerks of the considered wheeled platform it is naturally to limit
the initial jerk (15):

|j0| ≤ [j] , (16)

where [j] ≥ 0 is the admissible jerk of the considered wheeled platform.
Considering the transient process (13) during the wheeled platform speeding-

up for the control (14) will allow de�ning the control satisfying the jerk restriction
(16), but to do this it is principally more suitable to represent the mathematical
model (13) representing the considered wheeled platform in the form of the system
of �rst ordered di�erential equations. To represent the second ordered di�erential
equations (13) as the system of the �rst ordered di�erential equations we will
introduce the follows phase state space:

x1 = q1, x2 = q2, . . . , xN = qn, xN+1 = q̇1, xN+2 = q̇2, . . . , x2N = q̇n, (17)

where xk, k = 1, 2, ...2N are the phase coordinates.
It is suitable to represent the phase coordinate (17) as the vector:

x =
(
x1 x2 · · · xn

)T
, (18)

where n = 2N is the dimension of the state phase space and T is the transpose
operation symbol.

The introduced vector (18) and the assumption (14) about the control allow
representing the di�erential equations and the initial conditions (13) in the follows
suitable form:

dx
dt = Ax− f+ buc, x(0) = 0, (19)
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where A is some matrix, f and b are some vectors; 0 is the zero vector.
Comparing the equation (19) and the equation (13) allow us to write the

matrix A and the vectors f and b included in the equation (19):

A =

(
O I

−M−1C −M−1D

)
, f =

(
0

M−1f̄

)
,b =

(
0

M−1b̄

)
, (20)

where O and I are the zero and unit matrix, but 0 is the zero vector of the
correspondent dimensions.

Taking into account the introduced above vector (17), (18), the initial jerk
(15) of the wheeled platform can be represented in the follows view:

j0 = jd
2x

dt2
(0), j =

 0 0 · · · 0︸ ︷︷ ︸
N

j1 j2 · · · jN

 . (21)

Solution of the initial-value problem (19), (20) and the relation (21) allow �nding
the initial jerk j0 required for the jerk restriction (16) of the considered wheeled
platform. Really, the solution of the problem (19) can be represented in the follows
form:

x(t) =
(
eAt − I

) (
A−1 (buc − f)

)
. (22)

The solution (22) and the relation (21) allow �nding the initial jerk of the motion
for the considered wheeled platform:

j0 = jA (buc − f) . (23)

Relation (23) and the the restriction (16) will allow de�ning the control (14) and
representing this control thru the primary linearized di�erential equations (13).
To do this, it is necessary to take into account the relations (20) and (21), so the
result of all these will lead to the restriction of the control (14) in the follow view:∣∣̄jM−1DM−1f̄−

(̄
jM−1DM−1b̄

)
uc
∣∣ ≤ [j] , (24)

where j̄ =
(
j1 j2 · · · jN

)
The relation (24) is actually gave the restriction of the considered wheeled

platform control (14) providing speeding-up from the state of rest under the limi-
ted motion jerks. We can see from the relation (24) that the jerks can be only due
to existing the linear dissipative and gyroscopic generalized forces, because the
zero matrixD allows satisfying the jerk restriction (24) for any control (14). These
dissipative forces are usually the result of the aerodynamic and hydrodynamic fri-
ctions; the Coriolis forces are the example of the gyroscopic forces.

The constant generalized forces of the wheeled platform are represented by
the vector f̄ and are had the signi�cant in�uencing on the motions jerks. These
constant generalized forces are usually for example the gravity forces acting on
the wheeled platforms moved on the inclining road or the rolling friction couples
of the wheels interacting with the soil.
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3. Examples

The developed approaches reduced to the inequality (24) for control of the
straight motion under speeding-up from the state of rest mode taking into account
the jerks restrictions can be used for di�erent kinds of the wheeled platforms.
Further, we will illustrate the mechanics foundations of the developed approaches
as well as we will consider the particular application of these developed approaches
deals with the control of autonomous electromechanical wheeled platform.

Example 1. The simple schematization (�g. 1a) of the four-wheeled platform
will be considered �rstly to illustrate the mechanical foundations of the proposed
approaches reduced to the inequality (24). This schematization (�g. 1a) is based
on the assumption (1) about the generalized coordinates, and in this particular
case it will be assumed that the straight motion of the considered four-wheeled
platform can be de�ned by one generalized coordinate q1 representing the rotation
angle of its wheels, so the straight motion can be de�ned as follows (�g. 1a):

s = q1r, (25)

where s is the linear coordinate de�ning the straight motion; q1 is the rotation
angle and r is the radius of the wheels of the considered platform.

Fig. 1. Schematizing of the four-wheeled platform (a) with the housing-1
and the wheels-2, as well as the result for the jerk (b) of this platform

and the equivalent scheme of the drive electric motors (c)

The relation (25) actually is the particular case of the generalized form relation
(2), so the relation (4) de�ning the jerk (3) will have the more simple view:

j(t) = r d
3q1
dt3

. (26)

For the assumed schematization (�g. 1a) of the considered four-wheeled platform
we will have the follows Lagrange function L, the Raleigh function R and the
driving generalized force Q1:

L = 1
2Jq̇

2
1, J = mpr

2 + 4Jw, (27)
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R = 4Mrf q̇1 + 1
2βq̇

2
1, (28)

Q1 = 4Md, uc = Md, (29)

where mp is the total mass and Jw is the inertia moment of the wheel of the
considered platform (�g. 1a); Mrf = const is the rolling friction couple; β is the
parameter de�ning the viscous linear damping;Md is the driving couple acting to
each of the wheels.

The relations (27)-(29) and the Lagrange equations (5) with the assumed
initial conditions (6) in the considered case of the system with one freedom degree
(N = 1) allow writing the follows di�erential equation and the initial conditions:

Jq̈1 + βq̇1 = 4 (Md −Mrf ) , q1(0) = 0, q̇1(0) = 0. (30)

Solution of the Cauchy linear problem (30) can be represented in the follows view:

q1(t) = 4
β (Md −Mrf )

(
t− J

β

(
1− e−

β
J
t
))

. (31)

The solution (32) allows �nding the jerk of the considered wheeled platform using
the relation (26):

j(t) = −4βr
J2 (Md −Mrf ) e−

β
J
t. (32)

Solution (32) shows (�g. 1b) that the maximal jerk of the motion is in the ini-
tial time moment corresponding to the beginning of speeding-up of the consi-
dered wheeled platform from the state of rest, and this circumstance in the full
agreement with the previously used limitation of the jerks which was represented
by the inequality (16). Thus, the maximal jerk of the considered wheeled platform
(�g. 1b) can be de�ned by the relation (32) at the initial time moment t = 0:

j(0) = −4βr
J2 (Md −Mrf ) . (33)

Due to the relation (33), it is possible to have the particular representation of the
generalized inequality (16):

4βr
J2 |Md −Mrf | ≤ [j]. (34)

To provide the motion of the considered wheeled platform it is necessary to satisfy
the follows relation:

Md ≥Mrf . (35)

Due to the inequalities (34) and (35), it is possible to have the condition on the
driving couple:

Md ≤Mrf + J2

4βr [j]. (36)

The inequality (36) allows choosing the driving couple which will provide the
admissible jerks of the motion of the wheeled platform speeding up from the state
of rest. The inequality (36) shows that the rolling friction and the viscous damping
are the principal causes of the jerks of the wheeled platforms under speeding up
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from the state of rest. Besides, the obtained result (34) is the illustration of the
generalized approaches reduced to the inequality (24). Really, the result (34) can
be obtained by using the generalized inequality (24), if are will be assumed the
follows:

j̄ = (r), M = (J), D = (β), f̄ = (4Mrf ), b̄ = (4). (37)

Example 2. In the previously considered example, the control was reduced to the
drive couple (29) immediately acting on the wheel. At the same time, the drive
couples are often the results of some power source operating, and it is possible
only the indirect control of the drive couples due to the controlling of the power
source state. This circumstance make more di�cult the wheeled platforms control
under the motions jerks restrictions because of the power sources have the own
inherent properties and can have additional in�uence on the wheeled platforms. To
show this, we will consider the same four-wheeled platform (�g. 1a), but driving
by means the direct current electric motors schematized as shown on the �g. 1c.
In this case the generalized coordinate q2 representing the electric charge in the
equivalent electric circuits of the electric motors actually de�nes the state of the
drive electric motors, and the voltage U = U(t) supplied to the each of these
drive electric motor actually controls the drive couple Md on the wheels. So, the
Lagrange function, the generalized Raleigh function and the generalized forces
representing the four-wheeled platform (�g. 1a) with the driving electric couples
(�g. 1c) on each of the wheels will have the follows view:

L = 1
2Jq̇

2
1 + 1

24Lq̇2
2, (38)

R = 4Mrf q̇1 + 1
2βq̇

2
1 + 1

24Rq̇2
2, (39)

Q1 = 4Md, Md = Bq̇2, Q2 = 4(U −Bq̇1), uc = U, (40)

where L is the inductance, R is the resistance of the equivalent electric circuit and
B is the electromechanical parameter of the drive direct current electric motor;
U is the supplied voltage on the drive electric motors.

The relations (38)-(40) and the Lagrange equations (5) with the assumed
initial conditions (6) in the considered case of the system with two freedoms
degree (N = 2) allow writing the follows di�erential equations and the initial
conditions:

Jq̈1 = −βq̇1 + 4Bq̇2 − 4Mrf , 4Lq̈2 = −4Bq̇1 − 4Rq̇2 + 4U, (41)

q1(0) = 0, q2(0) = 0, q̇1(0) = 0, q̇2(0) = 0. (42)

The di�erential equations (41) with the initial conditions (42) can be represented
in the generalized form (13) in which we will have the follows vectors and matrices:

q =

(
q1

q2

)
, f̄ =

(
4Mrf

0

)
, b̄ =

(
0
4

)
, (43)
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M =

(
J 0
0 4L

)
,C =

(
0 0
0 0

)
,D =

(
β −4B

4B 4R

)
. (44)

Substituting the vectors (43) and matrices (44) to the inequality (24) allows obtai-
ning the limitation on the supplied voltage on the drive electric motors providing
the required restriction of the jerk of the straight motion under the speeding-up
of the four-wheeled electromechanical platform:

j0 = 4r
J

(
β
JMrf + B

LU
)
, 4r

J

∣∣∣βJMrf + B
LU
∣∣∣ ≤ [j]. (45)

The results (34) and (45) allow showing that increasing the inertia of the wheeled
platform represented by the generalized inertia moment J leads to decreasing the
straight motion jerks under speeding-up from the state of rest. So, in the case of
importance of limiting the jerks it is necessary to increase the mass of the wheeled
platform. The results (34) and (45) also showing that decreasing the radius of the
wheels of the platform leads to decreasing the jerks of the straight motion under
speeding-up from the state of rest. Both the results (34) and (45) show that the
rolling friction will necessarily lead to the jerks. At the same time, the result (35)
shows that choosing the drive couple allows provide any wished small jerk, even
if the rolling friction is presented, but the result (45) shows that it is impossible
to have any wished small jerks of the electromechanical wheeled platform, if the
rolling friction is presented, and it is only possible to minimize the jerks. This
di�erence in the results (34) and (45) is due to that the properties of the sources
of the drive mechanical torque of the wheels are not considered in the result (34),
but this was considered in the result (45). So, properties of the the power source
have the signi�cant in�uence on the control providing the jerks restrictions of the
straight motion under speeding-up from the state of rest of the wheeled platform.

4. Computer simulations

Further, we will consider the computer simulation of the wheeled electromecha-
nical platform de�ned by the mathematical model (41), (42). This computer si-
mulation will be reduced to the numerical solving of the initial value problem
(41), (42), which will be represented as the system of the �rst ordered di�erential
equations with the initial conditions (19). To have the required representation
(19) of the initial value problem (41), (42) we will use new variables (17) with the
N = 2 generalized coordinates and the control uc = U , as it was de�ned in the
last relation (40). Thus, taking into account the relations (20), (43) and (44), we
will have the vector x, the matrix A as well as the vectors f and b de�ning the
linear di�erential equations (19) in the follows view:

x =
(
x1 x2 x3 x4

)T
, (46)

A =


0 0 1 0
0 0 0 1
0 0 −β/J 4B/J
0 0 −B/L −R/J

 , f =


0
0

4Mrf/J
0

 , b =


0
0
0

1/L

 . (47)
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The involved in the di�erential equations (41) numerical parameters representing
the characteristics of the wheeled electromechanical platform will be considered
as follows:

J = 80 kg ·m2, r = 0, 15 m, β = 2, 5 kg·m2

s , Mrf = 515 N ·m, (48)

L = 2, 6mH, R = 1, 18 Ω, B = 4 N·m
A . (49)

Fig. 2. Graphical representation of the model of the electromechanical
wheeled platform in the Scilab free open source software

To solve the initial value problem (41), (42), (46)-(49) we will use the Scilab
free open source scienti�c software in which we will use the especially designed
graphical representation of the model of the considered electromechanical wheeled
platform as shown on the �g. 2. This computer model (�g. 2) allows having di-
�erent results, but further, we will consider only the follows:

v (t) = rx3 (t) , (50)

j (t) = r d
2x3
dt2

(t) , (51)

where v is the velocity and j is the jerk of the motion of the considered wheeled
electromechanical platform.

Numerical solving of the initial value problem (41), (42), (46)-(49) allows havi-
ng only the approximate solution for the x3 (t), but this approximate solution will
be close to the exact solution of this problem, so we can have the correct results for
the velocity (50) of the considered wheeled platform. At the same time, it is well
known that di�erentiation of the approximate solution x3 (t) is incorrect in the
Hadamard sense, and due to this we cannot have the correct results for the jerk
of the considered electromechanical wheeled platform, if the formula (51) will be
used directly. To exclude the Hadamard incorrectness to have the correct results
for the jerk (51) it is necessary to represent the derivative d2x3/dt

2 thru the x
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vector. It is not di�cult in the considered example; really, taking into account
the relation x3 = q̇1 and �rst di�erential equation (41), we will have the follows
relation:

d2x3
dt2

= −β
J q̈1 + 4B

J q̈2. (52)

Further, it is necessary to exclude the second derivatives of the generalized coordi-
nates from the obtained relation (52) using the di�erential equations (41). All
these and the de�nitions (17) will allow having the follows:

d2x3
dt2

=
(
β2

J2 − 4B2

JL

)
x3 −

(
4βB
J2 + 4BR

JL

)
x4 +

4βMrf

J2 + 4B
JLU. (53)

Fig. 3. Velocity (a) and jerk (b) of the electromechanical wheeled platform
corresponded to the voltages U = 60 V (curve 1) and U = 40 V (curve 2)

supplied on the drive electric motors

It is necessary to note, that instead the particular result (53) it is possible to
use the generalized result obtained from the di�erential equations (19):

d2x
dt2

= (AA)x−Af+ (A)buc. (54)

The opportunities of representing the jerk thru the vector x in the general
form (54) for the linearized problem (19) are really very important to exclude
the di�erentiation of the x vector leading to the Hadamard incorrectness in the
case of using the numerical methods for �nding the x vector. The most interested
quantitative results obtained by using the computer simulations (�g. 2) for the
velocity (50) and for the jerk (51), (53) of the considered wheeled electromechani-
cal platform are presented on the �g. 3. We can see (�g. 3a) that the velocity of the
wheeled platform is directed to the maximum value corresponding to equilibrium
between the viscous damping and the driving couples which are depended on the
voltage supplied to the drive electric motors. This is in the full agreement with
the well-known fundamental property inherent for the wheeled platforms. The
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results for the jerk (�g. 3b) show that the maximum value of the jerk is really
at the initial time moment as was suggested before in the relations (16) and
(24). The jerks values at the initial time moment (�g. 3b) obtained by using the
computer simulations are in full agreement with the correspondent exact values
de�ned theoretically by using �rst relation (45). Aspiration of the jerk's value to
zero value during the time is in the agreement with aspiration of the accelerati-
on value to zero. We can see (�g. 3b) the signi�cant values of the jerks of the
considered electromechanical wheeled platform due to instant voltage supplying
on the drive electric motors at the initial time moment, and it is understandable
that limiting of the value of the instantly supplied voltage cannot provide any
given small jerks. Thus, to provide any small given jerks of the electromechanical
wheeled platforms the smooth time's depending for the voltages supplying on the
drive electric motors is required, and it is looked understandable.

Conclusion

The researches of the particular problem about control of wheeled platforms
straight motions on the ideal horizontal plane taking into account jerk restrictions
under speeding-up from the state of rest allowed obtaining some results, and due
to these results it is possible to have the follows conclusions.

First of all, the generalized approaches to de�ne the controls satisfying the
straight motions jerks restrictions of wheeled platforms are developed for the
modes of speeding-up from the state of rest. The jerks restrictions are reduced to
limiting of the time derivative value of the wheeled platform acceleration. These
generalized approaches based on the holonomic systems mechanics and on the
electromechanical analogies allow considering the di�erent kinds of the wheeled
platforms taking into account the electric on-board systems like the drive electric
motors and the control systems by using the Lagrange equations of second ki-
nd. Although, holonomic systems can represent only some particular motions of
the wheeled platforms, but such particular cases are really important for solving
the problems about the speeding-up and slowing-up straight motions of wheeled
platforms. Considering the nongolonomic systems which can represent all the
modes of the motions of wheeled platforms is planned for the future researches.

Secondly, the examples of the proposed approaches using to de�ne the controls
satisfying the jerks restrictions under speeding-up from the state of rest are
considered for the pure mechanical and electromechanical wheeled platforms. It
is obtained the inequality which allows choosing the instantly supplied driving
mechanical couple which will provide the admissible motion jerks of the wheeled
platform under speeding-up from the state of rest. It is shown, the rolling friction
and the viscous damping are the principal causes of the motion jerks of the wheeled
platforms under speeding-up from the state of rest. It is obtained the inequality
de�ning the voltage instantly supplied on the drive electric motors which wi-
ll provide the admissible motion jerks of the electromechanical wheeled platform
under speeding-up from the state of rest, and it is shown that the proposed general
approaches are suitable also for considering the jerks of di�erent kinds of wheeled
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platforms.
Thirdly, the computer simulations of the processes of speeding-up from the

state of rest for the electromechanical wheeled platform are considered to show
the results correctness and to illustrate satisfying the motions jerks restrictions.
The obtained results of the computer simulations are in the full agreement with
the well-known fundamental property inherent for the wheeled platforms. The
results for the jerk show that the maximum value of the jerk is really at the
initial time moment as was suggested before, and it is noted that the jerks values
at the initial time moment obtained by using the computer simulations are in
full agreement with the correspondent exact values de�ned theoretically. The big
values obtained for the jerks of the considered electromechanical wheeled platform
are due to instant voltage supplying on the drive electric motors at the initial
time moment, and it is understandable that limiting of the value of the instantly
supplied voltage cannot provide any wished small jerks. To provide any wished
jerks of the electromechanical wheeled platforms it is required to have the smooth
time depending for the voltages supplying on the drive electric motors.
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ðiâíÿíü Ëàãðàíæà äðóãîãî ðîäó ðîçãëÿäàòè ðiçíi òèïè êîëiñíèõ ïëàòôîðì ç óðàõó-
âàííÿì åëåêòðè÷íèõ áîðòîâèõ ñèñòåì, òàêèõ ÿê ïðèâîäíi åëåêòðîäâèãóíè òà ñèñòåìè
êåðóâàííÿ. Õî÷à ãîëîíîìíi ñèñòåìè âiäîáðàæàþòü ëèøå äåÿêi îêðåìi ðóõè êîëiñíèõ
ïëàòôîðì, àëå òàêi îêðåìi âèïàäêè äiéñíî âàæëèâi äëÿ ðîçâ'ÿçóâàííÿ çàäà÷ ïðî
ïðèñêîðåííÿ òà óïîâiëüíåííÿ ðóõiâ êîëiñíèõ ïëàòôîðì ç óðàõóâàííÿì îáìåæåíü
íà ðèâêè. Äëÿ ñóòî ìåõàíi÷íèõ òà åëåêòðîìåõàíi÷íèõ êîëiñíèõ ïëàòôîðì ðîçãëÿ-
íóòî ïðèêëàäè âèêîðèñòàííÿ çàïðîïîíîâàíèõ ïiäõîäiâ äëÿ âèçíà÷åííÿ äîïóñòèìèõ
êåðóâàíü, ùî çàäîâîëüíÿþòü îáìåæåííÿ íà ðèâêè ïðè ðîçãàíÿííi çi ñòàíó ñïîêîþ.
Îòðèìàíî íåðiâíiñòü ùîäî âèçíà÷åííÿ ìèòò¹âî ïîäàíî¨ âåäó÷î¨ ìåõàíi÷íî¨ ïàðè, ÿêà
çàáåçïå÷èòü äîïóñòèìi ðèâêè ðóõó êîëiñíî¨ ïëàòôîðìè, ùî ïðèñêîðþ¹òüñÿ çi ñòàíó
ñïîêîþ. Ïîêàçàíî, ùî òåðòÿ êî÷åííÿ òà â'ÿçêèé îïið ¹ îñíîâíèìè ïðè÷èíàìè ðèâêiâ
êîëiñíèõ ïëàòôîðì ïðè ðîçãàíÿííi çi ñòàíó ñïîêîþ. Îòðèìàíî íåðiâíiñòü, ÿêà âè-
çíà÷à¹ åëåêòðè÷íó íàïðóãó, ùî ìèòò¹âî ïîäà¹òüñÿ íà ïðèâîäíi åëåêòðîäâèãóíè òà
çàáåçïå÷ó¹ äîïóñòèìi ðèâêè ðóõó åëåêòðîìåõàíi÷íî¨ êîëiñíî¨ ïëàòôîðìè, ùî ïðè-
ñêîðþþòüñÿ çi ñòàíó ñïîêîþ. Çàâäÿêè öüîìó ïîêàçàíî, ùî çàïðîïîíîâàíi çàãàëüíi
ïiäõîäè ïiäõîäÿòü òàêîæ äëÿ äîñëiäæåííÿ êîëiñíèõ ïëàòôîðì ðiçíîãî òèïó. Ðîçãëÿ-
äà¹òüñÿ êîìï'þòåðíå ìîäåëþâàííÿ ïðîöåñiâ ðîçãàíÿííÿ çi ñòàíó ñïîêîþ åëåêòðî-
ìåõàíi÷íèõ êîëiñíèõ ïëàòôîðì ùîá ìàòè ïiäòâåðäæåííÿ ìîæëèâîñòi âèêîðèñòàííÿ
çàïðîïîíîâàíèõ ìîäåëåé òà ïðîiëþñòðóâàòè âèêîíàííÿ îáìåæåíü íà ðèâêè ïiä ÷àñ
ðóõiâ. Îòðèìàíi ðåçóëüòàòè êîìï'þòåðíîãî ìîäåëþâàííÿ ïîâíiñòþ óçãîäæóþòüñÿ ç
âiäîìîþ ôóíäàìåíòàëüíîþ âëàñòèâiñòþ, ïðèòàìàííîþ êîëiñíèì ïëàòôîðìàì. Ðå-
çóëüòàòè äëÿ ðèâêiâ ïîêàçóþòü, ùî ìàêñèìàëüíå çíà÷åííÿ ðèâêà äiéñíî ¹ â ïî÷à-
òêîâèé ìîìåíò ÷àñó, ÿê áóëî çàïðîïîíîâàíî ðàíiøå, i ïîêàçàíî, ùî çíà÷åííÿ ðèâêiâ
ó ïî÷àòêîâèé ìîìåíò ÷àñó, îòðèìàíi çà äîïîìîãîþ êîìï'þòåðíîãî ìîäåëþâàííÿ,
ïîâíiñòþ óçãîäæóþòüñÿ ç âiäïîâiäíèìè çíà÷åííÿìè, òî÷íî âèçíà÷åíèìè òåîðåòè-
÷íî. Âåëèêi çíà÷åííÿ, îòðèìàíi äëÿ ðèâêiâ ðîçãëÿíóòî¨ åëåêòðîìåõàíi÷íî¨ êîëiñíî¨
ïëàòôîðìè, çóìîâëåíi ìèòò¹âîþ ïîäà÷åþ íàïðóãè íà ïðèâîäíi åëåêòðîäâèãóíè â
ïî÷àòêîâèé ìîìåíò ÷àñó, i, çðîçóìiëî, ùî îáìåæåííÿ âåëè÷èíè ìèòò¹âî ïîäàíî¨ íà-
ïðóãè íå ìîæå çàáåçïå÷èòè áóäü-ÿêèõ áàæàíèõ íåâåëèêèõ ðèâêiâ. Äëÿ çàáåçïå÷åííÿ
áóäü-ÿêèõ íåâåëèêèõ áàæàíèõ ðèâêiâ åëåêòðîìåõàíi÷íèõ êîëiñíèõ ïëàòôîðì íåîáõi-
äíî ìàòè ïëàâíó çàëåæèòü âiä ÷àñó íàïðóã, ùî ïîäàþòü íà åëåêòðîäâèãóíè ïðèâîäó.
Êëþ÷îâi ñëîâà: êåðóâàííÿ; ðóõ; ðèâîê; êîëiñíà ïëàòôîðìà; ìàòåìàòè÷íå ìî-

äåëþâàííÿ.
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Homogeneous approximation for minimal realizations

of series of iterated integrals

In the paper, realizable series of iterated integrals with scalar coe�cients
are considered and an algebraic approach to the homogeneous approximati-
on problem for nonlinear control systems with output is developed. In the
�rst section we recall the concept of the homogeneous approximation of a
nonlinear control system which is linear w.r.t. the control and the concept
of the series of iterated integrals. In the second section the statement of the
realizability problem is given, a criterion for realizability and a method for
constructing a minimal realization of the series are recalled. Also we recall
some ideas of the algebraic approach to the description of the homogeneous
approximation: the free graded associative algebra, which is isomorphic to
the algebra of iterated integrals, the free Lie algebra, the Poincar�e-Birkho�-
Witt basis, the dual basis and its construction by use of the shu�e product,
the de�nition of the core Lie subalgebra, which de�nes the homogeneous
approximation of a control system. In the third section we show how to
�nd the core Lie subalgebra of the systems that is a realization of the one-
dimensional series of iterated integrals without �nding the system itself.
The result obtained is illustrated by the example, in which we demonstrate
two methods for �nding the core Lie subalgebra of the realizing system. In
the last section it is shown that for any graded Lie subalgebra of �nite codi-
mension there exists a one-dimensional homogeneous series such that this Lie
subalgebra is the core Lie subalgebra for its minimal realization. The proof is
constructive: we give a method of �nding such a series; we use the dual basis
to the Poincar�e-Birkho�-Witt basis of the free associative algebra, which is
built by the core Lie subalgebra, and the shu�e product in this algebra. As
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a consequence, we get a classi�cation of all possible homogeneous approxi-
mations of systems that are realizations of one-dimensional series of iterated
integrals.

Keywords: homogeneous approximation; series of iterated integrals;

minimal realization; core Lie subalgebra.

2010 Mathematics Subject Classi�cation: 93B15; 93B25; 93C10.

1. Introduction

The homogeneous approximation problem has attracted great attention of
experts in the control theory for several decades. We brie�y recall the de�nition.
In this paper we restrict ourselves to the class of control systems, which are linear
w.r.t. the control, of the form

ẋ =

m∑
i=1

Xi(x)ui, (1)

where X1(x), . . . , Xm(x) are real analytic vector �elds in a neighborhood of some
point x0. Under homogeneous system from this class we mean a system of the
polynomial form

ẋk =
m∑
i=1

∑
αikq1...qk−1

xq11 · · ·x
qk−1

k−1 ui, αikq1...qk−1
∈ R, k = 1, . . . , n, (2)

where the inner sum in the right hand side of (2) is taken over all integers
q1, . . . , qk−1 ≥ 0 such that

q1w1 + · · ·+ qk−1wk−1 + 1 = wk,

and 1 ≤ w1 ≤ · · · ≤ wn are some integers called weights of the coordinates

x1, . . . , xn. We note that a homogeneous system is feedforward, hence, if the
controls ui(t) are known, then the components of the trajectory xk(t) can be found
one by one by integrating known functions, without solving di�erential equations.
It is convenient to deal with a coordinate-free de�nition. So, we say that a system

is homogeneous if it takes the form (2) after some change of variables.

The concept of a homogeneous approximation can be introduced by di-
�erent ways. Using coordinates, we can explain the de�nition as follows. Let us
denote by x(t;u) and x̂(t;u) the trajectories of the systems (1) and (2) starti-
ng at x0 and at the origin respectively and corresponding to the same control
u(t) = (u1(t), . . . , um(t)). We denote

U(1) = {u(t) = (u1(t), . . . , um(t)) : |ui(t)| ≤ 1, i = 1, . . . ,m, t ∈ [0, 1]} .

Finally, for any u ∈ U(1), we denote by u1/θ(t) the function u1/θ(t) = u(t/θ),
t ∈ [0, θ] (i.e., u1/θ(t) is obtained from u(t) by �shrinking� its domain [0, 1] to
[0, θ]).
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We say that a system of the form (2) is a homogeneous approximation of the
system (1) if there exists a change of variables y = Q(x) such that Q(x0) = 0 and
for any u(t) ∈ U(1)

θ−wk
(

(Q(x(θ;u1/θ)))k − x̂k(θ;u1/θ)
)
→ 0 as θ → 0, k = 1, . . . , n.

Informally, this means that after some change of variables trajectories of the
initial system and of its approximation become equivalent at the origin for any
�xed control.

Many results concerning homogeneous approximation exploited di�erential-
geometric tools and language [3], [21], [1], [6], [2]; the results obtained within this
approach were summarized in [10]. As an example of usage for a local analysis of
a particular class of systems, we mention Goursat distributions [15].

Another fruitful way was initialized by M. Fliess [5]; it was based on interpreti-
ng control systems as formal series of noncommutative variables and used tools of
free algebras [11], [13], [17], [18]; an overview can be found in [12]. Namely, instead
of the system (1), one considers its trajectory as a series of iterated integrals

x(t;u) = x0 +
∑

c̃i1...ik

∫ t

0

∫ τ1

0
· · ·
∫ τk−1

0
ui1(τ1) · · ·uik(τk)dτk · · · dτ1,

where c̃i1...ik ∈ Rn are expressed via values of the vector �elds Xi(x) and their
derivatives at x0. Therefore, c̃i1...ik are constant vectors. Iterated integrals are
linearly independent functionals of ui and, therefore, can be interpreted as a basis
for a free associative algebra. We give more detailed explanations in the next
section.

In [7], [19] a complete classi�cation of homogeneous approximations was obtai-
ned. It turned out that a homogeneous approximation is de�ned by some Lie
subalgebra in the free Lie algebra with m generators called a core Lie subalgebra,
which is de�ned by the system. As an important bene�t of the algebraic way of
�nding homogeneous approximations, we mention its convenience for computer
realization [20].

In the present paper we study an algebraic description of homogeneous
approximations for nonlinear control systems with output. More speci�cally, we
consider series of iterated integrals with scalar coe�cients

y(t;u) = y0 +
∑

ci1...ik

∫ t

0

∫ τ1

0
· · ·
∫ τk−1

0
ui1(τ1) · · ·uik(τk)dτk · · · dτ1, (3)

where ci1...ik ∈ R. The series (3) is called realizable if these exists a system of
the form (1) and a function y = h(x) such that y(t;u) = h(x(t;u)) admits the
representation (3); it is known that the realization of the minimal possible di-
mension is unique up to a change of variables [9], [4], [8].

The main results of the paper can be outlined as follows. In Section 3 we show
that the core Lie subalgebra of the minimal realization can be found without
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�nding the realization itself, i.e. directly from the series (3). In Section 4 we
prove the following classi�cation theorem: any graded Lie subalgebra of �nite
nonzero codimension can serve as a core Lie subalgebra of a realizing system of a
(homogeneous) series of the form (3).

2. Background

2.1. Realizability problem. The realizability problem for systems with
output is well known. This problem deals with a description of the output behavi-
or for analytic nonlinear control systems. Systems are represented as di�erential
equations of the form (1) de�ned in some neighborhood of a point x0, i.e., the
vector �elds X1(x), . . . , Xm(x) are de�ned and are analytic in a neighborhood of
x0. Let us consider also a function y = h(x) that is de�ned in a neighborhood of
x0 and is analytic there.

We recall some basic concepts of the realizability theory. First we introduce
some notation.

Below we denote by M the set of multi-indices

M = {I = (i1, . . . , ik) : k ≥ 1, 1 ≤ i1, . . . , ik ≤ m} .

One of the most important concepts in this theory is the iterated integral,
which is de�ned as follows

ηI(θ, u) =

∫ θ

0

∫ τ1

0
· · ·
∫ τk−1

0
ui1(τ1) . . . uik(τk)dτk . . . dτ1.

It can be shown [5] that for any θ > 0 iterated integrals are linearly
independent as functionals on the set

U(θ) = {u(t) = (u1(t), . . . , um(t)) : |ui(t)| ≤ 1, i = 1, . . . ,m, t ∈ [0, θ]} .

We consider the set {ηI(θ, u) : I ∈M} for an arbitrary �xed θ > 0. Since the
functionals ηI(θ, u) are linearly independent, they form a basis of some linear
space. Then their linear span is a free associative algebra with the concatenation
operation

ηI1(θ, u) ηI2(θ, u) = ηI1I2(θ, u);

we denote this algebra by Fθ. Note that for all θ > 0 the algebras Fθ are
isomorphic to each other. Therefore, instead of the algebras Fθ, it is conveni-
ent to consider an abstract free algebra F isomorphic to all of them, which is
generated by abstract independent elements η1, . . . , ηm. Also let us consider the
free Lie algebra L generated by η1, . . . , ηm with the bracket operation de�ned by
[a, b] = ab− ba.

Below we use a unitary algebra Fe = F + R assuming that 1 is the unit in
Fe. In order to write elements from F and Fe in the same way, we complement
M by the �empty index�,

M0 = M ∪ {∅}
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and assume that η∅ = 1.
Now we can formulate the realizability problem from a formal point of view.

Consider an arbitrary linear map

c : Fe → R.

This map corresponds to a formal series S with scalar coe�cients cI = c(ηI)

S =
∑
I∈M0

cIηI . (4)

Below we assume that the map c is nontrivial, i.e., c(F) 6= {0}; then the series S
has at least one nonzero term except a constant.

De�nition 1. The series (4) is called realizable if there exist vector �elds

X1(x), . . . , Xm(x) and a function h(x), which are analytic in some neighborhood

of some point x0, such that the functional y(θ;u) = h(x(θ;u)) where x(θ;u) is a

solution of the Cauchy problem

ẋ =

m∑
i=1

Xi(x)ui(t), x(0) = x0,

satis�es the equality

y(θ;u) =
∑
I∈M0

cIηI(θ, u).

In this sense, (1) is a realizing system for (4).
To formulate a realizability criterion, we recall the following de�nition.

De�nition 2 ([4], [8]). Let B denote the linear space of formal series of the form

(4). Consider the map Fc : L → B of the form

Fc(`) =
∑
I∈M0

c(ηI`)ηI , ` ∈ L. (5)

The Lie rank of a series S is de�ned by the equality

ρL(c) = dim {Fc(`) : ` ∈ L} .

Now we are ready to recall the following criterion of realizability.

Theorem 1 ([4], [8]). Suppose that the series S =
∑
I∈M0

c(ηI)ηI satis�es the

following growth conditions,

|cI | ≤ C1|I|!C |I| (6)

with some C,C1 > 0, where by |I| we denote the length of the multi-index I.
The series S is realizable if and only if ρL(c) <∞. In this case n = ρL(c) is the

minimal dimension of a realizing system. Moreover, a minimal realization (i.e.,

a realization of the minimal dimension) is unique up to a change of variables.
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In the language of the associative algebra F , the realizability condition can
be formulated as follows.

Theorem 2. Consider the free associative algebra F and the corresponding Lie

algebra L. A formal series S satisfying the growth condition (6) is realizable if

and only if there exist a natural number n and elements `1, . . . , `n ∈ L satisfying

the following condition: for any element ` ∈ L there exist coe�cients α1, . . . , αn
such that

c(a(`−
n∑
i=1

αi`i)) = 0

for any element a ∈ Fe.

One of the ways to construct a minimal realizing system for a given series S is
as follows [8]. Since the Lie rank is n, there exist n linearly independent elements
`1, . . . , `n ∈ L for which the series Fc(`1), . . . , Fc(`n) are linearly independent.
Consider the coe�cients of all possible elements of the form ηI`j . As the series
Fc(`j) are linearly independent, there exist n multi-indices I1, . . . , In ∈ M0 for
which the matrix

{c(ηIi`j)}
n
i,j=1 (7)

is non-singular. We de�ne the linear map c̃ : Fe → Rn by the equality

c̃(ηI) =

c(ηI1ηI). . .
c(ηInηI)

 (8)

and consider the corresponding series

S̃ =
∑
I∈M0

c̃(ηI)ηI (9)

with n-dimensional coe�cients. The unique system constructed by this series is a
minimal realization of the series S.

2.2. Grading in the algebra F and homogeneous approximations of
control systems. The free associative algebra F is graded, namely, it admits the
following representation

F =

∞∑
k=1

Fk, Fk = Lin{ηI : I ∈M, |I| = k}.

This grading is justi�ed by the following observation, which concerns iterated
integrals: ∫ θ

0

∫ τ1

0
· · ·
∫ τk−1

0
ui1(τ1) · · ·uik(τk)dτk · · · dτ1 =

= θk
∫ 1

0

∫ τ1

0
· · ·
∫ τk−1

0
ui1(τ1θ) · · ·uik(τkθ)dτk · · · dτ1.
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Thus, ηI(θ, u
1/θ) = θ|I|ηI(1, u), where u1/θ(t) = u(t/θ), t ∈ [0, θ]. In this sense,

|I| denotes the order of ηI(θ, u1/θ) as a function of θ as θ → 0.
The Lie algebra L inherits this grading,

L =
∞∑
k=1

Lk, Lk = Fk ∩ L.

Below we say that a ∈ Fk is homogeneous and k is its order ; in this case we write
ord(a) = k.

Let us consider a series with vector coe�cients of the form

S̃ =
∑
I∈M0

c̃IηI , (10)

where c̃I ∈ Rn; it de�nes a linear map c̃ : Fe → Rn by c̃(ηI) = c̃I . Assume that
this map satis�es the Rashevsky-Chow condition

c̃(L) = Rn. (11)

Suppose also that the series S̃ is realizable, that is, there exists a system of the
form (1) such that its trajectory x(θ;u) is represented as x(θ;u) =

∑
I∈M0

c̃IηI(θ, u).

It can be shown that this system is unique, and the condition (11) means that
the realizing system is locally controllable, i.e., the initial point x0 belongs to the
interior of the set of all points that are reachable from x0 in a time θ > 0.

The following de�nition takes into account the grading introduced above.

De�nition 3 ([7],[19]). Suppose the series (10) corresponds to the system (1).

Let us de�ne the subspaces

P̃1 = {` ∈ L1 : c̃(`) = 0}, P̃k = {` ∈ Lk : c̃(`) ∈ c̃(L1 + · · ·+ Lk−1)}, k ≥ 2,

and

LX1,...,Xm =
∞∑
k=1

P̃k.

Then LX1,...,Xm is a graded Lie subalgebra; it is called a core Lie subalgebra of the

system (1).

It can be shown that the core Lie subalgebra is of codimension n (in L) and
that it is invariant w.r.t. changes of variables in the system.

It turns out that the core Lie subalgebra is responsible for the homogeneous
approximation of the system [7], [19]. Namely, two control systems of the form (1)
have the same homogeneous approximation if and only if their core Lie subalgebras
coincide. Moreover, any graded Lie subalgebra of codimension n is a core Lie
subalgebra for some locally controllable system of the form (1).

In Section 3 we describe the core Lie subalgebra for a realizing system of a
series of the form (4).
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2.3. Basis in the algebra F . Suppose {`i}∞i=1 is a (homogeneous) basis of
L. Then, due to the Poincar�e-Birkho�-Witt Theorem [16], the set

{`q1i1 · · · `
qk
ik

: k ≥ 1, 1 ≤ i1 < · · · < ik, q1, . . . , qk ≥ 1} (12)

is a (homogeneous) basis of F , where `q = ` · · · ` (q times).
Let us introduce the inner product in F assuming the basis {ηI : I ∈ M}

is orthonormed. Also, let us introduce the shu�e product in F by the recursive
formula

ηiø ηj = ηij + ηji,

ηi1I1 ø ηj = ηj ø ηi1I1 = ηi1(ηI1 ø ηj) + ηji1I1 ,

ηi1I1 ø ηi2I2 = ηi1(ηI1 ø ηi2I2) + ηi2(ηi1I1 ø ηI2)

for any I1, I2 ∈M . Denote by

{dq1...qki1...ik
: k ≥ 1, 1 ≤ i1 < · · · < ik, q1, . . . , qk ≥ 1} (13)

a dual basis for (12) in the sense of the inner product introduced above. It can be
shown [14] that

dq1...qki1...ik
=

1

q1! · · · qk!
døq1i1

ø · · · ø døqkik
,

where dø q = dø · · · ø d (q times); here the notation di = d1
i is used for brevity.

Therefore, we can rewrite the series S in the basis (13)

S = c(1) +
∑ 1

q1! · · · qk!
c(`q1i1 · · · `

qk
ik

)døq1i1
ø · · · ø døqkik

,

where the sum is taken over all k ≥ 1 and 1 ≤ i1 < · · · < ik, q1, . . . , qk ≥ 1. In
Section 4 we apply an analogous representation to the series Fc(`).

3. Description of the core Lie subalgebras of realizing systems

In this section we show that the core Lie subalgebra of a realizing system
(De�nition 3) can be found without �nding the realizing system itself.

Theorem 3. Let S be a realizable series of the form (4) and an n-dimensional
system (1) be its minimal realization. Then the core Lie subalgebra LX1,...,Xm of

this minimal realization can be found in the following way:

LX1,...,Xm =
∞∑
k=1

Pk,

where

P1 =
{
` ∈ L1 : c(a`) = 0 for any a ∈ Fe

}
,

Pk =
{
` ∈ Lk : there exists `′ ∈ L1 + · · ·+ Lk−1 such that

c(a(`− `′)) = 0 for any a ∈ Fe
}
, k ≥ 2.

(14)
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Proof. Take an element ` from the subspace Pk. It su�ces to show that this
element also belongs to the subspace P̃k. Let ` ∈ Pk, then by formula (14) there
exists an element `′ belonging to the sum of subspaces L1 + · · ·+Lk−1 such that
the equality

c(a(`− `′)) = 0 (15)

holds for any element a from Fe. As an element a, we take those elements ηIi for
which the matrix (7) is nonsingular. Since equality (15) holds for any element a
then it is true that

c(ηIi(`− `′)) = 0, i = 1, . . . , n. (16)

Consider the n-dimensional mapping (8), then

c̃(`− `′) =

c(ηI1(`− `′))
. . .

c(ηIn(`− `′))

 .

Since the condition (16) holds for any row, then c̃(` − `′) = 0. This means that
the element ` belongs to the subspace P̃k.

Take an element ` from the subspace P̃k. It su�ces to show that this element
also belongs to the subspace Pk. By de�nition, c̃(`) ∈ c̃(L1+· · ·+Lk−1), therefore,
there exists an element `′ ∈ L1 + · · ·+ Lk−1 such that c̃(`− `′) = 0. This means
that c(ηIi(` − `′)) = 0 for i = 1, . . . , n. Since the series Fc(` − `′) is a linear
combination of the series Fc(`1), . . . , Fc(`n), there exist the numbers α1, . . . , αn
such that for any I ∈M0

c(ηI(`− `′)) =
n∑
j=1

αjc(ηI`j).

In particular, substituting I = Ii, for which the matrix (7) is nonsingular, we
obtain the following equalityc(ηI1(`− `′))

. . .
c(ηIn(`− `′))

 =

n∑
j=1

αj

c(ηI1`j). . .
c(ηIn`j)

 = 0.

Since the matrix (7) is non-singular, the vectors (c(ηI1`j), . . . , c(ηIn`j))
> are li-

nearly independent. Hence, all coe�cients αj are equal to zero. This means that

c(a(`− `′)) = 0

for any element a ∈ Fe, therefore, ` ∈ Pk. The theorem is proved.

Example. Let a one-dimensional series

S = η1 + η21 + η211
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be given. Let us show that the Lie rank of this series is equal to 2. To do this, we
write down all the nonzero series of the form (5):

Fc(η1) = 1 + η2 + η21,
Fc([η1, η2]) = −1,

Fc([η1, [η1, η2]]) = 1.

Since two of them are linearly independent, the Lie rank of S equals 2. We can
choose `1 = η1, `2 = [η1, η2] and I1 = (∅), I2 = (2), then the matrix (7) is
nonsingular. Then we get n-dimensional series of the form (9)

S̃ =

(
η1 + η21 + η211

η1 + η11

)
.

Using De�nition 3, let us �nd the core Lie subalgebra for a realization of the
n-dimensional series S̃. Consider the subspace

P̃1 =
{
` ∈ L1 : c̃(`) = 0

}
.

We have L1 = Lin{η1, η2}. For the elements η1, η2 we write down their coe�cients

c̃(η1) =

(
1
1

)
, c̃(η2) =

(
0
0

)
. (17)

Then, obviously, the space P̃1 is a linear span of only one element η2

P̃1 = Lin {η2} .

For k = 2 we get
P̃2 =

{
` ∈ L2 : c̃(`) ∈ c̃(L1)

}
and L2 = Lin{[η1, η2]}. For the element ` = [η1, η2] we �nd

c̃([η1, η2]) = c̃(η12 − η21) =

(
−1
0

)
.

Taking into account the form of the coe�cients (17), we see that c̃(`) /∈ c̃(L1).
That is, P̃2 = {0}.

Therefore, dim(c̃(L1 + L2)) = 2, which means that P̃k = Lk for all k ≥ 3.
Thus, we have found the core Lie subalgebra for the n-dimensional series S̃:

LX1,X2 = Lin {η2}+

∞∑
k=3

Lk. (18)

Now we show how to use Theorem 3 and �nd this core Lie subalgebra using
only the one-dimensional series S. We write down the non-zero coe�cients of this
series:

c(η1) = 1, c(η21) = 1, c(η211) = 1.
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Consider the subspaces (14). For k = 1 we have

P1 =
{
` ∈ L1 : c(a`) = 0 for any a ∈ Fe

}
.

First, as an element ` we take η1. In particular, for a = 1 we get c(aη1) = c(η1) = 1,
hence, η1 /∈ P1. Now we choose ` = η2, then c(aη2) = 0 for all a ∈ F . This means
that P1 = Lin {η2}. Now consider the subspace

P2 =
{
` ∈ L2 : there exists `′ ∈ L1 such that c(a(`− `′)) = 0 for any a ∈ Fe

}
.

As an element `, we take the bracket [η1, η2] = η12 − η21, and `
′ ∈ L1 is a linear

combination αη1 + βη2, where α, β are numbers. In the de�nition (14) for k = 2,
we �rst take a = 1. Then

c(a(`− `′)) = c(η12 − η21 − αη1 − βη2) = −1− α = 0,

which means that α = −1. Now we choose a = η2, which gives

c(a(`− `′)) = c(η212 − η221 − αη21 − βη22) = −α = 0,

hence, α = 0. We have got a contradiction, therefore, [η1, η2] /∈ P2. This means
that P2 = {0}. Finally, we consider the subspace

P3=
{
` ∈ L3 : there exists `′ ∈ L1+L2 such that c(a(`− `′)) = 0 for any a ∈ Fe

}
and take into account that L3 = Lin{[η1, [η1, η2]], [η2, [η1, η2]]}. First we take
` = [η1, [η1, η2]] = η112 − 2η121 + η211 and `′ = αη1 + β(η12 − η21). Then for
a = 1 we get

c(a(`− `′)) = c(η112 − 2η121 + η211 − αη1 − βη12 + βη21) = 1− α+ β = 0

while for a = η2 we get

c(a(`− `′)) = c(η2112 − 2η2121 + η2211 − αη21 − βη212 + βη221) = −α = 0.

This gives α = 0 and β = −1, that is, `′ = −η12 + η21. One easily checks that
c(a`) = c(a`′) for any a ∈ Fe, hence, [η1, [η1, η2]] ∈ P3. Using similar reasoning
for the element ` = [η2, [η1, η2]], we see that c(a`) = 0 for any a ∈ Fe. This means
that P3 = L3. Since c(Lk) = 0 for k ≥ 4, we get Pk = Lk. Thus, we have obtained
the core Lie subalgebra (18) using only the initial one-dimensional series S.

One can check that a realization of the series S in a neighborhood of the point
x0 = 0 can be chosen in the following form

ẋ1 = u1 + x2u2,
ẋ2 =

√
1 + 2x2u1,

y = x1,
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that is, X1(x) = (1,
√

1 + 2x2)>, X2(x) = (x2, 0)>, h(x) = x1. As a homogeneous
approximation for this system, we can choose a homogeneous system with the
same core Lie subalgebra

ẋ1 = u1,
ẋ2 = x1u2.

We observe that manipulating with the series for �nding the core Lie subalgebra
is more convenient than with vector �elds directly.

4. Description of all possible homogeneous approximations
of realizing systems

In this section we show that any graded Lie subalgebra of �nite nonzero codi-
mension is the core Lie subalgebra of a realizing system of some series (3). We
introduce such a series using the dual basis (13); the corresponding linear map
is de�ned by formula (19) below. The following lemma describes one property of
this map.

Lemma 1. Suppose {`i}∞i=1 is a homogeneous basis of the Lie algebra L. Let a
linear map c : F → R be de�ned on the elements of the corresponding Poincar�e-

Birkho�-Witt basis (12) as follows: for any k ≥ 1 and any 1 ≤ i1 ≤ · · · ≤ ik

c(`i1 · · · `ik) =

{
1 if k = n and (i1, . . . , in) = (1, . . . , n),

0 otherwise.
(19)

Consider any k-tuple (j1, . . . , jk) of natural numbers, where 1 ≤ k ≤ n. Then

c(`j1 · · · `jk) = 0 if 1 ≤ k ≤ n− 1, (20)

c(`j1 · · · `jn) =

{
1 if (j1, . . . , jn) is a permutation of {1, . . . , n},
0 otherwise.

(21)

Proof. Let us denote by inv(j1, . . . , jk) the number of inversions in the tuple
(j1, . . . , jk), i.e., the number of pairs (s′, s′′) such that s′ < s′′ and js′ > js′′ .
If inv(j1, . . . , jk) = r, then sorting the tuple in non-decreasing order requires r
adjacent transpositions. Below we use the notation

Nk,r = {(j1, . . . , jk) : inv(j1, . . . , jk) = r}, k ≥ 1, r ≥ 0.

For any k the maximal possible number of inversions is 1
2k(k − 1) (this number of

inversions is achieved when the numbers in the tuple strictly decrease). Therefore,
if r > 1

2k(k − 1), then Nk,r = ∅. Hence, the set of all tuples of natural numbers
can be represented as a union of the sets Nk,r where k ≥ 1, 0 ≤ r ≤ 1

2k(k − 1).
We are interested in k such that 1 ≤ k ≤ n.

We use induction on the set of pairs (k, r) such that k ≥ 1, 0 ≤ r ≤ 1
2k(k− 1)

ordered lexicographically. Namely, we assume

(k′, r′) < (k′′, r′′) if k′ < k′′ or k′ = k′′ and r′ < r′′.
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If k = 1, then the required equalities (20), (21) follow from (19).
If 2 ≤ k ≤ n and (j1, . . . , jk) ∈ Nk,0, then j1 ≤ · · · ≤ jk. Therefore, `j1 · · · `jk

belongs to the Poincar�e-Birkho�-Witt basis. Hence, equalities (20), (21) follow
from (19).

Let us consider any pair (k, r) such that 2 ≤ k ≤ n and 1 ≤ r ≤ 1
2k(k − 1)

and suppose that the equalities (20), (21) hold for any element `q1 · · · `qk′ where
(q1, . . . , qk′) ∈ Nk′,r′ and (k′, r′) < (k, r). This means that c(`q1 · · · `qk′ ) = 0
except the case when (k′, r′) = (n, r′) and {q1, . . . , qk′} = {1, . . . , n}; in this case
c(`q1 · · · `qk′ ) = 1.

Consider any (j1, . . . , jk) ∈ Nk,r. Since r ≥ 1, there exists 1 ≤ s ≤ k − 1 such
that js > js+1. Since

`js`js+1 = [`js , `js+1 ] + `js+1`js ,

we can express
`j1 · · · `jk = a1 + a2,

where
a1 = `j1 · · · `js−1 [`js , `js+1 ]`js+2 · · · `jk ,

a2 = `j1 · · · `js−1`js+1`js`js+2 · · · `jk .

First we consider a1. Since the element [`js , `js+1 ] belongs to the Lie algebra L, it
equals a linear combination of basis elements, [`js , `js+1 ] =

∑
αp`p, where αp ∈ R.

Then
a1 =

∑
αp`j1 · · · `js−1`p`js+2 · · · `jk ,

where (j1, . . . , js−1, jp, js+2, . . . , jk) ∈ Nk−1,r′ for some r
′. Since (k−1, r′) < (k, r),

we get c(a1) = 0 by the induction supposition (we take into account that k ≤ n).
Therefore, c(`j1 · · · `jk) = c(a2). Obviously, a2 ∈ Nk,r−1 and (k, r−1) < (k, r).

Hence, the equalities (20), (21) hold for the element `j1 · · · `jk since, due to the
induction supposition, they hold for a2. This completes the proof of Lemma 1.

The following theorem is the main result of this section.

Theorem 4. Let L′ be a graded Lie subalgebra of codimension n ≥ 1. Then there

exists a one-dimensional homogeneous series of Lie rank n such that L′ is a core

Lie subalgebra of its (minimal) realization.

Proof. Since L′ is a graded Lie subalgebra of codimension n, we can choose
homogeneous elements `1, . . . , `n ∈ L such that L′+Lin{`1, . . . , `n} = L. Without
loss of generality we assume ord(`i) ≤ ord(`j) if i < j. Then choose a homogeneous
basis {`i}∞i=n+1 of L′ and consider the corresponding Poincar�e-Birkho�-Witt basis
(12) and its dual basis (13). Introduce the series

S = d1ø · · · ø dn. (22)

We note that this series corresponds to a linear map c : Fe → R de�ned by (19)
and such that c(1) = 0.
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We show that the series (22) is of Lie rank n. In fact, its Lie rank is not greater
than n since the series has an n-dimensional realization, namely, the n-dimensional
system corresponding to the series

S̃ =

d1

. . .
dn


with the output y = h(x) = x1 · · ·xn. Such a system can be explicitly found as is
described in [19]. It satis�es the Rashevsky-Chow condition (11) since c̃(`i) = ei,
i = 1, . . . , n. Obviously, c̃(L′) = 0, hence, the core Lie subalgebra of this system
equals L′. Now we show that this realization is minimal.

To this end, we show that the Lie rank of the series (22) is not less than n. By
de�nition, the Lie rank equals the dimension of the set of series of the form (5).
It is convenient to re-expand the series w.r.t. the dual basis (13). Thus, the Lie
rank equals the dimension of the set of series of the form

Fc(`) = c(`) +
∑

j1<···<jk

1

q1! . . . qk!
c(`q1j1 · · · `

qk
jk
`)døq1j1

ø · · · ø døqkjk
.

Now we show that the series Fc(`1), . . . , Fc(`n) are linearly independent. For n = 1,
there is nothing to prove. Suppose n ≥ 2. Let us introduce the notation

d1 = d2ø · · · ø dn, dn = d1ø · · · ø dn−1,

dr = d1ø · · · ø dr−1ø dr+1 · · · ø dn, r = 2, . . . , n− 1.

In other words, dr is the shu�e product of all elements d1, . . . , dn except dr.
Analogously, de�ne

`1 = `2 · · · `n, `n = `1 · · · `n−1,

`r = `1 · · · `r−1`r+1 · · · `n, r = 2, . . . , n− 1.

Then the coe�cient of dr in the series Fc(`i) equals c(`r`i). Due to Lemma 1,

c(`r`i) =

{
1 if i = r,

0 otherwise.

This means that the matrix n×n formed by the coe�cients of elements d1, . . . , dn
in the series Fc(`1), . . . , Fc(`n) is identity. Hence, series Fc(`1), . . . , Fc(`n) are li-
nearly independent, and therefore, the Lie rank of the series (22) is not less than n.

Thus, the series (22) is of Lie rank n, therefore, its minimal realization is
of dimension n. As was mentioned before, this series has a realization with the
core Lie subalgebra L′. Since the minimal realization is unique up to a change of
variables, the mentioned realization is minimal. The theorem is proved.

Theorem 4 has the following classi�cation corollary close to [19].

Corollary 1. Any graded Lie subalgebra of a �nite (nonzero) codimension is a

core Lie subalgebra of the minimal realization of some one-dimensional (nontrivi-

al) series, and the dimension of this realization equals the codimension of the Lie

subalgebra.
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íåëiíiéíèõ êåðîâàíèõ ñèñòåì ç âèõîäîì. Ó ïåðøîìó ðîçäiëi ìè íàãàäó¹ìî ïîíÿò-
òÿ îäíîðiäíî¨ àïðîêñèìàöi¨ íåëiíiéíî¨ êåðîâàíî¨ ñèñòåìè, ëiíiéíî¨ çà êåðóâàííÿì,
òà ïîíÿòòÿ ðÿäó iòåðîâàíèõ iíòåãðàëiâ. Ó äðóãîìó ðîçäiëi íàâåäåíî ïîñòàíîâêó çà-
äà÷i ðåàëiçîâíîñòi, íàãàäàíî êðèòåðié ðåàëiçîâíîñòi ðÿäó iòåðîâàíèõ iíòåãðàëiâ òà
ñïîñiá ïîáóäîâè ìiíiìàëüíî¨ ðåàëiçàöi¨ ðÿäó. Òàêîæ ìè íàãàäó¹ìî äåÿêi iäå¨ àëãå-
áðà¨÷íîãî ïiäõîäó äî îïèñó îäíîðiäíî¨ àïðîêñèìàöi¨: âiëüíà ãðàäóéîâàíà àñîöiàòèâ-
íà àëãåáðà, ùî içîìîðôíà àëãåáði iòåðîâàíèõ iíòåãðàëiâ, âiëüíà àëãåáðà Ëi, áàçèñ
Ïóàíêàðå-Áiðêãîôà-Âiòòà, áiîðòîãîíàëüíèé áàçèñ i éîãî ïîáóäîâà çà äîïîìîãîþ òà-
ñóþ÷îãî äîáóòêó, îçíà÷åííÿ êîðåíåâî¨ ïiäàëãåáðè Ëi, ÿêà âèçíà÷à¹ îäíîðiäíó àïðî-
êñèìàöiþ êåðîâàíî¨ ñèñòåìè. Ó òðåòüîìó ðîçäiëi ìè ïîêàçó¹ìî, ÿê ìîæíà çíàéòè
êîðåíåâó ïiäàëãåáðó Ëi ñèñòåìè, ÿêà ¹ ðåàëiçàöi¹þ îäíîâèìiðíîãî ðÿäó iòåðîâàíèõ
iíòåãðàëiâ, íå çíàõîäÿ÷è ñàìî¨ ñèñòåìè. Îòðèìàíèé ðåçóëüòàò ïðîiëþñòðîâàíî ïðè-
êëàäîì, â ÿêîìó ïðîäåìîíñòðîâàíî äâà ñïîñîáè çíàõîäæåííÿ êîðåíåâî¨ ïiäàëãåáðè
Ëi ðåàëiçóþ÷î¨ ñèñòåìè. Â îñòàííüîìó ðîçäiëi ïîêàçàíî, ùî äëÿ áóäü-ÿêî¨ ãðàäóéî-
âàíî¨ ïiäàëãåáðè Ëi ñêií÷åííî¨ êîâèìiðíîñòi iñíó¹ òàêèé îäíîâèìiðíèé îäíîðiäíèé
ðÿä, ùî öÿ ïiäàëãåáðà Ëi ¹ êîðåíåâîþ ïiäàëãåáðîþ Ëi éîãî ìiíiìàëüíî¨ ðåàëiçàöi¨.
Äîâåäåííÿ ¹ êîíñòðóêòèâíèì: ìè íàâîäèìî ñïîñiá ïîáóäîâè òàêîãî ðÿäó, â ÿêîìó âè-
êîðèñòîâó¹òüñÿ áiîðòîãîíàëüíèé áàçèñ äî áàçèñó Ïóàíêàðå-Áiðêãîôà-Âiòòà âiëüíî¨
àñîöiàòèâíî¨ àëãåáðè, ïîáóäîâàíèé çà êîðåíåâîþ ïiäàëãåáðîþ Ëi, i òàñóþ÷èé äîáó-
òîê â öié àëãåáði. ßê íàñëiäîê, îòðèìó¹ìî êëàñèôiêàöiþ âñiõ ìîæëèâèõ îäíîðiäíèõ
àïðîêñèìàöié ñèñòåì, ÿêi ¹ ðåàëiçàöiÿìè îäíîâèìiðíèõ ðÿäiâ iòåðîâàíèõ iíòåãðàëiâ.
Êëþ÷îâi ñëîâà: îäíîðiäíà àïðîêñèìàöiÿ; ðÿä iòåðîâàíèõ iíòåãðàëiâ; ìiíi-

ìàëüíà ðåàëiçàöiÿ; êîðåíåâà ïiäàëãåáðà Ëi.

Iñòîðiÿ ñòàòòi: îòðèìàíà: 24 ñåðïíÿ 2022; îñòàííié âàðiàíò: 29 ñåðïíÿ 2022
ïðèéíÿòà: 24 ãðóäíÿ 2022.



ISSN 2221-5646(Print) 2523-4641(Online)
Visnyk of V.N.Karazin Kharkiv National University
Ser. �Mathematics, Applied Mathematics
and Mechanics�

2022, Vol. 96, p. 40�55
DOI: 10.26565/2221-5646-2022-96-03
ÓÄÊ 517.929

Âiñíèê Õàðêiâñüêîãî íàöiîíàëüíîãî
óíiâåðñèòåòó iìåíi Â.Í. Êàðàçiíà
Ñåðiÿ "Ìàòåìàòèêà, ïðèêëàäíà

ìàòåìàòèêà i ìåõàíiêà"

2022, Òîì 96, ñ. 40�55

c© V. I. Korobov, O. S. Vozniak, 2022

V. I. Korobov
D.Sc. in physics and mathematics, Prof.
Head Dep. of Applied Mathematics
V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, Ukraine, 61022

valeriikorobov@gmail.com http://orcid.org/0000-0001-8421-1718

O. S. Vozniak
BS in applied mathematics
MS applied mathematics student
V. N. Karazin Kharkiv National University
Svobody Sq., 4, Kharkiv, Ukraine, 61022

o.vozniak0@gmail.com http://orcid.org/0000-0001-9729-0742

The explicit form of the switching surface in admissible

synthesis problem

In this article we consider the problem related to positional synthesis and
controllability function method and more precisely to admissible maxi-
mum principle. Unlike the more common approach the admissible maximum
principle method gives discontinuous solutions to the positional synthesis
problem. Let us consider the canonical system of linear equations ẋi =
xi+1, i = 1, n− 1, ẋn = u with constraints |u| ≤ d. The problem for an
arbitrary linear system ẋ = Ax + bu can be simpli�ed to this problem
for the canonical system. A controllability function Θ(x) is given as a
unique positive solution of some equation Φ(x,Θ) = 0. The control is
chosen to minimize derivative of the function Θ(x) and can be written as
u(x) = −d sign(s(x,Θ(x))). The set of points s(x,Θ(x)) = 0 is called the
switching surface, and it determines the points where control changes its sign.
Normally it contains the variable Θ which is given implicitly as the solution
of equation Φ(x,Θ) = 0. Our aim in this paper is to �nd a representation
of the switching surface that does not depend on the function Θ(x). We call
this representation the explicit form. In our case the expressions Φ(x,Θ) and
s(x,Θ) are both polynomials with respect to Θ, so this problem is related
to the problem of �nding conditions when two polynomials have a common
positive root. Earlier the solution for the 2-dimensional case was known. But
during the exploration it was found out that for systems of higher dimensi-
ons there exist certain di�culties. In this article the switching surface for the
three dimensional case is presented and researched. It is shown that this swi-
tching surface is a sliding surface (according to Filippov's de�nition). Also
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the other ways of constructing the switching surface using the interpolati-
on and approximation are proposed and used for �nding the trajectories of
concrete points.

Keywords: controllability; controllability function method; admissi-

ble maximum principle; switching surface.

2010 Mathematics Subject Classi�cation: 93C05; 93B05; 93B40.

1. Introduction

Let us consider the system of di�erential equations

ẋ = f(x, u), x ∈ Rn, u ∈ Ω ⊂ Rr, (1)

and let Q be a neighbourhood of the origin. Our aim is to construct a control
u = u(x), u ∈ Ω, such that the trajectory of the system

ẋ = f(x, u(x)), (2)

starting at an arbitrary point x0 ∈ Q, transfers into the origin in a some �nite time
T = T (x0). This problem is called the admissible positional synthesis problem.

One of the ways to solve it is the admissible maximum principle [6]. We consi-
der constraints |u| ≤ d and the linear canonical system

ẋ1 = x2,

ẋ2 = x3,

...

ẋn−1 = xn,

ẋn = u.

(3)

In this case, the obtained control is discontinuous and takes only values
u = ± d, with trajectories of points sliding along the switching surface. The soluti-
on to this problem is known, but it is interesting to consider a problem of �nding
explicit form of the switching surface. It was earlier solved for the two-dimensional
system[7], and in this work we extend it to the three-dimensional case.

The conditions for reaching the equilibrium point are important problems of
mechanics and di�erential equations. Important results in this area were obtained
by O. M. Lyapunov, and subsequently they became a part of the foundation of
the mathematical theory of control.

The contributions to the development of the control theory were made
by L. S. Pontryagin, V. G. Boltayanskii, R. V. Gamkrelidze, E. F. Mishchenko,
R. Kalman, R. Bellman and many others. In particular, R. Bellman obtained the
equation that must be satis�ed by the solution of the optimal synthesis problem
(�nding the control that transfers an arbitrary point to the origin in the shortest
time):

min
u∈Ω

(
n∑
i=1

∂T (t, x)

∂xi
fi(x, u)

)
= −1, (4)



42 V. I. Korobov, O. S. Vozniak

where T (t, x) is a cost function and also a time needed to reach the origin.
In many cases, �nding a control that is a solution to this equation is quite

di�cult. This is one of the reasons why V. I. Korobov introduced the problem of
admissible positional synthesis. Admissibility means that the chosen control does
not necessarily provide the given or the shortest time, but ensures its �niteness.

The solution of the admissible positional synthesis problem, called the
controllability function method, was proposed by V. I. Korobov in [4] and later
developed in many other works. This method is based on the construction of the
control u(x), such that for the system (2) there exists a function Θ(x) which is
an analogue of the Lyapunov function in the stability theory, but also satis�-
es a condition which ensures �niteness of the time. More precisely the following
theorem holds.

Theorem 1 ([4]). Suppose that in the system (1) at any set of points

K1(ρ1, ρ2) = {(x, u) : 0 < ρ1 ≤ ||x|| ≤ ρ2, u ∈ Ω} the vector function f(x, u) sati-
s�es the Lipschitz continuity condition:

‖f(x′, u′)− f(x′′, u′′)‖ ≤ L1(ρ1, ρ2)(‖x′′ − x′‖+ ‖u′′ − u′‖),

for any (x′, u′), (x′′, u′′) ∈ K1(ρ1, ρ2).
And suppose that there exists a function Θ(x), such that the following condi-

tions hold:

1. Θ(x) ≥ 0 if x 6= 0 and Θ(0) = 0;

2. Θ(x) is continuous everywhere and continuously di�erentiable at any point

except, perhaps, the point x = 0;

3. there exists a number c > 0 such that the set Q = {x : Θ(x) ≤ c} is bounded
and there exists R > 0 such that Q ⊂ {x : ‖x‖ < R};

4. there exists a function u(x) : Q→ Ω, that satis�es the inequality

Θ̇ =

n∑
i=1

∂Θ(x)

∂xi
fi(x, u(x)) ≤ −βΘ1− 1

α (x)

for some α > 0, β > 0. And u(x) is Lipschitz continuous at any point of the
set K(ρ1, ρ2) = {x ∈ Q : 0 < ρ1 ≤ ‖x‖ ≤ ρ2}, that is

‖u(x′′)− u(x′)‖ ≤ L2(ρ1, ρ2)‖x′′ − x′‖,

for any x′, x′′ ∈ K(ρ1, ρ2).

Then the trajectory x(t) of the system ẋ = f(x, u(x)), which starts at an

arbitrary point x ∈ Q, ends at the point x1 = 0 at a certain �nite moment of time

(which depends on x0) T (x0) ≤ (α/β)Θ
1
α (x0). Moreover if α =∞, then x(t)→ 0

as t→∞.
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The function Θ(x) is called the controllability function. The conditions 1-3
of this theorem coincide with the conditions of Lyapunov theorem on asymptotic
stability, and the condition 4 ensures the �niteness of the time for an arbitrary
point to reach the origin. In the case where α =∞ the function Θ(x) is a Lyapunov
function for the obtained system.

Also in the case when α = β = 1, and instead of inequality, equality is ful�lled,
i.e.

n∑
i=1

∂Θ(x)

∂xi
fi(x, u(x)) = −1, (5)

the controllability function is also a motion time from an arbitrary point to the
origin. If, in addition, the Bellman equation is satis�ed:

min
u∈Ω

(
n∑
i=1

∂Θ(x)

∂xi
fi(x, u)

)
=

(
n∑
i=1

∂Θ(x)

∂xi
fi(x, u(x))

)
= −1, (6)

the function Θ(x) is also an optimal time.

The function Θ(x) is naturally constructed implicitly as a solution of some
equation Φ(x,Θ) = 0. It makes it di�erent from the Lyapunov function which
is constructed in explicit form. On the other hand, in the linear optimal control
problem, the motion time is also found implicitly[5].

Let us consider the canonical system:

ẋ1 = x2,

ẋ2 = x3,

...

ẋn−1 = xn,

ẋn = u,

(7)

with the constraint on control |u| ≤ d. It is a linear system ẋ = A0x+ b0u, where

A0 =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0

 , b0 =


0
0
0
. . .
1

 . (8)

An admissible position synthesis problem for an arbitrary linear system
ẋ = Ax+ bu can be simpli�ed to this problem for the canonical system[4].

Let us describe the algorithm of constructing the control using the admissible
maximum principle described in [7]. We determine the controllability function
Θ(x) at an arbitrary point x as a positive root of the equation

Φ(x,Θ) = 2a0Θ− (D(Θ)FD(Θ)x, x) = 0, (9)
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(it can be proved that this root is unique at every point [7]), where F is a positive
de�nite matrix,

D(Θ) = diag
(

Θ−
m+n−2i+1

2α

)n
i=1

, (10)

and numbers m ∈ N, α ≥ 1 are chosen so that the matrix

Fα =

((
1 +

m+ n− i− j + 1

α

)
fij

)n
i,j=1

is positive de�nite. In particular, we will consider m = n, α = 1. The number a0

is chosen to satisfy the constraint on control.

The derivative Θ̇ of the function Θ(x) can be written in the following form:

Θ̇ =
Θ((FA0 +A∗0F )y(x,Θ), y(x,Θ)) + 2uΘ(D(Θ)FD(Θ)x, b0)

(Fαy(x,Θ), y(x,Θ))
, (11)

where and y(x,Θ) = D(Θ)x. Let us denote

s(x,Θ(x)) = (D(Θ(x))FD(Θ(x))x, b0), (12)

that is,

s(x1, x2, . . . , xn,Θ(x1, x2, . . . , xn)) =

= fn1x1 + fn2Θ(x1, x2, . . . xn)x2 + ...+ fnnΘn−1(x1, x2, . . . , xn)xn.
(13)

We choose the control as u(x) = −d sign(s(x,Θ(x))) and call the set of points
satisfying the equation

s(x,Θ(x)) = 0 (14)

the switching surface S.

This control gives the minimum value of the derivative Θ̇ of the function Θ(x)
that can be obtained under given constraints. We note that this control is not
continuous. It takes only boundary values and has discontinuity at points of the
surface (14).

After substitution of the control to the system (7) we obtain:

ẋ1 = x2,

ẋ2 = x3,

...

ẋn−1 = xn,

ẋn = −d sign s(x1, x2, ..., xn,Θ(x1, x2, ..., xn)).

(15)

Algorithm of �nding the concrete trajectory from the point x0 to the point
x1 = 0 in the case when the switching surface is given by the equation (14) is the
following. At the point x0 we �nd a unique positive solution Θ0 of the equation
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(9) and add the equation (11) to the system (15). After that we �nd the trajectory
(x1(t), x2(t), . . . xn(t)) as the solution of the Cauchy problem:

ẋ1 = x2,

ẋ2 = x3,

...

ẋn−1 = xn,

ẋn = −d sign s(x1, x2, ..., xn,Θ),

Θ̇ = 2Θ(F (Θ)x,A0x)−2dΘ|(D(Θ)FD(Θ)x,b0)|
(F 1y(Θ,x),y(Θ,x))

,

(16)

x1(0) = x10, x2(0) = x20, . . . , xn(0) = xn0,Θ(0) = Θ0. (17)

2. The explicit form of the switching surface

The formula s(x,Θ(x)) = 0 gives the implicit form of the switching surface,
that is, it contains the function Θ(x) as an implicit solution of the equation (9).
We are considering the problem of �nding the switching surface in the explicit
form. Hence, we need to exclude the variable Θ from the equation for the surface.

For this let us write the equation (9) and the formula for the switching surface
in the following form:

Φ(x,Θ) = 2a0Θ2n −
n∑

i,j=1

fijΘ
i+j−2xixj = 0, (18)

s(x,Θ) = fn1x1 + fn2Θx2 + ...+ fnnΘn−1xn = 0. (19)

One way to remove a common factor from two equations is to use the resultant.
Let x ∈ S, x 6= 0 be a �xed point, then Φ(x,Θ), s(x,Θ) are the polynomials
of variable Θ. If Φ(x,Θ) and s(x,Θ) have a common root, then their resultant
R(Φ, s) is equal to zero. Hence, the set of all points where they have a common
root can be given by the equation:

R(Φ, s) = 0. (20)

But the surface given by equation (20) is larger than the switching surface,
because it also contains points where Φ(x,Θ), s(x,Θ) have common negative root,
or this root equals zero. Instead, the switching surface contains only those points
where a common root Θ > 0. Therefore, we have certain di�culties related to the
fact that we need to �nd a way to separate the points where Θ(x) > 0 from the
entire set. Hence, further we will use the resultant only for obtaining this wider
set.

As an example let us consider the process of �nding switching surface for the
case n = 2 described in [7].
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Let us determine Θ with the equation

Φ(Θ, x) =
2

9
Θ4 −Θ2x2

2 − 2Θx1x2 − 3x2
1 = 0 (21)

(the algorithm for �nding such equations is described in [7]). Then the switching
surface has the equation:

s(Θ, x) = x1 + Θx2 = 0. (22)

Using the formula (20) we obtain the surface given by resultant:

R(Φ, s) =

∣∣∣∣∣∣∣∣∣∣

2
9 0 −x2

2 −2x1x2 −3x2
1

x2 x1 0 0 0
0 x2 x1 0 0
0 0 x2 x1 0
0 0 0 x2 x1

∣∣∣∣∣∣∣∣∣∣
=

1

9
x4

1 − x2
1x

4
2 = 0. (23)

To separate points where the common root of equations (21) and (22) is posi-
tive we use the fact that the equation (22) has only one root Θ = −x1

x2
, which is

positive only when x1x2 < 0. The part of surface (23) that satis�es this condition
can be written in the form:

x1 = −3x2|x2|. (24)

This formula gives the equation of the switching surface. But for systems of
higher dimensions, overcoming such di�culties can be more complicated. Now we
give the explicit form of the switching surface in the case n = 3.

Let us determine the controllability function by the equation:

Φ(x,Θ) =
9

1625
Θ6−38x2

1−30
4

5
x1x2Θ−4x1x3Θ2−6

4

5
x2Θ2−2x2x3Θ3−1

5
x2

3Θ4 = 0.

(25)
Then the switching surface has the form:

s(x,Θ) = 10x1 + 5Θx2 + Θ2x3 = 0, (26)

and equation de�ned by the resultant is as follows:

R(Φ, s) = x2
1

(
160x4

1 − 1625x6
2 + 5200x1x

4
2x3 − 4940x2

1x
2
2x

2
3 + 1040x3

1x
2
3 +

+ 845x4
2x

4
3 − 2366x1x

2
2x

5
3 + 1690x2

1x
6
3

)
= 0.

(27)

We are searching for the points where there exists a common root Θ > 0. Let
us show that the factor x2

1 can be discarded. Indeed, if x1 = 0 then

Φ(x,Θ) =
9

1625
Θ6 − 6

4

5
x2Θ2 − 2x2x3Θ3 − 1

5
x2

3Θ4 = 0, (28)

s(x,Θ) = 5Θx2 + Θ2x3 = 0. (29)
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These polynomials always have a common root Θ = 0. The second root
Θ = −5x2

x3
of equation (29) is also a root for (28) if:

1125x6
2

13x6
3

− 45x4
2

x2
3

= 0. (30)

That is,

x2
2 =

13

25
x4

3. (31)

But the points
{
x1 = 0, x2

2 = 13
25x

4
3

}
are also solutions for the equation

160x4
1 − 1625x6

2 + 5200x1x
4
2x3 − 4940x2

1x
2
2x

2
3 + 1040x3

1x
2
3 +

+ 845x4
2x

4
3 − 2366x1x

2
2x

5
3 + 1690x2

1x
6
3 = 0.

(32)

Hence the factor x2
1 does not add any non-zero roots to the equation (27) compared

to (32). There is also a case when {x1 = 0, x2 = 0, x3 6= 0}. Then

Φ(x,Θ) =
9

1625
Θ6 − 1

5
x2

3Θ4 = 0, (33)

s(x,Θ) = Θ2x3 = 0. (34)

In this case Φ(x,Θ) and s(x,Θ) have common root Θ = 0 and we do not
consider it. The surface that show all other solutions for equation (32) is shown
in Figure 1.

Fig. 1. Surface given by equation (32)

This surface consists of two parts. One of them (Part A) includes points
where the common root Θ(x) of equations (25) and (26) is positive, and the



48 V. I. Korobov, O. S. Vozniak

other (Part B) includes points corresponding to the negative root and this part
should be excluded.

If we �nd the switching surface we obtain the system of di�erential equati-
ons with a discontinuous right-hand side. The control u(x) equals −1 above the
switching surface and +1 below it.

Let us �nd the switching surface by examining the roots of the polynomial
s(x,Θ) = 10x1 + 5Θx2 + Θ2x3.

First, we consider the case when x3 = 0. Then

Φ(x,Θ) =
9Θ6

1625
− 34x2

2Θ2

5
− 154x1x2Θ

5
− 38x2

1, (35)

s(x,Θ) = x2Θ + 10x1. (36)

Then

R(Φ, s) = x2
1(160x4

1 − 1625x6
2) = 0. (37)

The equation (37) has solutions x1 = 0 and x1 = ±
(

1
2

√
5
(

13
2

) 1
4
√
|x2|3

)
.

Using the fact that s(x,Θ) has a positive root only when x1x2 < 0 we obtain the
curve: x1 +

(
1
2

√
5
(

13
2

) 1
4
√
|x2|3

)
sign(x2) = 0,

x3 = 0.
(38)

If x3 6= 0, then s(x,Θ) is a quadratic polynomial, if 5x2
2 − 8x1x3 > 0 then it

has two roots Θ1,2 =
−5x2±

√
5
√

5x22−8x1x3
2x3

. Now we are using the fact that Φ(x,Θ)
always has exactly one positive root Θ, hence, any point on the switching surface
corresponds either to root Θ1 or to root Θ2 and we can construct parts of switching
surface for this roots separately and then unite them.

By substituting the root Θ1 =
−5x2+

√
5
√

5x22−8x1x3
2x3

into (25) we obtain the
surface given by equation:

1125x6
2 − 2700x1x

4
2x3 + 1620x2

1x
2
2x

2
3 − 144x3

1x
3
3 − 585x4

2x
4
3 +

+ 1170x1x
2
2x

5
3 − 468x2

1x
6
3 +

√
5x2

2 − 8x1x3

(
−225

√
5 + 360

√
5x1x

3
2x3 −

−108
√

5x2
1x2x

2
3 + 117

√
5x3

2x
4
3 −

702x1x2x
5
3√

5

)
= 0.

(39)

The root Θ1 is positive when
−5x2+

√
5
√

5x22−8x1x3
2x3

> 0. We can rewrite this as:

if x3 > 0 then

((
x2 < 0 and x1 <

5x2
2

8x3

)
or x1 < 0

)
,

if x3 < 0 then

(
x2 > 0 and

5x2
2

8x3
≤ x1 < 0

)
.

(40)
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By constructing (39) only at points where these conditions hold we obtain
the part A1 of the switching surface. Similarly, considering the case of the root

Θ2 =
−5x2−

√
5
√

5x22−8x1x3
2x3

> 0, with conditions

if x3 > 0 then

(
x2 < 0 and 0 < x1 ≤

5x2
2

8x3

)
,

if x3 < 0 then

((
x2 > 0 and x1 >

5x2
2

8x3

)
or x1 > 0

)
,

(41)

we obtain the part A2. By combining the parts A1, A2, the curve (38), (purple line
in Figure 2) and the point (0, 0, 0) we get the graph of the switching surface. It
also can be shown that in the neighborhood of the curve (38) the root Θ remains
continuous, hence we can consider that switching surface consists of two parts,
each corresponding to a separate root.

Fig. 2. Switching surface

The line separating these parts (blue line in Figure 2) consists of points where
Θ1 = Θ2 = −5x2

2x3
and can be found explicitly. By substituting root Θ = −5x2

2x3
into

Φ(x,Θ) and by using the fact that in this case 5x2
2 − 8x1x3 = 0, we can write as

follows: {
1125x6

2 − 15860x4
2x

4
3 + 43264x1x

2
2x

5
3 − 31616x2

1x
6
3 = 0,

5x2
2 − 8x1x3 = 0.

The solutions of the form x1 = 0, x2 = 0, x3 6= 0 belong to case when the
common root Θ = 0, all other solutions can be written as

x1 = −sign(x2)
4

√
325

2048

√
|x2|3, x3 = −sign(x2)

4

√
25

26

√
|x2|. (42)
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Now let us denote:

P1(x1, x2, x3) = 1125x6
2 − 2700x1x

4
2x3 + 1620x2

1x
2
2x

2
3 − 144x3

1x
3
3 − 585x4

2x
4
3 +

+ 1170x1x
2
2x

5
3 − 468x2

1x
6
3,

P2(x1, x2, x3) = −225
√

5 + 360
√

5x1x
3
2x3 − 108

√
5x2

1x2x
2
3 + 117

√
5x3

2x
4
3 −

− 702x1x2x
5
3√

5
.

Hence, the switching surface is written in the form s(x1, x2, x3) = 0, where:

s(x1, x2, x3) = x1 +
(

1
2

√
5
(

13
2

) 1
4
√
|x2|3

)
sign(x2), if x3 = 0,

s(x1, x2, x3) = P1(x1, x2, x3) +
√

5x2
2 − 8x1x3P2(x1, x2, x3),

if x1 < −sign(x2) 4

√
325
2048

√
|x2|3 and (40),

s(x1, x2, x3) = P1(x1, x2, x3)−
√

5x2
2 − 8x1x3P2(x1, x2, x3),

if x1 ≥ −sign(x2) 4

√
325
2048

√
|x2|3 and (41).

(43)

Now we show graphically that S is a sliding surface [8]. Consider an arbitrary
point x on the surface S and its velocity vectors f+ and f− when it approaches
the switching surface from above and from below respectively. And let α be a
tangent plane to the surface S at the point x (Fig. 3).

Fig. 3. Velocity vector on the switching surface
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We consider

f−N =
〈∇s, f−〉
|∇s|

, f+
N =

〈∇s, f+〉
|∇s|

, (44)

and build the graphs of f̃−N = 〈∇s, f−〉 and f̃+
N = 〈∇s, f+〉 (Figures 4 and 5

respectively). We see that f−N ≤ 0 and f+
N ≥ 0 (and f−N = 0 if and only if f+

N = 0)
for an arbitrary point x ∈ S. This means that at any point the velocity vectors
are located on di�erent sides of the plane α and, therefore, the resulting vector
always lies in this plane.

Fig. 4. Graph of f̃−N Fig. 5. Graph of f̃+
N

3. Approximation of the surface

To �nd speci�c trajectories, we propose to use an approximate surface that has
a simpler shape. One of the methods can be a construction with an interpolation
polynomial in the form x3 = L(x1, x2). By substituting numbers instead of x1, x2

in equation s(x1, x2, x3) = 0 and �nding the solution for x3, we can get any
number of points on the switching surface. For interpolation, we select the points
in such a way that they form a rectangular grid in the x1x2 plane. Then the
interpolation polynomial is given by the formula

L(x1, x2) =

N∑
n=1

M∑
m=1

x3(x1i, x2j)

N∏
i=1,i 6=n

x1 − x1i

x1n − x1i

M∏
j=1,j 6=m

x2 − x2j

x2m − x2j

 . (45)

The approximated control u(x) is given in the form: u(x) = −sign(x3 −
L(x1, x2)). The surface obtained by interpolation and the trajectory of the point
(−1, 2.5, 1) are shown in Figure 6.

Another method of approximation that can be used is the least-squares
approximation. As an example, we choose multiples with maximal power 3 for
x1, x2 and construct the approximating surface in the following form:

x3 = w(x1, x2) = a1x1 + a2x
2
1 + a3x

3
1 + a4x2 + a5x1x2 + · · ·+ a15x

3
1x

3
2, (46)

where a1, a2, . . . , a15 are unknown coe�cients.
In this case, the points do not necessarily have to form a rectangular grid,

so the interpolating surface can be constructed for both parts of the surface S
separately (Fig. 7). In addition, if we take symmetrically located points, then the
resulting parts will also be symmetrical.
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Fig. 6. Interpolating surface and the trajectory

Fig. 7. Points for approximation

Numbers a1, a2, . . . , a15 are chosen to minimize the function

J(a1, a2, . . . , a15) =
k∑
i=1

(x3i − L(x1i, x2i))
2 . (47)
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Then in our case we have:

w(x1, x2) ≈



− 0.433897x1 − 0.05253x2
1 − 0.00240945x3

1 −
− 0.994791x2 + 0.170404x1x2 − 0.0174874x2

1x2 −
− 0.000655178x3

1x2 − 0.118976x2
2 − 0.0222263x1x

2
2 −

− 0.00191042x2
1x

2
2 − 0.0000592797x3

1x
2
2 − 0.00572649x3

2 −
− 0.000934956x1x

3
2 − 0.000068384x2

1x
3
2 − 1.8162 · 10−6x3

1x
3
2

if x1 ≥ −sign(x2) 4

√
325
2048

√
|x2|3,

− 0.433897x1 + 0.05253x2
1 − 0.00240945x3

1 −
− 0.994791x2 − 0.170404x1x2 − 0.0174874x2

1x2 +

+ 0.000655178x3
1x2 + 0.118976x2

2 − 0.0222263x1x
2
2 +

+ 0.00191042x2
1x

2
2 − 0.0000592797x3

1x
2
2 − 0.00572649x3

2 +

+ 0.000934956x1x
3
2 − 0.000068384x2

1x
3
2 + 1.8162 · 10−6x3

1x
3
2

if x1 < −sign(x2) 4

√
325
2048

√
|x2|3.

(48)

Fig. 8. Approximating surface and the trajectory

The trajectory starting at the point (−1, 2.5, 1) is shown in Figure 8. We note
that the question whether the concrete obtained approximating or interpolating
surface is a sliding surface can be checked in the same way as for the surface S
and in general this can be not true. The problem which can be considered is how
to choose the interpolation nodes to obtain the sliding surface and to ensure that
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the trajectories reach the origin in a �nite time, and if so, how much can time
increase comparing to the original surface.
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ßâíèé âèãëÿä ïîâåðõíi ïåðåìèêàííÿ â çàäà÷i
äîïóñòèìîãî ïîçèöiéíîãî ñèíòåçó

Êîðîáîâ Â. I., Âîçíÿê Î. Ñ.
Õàðêiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Â. Í. Êàðàçiíà

61022, ì. Õàðêiâ, ìàéä. Ñâîáîäè, 4
Â öié ñòàòòi ðîçãëÿäà¹òüñÿ ïðîáëåìà, ïîâ'ÿçàíà iç çàäà÷åþ äîïóñòèìîãî ïîçè-

öiéíîãî ñèíòåçó òà ìåòîäîì ôóíêöi¨ êåðîâàíîñòi, à ñàìå, ç äîïóñòèìèì ïðèíöèïîì
ìàêñèìóìó. Íà âiäìiíó âiä áiëüø çâè÷îãî ïiäõîäó, äîïóñòèìèé ïðèíöèï ìàêñèìóìó
äà¹ ðîçðèâíèé ðîçâ'ÿçîê çàäà÷i ñèíòåçó. Íåõàé çàäàíà êàíîíi÷íà êåðîâàíà ñèñòå-
ìà ẋi = xi+1, i = 1, n− 1, ẋn = u ç îáìåæåííÿìè íà êåðóâàííÿ âèãëÿäó |u| ≤ d.
Çàäà÷à ñèíòåçó äëÿ äîâiëüíî¨ ëiíiéíî¨ ñèñòåìè âèãëÿäó ẋ = Ax + bu ìîæå áó-
òè çâåäåíà äî êàíîíi÷íî¨. Ôóíêöiÿ êåðîâàíîñòi Θ(x) çàäàíà ÿê ¹äèíèé äîäàòíèé
ðîçâ'ÿçîê äåÿêîãî ðiâíÿííÿ Φ(x,Θ) = 0. Êåðóâàííÿ îáèðà¹òüñÿ òàêèì ÷èíîì, ùîá
ìiíiìiçóâàòè ïîõiäíó ôóíêöi¨ Θ(x) çà ÷àñîì â êîæíié òî÷öi, i âîíî ìîæå áóòè çàïè-
ñàíî ó âèãëÿäi u(x) = −d sign(s(x,Θ(x))). Ìíîæèíà òî÷îê, ùî çàäîâîëüíÿ¹ ðiâíîñòi
s(x,Θ(x)) = 0, íàçèâà¹òüñÿ ïîâåðõíåþ ïåðåìèêàííÿ i âèçíà÷à¹ òî÷êè, äå êåðóâàííÿ
çìiíþ¹ ñâié çíàê. Çàçâè÷àé âîíà âêëþ÷à¹ çìiííó Θ, ùî ¹ íåÿâíèì ðîçâ'ÿçêîì ðiâíÿí-
íÿ Φ(x,Θ) = 0. Â öié ðîáîòi ìè øóêà¹ìî ÿâíå ïðåäñòàâëåííÿ ïîâåðõíi ïåðåìèêàííÿ,
òîáòî òàêå, ùî íå âêëþ÷à¹ çìiíî¨ Θ. Â íàøîìó âèïàäêó âèðàçè Φ(x,Θ) òà s(x,Θ)
¹ ïîëiíîìàìè âiäíîñíî Θ, òîìó çàäà÷à ïîâ'ÿçàíà ç çàäà÷åþ çíàõîäæåííÿ óìîâ ïðè
ÿêèõ äâà ïîëiíîìè ìàþòü ñïiëüíèé äîäàòíèé êîðiíü. Ðàíiøå áóëî âiäîìî ðiøåííÿ
äëÿ 2-âèìiðíîãî âèïàäêó. Àëå â õîäi äîñëiäæåííÿ ç'ÿñóâàëîñÿ, ùî äëÿ ñèñòåì áiëü-
øî¨ ðîçìiðíîñòi iñíóþòü ïåâíi òðóäíîùi. Ó öié ñòàòòi ïðåäñòàâëåíî òà äîñëiäæåíî
ïîâåðõíþ ïåðåìèêàííÿ äëÿ òðèâèìiðíîãî âèïàäêó. Òàêîæ ïîêàçàíî, ùî öÿ ïîâåðõ-
íÿ ïåðåìèêàííÿ ¹ ïîâåðõíåþ êîâçàííÿ (çãiäíî ç âèçíà÷åííÿì Ôiëiïïîâà). Â ðîáîòi
òàêîæ çàïðîïîíîâàíi iíøi ñïîñîáè ïîáóäîâè ïîâåðõíi ïåðåìèêàííÿ çà äîïîìîãîþ
iíòåðïîëÿöi¨ òà àïðîêñèìàöi¨. Öi ñïîñîáè çàñòîñîâàíî äëÿ çíàõîäæåííÿ òðà¹êòîðié
êîíêðåòíèõ ïî÷àòêîâèõ òî÷îê.

Êëþ÷îâi ñëîâà: êåðîâàíiñòü; ìåòîä ôóíêöi¨ êåðîâàíîñòi; äîïóñòèìèé ïðèí-

öèï ìàêñèìóìó; ïîâåðõíÿ ïåðåìèêàííÿ.

Iñòîðiÿ ñòàòòi: îòðèìàíà: 28 æîâòíÿ 2022; îñòàííié âàðiàíò: 19 ãðóäíÿ 2022
ïðèéíÿòà: 24 ãðóäíÿ 2022.
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Âß×ÅÑËÀÂ ÎËÅÊÑIÉÎÂÈ× ÐÅÇÓÍÅÍÊÎ (íåêðîëîã)
15.02.1941 � 26.08.2022

26 ñåðïíÿ 2022 ðîêó âiäiéøîâ ó çàñâiòè äîöåíò êàôåäðè Âèùî¨ ìàòåìàòèêè
òà iíôîðìàòèêè Õàðêiâñüêîãî íàöiîíàëüíîãî óíiâåðñèòåòó iìåíi Â.Í. Êàðàçi-
íà Âÿ÷åñëàâ Îëåêñiéîâè÷ Ðåçóíåíêî. Íàðîäèâñÿ âií 15 ëþòîãî 1941 ðîêó â

ì. Âîðîíiæ, äå éîãî áàòüêî, ìîëîäèé
îôiöåð, âèêëàäàâ ó Âîðîíiæñüêîìó
âiéñüêîâîìó ó÷èëèùi çâ'ÿçêó. Áàòüêî
1920 ð.í. óêðà¨íåöü, ðîäîì ç Õàðêiâ-
ñüêî¨ îáëàñòi, ìàòè ðîäîì ç Âîðîíiæ-
ñüêî¨ îáëàñòi. Áàòüêî ïðîïàâ áåç âi-
ñòi íà ôðîíòi Äðóãî¨ ñâiòîâî¨ âiéíè â
ñåðïíi 1941 ðîêó. Âàæêi âî¹ííi ðîêè,
åâàêóàöiÿ, ïiñëÿâî¹ííèé ãîëîä, çàëè-
øèëè ñâié âiäáèòîê íà âñå æèòòÿ. Âÿ-
÷åñëàâ Îëåêñiéîâè÷ ïiñëÿ çàêií÷åííÿ
ñåìèði÷íî¨ øêîëè, ó 1955 ïîñòóïèâ áåç
iñïèòiâ, ÿê âiäìiííèê, â Õàðêiâñüêèé
áóäiâåëüíèé òåõíiêóì (òåõíiêóì çåëå-
íîãî áóäiâíèöòâà). Òåõíiêóì çàêií÷èâ
ç âiäçíàêîþ ó 1959 ðîöi òà çà íàïðàâ-
ëåííÿì ïî¨õàâ ïðàöþâàòè â ì. Îäåñó.
Ó 1962 - 1967 íàâ÷àâñÿ íà ìåõàíiêî-
ìàòåìàòè÷íîìó ôàêóëüòåòi Õàðêiâ-

ñüêîãî äåðæàâíîãî óíiâåðñèòåòó. Çà íàïðàâëåííÿì ïî÷àâ ïðàöþâàòè â óíi-
âåðñèòåòi ç âåðåñíÿ 1967 ðîêó. Ñïî÷àòêó ðîáîòà ìàòåìàòèêîì-ïðîãðàìiñòîì
íà Îá÷èñëþâàëüíîìó öåíòði (ÎÖ) óíiâåðñèòåòó. Ïðîãðàìóâàííÿ òà âèðiøå-
ííÿ ïðèêëàäíèõ çàäà÷ íà ðiçíèõ ÅÎÌ: ñïî÷àòêó íà Óðàë-1, ïîòiì íà Ì-20,
ÅÑ. Îá÷èñëþâàâ çàäà÷i, çîêðåìà, äëÿ Òóðáiííîãî çàâîäó, Àâòîäîðîæíüîãî
iíñòèòóòó, ôiçè÷íîãî, ðàäiîôiçè÷íîãî ôàêóëüòåòiâ íàøîãî óíiâåðñèòåòó.

Îäíî÷àñíî ç ðîáîòîþ íà ÎÖ óíiâåðñèòåòó áóâ ó 1969-1973 ðîêè äèðåê-
òîðîì Çàî÷íî¨ þíàöüêî¨ ìàòåìàòè÷íî¨ øêîëè (ÇÞÌØ) ïðè óíiâåðñèòåòi
(ïðîîáðàç ñó÷àñíîãî Ìàëîãî Êàðàçiíñüêîãî óíiâåðñèòåòó). ÇÞÌØ îðãàíiçî-
âóâàëà ðàçîì ç ìåõàíiêî-ìàòåìàòè÷íèì, ðàäiîôiçè÷íèì, ôiçè÷íèì i ôiçèêî-
òåõíi÷íèì ôàêóëüòåòàìè øêiëüíi îëiìïiàäè 7-10 êëàñiâ ç ìàòåìàòèêè i ôiçè-
êè. Â îëiìïiàäàõ áðàëè ó÷àñòü îáëàñíi êîìàíäè øêîëÿðiâ ç áiëüøîñòi îáëà-
ñòåé Óêðà¨íè, à òàêîæ ç Åñòîíi¨, Áiëîðóñi, Ðîñi¨. Ó äåÿêi ðîêè ïðè¨çäèëî äî 500

56

https://doi.org/10.26565/2221-5646-2022-96-04


ÂiñíèêÕÍÓ, Ñåð. ¾Ìàòåìàòèêà, ïðèêëàäíà ìàòåìàòèêà i ìåõàíiêà¿, òîì96 (2022) 57

øêîëÿðiâ òà âèêëàäà÷iâ-êåðiâíèêiâ êîìàíä. Øêiëüíà ìàòåìàòèêà çàëèøàëàñü
â ïîëi çîðó Â.Î. âñå éîãî æèòòÿ, ïðî ùî ñâiä÷àòü âèäàíi ÷èñëåíi ïîñiáíèêè ç
ìàòåìàòèêè äëÿ øêîëÿðiâ.

Ó 1973-1976 íàâ÷àâñÿ â àñïiðàíòóði óíiâåðñèòåòó, â 1977 çàõèñòèâ êàí-
äèäàòñüêó äèñåðòàöiþ ç ôiçèêî-ìàòåìàòè÷íèõ íàóê íà òåìó �Ðîçñiÿííÿ åëå-
êòðîìàãíiòíèõ õâèëü çîñåðåäæåíèõ äæåðåë íà ñôåði ç êðóãîâèì îòâîðîì�.
Íàóêîâèì êåðiâíèêîì áóâ âèïóñêíèê êàôåäðè ìåõàíiêè íàøîãî óíiâåðñèòåòó
äîêòîð ôiç.-ìàò. íàóê ÷ëåí-êîð. ÀÍ Óêðà¨íè Â.Ï. Øåñòîïàëîâ. Ïiñëÿ àñïi-
ðàíòóðè çà íàïðàâëåííÿì ïðàöþâàâ 1 ðiê íàóêîâèì ñïiâðîáiòíèêîì íà êàôåä-
ði òåîðåòè÷íî¨ ðàäiîôiçèêè óíiâåðñèòåòó. Çà çàïðîøåííÿì äåêàíà ìåõàíiêî-
ìàòåìàòè÷íîãî ôàêóëüòåòó çàâiäóâà÷à êàôåäðè Âèùî¨ ìàòåìàòèêè Ãîðäåâ-
ñüêîãî Ä.Ç., ó 1978 ïðèéøîâ i ç òîãî ÷àñó áåçïåðåðâíî ïðàöþâàâ íà ìåõìàòi,
íà êàôåäði Âèùî¨ ìàòåìàòèêè òà iíôîðìàòèêè. Ñïî÷àòêó âèêëàäà÷, ïîòiì ç
1979 ñòàðøèé âèêëàäà÷, äî îñòàííüîãî ñâîãî äíÿ - äîöåíò êàôåäðè. Ó 1989 ð.
îòðèìàâ â÷åíå çâàííÿ äîöåíòà.

30 ðîêiâ (1978-2008) âiäïîâiäàâ çà ðîáîòó Îïîðíî¨ êàôåäðè ìàòåìàòèêè
(ÎÊÌ) Õàðêiâñüêîãî ÂÓÇiâñüêîãî öåíòðó (ÕÂÖ). ÎÊÌ ñïiâïðàöþâàëà ç êà-
ôåäðàìè ìåõ-ìàòó, ôiç-ôàêó òà ôiç-òåõó óíiâåðñèòåòó òà êàôåäðàìè âèùî¨
òà ïðèêëàäíî¨ ìàòåìàòèêè áiëüø íiæ 20-òè ÂÓÇiâ ÕÂÖ.

Îñíîâíi íàïðÿìêè íàóêîâèõ äîñëiäæåíü: ìàòåìàòè÷íà òåîðiÿ äèôðàêöi¨
åëåêòðîìàãíiòíèõ òà àêóñòè÷íèõ õâèëü, åëåêòðîñòàòèêà, ìåòîäè ðåãóëÿðèçà-
öi¨ iíòåãðàëüíèõ òà ñóìàòîðíèõ ðiâíÿíü, îá÷èñëþâàëüíi ìåòîäè â åëåêòðî-
äèíàìiöi. Îïóáëiêîâàíî 134 íàóêîâî-ìåòîäè÷íi ïðàöi (orcid: 0000-0003-4577-
4950). Áóâ ÷ëåíîì íàóêîâîãî òîâàðèñòâà IEEE ç 1997 ðîêó.

Â íàïðÿìêó äîñëiäæåííÿ ïðîñòîðîâèõ ðîçïîäiëiâ åëåêòðîñòàòè÷íèõ ïî-

ëiâ, ñòâîðåíèõ ñêëàäíèìè ñèñòåìàìè åëåêòðè÷íèõ çàðÿäiâ, îòðèìàâ íàñòóï-
íi ðåçóëüòàòè: a) iç âèêîðèñòàííÿì ìåòîäó ðåãóëÿðèçàöi¨ âèäiëåíî é îòðèìàíî
ãîëîâíó ÷àñòèíó îïåðàòîðà çàäà÷i åëåêòðîñòàòèêè äëÿ ñôåðè÷íîãî ñåãìåíòà,
çàíóðåíîãî ó äiåëåêòðè÷íå çàîêðóãëåííÿ êîíóñó òà ðîçâ'ÿçàíî çàäà÷ó åëå-
êòðîñòàòèêè äëÿ ñôåðè÷íîãî ñåãìåíòà, åêðàíîâàíîãî çàìêíåíèìè ñåêöiéîâà-
íèìè ñôåðàìè; b) âèäiëåíî é îòðèìàíî ñèíãóëÿðíó ÷àñòèíó îïåðàòîðà çàäà÷i
åëåêòðîñòàòèêè äëÿ ñôåðè÷íîãî ñåãìåíòà òà ñåêöiéîâàíîãî ïðîâiäíîãî êîíó-
ñà; c) iç çàñòîñóâàííÿì ìåòîäiâ iíòåãðàëüíèõ ïåðåòâîðåíü, ðåãóëÿðèçàöi¨ òà
âèäiëåííÿ é îáåðíåííÿ ãîëîâíî¨ ÷àñòèíè iíòåãðàëüíèõ i ñóìàòîðíèõ ðiâíÿíü
îòðèìàíî ñòðîãèé ðîçâ'ÿçîê çàäà÷i ïðî åëåêòðîñòàòè÷íèé ïîòåíöiàë ñôåðè ç
êîëîâèì îòâîðîì òà ïàêåòó ãîðèçîíòàëüíèõ äèïîëiâ, åêðàíîâàíèõ ñôåðîþ; d)
îòðèìàíî ïîòåíöiàëè ñôåðè÷íîãî ñåãìåíòà é åëåêòðîñòàòè÷íîãî çàðÿäà ó ïðè-
ñóòíîñòi êîíóñó òà ñåêöiéîâàíî¨ ñôåðè; e) iç âèêîðèñòàííÿì ìåòîäó îáåðíåííÿ
iíòåãðàëüíîãî îïåðàòîðà i íàïiâîáåðíåííÿ ìàòðè÷íîãî îïåðàòîðà çàäà÷i ïî-
áóäîâàíî ÷èñåëüíî-àíàëiòè÷íèé àëãîðèòì äîñëiäæåííÿ ïîòåíöiàëó ñôåðè ç
êîëîâèì îòâîðîì i çàðÿäó, îòî÷åíèõ ñòði÷êîâèìè ñôåðàìè.

Â íàïðÿìêó ðîçðàõóíêó åëåêòðîìàãíiòíèõ ïîëiâ, ñòâîðåíèõ ñêëàäíèìè

ñèñòåìàìè åëåêòðè÷íèõ ñòðóìiâ, îòðèìàâ ðåçóëüòàòè: a) iç âèêîðèñòàííÿì
ìåòîäiâ ðåãóëÿðèçàöi¨ ïàðíèõ ôóíêöiîíàëüíèõ ñóìàòîðíèõ ðiâíÿíü, iíòåã-
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ðàëüíèõ ïåðåòâîðåíü i âèäiëåííÿ é îáåðíåííÿ ãîëîâíèõ ÷àñòèí ñóìàòîðíèõ
ðiâíÿíü äîñëiäæåíî åëåêòðîìàãíiòíå ïîëå, ùî ñòâîðåíî âèòêîì ðàäiàëüíîãî
åëåêòðè÷íîãî ñòðóìó, ðîçñiÿíîãî ñïiðàëüíî ïðîâiäíèì ñôåðè÷íèì äèñêîì;
b) çà äîïîìîãè ìåòîäó ðåãóëÿðèçàöi¨ îïåðàòîðà çàäà÷i ðîçâ'ÿçàíî çàäà÷ó ïðî
åëåêòðîìàãíiòíå ïîëå, ñòâîðþâàíå âåðòèêàëüíî ðîçòàøîâàíèì åëåêòðè÷íèì
äèïîëåì íàä ñïiðàëüíî ïðîâiäíîþ íåçàìêíåíîþ ñôåðîþ.

Â íàïðÿìêó äèôðàêöi¨ õâèëü íà îá'¹êòàõ ñêëàäíî¨ ôîðìè, îòðèìàâ ðåçóëü-
òàòè: a) iç âèêîðèñòàííÿì iíòåãðàëüíîãî ïåðåòâîðåííÿ òèïó Àáåëÿ âiäøóêàíî
é îáåðíåíî ãîëîâíó ÷àñòèíó ìàòðè÷íîãî îïåðàòîðà çàäà÷i äèôðàêöi¨ ïëîñêî¨
àêóñòè÷íî¨ õâèëi íà ñôåði ç êîëîâèì îòâîðîì; b) iç çàñòîñóâàííÿì ìåòîäó
ðåãóëÿðèçàöi¨ ìàòðè÷íîãî îïåðàòîðà çàäà÷i äîñëiäæåíî ïîòåíöiàë øâèäêî-
ñòåé ïëîñêî¨ àêóñòè÷íî¨ õâèëi, ùî ðîçñiÿíî ñôåðîþ, ñêëàäåíîþ ç ì'ÿêîãî òà
æîðñòêîãî êîëîâèõ ñåãìåíòiâ òà ðîçâ'ÿçàíî çàäà÷ó äèôðàêöi¨ åëåêòðîìàãíiò-
íîãî ïîëÿ, ñòâîðåíîãî âåðòèêàëüíî ðîçòàøîâàíèì äèïîëåì áiëÿ ñïiðàëüíî
ïðîâiäíî¨ ñôåðè ó ïðèñóòíîñòi êîíóñó.

Âÿ÷åñëàâ Îëåêñiéîâè÷ çàâæäè áóâ ãîòîâèé äîïîìîãàòè iíøèì, ÷àñòî, âiä-
êëàäàþ÷è ñâî¨ âëàñíi ñïðàâè. Â ïàì'ÿòi áàãàòüîõ âií çàëèøèòüñÿ ÿê àêòèâíà,
ïðàöåëþáíà, âiäêðèòà äî ñïiëêóâàííÿ, äîáðà ëþäèíà.
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Ïðàâèëà äëÿ àâòîðiâ
¾Âiñíèêà Õàðêiâñüêîãî íàöiîíàëüíîãî óíiâåðñèòåòó

iìåíi Â. Í. Êàðàçiíà¿,
Cåðiÿ ¾Ìàòåìàòèêà, ïðèêëàäíàÿ ìàòåìàòèêà i ìåõàíiêà¿

Ðåäàêöiÿ ïðîñèòü àâòîðiâ ïðè íàïðàâëåííi ñòàòåé êåðóâàòèñÿ íàñòóïíèìè
ïðàâèëàìè.

1. Â æóðíàëi ïóáëiêóþòüñÿ ñòàòòi, ùî ìàþòü ðåçóëüòàòè ìàòåìàòè÷íèõ
äîñëiäæåíü (àíãëiéñüêîþ àáî óêðà¨íñüêîþ ìîâàìè).

2. Ïîäàííÿì ñòàòòi ââàæà¹òüñÿ îòðèìàííÿ ðåäàêöi¹þ ôàéëiâ ñòàòòi
îôîðìëåíèõ ó ðåäàêòîði LATEX (âåðñiÿ 2e), àíîòàöié, âiäîìîñòåé ïðî àâòîðiâ
òà àðõiâà, ùî âêëþ÷à¹ LATEX ôàéëè ñòàòòi òà ôàéëè ìàëþíêiâ. Ôàéë-çðàçîê
îôîðìëåííÿ ñòàòòi ìîæíà çíàéòè â ðåäàêöi¨ æóðíàëó òà íà âåá-ñòîðiíöi
(http://vestnik-math.univer.kharkov.ua).

3. Ñòàòòÿ ïîâèííà ïî÷èíàòèñÿ ç ðîçøèðåíî¨ àíîòàöi¨ (îáñÿãîì íå ìåíø
íiæ 1800 çíàêiâ), â ÿêié ïîâèííi áóòè ÷iòêî ñôîðìóëüîâàíi ìåòà òà ðå-
çóëüòàòè ðîáîòè. Àíîòàöiÿ ïîâèííà áóòè òi¹þ ìîâîþ (àíãëiéñüêîþ àáî óêðà-
¨íñüêîþ), ÿêîþ ¹ îñíîâíèé òåêñò ñòàòòi. Çàêîðäîííi àâòîðè ìîæóòü çâåð-
íóòèñÿ äî ðåäàêöi¨ çà äîïîìîãîþ ç ïåðåêëàäîì àíîòàöié íà óêðà¨íñüêó ìî-
âó. Ïîâèííi áóòè íàâåäåíi ïðiçâèùà, iíiöiàëè àâòîðiâ, íàçâà ðîáîòè, êëþ÷îâi
ñëîâà òà íîìåð çà ìiæíàðîäíîþ ìàòåìàòè÷íîþ êëàñèôiêàöi¹þ (Mathemati-
cs SubjectClassi�cation 2010). Àíîòàöiÿ íå ïîâèííà ìàòè ïîñèëàíü íà ëiòåðà-
òóðó ÷è ìàëþíêè. Íà ïåðøié ñòîðiíöi âêàçó¹òüñÿ íîìåð ÓÄÊ êëàñèôiêàöi¨.
Â êiíöi ñòàòòi òðåáà äîäàòè ïåðåêëàä àíîòàöi¨ (îáñÿãîì íå ìåíø íiæ 1800
çíàêiâ) íà äðóãó ìîâó (àíãëiéñüêó ÷è óêðà¨íñüêó).

4. Ñïèñîê ëiòåðàòóðè ïîâèíåí áóòè îôîðìëåíèé ëàòèíñüêèì øðèôòîì.
Ïðèêëàäè îôîðìëåííÿ ñïèñêà ëiòåðàòóðè:

1. A.M. Lyapunov. A new case of integrability of di�erential equations of motion
of a solid body in liquid, Rep. Kharkov Math. Soc., � 1893. � 2. V.4. � P. 81-85.

2. A.M. Lyapunov. The general problem of the stability of motion. Kharkov
Mathematical Society, Kharkov. - 1892. - 251 p.

5. Êîæíèé ìàëþíîê ïîâèíåí áóòè ïðîíóìåðîâàíèé òà ïðåäñòàâëåíèé
îêðåìèì ôàéëîì â îäíîìó ç ôîðìàòiâ: EPS, BMP, JPG. Â ôàéëi ñòàòòi ìàëþ-
íîê ïîâèíåí áóòè âñòàâëåíèé àâòîðîì. Ïiä ìàëþíêîì ïîâèíåí áóòè ïiäïèñ.
Íàçâè ôàéëiâ ìàëþíêiâ ïîâèííi ïî÷èíàòèñü ç ïðèçèùà ïåðøîãî àâòîðà.

6. Âiäîìîñòi ïðî àâòîðiâ ïîâèííi ìiñòèòè: ïðiçâèùà, iìåíà, ïî áàòüêîâi,
ñëóæáîâi àäðåñè òà íîìåðè òåëåôîíiâ, íàóêîâèé ñòóïiíü, ïîñàäó, àäðåñè åëå-
êòðîííèõ ñêðèíüîê òà iíôîðìàöiþ ïðî íàóêîâi ïðîôàéëè àâòîðiâ (orcid.org,
www.researcherid.com, www.scopus.com) ç âiäïîâiäíèìè ïîñèëàíÿìè. Ïðîõàí-
íÿ òàêîæ ïîâiäîìèòè ïðiçâèùå àâòîðà, ç ÿêèì òðåáà âåñòè ëèñòóâàííÿ.

7. Ðåêîìåíäó¹ìî âèêîðèñòîâóâàòè â ÿêîñòi çðàçêà îôîðìëåííÿ îñòàííi
âèïóñêè æóðíàëó (vestnik-math.univer.kharkov.ua/currentv.htm).

8. Ó âèïàäêó ïîðóøåííÿ ïðàâèë îôîðìëåííÿ ðåäàêöiÿ íå áóäå ðîçãëÿäàòè
ñòàòòþ.

Åëåêòðîííà ñêðèíüêà: vestnik-khnu@ukr.net
Åëåêòðîííà àäðåñà â Iíòåðíåòi: http://vestnik-math.univer.kharkov.ua
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