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JliniiiHa HeTepoBa KpaiioBa 3aJa4da s
MaTPUIHOI'O Pi3HUIIEBO-AJIredopaiaTHOro
piBHaAHHSs JIsiiryHOBA

C. M. Yyiiko!, M. B. [Iz106a2, 51. B. Kasinivenko®

L Honbacvruti depoicasruti nedazozivnuti ynisepcumem, Caos ancok,
sya. Tenepana Bamioxa, 19, Jloneuvka oba., Yxpaina 84 116
2 Jlonbacora deporcasna mawurobydiena axademia,
eyn. Axademiuna, 72, m. Kpamamopcox, oneuvka oba., Yrpaina 84313
chujko-slav@ukr.net

3Haii/IeHl yMOBU PO3B’sI3HOCTI, & TAKOXK KOHCTPYKIIisl y3araJbHEHOI0 OIepaTopa
I'pina s jinifiHOT HEeTEpOBOI KpaloBOl 3ajadi I MaTPUYHOTO Pi3HUIEBO-
ayredpalyHOro aHasora piBHAHHS JIAmyHOBA.

Kmowosi crosa: pizuniieBo-aarebpaldni piBHSHHS; KpaiioBi 3aati; MaTpudIHe
piBusHHsA JIsamyHOBA.

S. M. Chuiko, M. V. Dzyuba, Ya. V. Kalinichenko. Linear Noetheri-
an boundary value problem for the matrix difference-algebraic
Lyapunov equation. In this article we found the conditions of the exi-
stence and constructive scheme for finding the solutions of the linear Noetherian
differential-algebraic boundary value problem for a matrix Lyapunov equation.
Keywords: differential-algebraic equation; boundary value problem; matrix
Lyapunov equation.

Yyiiko C. M., Hzw06a M. B., Kanuauuenko ¢. B. JIuHeilinas HeTepoBa Kpa-
eBasi 3a/ila4a JIJisi MaTPUYHOTO PA3HOCTHO-AJITre0panveckKoro ypaBHe-
Hus JIamynoBa. Haiinensl ycjaoBus pa3penmMOCcTh, a TaKKe KOHCTPYKITUS
00001TIeHHOTO ortepaTopa ['puHa j1s JTUHEHHON HeTePOBOI KPAEBOI 3a/1a9n JIJTsT
MaTPUIHOTO PA3HOCTHO-AJIreOpanvecKoro aHajaora ypapHenuns JIsmyHosa.
Karouesvie caosa: pa3sHOCTHO-aIredpanvdeckKne ypaBHEHUs; KPAeBble 3a/1a4H;
MaTpHUIHOE ypaBHeHnue JIsamyHosa.

2010 Mathematics Subject Classification: 15A24, 34B15, 34C25.

1. IloctanoBka 3aza4i. Jlocsimkeno 3a1ady Ipo 3HAXOZKEHHST 00OMEXKEHUX
posB’s3kiB 1, 2]

Z(k)eRY™P keQ:={0,1, 2, .., w}

JiniitHOT HeTepoBOI (ff # Ap) KpaiioBol 3a1ati /IJIsi MATPUTIHOTO PI3HUIEBO-AIre0-
paiuHoro piBHgHHS JIsamyHoBa

(© Yyiiko C. M., Hzr6a M. B., Kaginiuenko 4. B., 2020
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A(k) Z(k + 1) = B(k) Z(k) + Z (k) C(k) + F(k), (1)

Z()=AeRM" (2)

KowmnonenTn
ZW)(k), FOD (k) : 0 — R}
marpuips Z(k) ta F(k) € R npunyckaemo obMmeskennmMu na MHOKHH () dbyH-
kuisvu. Tyt A(k), B(k) € R i C(k) € R?*F — obmesxeni na muoxuni ) ma-
TpuUIy,
LZ(-) : RV — R

— jiHiftanit oOMekeHnt MaTpuaHUil (BYHKITIOHAJ, BUSHAYEHUN Ha ITPOCTOPi 0OMe-
ykernx Marpuns Z (k). Busnataumo oneparop [3]

MB] = R7™" 5 R™™,

SIK OlepaTop, sikuit craBuTh y Bianosiguicts MmaTpuri B € R™*™

M([B] € R™™ ckuazenuii i3 n croumis marpurii 13, a Takoxk obepHeHuii orepaTop

BEKTOP-CTOBIIEIb

M_l{M[B]} LN Rmxn7

SIKUI CTABUTH y BIAMOBIIHICTD BekTOp-cToBIII0 M [B] € R™™ Marpumo B e R™*™,
B anrnomosHiii siteparypi oneparop M[A] Ha3uBaoTh 0OlIEpaTOPOM BEKTOPU3AIIil
i nosnavaiors [4]: M[A] := vec(A).

Ba/iaua 1po 3HAXOZKEHHs 00OMeKeHUX Po3B’si3KiB Z (k) JIHIHONO MATPUIHOTO
pisHuIeBo-asirebpaiuHoro pisHsiHHs Jlsmynosa (1) mpuBogmThCs 10 3a7a4i 1Mpo
3HAXOJPKEHHsT OOMEXKEHIX PO3B’sI3KiB 2]

2(k) == MZ(k) e R keQ

JIHHITHOTO PI3HUIEBO-AJITeOPaTIHOTO PiBHSIHHS

A(k)Z(k+1)=B(k) Z(k)+ Z(k)C(k) + F(k). (3)
[Tozrnaunmo ‘
OW eR™P j=1,2 .., af
— npupozHuit 6asuc mpocropy R**A 1a ¢, J=1,2, ..., -3 — KoOHCTaHTH, AKi

BU3HAYAIOTH PO3BUHEHHS MAaTPUII

af
7=Y0Wc;, ¢eR, j=1,2 .., a8

<.
Il
—_

3a Bekropamu OU) € R**8 Gaszuc npocropy R**#. IMoznaunmo marpuii

A® ;:(A@ AP LAY ) A = MA(K)O; € R?,
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a TaKOZK

B9 (B9 BP . B ) cror,

e
B¥) .= M (A(k)©; + ©; B(k)) € R,

Takum guHOM, 3aja9a PO 3HAXOJZKEHHsT 0OMeKeHuX po3B’si3kiB Z (k) miniitao-
ro MATPUYHOIO pi3HUIEBO-ajarebpaldyHoro pisHsiHHs JIsmyHoBa (3) npuBeieHa 10
3a1a49i TIPO 3HAXO>KEHHSI OOMEXKEHIX PO3B’SI3KIiB

2(k) = MZ(k)eRY, keQ:={0,1,2, .., w}
JHHITHOTO PI3HUIEBO-AITeOpaIIHOTO PiBHSIHHS
A2k +1) = BWz(k) + f(k), (k) := MF (k). (4)
2. YMmoBu po3B’a3HoCTi 41 dikcoBanol dyHKnil v (k). Ilpumycrumo,
o piBustHHs (4) 3a/10BOJIBHsE BUMOraM TeopeMi |5, ¢. 570], a came: nmpuiycrumo,

[0 MAa€ MiCIle BUPOJKEHHST 200 1epIrnoro p = 1, abo Apyroro nopsaky: p = 2, npu
[[bOMY JIiHIliHA pi3HuUIEBO-areOpaitina cucrema (4) Mae pO3B’I30K BUIISALY

2(k,cp,_) = Xp(k)cp,_, + K[f(@),p(D)](K), cp,_, € RPP,

3ajIeXKHuil Bix 10BiabHOT 0OMezkeHOl BekTOp-DyHKILT 1,(k) € RP?; mpumycrumo
Takok yHKIio vy (k) dikcoanowo. ITosHatnmo Marpuiio

Qp = LX,)() € RV P,

a Takox [6]

PQp : RP=1 — N(Qp), PQ;; :RY — N(Q;)

— wmarpumi-opronpoekropu. Iligcrapisioun 3arajabHuil po3s’sa30k 3amaqdi Korri
2(0) = ¢p,_, € RP»~1 meonnopisuoro minifinoro pisHuneso-airedpaivHoro pingH-
Hs (4) y KpailoBy yMOBY

(z(-) = @ = MA e RM,
IPUXO/MUMO JI0 PIBHSIHHS
Qpc=a—LK[f(7),vp(7)](),
po3B’st3HOrO TOAl 1 TiNbKY TOL, KOsH [6]

PQ;;{d — (K[f(5), Vp(J')](-)} =0; (5)

y IbOMY BuIaJKy po3s’sisok z(k) miniiiHol HerepoBol kpaitoBol 3asadi (1), (2)
BU3HAYAE BEKTOD

Cpop1 = QZ{O’& — (K[f(5), Vp(j)](')} +Pg,cr, ¢ €R.
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Tyt Q; € RPr—1XY — qecepmoobepuena 3a Mypom — ITempoysom mMarpums; MaT-
puna Py, € RPr=17 yrpopena 3 r JTiHIHO He3a/Ie2KHIX CTOBIIIB OPTOIPOEKTOPA
Pg, € RPp=1%Pp=1 Takum YIMHOM, JOBEICHA HACTYIIHA JIEMA.

Jlema 1. 3adava npo 3naxrodscenmna 00MENCEHUT PO3E°A3KIG AIMIUHO20
PisHULEB0-an2ebpaivnozo pieHanna (1) y eunadky supodocenms nepwozo p = 1,
a60 dpye020 nopadky: p = 2 mac pPo3e’a30k 6u2ady

Z(k,cp, 1) = Wk, cp, 1) + K[F (), vp(i)](K),
sanesrcruti 610 dosiavroi obmesrcenoi sexmop-pynwyii vy(k) € RPe. Tym
Wi(k,cp,_,) =M1 [Xp(k)cp,_.], cp,_, €RPL,
KPIM 020
K[F (i), vp(0))(k) := M7 [E[f (@), vp(0)] (k)] -
3adaya npo 3HAT00MHCENNHA 0OMEIHCEHUT PO36 A3KILE AIHITHOL HEMEPOBOT PI3HULEBO-
anzebpaiunoi kpatiosoi 3adawi (1), (2) y eunadky eupodscerns abo nepuio2o

p =1, abo dpyeozo nopsadky: p = 2, daa Pikcosanoi obmesrcernoi sexmop-pyrryii
vp(k) € RP? 3a ymosu (5) mae pose’asor

Z(k,¢;) = W(k, ¢,) + G[F(i), (i), &) (k), ¢ € R

mym

Wk, c,) := M1 [ X, (k)er], Xo(k):= X,(k)Pg,, ke€Q

GIF (i), vp(i), &) (k) = M7 GLf(4), vp(d), G] (K)]
— y3aeasvhenutl onepamop I'pina AiMItTHOT HEMEPOBOL DPIZHUUEBO-aA2e0PaTUHOT
kpatiosoi 3adavi (1), (2), kpim mozo

Gl (5),vp(9), al(k) := K[Sp(d, vp(5))] (k) +

+Xp(k‘)62;f{d — LK[f()), Vp(j)](-)}-

Ilpuknanm 1. 3natidemo po3s’asox AiHiinol mampuyurotl nepioduunoi sadavi Oas
cuCmemMu Pi3HUYUEEO-aA2EODATUHUL PIGHAHD NEPULO20 TOPAIKY

A(k) Z(k +1) = B(k) Z(k) + Z(k) C(k) + F(k), k € Q (6)
LZ() = Z(0) — Z(3) =0, (7)
% 0 01 010
Ak)==10 0 0 |, Bk):=(0 0 0 ],
1 00 010
KPIM MO020
11

Q
—~
=
S~—
Il
7N
=
o
N~
T
—
NA
S~—
Il
— N
—
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3aaga PO 3HAXOKEHHsT OOMEXKEHUX PO3B’SI3KIiB MaTPUIHOTO PI3HUIIEBO-
anrebpaiunoro piBasinus JIsynoBa (6) IPUBOAUTHCS JI0 3a/a41 PO 3HAXOJZKEHHST
o6MezKeHnX PO3B’SI3KiB JHIHOTO pisHUIEBO-aaredbpaldHoro pisasauus (4), me

001000 110100
000000 010010
qW_| 100000 g _| 011001
000001 [ 000010
000000 000000
000100 000010

Y npoMmy Bunajky cucreMa (4) BUPOJZKEHA, IPH IIbOMY MAaTPHILS

0

o O = O
— o O O
o O oo

0
1
0

\V]
o O O =

— MAaTpHIIsl IIOBHOI'O PAHIY, TOMY JIJjisl PI3HUIEBO-aIrebpaliHoro piBHsHHs (4) Mae
MicCIle BUPO/I2KEHHSI TIEPIIOTO TTOPSIIKY

Pa, (k) #0, Pa, (k) #0,

TOMY IIIyKaHW PO3B’S30K PI3HUIIEBO-areOpaiqHoro piBHsAHHS (4)

2(kep) = Xy (K)ep + K [f<j>, m(jﬂ (K), o € R

3aJI€2KUTD BiJ| JIOBUILHOT 0OMezkeHOT byHKINT; noKIaaeMo i1 HyaboBoio: v (k) := 0.
Ockisnbku BUKOHAHO yMOBY (5), To JiHifiHA MaTpudHa HepiojuyHa 3ajada s
cucremu (6) Ma€e po3B’sI30K

Z(k,er) = Wk, c,) + GIF (i), v, (i), & (k), ¢ € R%;

TYT
2(¢ry +¢ry) O
Z(k,cr) = -1 -1 |, ke,
2(¢ry +¢ry) O
KpiM TOTO

c
¢ 1= S
Cry

3. YMoOBM PO3B’A3HOCTI AJi He (pikcoBanol pyHKIIT v, Y BHIAJIKY
BUPOJ2KEHHs 200 IEPIIOro MOPsAKY p = 1, abo JIpyroro MmopsjKy: p = 2, JiJisi HE
dikcoBaHol 06MeKEHOT BEKTOP-PYHKITIT

vp(k) € RPP
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PO3B’sI3HICTD JIiHIHOT HETEPOBOI KpaoBol 3aJai 71T CHCTEMH JIHIAHNX PISHUIIEBO-
anrebpaluHuX piBHsAHB (4) CyTTEBO 3aj1€KUTh Bij Bubopy miel dbyukiil. TTokaie-
MO

vp(k) := Up(k)y, v €R%;

ryr W, (k) € RPr* — nopimbHa OOMeKeHa MATPHI MOBHOTO panry. OmepaTop
Ipina 3amaai Komri jyist cucreMu JiiHifiHUX pisHUIEBO-a/rebpaidHuX piBHSHB (4)
MIPEJICTABUMO Y BUIJISAI

K[ 1)00)| ) = & [ 10] 09+ 5 [, 0
TyT
p—1
k[ ,0)| 0 = T 5706 = 0P, 00K, 0
=0
[TigcraBisitoan 3arajbHII PO3B’ 30K
z2(k, cp,) = Xp(k) cp,_y + K[f (i), vp(D)](K), cp,_, € RP,
cucTeMH JIHIHHUX pi3HUIEBO-airedpaiyHux piBHAHB (4) B KpailoBy yMOBY
lz(") = @ = MA e RM,

MIPUXOANMO 0 JIHIHHOTO aaredpaldHoro piBHSIHHS
Dpé=a— LK [f(j):| (+), ¢:=col(cp,_,,7) € RPp-1+0
po3B’si3HOrO TOM 1 TLIBKY TOA, Kouu |1, 2, 6]
Pog{a - e 1] 00} =o. ®

Tyt Pps — opronpoexrop: RV — N(Dy). 3a ymosn (8) i Tinbku 3a nef saranbumuit
PO3B’sI30K KpaitoBoi 3a/1a4i jiyist piBHsiHHS (4)

£(6.0) = { %05 [w,)| 09} 2 { o = e )| 0+

+K [f(j)] (k) + {Xp(k);K[\pr(j)} (k)}PDP 5, 6eRer1to

BU3HAYAE 3arajbHUl PO3B’s130K Kpaitosol 3aiadi (1), (2). Takum quHOM, j10BEjIeHA
HACTYIIHA TEOPEMA.

Teopema 1. 3adaua npo 3HATOOHCENHA 0OMENCEHUT PO3E A3KIE NINITH020 MaA-
MPUNHO20 PIBHUYEB0-an2ebpaivno20 pieHanna (1) y eunadky supodsrcerms abo
nepwozo p = 1, abo dpyzozo nopadky: p = 2, Mac Po36°A30%K BU2AA0Y

Z(k> Cppfl) - W(k? Cpp71) + K[F(Z)v Vp(i)](k)a
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sanesrcnutl 610 gircosaroi obmesrcenoi mampuyi nosnozo paney Y, (k) :

| 01000 | 09 = & )| 0 + ¢ )] 0
Tym

W(k7 Cppfl) s M_l [Xp(k) Cppfl] ) Cppfl € Rpp_l’
KPIM MO020

K[F()](k) := M K[f()](k)] -

3adaua npo 3HAT00HCEHHA OOMENHCEHUT PO3E A3KIE NHITHOT MAMPUUHOT DIBHUUEEO-
anzebpaivnoi kpatiosoi 3adaui (1), (2) y eunadky eupodotcerna nopadky p > 1 dan
dircosanoi obmeorceroi mampuyi nosrozo paney W, (k) npu ymosi (8) mae poss’a-

30K

Z(k,cr) =W(k,c) + G[F (i), Vp(i),al(k), ¢ €R

mym
Wk, c,) := M X, (k) er], Xo(k) = X,(k)Pg,, ke€Q

GIF (i), Op(i), &) (k) := MG (5), vp(i), 6] (k)]
— y3azasvhenuti onepamop I pina AinitiHoT HeMeposoi PIHULE60-aA2e0Pai MOl Kpa-
toeot 3adavi (1), (2), xpim moeo

Gf(5),vp(), &l(k) := K[8p(7)](k)+

_l’_

X, (k): K [wﬂ <k>] D} {a - M[f(j)](-)}.

OsnavenHs 1. 3a ymosu Pp; # 0 6ydemo Kaszamu, w0 AHITHG HEMEPOBA KPa-
06a 3a0aya 0AA MAMPUUH020 DiINULEBO-aA2e0PaiN020 pisnanna Jlanynosa (1),
(2) y eunadky supodirncenns nopadky p > 1 npedcmasane Kpumuunull 6unadox, i
HABNAKU: 3G YMOBU

PQ; ?é O, PD; =0

6ydemo Ka3amu, w0 MAMPUYHG PidHULEB0-ar2ebpaivna kpatiosa 3adaua (1), (2)
npusedena 0o HEKPUMUYHO20 SUNGIKY.

Ilpuknaanm 2. 3natidemo po3s’a30x AIMIUHOT mampuyuroi kpatiosol 3adawi Oas
cucmemu PIBHUYUESO-AA2EOPATHHUT PIGHAHD NEPU020 NOPAIKY

A(k)Z(k+1) = B(k) Z(k) + Z(k) C(k) + F(k) 9)

LZ() = M M(ZQ) + Z(2)) = 0, (10)

de ‘Mampuui A(k),B(k),C(k) 1 sexmop-pynruia F(k) nasedeni 6 npuxaadi 1,
Kpim mo2o

0 00 0
010 ], a=| —-21], kefo, 1, 2, 3}.
0 01

100
M:=10 00
0 00 0
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Y mpukmaai 1 BCTAHOBIIEHO, IO st PI3HUIIEBO-areOpaitHoro piBHAHH:A (9)
Mag€ MicIle BUPOJXKEHHsI IIEPIIOro HOPSJIKY, TOMY IIYKAHUN PO3B’SI30K PISHUIIEBO-
asrebpaiaHoro piBHsHHs (9) 3aJ1€KUTh Bij| JOBLILHOT (DYHKIIIT; TOKJIAIEMO

Up(n):=(1 n n?).

OcranHsI MaTPUI IPUBOJANUTH MaTPUUHy KpaiioBy 3amady (9), (10) mo Hekpurn-
THOTO BUMAJIKY: PQT #0, PDT =0; TyT

2 2 2 2 -1 2 2 2 2
@i=10000 O , Di=1 0 0 0 0 0 2
0 000 1 0 0 0O 1
Takum awHOM, 3rigHO Teopemu 1, icHye PO3B’sI30K JIHIAHOT MaTPUIHOI KpaiioBol
sazadi (9), (10) Bursty

Z(k,c;) = W(k,c,) + G[F(i), ¥1(i),a](k), ¢ € R

TyT
(cri +era+crg)  —2(ery —3crg + crs)
W (0, ¢,) —Cry — Cry cry + crs ,
(cri+cra—3crs)  6cry —2(crag + crs3)
dery —4cero+4crs —cry — cry cry +crs
W(1,e¢,) cry + crs —cry — crs ,
—4ecry+4cerg —4derg —cery —cers  crg +cors
—4ery+4erg—4erg+crg +cors —cry — crs
W(2,c¢) —cry — crsy crq +crs ,
4dery —4derg+4crs+crg+crs —cry — crs
derpy —4dcerg+4cers —cory —crs cryq + cry
W(3,¢r) —5cry —crs Scry + crs
—4cri+4cero—4cerg —cry —crs  crg + crs
Ta
0 0
G[F (i), ¥1(2), a](k) = K[F (i), ())](k) = [ -1 -1
0 0

— y3araJjipHeHni orneparop ['pixa JiniitHOT HeTEepOBOI pi3HUIIEBO-AITeOpalIHOl Kpa-
ool 3aa4i (9), (10).

Orpumani pe3ysbraTit aHAJOITIHO |7] MOXKYTh OyTH BUKOPUCTAHI B TEODIT CTifi-
KOCTI JIJIsi CHCTEM DPIi3HUIEBUX PiBHsiHB. [Jisi pO3B’si3aHHs 33129l PO 3HAXOKEH-
Hsl OOME2KEHUX PO3B’A3KiB HeTEPOBOI KPaoBoI 3aati /st MATPUIHOTO PISHUIIEBO-
anrebpalunoro piBastaHs JIsimyHoBa (1), (2) B KpUTHYIHOMY BHIIAQKY TAKOXK MOYKE
6yTu 3acrocoBaHa TexHika perysspusarnii [8, 9, 10].
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Jlinilina HeTepoBa KpaiioBa 3amada JJisi MAaTPUIHOTO
pi3HuIleBo-asiredpaiyHoro piBHsiHHs JIsmmyHOBa
Yyiiko C. M.', JIz106a M. B.2, Kaniniuenxo 51. B.!
L Monbacvruti deporcasruti nedazoziunutl ynieepcumen,
eya. Tenepana Bamioka, 19, m. Caos’ancvk, Joneyvra oba., Yrpaina 84 116
2 Jlonbacvka deporcasha mawurnobydiena axademis,
eyn. Axademiuna, 72, m. Kpamamopcox, Honeuvka oba., Yrpaina 84313

Hocuixennst audepeHiiaabHO-aIredpaidHux KpailoBuX 3aJlad 3alodaTKOBaHe Y Pobo-
tax K. Beitepmrpacca, M. M. Jlysina ta @. P. 'anTmaxepa. CucreMarnaHOMYy BUBYEH-
HIO mudepen iagbHo-aaredpaiaanx KpaitoBux 3agad mnpucssdeni podoru C. Kemmbes-
aa, F0. €. Bospunnesa, B. ®. Hucrsakosa, A. M. Camoistenka, M. O. Ilepecrioka,
B. II. dxosus, O. A. Boituyka, A. Imumanna ta T. Peiica. BuBuenns nudepeHiiaabHo-
aJiredpalyHuX KpalioBUX 3aJ1a4 II0B’si3aHe 3 YKMCJIEHHUMH 3aCTOCYBaHHSIMU TAKUX 3324
y Teopil HeJIHINHUX KOJUBaHb, Y MEXaHiIi, 610J10ril, paaioTexHiri, Teopil KepyBaHHs, Te-
opil crifikocTi pyxy. B Toit ke gac mocmimxkenus nudepeHiiaabHO-aaredOpaiaHnx Kpamio-
BUX 3329 TiCHO TTOB’sA3aHe 3 JOCTIPKEeHHIM KPaloBUX 3a7ad /I PI3HUTIEBUX PiBHSIHD,
zamodaTrkoBanuM y poborax A. A. Mapxkosa, C. H. Bepumrreitna, 1. C. BesukoBuua,
0. O. Tonsdonga, C. JI. CoboseBa, B. C. Psabenbkoro, B. B. lemimosuua, A. Xaja-
nag, [. I. Mapuyxka, O. A. Camapcekoro, 0. O. Murponoascskoro, . I. Maprumioxa,
T. M. Baiiniko, A. M. Cawmoitnenka, O. A. Boituyka ta O. M. Cramxunskoro. ociii-
J2KEHHIO HEJIHIHHUX CHHTYJISPHO 30ypPEeHNX KPaoBUX 3a7ad JJIs PISHUIIEBUX DIBHSHB y
JacTUHHUX pisaungx npucesdeni poboru B. I1. Anocosa, JI. C. ®@panka, II. €. Cobo-
sieBcbkoro, O. JI. CkybaueBcbkoro ta A. Amepasiea. OTKe, aKTyaJbHOK IIPOOJIEMOIO
€ IepeHeceHHsi pe3y/ibrariB, orpuMmanux y crartax C. Kemmbemna, A. M. Cawmoiiien-
ka ta O. A. Boituyka Ha jinifini kpaioBi 3aja4i Jyis pi3HUIEBO-aIreOpaldHUX PIBHSHD,
30KpeMa, 3HAXOXKEHHS HeOOXITHNX Ta JOCTATHIX YMOB ICHYBAHHSI IIYKAHUX PO3B’SI3KiB,
a TaKOXK, KOHCTPYKIIii oneparopa ['pina 3amadi Ko Ta y3aramgsaenoro omeparopa ['pina
JiHifiHOT KpaitoBol 3ajadi Jjs pisnuiieBo-aaredbpaidnoro piBugHus JIgamymnoBa. ¥ cTaTTi
3HAJIEHO YMOBH PO3B’SI3HOCTI, a TAKOXK KOHCTPYKIIIO y3araJibHEHOTro omeparopa I'pi-
Ha 3aza4i Komrl gyis pizHuieBo-anaredbpaiqHoro piBHsiHHsT JIsdmyHoBa. 3HalIEHO yMOBU
PO3B’SI3HOCTI, & TaKOK KOHCTPYKIIIO y3arajJbHEHOro oneparopa ['pina st jiHiitHOT HeTe-
POBOI KpaiioBol 3a/1a4i y BUMAJKY pi3HUIIEBO-arebpaitHoro piBHsHEs JIsamyHoBa. 3ampo-
TIOHOBAHO OPUTIHAIBHY KJIACU(MIKAIII0 KPUTHIHUX 1 HEKPUTUIHUX BUMAIKIB T JIHIAHOT
HETEePOBOI KPaiioBol 3a/1a4i y BUNAJIKY Pi3HHUIEBO-aJredbpalyHoro piBHAHHA JIamyHOBA.
Kmowosi caosa: piznuneBo-anrebpaitni piBHAHHS; KPaHoBi 3a/a4i; MATpUIHE PiBHIHHS
JIamynosa.

Linear Noetherian boundary value problem for a matrix
difference-algebraic Lyapunov equation
S. M. Chuiko!, M. V. Dzyuba?, Ya. V. Kalinichenko!
! Donbas State Pedagogical University, 19, Batiuk General st.,
Slavyansk, Donetsk region, 84 116, Ukraine
2Donbas State Engineering Academy, 72 Academic st.

Kramatorsk, Donbass region, 84 313, Ukraine
The study of differential-algebraic boundary value problems was initiated in the works
of K. Weierstrass, N. N. Luzin and F. R. Gantmacher. Systematic study of differential-
algebraic boundary value problems is devoted to the work of S. Campbell, Yu. E. Boyari-
ntsev, V. F. Chistyakov, A. M. Samoilenko, M. O. Perestyuk, V. P. Yakovets, O. A. Boi-
chuk, A. Ilchmann and T. Reis. The study of the differential-algebraic boundary value
problems is associated with numerous applications of such problems in the theory of
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nonlinear oscillations, in mechanics, biology, radio engineering, theory of control, theory
of motion stability. At the same time, the study of differential algebraic boundary value
problems is closely related to the study of boundary value problems for difference equati-
ons, initiated in A. A. Markov, S. N. Bernstein, Ya. S. Besikovich, A. O. Gelfond,
S. L. Sobolev, V. S. Ryaben’kii, V. B. Demidovich, A. Halanay, G. I. Marchuk,
A. A. Samarskii, Yu. A. Mitropolsky, D. I. Martynyuk, G. M. Vayniko, A. M. Samoilenko,
O. A. Boichuk and O. M. Standzhitsky. Study of nonlinear singularly perturbed boundary
value problems for difference equations in partial differences is devoted to the work of
V. P. Anosov, L. S. Frank, P. E. Sobolevskii, A. L. Skubachevskii and A. Asheraliev.
Consequently, the actual problem is the transfer of the results obtained in the articles by
S. Campbell, A. M. Samoilenko and O. A. Boichuk on linear boundary value problems
for difference-algebraic equations, in particular finding the necessary and sufficient condi-
tions for the existence of the desired solutions, and also the construction of the Green’s
operator of the Cauchy problem and the generalized Green operator of a linear boundary
value problem for a difference-algebraic equation.

Thus, the actual problem is the transfer of the results obtained in the articles
and monographs of S. Campbell, A. M. Samoilenko and O. A. Boichuk on the linear
boundary value problems for the differential-algebraic boundary value problem for a
matrix Lyapunov equation, in particular, finding the necessary and sufficient conditions
of the existence of the desired solutions of the linear differential-algebraic boundary value
problem for a matrix Lyapunov equation.

In this article we found the conditions of the existence and constructive scheme
for finding the solutions of the linear Noetherian differential-algebraic boundary value
problem for a matrix Lyapunov equation. The proposed scheme of the research of the li-
near differential-algebraic boundary value problem for a matrix Lyapunov equation in the
critical case in this article can be transferred to the seminonlinear differential-algebraic
boundary value problem for a matrix Lyapunov equation.

Keywords: differential-algebraic equation; boundary value problem; matrix Lyapunov
equation.

Article history: Received: 1 November 2020; Final form: 18 November 2020;
Accepted: 18 November 2020.
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Regularization of the electrostatics problem for
three spheres and an electrostatic charge

V. A. Rezunenko

V. N. Karazin Kharkiv National University,
4 Svobody sqr., Kharkiv, 61022, Ukraine
rezunenko@karazin.ua, varezunenko@yahoo.com

A numerical-analytical algorithm for investigation of the electrostatic potential
of a sphere with a circular hole and a charge surrounded by ribbon spheres
is constructed. The method of inversion of the integral operator and semi-
inversion of the matrix operator of the Dirichlet problem for the Laplace equati-
on is used. A system of the second kind with a compact operator in space £5 is
obtained. Particular variants of the problem are considered.

Keywords: spheres; hole; electrostatics; linear system of the second kind;
compact.

Pesynenko B. O. Perynsipusaunis 3ama4di eJeKTpPOCTATUKU  JJIsI
TpboxX cdep Ta ejJeKTpocTaTudHoro 3apsigy. [lobymoBanuii uncesbHO-
AHATITUIHUN aJrOPUTM JIOCTIZKEHHS TOTEHITaay chepu 3 KPyroBUM OTBOPOM
i 3apsLy, oToYeHUX CTpidyKOoBUME cdepamu. Bukopucranuii MeTos 0bepHEHHs
IHTErpaJIbHOTO OTIepPaTOpa i HAIIBOOEPHEHHS MATPUIHOTO oniepaTopa 3aaaxdi Jli-
pixJie mtst piBasinast Jlamraca. OTpumano cucteMa JIpyroro poy 3 KOMIAKTHUM
omepaTopoM B mpoctopi 5. PosriisinyTo okpemi BapianTu 3a1adi.

Knaowosi caosa: chepm; OTBIp; eleKTpocTaThKa; JiHIHHA CHCTEMa JIPYTroro po-
J1y; KOMITAKT.

Pesynenko B. A. Perynspusanuss 3aa49¢d  JIEKTPOCTATUKU  JJIst
Tpéx cdep m IJIEKTPOcTaTUYecKoro 3apsifa. lloctpoen dwncieHHO-
AHAJUTUIECKAN AJITOPUTM HCCIEIOBAHUS MOTEHIHMAaIa C@epbl ¢ KPYTrOBBIM
OTBEPCTHEM, OKPY?KEHHOIT JIEHTOUYHBIMU chepaMu. DJIEKTPOCTATUIECKUN 3apsi]
pasMemén Mexky cdepamu. Vcmosb3oBaH MeTo [ 0OpallieHnsl HHTErPAILHOIO
orepaTopa ¢ MOJyOOpAIeHnus MATPUIHOTO OIepaTopoB 3aiaquu Jlupuxe ist
ypasuernus Jlamnaca. [lomydyena cucrema BToporo poma ¢ KOMIAKTHBIM OIIE€Pa-
TopoM B {5. PaccMoTpeHbl YacTHbIE BapUAHTHI 38/Ia4H.

Karouesvie crosa: cdepnl; oTBEPCTHE; STIEKTPOCTATUKA; JIMHENHAS CUCTEMA BTO-
pOro pojia; KOMITAKT.

2010 Mathematics Subject Classification: 65N12; 35A25; 7T8A45.

1. Introduction

Among the problems of electrostatics on classical surfaces, the interest in
problems on a sphere with various geometric and physical properties has not
faded for more than a hundred years. So, at present, the parts of the sphere, made
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up of conductive tapes, can be a model of microcircuit blocks, connecting nodes
and adapters of various wave-guides, electrical appliances, and charge storage
devices. New nanomaterials with complex molecular structures can be models
of thin conductive spherical ribbons [1, 2, 3, 4, 12]. In this work, an algorithm
is constructed for calculating the electrostatic field of a sphere with a circular
hole and an electrostatic charge placed between two closed spheres composed of
conductive ribbons.

The algorithm is based on the application of a variant of the regularizati-
on method for the non-self-adjoint Dirichlet problem for the Laplace equation,
proposed and developed in the works of Kharkiv mathematicians [17, 18, 16, 14,
13]. In this work, a system of linear algebraic equations of the second kind with a
compact matrix operator in the Hilbert space 5 of complex sequences is obtained.

2. Statement of the problem

The task has several parameters. Let’s consider on them in detail. Let the
origin of the Cartesian and spherical coordinate systems be aligned with the center
of the sphere with a circular hole. Let the radius of the sphere » = ry and the
hole in the sphere formed by a plane cut, and the polar cut angle of the sphere is
fy. At the hole, angle 8 varies from 6y to 7. Let another closed sphere of radius
r1 be located inside the sphere with a hole. The third closed sphere of radius r9
encloses the sphere with a hole. In this case, respectively, a1 < agp < ag. Closed
spheres are made up of infinitely thin ribbons. There are infinitely thin partitions
between the ribbons. The partitions lie in planes parallel to the plane XOY. The
polar angles of the partitions are 0 1, K = 1,2,..., N for a sphere of radius r1. The
sphere of radius 7o has other ribbons. The partitions between ribbons have polar
angles 0 ,,, m = 1,2, ..., M. The number of ribbons is limited. All three spheres
are equipped with independent potentials. Let Vj be the potential of the sphere
with a hole, V; ; be the potential of the k -ribbon of the inner sphere, and V3, be
the potential of m-ribbon of the outer sphere. We assume that the electrostatic
charge is located between the outer sphere and the sphere with a hole on the OZ
axis at point by, ag < by < ao. Assume the potential of the charge V3 # 0. Pic. 1
(left) shows a cross section of three spheres by a vertical plane passing through
the OZ axis. In Pic. 1 (right) a three-dimensional model of the spheres is given.

Here we note that this work differs from work [5] by the geometry of the
problem and the presence of an electrostatic charge. The total electrostatic field
must satlsfy Maxwell’s equations and material equations rot E = 0, div D= 00,
D= EE where pg is the density of charges on the surface of the conductors, ¢ is
the dielectric constant of the medium.

By the assumption, the magnetic permeability of the medium p = 0 and the
magnetic field is absent H= 0, the magnetic induction B=0.

Let us take into account the connection between the electrostatic field E and
its scalar potential E = —gradU and proceed to the scalar problem for the
potential U. The total potentials must satisfy the Laplace equation, must be
equal to the given potentials at the spherical boundaries are equal Vy, Vi, Va,
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Pic. 1. Spheres and an electrostatic charge.

respectively. Its partial tangential derivatives must be continuous at the hole in the
open sphere r = ag, 6 € (6p, 7], must satisfy the condition of bounded electrostatic
energy in any limited volume of three-dimensional space. except for the volume,
containing the given electrostatic charge fW lgrad U|?dW < oo, have the requi-
red singularity at the point where the charge is placed, decrease at infinity as
O(r=1), r = oco. It is required to find the electrostatic field of the three spheres
and the charge placed between them. In this statement, the problem is well-posed
— it has a stable unique solution [9, 15].

3. Functional equations

Let us represent the 3-dimensional space by the sum of four spherical domains
G ={r<ai}, Ga={a1 <r <ap}, Gz ={ap <1 < ag}, Gy = {r > az} for
which 0 € [0,7], ¢ € [0,27x]. In the Laplace equation, we separate the spherical
variables and represent the charge potential and the unknown secondary potentials
by Fourier - Legendre power series in the corresponding domains.

() O G VX PR
S s e, @
KT W S T
52} :i{ B < <o }PMCOS@% (4)
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where P,(cosf) are Legendre polynomials of the 1st kind of order zero of integer
degree n of the argument cosf, 0 < 0 < 7.

Note that the method of separation of variables and Fourier-Legendre series
for problems of mathematical physics on a sphere were first applied by Debye
in 1908-1909. Since then, the method has been effectively used for a wide range
of problems, including for problems on sphero-conical and other surfaces [9, 2,
14, 8, 10]. The coefficients of series (1)—(4) are sought in the Hilbert space {2,
ensuring the fulfilment of the condition that the energy integral is finite. Note
that the potential V3 (1) charge is known, and the potentials V; and Vs of the
ribbon spheres are known, and the potential V{; of the sphere with a hole is also
known. First, we construct an algorithm for finding the coefficients of series (3)—
(4) for potentials Us,..,Us. We use the boundary conditions on spherical surfaces
forr =ag, r = a1, r = ag, 0 < 6 < 7. We use the completeness and orthogonality
of the Legendre polynomials P,(cosf) with weight sin€ in Ly(0,7) and change
from the equalities of the Fourier series to the equalities of their coefficients. As
a result, from the boundary conditions, we obtain a system of 3 linear equations
with four sequences of unknowns By, Cy, Dy, E,, n=0,1,2... (2)—(4)

Buar" ™'+ Cua} = V),
Dpa} + Epay" ™t = Vg(i), (5)
Bpag" '+ Cpa = Dpal + R,

where the values VQ(i), Vl(jl), S) are known. To find the coefficients, for example,

E,, we express from (5) the coefficients B,,, C,, D, through E,, n > 0. We
transform respectively, system (5) and calculate the determinant of the new
system. As a result, we get the determinant A,,:

soalb @ R@)

The determinant A,, is nonzero, since by condition as > 0, 0 < a; < ag. The
system has a unique solution. It is solvable, for example, according to Cramer’s
rule. So we get, in particular, the coefficients B,, of the potential Us (3):

1
B, = {V)(~agay) + V37 agat
n
— na’fa;"_lag + Enag‘aa”_la’f + Rgl)a’fag} , (7)

)

where Vl(j% are known, and VQ(iL) = Vl(jl) —H,, Rg) = Rpa(. Functional equations
for finding the coefficients FE,, are obtained from the boundary conditions on a

sphere with a hole at » = ag
Us +Us = V31 + W, 0 <6 <6, (8)

0[Uy + Us] _ O=Vs1 +Us + U3]’ Oy < 6 < . (9)
ar 6T
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Now, in (8)-(9) we replace the potentials by series (3), (4). Then we substitute
the coefficients By, Cy,, D, in the series, particularly, by (5), (6), (7). As a result,
we obtain a paired system of functional equations:

> {Buag™ = u]+ VD + RO} Pa(cosd) = Vo, 0<6< 6o, (10)
n=0

e}

Y @k +1) {Enaa"’l[l — ) - Ln} Pu(cosf) =0, fo<0<m  (11)
k=0
where

) {a% [1 _ <a1>2"“ } Lo <M> { ag [1 ) <al>2”“] } .

" a ! ao o as aytt ao
In (10)—(12) all quantities are infinitesimal MS)), 5510), sg), 6512), n — 00. The series
in (10), (11) belong to L2(0,7). System (10), (11) is prepared for transformati-
on into the system of algebraic equations of the second kind (SLAE-II). The
transformation is based on the method of regularization of paired summator and
integral functional equations, which is close to the method of the Riemann - Hi-
Ibert problem.

4. System of linear algebraic equations of the second kind

The system of functional equations (10), (11) can be transformed into SLAE-II
in several ways.

Let us choose a variant leading to SLAE-IT with the least compact matrix
operator in the norm in ¢ [8, 11].

Note that (10), (11) is a system of the first kind. Despite the fact that it
can be relatively easily transformed into a system of the 11th kind, it is also not
effective for direct application of both analytical and numerical methods. Let us
redesignate in (10), (11)

n

Ep = Yoag ™M= e, T, = V2 + RY (13)

and introduce the smallness parameter

L0, 0
el = "7(0)", eB®) =o(® 1), 0<q<1, n-— oo (14)
1 - gn

We obtain the system of equations
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Z{Yn (1_€g3>) —i—Tn}Pn(cosG) =V, 0<0< 6 (15)
n=0
> (2n+1)[Yy — L] Pu(cost) =0, 6y <6< (16)
n=0

which is convenient for further transformations.

Let us use that the series in (15), (16) belong to the space Lo(0, 7). Substi-
tute the Mehler-Dirichlet integral representation in the series (15) instead of the
Legendre polynomials and change the order of summation and integration. We
obtain a homogeneous Volterra integral equation of the 1st kind

)
/f(ap) (cos ¢ — cos 9)7% dp =0, (17)
0

which has a unique solution f(p) = 0, ¢ € [0,6p). This, instead of (15), we
obtain a functional equation for the complete orthogonal system cos (n + %) ©,
n=0,1,2,...in Ly(0,7):

i {Yn (1 — 5%3)> —{—Tn} cos <n+ ;) p= Vocosg, 0<0 <0,y (18)

n=0

In (16), we replace (2n + 1)P,(cosf) by the difference (P} (cosf) —
P/ _,(cosh))(sinf) and reduce by sinf. Then we integrate the series in (16) term
by term. In this case, the integration constant vanishes, since the polynomials
Pot1(z), Pp—1(x) have the same parity and P,,11(0) — P,—1(0) = 0. Now, instead
of the Legendre polynomials, we substitute another (on the half-interval (6, 7])
integral representation and using the uniform convergence of the integrated series,
we change the order of summation and integration. We obtain a homogeneous
Volterra integral equation of the 1st kind, similar to (17) on the half-interval
(0o, w]. This integral equation has a trivial solution on (6p,n]. The functional

equation (16) is thus transformed into the equation
o0

S ton(ns om0 wepsn

n=0
Let us single out the main part in (18) and, together with (19), prepare a
system of functional equations in trigonometric functions for the semi-inversion:

- 1
ZYncos (n—i— 2) ®
n=0

o0

> (Ymegg)—Tm>cos(m+%)<p—|—Vocos%, 0 < < b,
= " (20)
chos(k—k%)go, O < p <.

k=0
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Let us invert the left-hand side of the Fourier series (20). As a result, we obtain
a system of algebraic equations of the second kind (SLAE-II)

Y, = Z Ym€,(n,?)a£82n - Z Tmoz,(g?n + Voag% + Z LkOéS}w (21)
m=0 m=0 k=0
where LT 1o ' 0
al), == [Sm(n tmt by , sin(n —m) 0] , nFm, (22)
' s n+m+1 n—m
1 [sin(2n + 1)69

0) — — (2227 70 4 g D _g5 40 92

Apn p |: o+ 1 + 0] y  Opm n,m — Opm ( 3)

where 6, ,, is the Cronecer’s symbol. Let us write (21) in the following matrix
form
Y = MY + Z. (24)

Since the matrix operator of system (24) is compact in ¢o and the right column
belongs to 2 and unity is not an eigenvalue of the operator, then system (24) has
a unique solution in fs.

The obtained SLAE-IT (24) has a wider region of effective solvability both in
the parameter » = ag and in the parameter 6y. This is due to the application of
integral equation of the Volterra type [8] on various intervals and new choice of
the small parameters.

Since elements 0@(10,7)% are bounded by the value 26/, then the system is
solvable by the method of successive approximations for 0 < 6y << m. For the
numerical solution of the system, for example, with the selection of the main di-
agonal, it is necessary to re-designate the unknowns to accelerate the convergence
of the solution erl) =Y,/ (n+1), n=0,1,2,3.... We note, in particular, that
the coefficients A,,, Fy,, n =0,1,2,... of the Fourier - Legendre series of potenti-
als Uy, Uy (2) are in explicit form. For this, it is sufficient to use the boundary
conditions at = 71 and at r = ro and take into account that 6 belongs to
the (complete) segment [0,7]. An important particular variant of the problem
statement will be the lack of charge in the area G3. In this case, the final SLAE-II
will also change. So, on the right-hand side of SLAE-II, the quantities T;, and L,
acquire the limiting form: Vg(i) instead of T,, (13), VQ(;L)ES) - ‘/2(’1351(12) instead of
L, (12).

5. Conclusions

An efficient algorithm for calculating the electrostatic field of a complex
structure containing three nested spheres, among which the inner sphere has a
circular hole is constructed. A point charge is placed between the outer sphere
and the open sphere. The algorithm is based on the analytical method of semi-
inversion of the matrix operator of the problem in the space #s.
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Perynspusarnis 3a/1a4i eJIeKTPOCTaTUKU [JIsT TPHOX
cdep Ta eJIEKTPOCTATUYHOTO 3apsaay
Pesynenko B. O.
Xapriscvruti Hayionasvhul ynisepcumem im. B. H. Kapasina

na. Ceobodu, 4, Xapxis, Yrpaina, 61022
IlobynoBanuit YnceIbHO-aHAJITHIHIN AJITOPUTM JIOC/II?KEHHSI IOTEHIALY cdepH 3 Kpy-
TOBUM OTBOPOM, OTOYEHOI 30BHIMIHBOI 1 BHY TPIIITHBOT 3aMKHEHUMY CTPIYKOBUMU C(DEPAMU.
Yucsio crpivok Ha cdepax maosiabHO. CTpiuku Ha cdepax po3ijieH] HEMPOBIIHUME He-
CKIHYEeHHO TOHKUMU IeperopojkamMu. [leperopoku 3Haxo1siThCs B IUIOMUHAX,, TAPAJIEIIb-
HUX ILIOIIHHI 3pi3y cdepu 3 orBopoM. KozkHa cTpiuka Mae CBiif He3ae:KHUI TOTEHITIAT.
Esekrpocrarnyanunii 3apsi1 po3MillieHnii MizK 30BHIITHBOIO ceporo 1 cdheporo 3 0TBOPOM Ha
oci crpykTypu. [loBHI moTeHITia M TOBUHHI 33/I0BOJILHSATH, 30KpeMa, piBHIHb Makcsesia
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3 ypaxyBaHHSM BiJICYTHOCTI MarHiTHHUX IIOJIB, 33/I0BOJIbHATH I'PDAHUYHUM YMOBaM, MaTU
HeoOXiTHy 0COOMBICTD B TOUI pO3MilieHHs 3apsiry. st BUpIlIeHHST TOCTABIEHOTO 3aB-
JIaHHSI CIIOYATKY BUKOPUCTAHI METOJ] YaCTKOBHUX 00JIacTell 1 po3iieHHs 3MIHHUX B chepu-
9HO1 cuctemi koopauHatT. [Ipu mpomy jutst psaaiB @yp’e 3acTocoByeMo crermeHeBi DyHKIIT i
mostiHoMu JlexkaHapa mianx nopsakiB. 3 rpaHUIHUX YMOB, BUKOPUCTOBYIOUN JOMIOMIXKHY
cucreMy 3-X piBHSAHb 3 4-Ma HEBIJOMUME, OTpUMaHa MapHA cucTeMa (PYHKI[IOHAIBHUAX
PiBHSIHB IIEPINOrO POy BimgHOCHO KoedinienTis psiaiB @yp’e. Cucrema HeedeKTUBHA JIJIst
BUPIIlIEHHsI TPSIMUAMHU METOJIaMU. 3aCTOCOBaHI METO 0OepHEHHsI IHTErpaJIbHOIO OITEPATO-
pa Bousibreppa i HaniBobepHeHHST MaTpUIHOrO orrepaTopiB 3asadi Jlipixje mist piBHsIHHS
Jlammaca. Meros 3acHoBaHUi Ha iedx aHAJIITHIHOTO MeTomy 3ajadi Pimama - 'inmnbep-
ta. [Ipu mpomy BukopucTani inTerpasibHi ysBients s noginomis Jlexxamapa. OTpumano
crucTeMa JIHITHIX anredpaidHuX PiBHIHD JPYTOro POay 3 KOMITAKTHUM MAaTPUIHUM OTIe-
paTopoM y rijasbepToBoMy mpocTopi £o. Cucrema epeKTUBHO BUPINIYETHCS YMCEIBHO JIJIsT
JIOBUIBHUX TTapaMeTpiB 3a/1a4i 1 aHAJITUIHO JTd TPAHUIHUX HapaMeTpiB 3aja4di. Posris-
HYTO OKpeMi BapiaHTU 3aBJIAHHS.

Kmowosi carosa: chepu; oTBip; eleKTpoCcTaTUKa; JiHIfIHA CHCTEMa IPYrOrO POIY; KOM-
[AKT.

Regularization of the electrostatics problem for three
spheres and an electrostatic charge
V. A. Rezunenko
V. N. Karazin Kharkiv National University,
4 Svobody sqr., Kharkiv, 61022, Ukraine

A numerical-analytical algorithm for investigation of the potential of a sphere with a
circular hole, surrounded by external and internal closed ribbon spheres, is constructed.
The number of ribbons on the spheres is arbitrary. The ribbons on the spheres are
separated by non-conductive, infinitely thin partitions. The partitions are located in
planes parallel to the shear plane of the sphere with a hole. Each ribbon has its own
independent potential. An electrostatic charge is placed between the outer sphere and
the sphere with a hole on the axis of the structure. The full potential must satisfy, in
particular, Maxwell’s equations, taking into account the absence of magnetic fields, sati-
sfy the boundary conditions, have the required singularity at the point where the charge
is placed. To solve this problem, we first used the method of partial domains and the
method of separating variables in a spherical coordinate system. In this case, for the
Fourier series, we use power functions and Legendre polynomials of integer orders. From
the boundary conditions, using an auxiliary system of 3 equations with 4 unknowns,
a pairwise system of functional equations of the first kind with respect to the coeffici-
ents of the Fourier series is obtained. The system is not effective for solving by direct
methods. The method of inversion of the Volterra integral operator and semi-inversion of
the matrix operators of the Dirichlet problem for the Laplace equation are applied. The
method is based on the ideas of the analytical method of the Riemann - Hilbert problem.
In this case, integral representations for the Legendre polynomials are used. A system
of linear algebraic equations of the second kind with a compact matrix operator in the
Hilbert space £y is obtained. The system is effectively solvable numerically for arbitrary
parameters of the problem and analytically for the limiting parameters of the problem.
Particular variants of the problem are considered.

Keywords: spheres; hole; electrostatics; linear system of the second kind; compact.
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One numerical approach to optimal control
the linear heat conduction processes

I. Sh. Nevliudov!, Yu. V. Romashov'?
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It is proposed the generalized numerical based approaches to optimal control
the heat conduction processes based on solving the especially built ordinary di-
fferential equations. The example of using the proposed approaches is discussed
and it is shown that using these approaches can allow to decrease almost twice
the transient time required for heating-up structures.

Keywords: control; modeling; optimization; methods; heat conduction.

Hesmonos 1. II1., Pomamos 1O. B. O6uncaoBajabHUi Oiaxia momo onru-
MaJIbHOT'O yHpPaBJIiHHS HponecamMu JiHiiiHOT Temyonposignocti. 3amnpo-
IIOHOBAHO OOYUCJIIOBAJBHI ITIXOIHM MO0 ONTUMAJBLHOTO YIIPABJIIHHS ITPOIIE-
caMU TeILIONpPOBiTHOCTI. Po3ragnyTo mpukiaj Ta MOKa3aHO, IO ONTUMIi3allis
YIPABJIIHHS MOYXKe 3MEHITUTY BBIYi Yac, HeOOXITHUN 1jI1 HArPIBAHHS KOHCTPY-
KITiit.

Knaov06i crosa: ypaBiHHs; MOJIETIOBAHHS; ONITUMI3allis; METO/IH; TEILIONPO-
BiJIHICTB.

Hesmonos U. II1., Pomamos Q. B. YucaeHHbI MOaxXod K ONTHMAJIbHO-
My YIIPaBJIEHUIO ITPOIleCCaMM JIMHEHHOI TerionpoBoaHocTu. [Ipeso-
2KEHBI BBIYUCIUTETHHBIE TIOJIXO/IBI JIJIsl OMITUMAJILHOTO YIIPABJIEHUS ITPOIECCaMU
TEIIOTPOBOIHOCTH. PaccMOTpeH mpuMep U MOKA3aHO0, I9TO ONTHUMU3AITIS YIIPAB-
JIEHWSI MOYKET YMEHBIIUTH BJABOE BpeMs, HEOOXOAMMOE JjIs HArpeBa KOHCTPY-
KITUA.

Kmouesnie crosa: ypaBienne; MOICIUPOBAHNE; OIITUMU3AIINS; METO/IbI; TEILI0-
ITPOBOTHOCTH

2010 Mathematics Subject Classification: 49Mxx; 80Axx.

1. Introduction

The optimal control of the heat conduction processes is the in current interest
scientific problem due to its relations with the global challenges of rational usi-
ng the different kinds of power equipments by means the integrating control and
design [1], by means introducing the new types of fuels like the biomass [1, 2|, as
well as by means optimizing the thermal states during the industries processes [3|

© L. Sh. Nevliudov, Yu. V. Romashov, 2020
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and others ways. The current state of the optimal control of power equipments
can be characterized as using the particular approaches for the particular tasks
[1, 2, 3] and as having no the all-accepted engineering approaches like using the
different kinds of governors for automation [4] for example. Considering these ci-
rcumstances, the optimal control of heat conduction processes are having a lot
attentions now [5, 6, 7, 8, 9, 10]. The most of existing research including the cited
above are about different mathematical approaches and results corresponding with
the optimal control. Really, the main difficulties of the optimal control problems
are in general due to necessity of consideration the transients between the di-
fferent states of researched systems which are defined by means the differential
equations usually. As the result of that, considering the optimal control requires
the complicated and often specific mathematical approaches in some cases like
in [11] for example. Thus, the mathematical complications significantly limit the
opportunities of engineering implementing the fundamental results existing in the
fields of of the optimal control. Besides, the most of known approaches are suitable
for the particular problems only and can not be used for engineering applications
usually.

It is clearly understood, the approaches based on the to be suitably
programmed numerical methods allowing to solve the problems using the
computers are the most useful for engineering applications of the optimal control.
Considering this circumstance, the purpose of this research is to develop the
generalized numerical based approaches to optimal control the heat conduction
processes useful for engineering applications. To realize this purpose, we will solve
the follows tasks:

e it will be proposed the generalized mathematical formulation of the problem
about the optimal control for the heat conduction processes represented by the
partial differential equation;

e to solve the problem about the optimal control for the heat conduction
processes it will be developed the numerical approaches based on reducing to the
especially built ordinary differential equations;

e the particular example of using the developed approaches will be considered
to illustrate their application technique.

All these will allow to give the clear representation of the proposed approaches
and the technique of their using to solve the engineering problems about the
optimal control of the heat conduction processes in different industrial systems.

2. The generalized mathematical formulation of the problem

To give the generalized approaches to solve the problem about the optimal
control of the heat conduction processes it is necessary to represent the generali-
zed but not particular mathematical formulation of the considered problem. Let
consider the heat conduction processes in the domain which is imagined as consi-
sting of the points of Euclidean space E3, and let denote as T and v the sets of
the internal and boundary points P € E? of that domain (pic. 1a). We will choose
the arbitrary point O € E?, and we will define each other point P € E? by the
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radius vector r :O—>P (pic. 1a). The point P € E? defined by the radius vector r
will be noted as P(r) (pic. 1a). The temperature 7" can be different in each point
of the considered domain Y Jv and it can be changing during the time ¢ > 0.
Thus, the temperature T' depends both the r position vector both the scalar time
t so it can be represented as T' = T (r, t).

Let the considered domain is having some given temperature field T = T¢y;, (1)
in some given current moment of the time ¢t = .y, but it is necessary to change
this temperature field of the considered domain so the temperature will be havi-
ng the required given field T' = Tieq (r) at the some undefined moment of the
time ti; defining the final of the transients, and it is necessary to find the opti-
mal control providing the required quality of the transients under the existing
restrictions on the temperature field during the transients. Such presented above
formulation represents the most general verbal description of the problem about
the optimal control of changing the temperature field of structures, but further
we will represent the formal mathematical formulation of this problem as it is
possible in general.

We will consider the most general case of the linear heat conduction processes
defining by the different typical kinds of thermal interacting on the considered
domain’s boundary (pic. 1b):

v =vrJvsUva, (1)

where vr is the part of the boundary v having the given temperature as the result
of interacting with the surrounding environment; v, is the part of the boundary v
obtaining the given heat flow from the surrounding environment; v,, is the part of
the boundary v having the given heat transfer with the surrounding environment.

a) b)

Pic. 1. The considered domain (a) and the constituents (b) of its boundary

It will be supposed, that it is exist the time dependent vector u = u(t)
consisted of some parameters and it is named as the control vector or just the
control which can have influencing on the temperature state of the considered
domain according with the well-known heat conduction principles:

B = AT +Q(ru) Y P(x) €t > fey, @)

T(r,tewr) =Teur (r) YV P(r)eq, (3)
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T (r,t) =T, (r,u) Y P(r)€vr,t> ter, (4)
—AVT (r,t) -n=gq,(r,u) V¥ P(r) € vyt > teu, (5)
—AVT (r,t) -n = (T (r,t) — T (r,u)) YV P(r) € va,t > teur, (6)

where ¢ and A are the heat capacity and the thermal conductivity of the material
of the considered domain; V2 is the Laplace operator; @Q is the intensity of the
internal heat sources inside the material of the considered domain; T, is the given
temperature on the part vy of the boundary v; V is the gradient of the scalar
field; n is the unit external normal vector to the boundary v (see pic. 1b); ¢, is
the given heat flow thru the part v, of the boundary v; « is the heat transfer
coefficient thru the part v, of the boundary v and T, is the temperature of the
environment surround the part v, of the boundary wv.

It is necessary to note, the mathematical model (1)-(6) foresees the
temperature state can be changed by means the control vector only, so that
the depending of the temperature on the time is due to only the u = u(t).

Further, it will be required to find the control vector u so that in the some
undefined time moment ¢ = t;, the temperature field in the considered domain
will become to given:

T (r,tey) = Treq(r) VYV P(r) e Y,t>t. (7)

During the times t.,, < t < t;, corresponding to the transients between the
current and required temperature states it is necessary satisfying some limitations.
The nature of such limitations can be different. These limitations can be due to
the strength restrictions considering with the thermal stresses or they can be
due to the finite power of the heating sources providing the control. It is really
impossible to foresee all possible kinds of limitations on the temperature state
and the control, but it is possible to imagine that such limitations are could be
reduces to some condition on the temperature and the control vector which must
be satisfied:

O(T(r,t),u(t))=0 VP(r)eYTv,t>teu, (8)

where © is some function defining the limitations on the temperature state and
the control vector.

The limitations on the temperature state and on the control vector are
especially represented as (8) in this research to simplify the follows expositions
to represent the essence of the proposed numerical approaches for solving the
problem about the optimal control of the heat conduction processes. Really, in
general case it is possible to have such limitations represented by not the equality,
but by the inequality, it is possible to have several limitations like (8) and other
difficulties. At the same time, the most simple view (8) of these limitations is
fully sufficient to represent the general idea of the numerical approaches will be
proposed further, and different difficulties like due to inequalities for example or
others can be reduced separately.
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It is obviously that the required temperature field (7) can be achieved by a
lot of different controls u satisfying the limitation (8), but it is necessary to find
the optimal control providing the required qualities of the transients from the
current state (3) to the required state (7). It is impossible to foresee all kinds of
requirements to the transients and to formulate the most general form of their
mathematical representing. The most used requirement is the minimum time of
the transients, but to have understood about the power of the generality of the
proposed approaches it is necessary to give some general ways to formulate these
requirements to the transients. First of all, to formulate the requirements to the
transients it is necessary to consider some set vy of the points € E? defining some
part of the considered domain Y |Jv; to have the definiteness we will consider
further vy € v. Next, it is necessary to consider some function of the time:

Yr(t)= [ U (T)dvy Vit> teur, (9)

where ¥ is some given function is needed to define the requirements to the transi-
ents.

The sense of the function (9) is predefined by the choosing the ¥ function. For
example, the function (9)will represent the power of heat flow thru the surface
vy in the case of ¥ (T) = —AVT. Finally, that relation (9) will help to formulate
the requirement to the transient as follows:

ttr
o —min:p= [ &(Yp,u)dt, (10)
tCUI’
where ® is some given function is also needed to define the requirements to the
transients.

Using the relations (9), (10) to define the requirements to the qualities of the
transients will allow to consider the different kinds of such requirements includi-
ng the minimal time of the transients, the minimal supplied power to realize
the necessary given transients and others. It will not be discussed in this research
because we will try to propose the generalized numerical approaches for solving the
problem about the optimal control of the heat conduction processes independently
to the kind of the particular formulations. Thus, we can give the generalized
formulation of the problem about the optimal control of the heat conduction
processes: the problem about the optimal control of the heat conduction processes
is in finding the control vector u allowing to transform the current temperature
state (3) to the required temperature state (7) so that it control vector provide the
qualities (9), (10) of the transients under the limitations (8) on the temperature
state (1)-(6). It is clearly understood, the initial and boundary conditions (3)-(6)
must satisfy some requirements providing the existence of the unique solution of
the initial-boundary-value problem (1)-(6). The required temperature field (7) also
cannot be arbitrary because this temperature field must be permissible for realizi-
ng. At the same time, all these restrictions are not discussed above. Nevertheless,
the presented above formulation (1)-(6) includes all necessaryitems to represent
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the principal idea of the numerical approaches will be considered next. Some of
the restrictions necessary to provide numerical solving of the problem will be
specified next if necessary.

3. The generalized approach for numerical solving the problem

The engineering applications of the optimal control the heat conduction
processes require the numerical approaches because the analytical approaches are
possible in limited numbers of the particular cases and are not applicable for all
possible cases. Next, we will consider the principal ideas of some approach which
will allow in principle to solve numerically the problem about the optimal control
for the heat conduction processes. It is understood that each particular realization
of these principal ideas can include some specific difficulties will be different for
each considered particular problem and these difficulties cannot be foresaw under
considering the general formulation of the problem. Thus further, we will consi-
der actually the principal ideas of the numerical approach taking into account the
difficulties of solving the problem about the optimal control principally inherent
from the considered heat conduction processes, but we will not take into account
the possible particular features.

To propose the numerical approach it is necessary to understand that the most
principal difficulties of the optimal control of heat conduction processes are due
to the partial differential equation representing the model of these processes by
means the initial-boundary-value problem (1)-(6). Considering this circumstance,
first principal idea of the proposed approach to numerical solving is to reduce
the partial differential equation (2) to the ordinary differential equations. To do
this, it is possible to use the different known approaches, but we will use the well-
known method of grids. Following this method, we will introduce the grid as the
set of predefined n nodal points of the considered domain defined by the following
radius vectors:

rp e YUv, k=1,2,..,n, (11)

where ry, is the radius vector defining the nodal point with the number k.
To having the grid (11), we can introduce the vector of the nodal values of
the temperature:

xo (£) = (T3 (£) Ty (1) ... T (1)), (12)

where T}, (t) = T (ry,t) ,k =1,2,...,n and T is the transpose symbol.

Using the vector (12), and the well-known finite differences technique we can
reduce the partial differential equation (2) with the boundary conditions (4)-(6)
to the ordinary differential equations with the initial conditions occurring from
the initial condition (3) as follows:

dzlcitn = Anxp +Bru, xp (tcur) = Xn(cur)> (13)

where A, and B, is the matrices built by using the finite differences for the
initial-boundary-value problem (1)-(6) and the grid (11) and the nodal values
(12); Xp(eur) = (Teur (11) Teur (12) oo Teur ()"
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The discrete representation (13) of the temperature state (1)-(6) is due to the
significant assumption about linearly of the initial-boundary-value problem (1)-
(6). Thus, we have the ordinary differential equations with the initial conditions
(13) representing the discretisation of the initial-boundary-value problem (1)-(6).
Due to this circumstance, we can solve numerically the Cauchy problem (13) by
using any known numerical method, like the Runge-Kutta methods, for all given
control vectors u. At the same time, the problem about the optimal control is in
finding the optimal control which will allow transforming the current state (3) to
the required state (7) under the limitation (8) and providing the optimal transient
(9), (10). Thus, the grid (11) and the nodal values (12) will allow to reduce the
condition (7), the limitation (8) and the requirement (9), (10) to the transients
to the following views respectively

Xn (ttr) = Xn(req)> (14)
©On (Xn (t) yu (t)) =0 Vt2>teu, (15)
Yp — min : @, = tit; d,, (x,,,u) dt, (16)

where Xp(req) = (Treq (T1) Treq (r2) - Treq (ro))’; ©, and ®, are the discrete
representations of the relation (8) and (9), (10) respectively.

The problem about the optimal control of the heat conduction processes is
reduced to the finding the optimal control u which will allow transforming the
current state defined by the initial condition (13) to the required state (14) under
the limitation (15) and providing the optimal transient (16) for the temperature
state defined by the Cauchy problem (13). We must finding the control vector
u as the function of the time ¢, but the most general approach to find some
unknown function is to formulate the ordinary differential equation and the initial
conditions so that this unknown function will be the solution of the corresponding
Cauchy problem because it is possible to use the well-known numerical methods
for to solve that problem. Thus, second principal idea of the proposed numerical
approach to solving the problem about the optimal control of the heat conduction
processes is in defining the unknown control vector as the solution of the follows

Cauchy problem:
du

S =p(tu), u(tew) = Ueur, (17)
where p is some function defining the permissible velocity of the control vector
and ucyy is the permissible control vector at the time moment ¢ = tcy,.

It is naturally, finding the control vector by solving the Cauchy problem (17)
requires having the permissible velocity p and the permissible initial ucy of the
control vector u. To find the initial permissible control vector U, we will use the
condition (15) which will be reduced using the initial conditions from the Cauchy
problems (13) and (17) as follows:

On (Xn(cur)7 ucur) = 0. (18)
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The relation (18) will allow building the equations necessary to find the initial
permissible control vector ucyy, but view of these equations and technique of their
building is significantly defined by the view of the relation (18) predefined by the
constraint (15). It is seems, to find the initial permissible control vector uc,, the
relation (18) in general can be resolved approximately only and the least squares
method can be used for it because it will allow to have the necessary number
of the equations. In some particular cases the relation (18) will give directly the
necessary equations necessary to find exactly the control vector uc,, as will be
shown further on the considered example. To find the permissible velocity p of
the control vector we will use the the condition (15), but it had been especially
transformed as follows:

00, dxy | 0Oy du _
oot GG =0 Vi>teu (19)

Taking into account the relation (19), we can suppose that

9 =T (xp,u), %00 = Wl (x5, 1), (20)

where v,, and w,, are some vector functions.

The introduced vector functions (20) allow having the suitable representing
the relation (19) and it will help formulating the condition to find the permissible
velocity of the control vector:

n

vl (xp, 1) dzl‘—t” +wl (x, ) p=0 Vt>teu. (21)

The reduced relation (21) allows to build all necessary equations to approximately
find the permissible velocity p of the control vector by using the least squares
method in a general case. Really, the least squares method will lead to the linear
algebraical equations:

(vn-vg)-%‘—t”—i—(wn-wg)-pzo YVt > teur (22)

Solution of the linear algebraical equations (22) can be represented by using the
inverse matrix as follows:

P:—(Wn'Wg)_l'(Vn'Vg)'% Vit>teur- (23)

It is clearly understood that the permissible velocity p of the control vector from
the differential equation (17) is defined by the relation (23) considering with the
Cauchy problem (13), which will allow defining the vectors x, and dl’i‘—t" for the
given time ¢t and the given control vector u.

The control vector defined by the Cauchy problem (17) will allow infinite
changing the temperature state not violating the limitation (15), if the velocity of
this control vector will be defined by the relations (23) with the Cauchy problem
(13) and the initial control vector will be defined by the relation (18). At the
same time, it is not required to change the temperature state infinitely, but it is
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required to change the temperature state finitely to the given state defined by the
relation (14). Thus, in some time moment ¢ = tgit is necessary to change the
velocity of the control vector and this changing can be imagined as switching. To
find the switching time ¢y, it is necessary first of all to define the required control
vector and to do this we will use the mathematical model (13) of the temperature
state as well as the required temperature state defined by the condition (14). As
the result of all this, we can write the condition for defining the required control
vector providing the required temperature state (14) as follows:

Anxn(req) + B"ureq = O? (24)

where u,¢q is the required control vector providing the required temperature state
(14).

The permissible kind of the required temperature field T;eq used in the condi-
tion (7) was not defined above in the general formulation (1)-(10) of the problem
about the optimal control of the heat conduction processes. At the same time,
it is obviously, that the required temperature field cannot be arbitrary and must
providing the unique solution of the considered problem including. Let assume,
that the required temperature field is such so it is existed the unique control vector
Upeq Will be satisfied the relation (24). This assumption can be imagined as the
principal possibility of providing the required temperature field (7) represented
thru its discretisation (14) by means the control vector u. Let define the time
moment ¢ = gy so to satisfy the follows condition:

vg (xp, 1) d;‘—f + W;‘f (Xp, 1) (Upeq — 1) 6(t — tsw) =0, (25)
where x,,, u, ‘%‘—t” are all defined at the time moment ¢t = tg w4 ¢ is the Dirac
function.

Using the relations (24), (25) we can formulate the third principal idea of the
proposed approach to solve the problem about the optimal control of the heat
conduction processes. This third principal idea is to satisfy the limitation (15)
and the condition (14) defining the required temperature state by formulating
the Cauchy problem to find the control vector as follows (pic. 2):

tu), four <t <t
du — { p( ) cur sw 5 u(tcur) - ucur- (26)

dt (Upeq — W) 6(t — tsw), > taw

The switching time tgy, involved to the differential equation (26) is defined
thru the relation (25) of course, and it is naturally to suppose that this relation
(25) will allow finding the set of the time moments ts, which are the set of the
discrete or continuous values in some interval:

tmin < ¢ < gmax (27)
where ™% and tM%% are some minimum and maximum values of the switching
times tqy satisfying the relation (25).
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Z,—l; = (ureq —u (tsw ))6 (t ~lw )

v

t t

cur SW tr t

Pic. 2. Defining the velocity of the control vector

Solving numerically the Cauchy problem (26), we can choose the switching
time tsy arbitrary from the interval (27) and we will can estimating the transient
time ty, corresponded this choice. Thus, by numerical solving the Cauchy problem
(26) for the different chosen switching times tgy, we can build the function:

tr = tor (tsw) - (28)

This function (28) with the requirement (16) to the transients will allow to have
the follows function:

Pn = Pn (tsw) . (29)

Fourth principal idea of the proposed numerical approach to solve the problem
about the optimal control the heat conduction processes is to minimize the
approximately built function (29) inside the interval (27).

4. Example about the optimal control of the heat conduction

The discussed above generalized numerical approach to solve the problem
about the optimal control the heat conduction processes is included only the pri-
ncipals ideas, but somethings are not fully presented, because it can be specified
only considering to the each particular problem. Really, the approaches for defin-
ing of the permissible velocity using the relation (21), the required control vector
using the relation (24) as well as the switching time from the relation (26) is not
clear from the presented above principle ideas. Such approaches can have the di-
fferences for each particular case, but the proposed general scheme based on the
discussed above the principal ideas is same for the different kinds of the problems
about the optimal control the heat conduction processes. The follows example
will show the possible application of the discussed above principal ideas as well
as influencing the particulars on the solving process.

As example, we will consider the problem about the optimal control of heating-
up the planar wall (pic. 3a) representing the typical structures of the thermal and
nuclear power plants. We will assume that the heat flow is existed only along the
direction of the plane wall thickness, the initial temperature field of the planar
wall is uniform, the temperature state of the planar wall is controlled by the
temperature of one edge of this wall, but second edge has the thermal isolation



Bicuuk XHY, Cep. «Maremaruka, IpuK/IaJHa MaTeMaTUKa i MexaHikay, Tom 92 (2020) 35

(pic. 3a). Corresponding these assumptions, the temperature field 7' = T (z,t) is
depended on the z coordinate along the thickness of the plane wall (pic. 3a) and
on the time ¢ > 0, and the generalized mathematical formulation of the problem
(1)-(6) will be reduced to the follows [12]:

T:0<z2<l, vp:2=0, vg:z2=1, vy =0, (30)
I — 00T Yo<z<l, t>0, (31)
T(2,0) = Tow, Y0 <z <1, (32)
T(zt)=u(t), =z=0, Vt>0, (33)

T (z,t)=0, z=1, V t>0, (34)

where [ is the thickness of the planar wall (pic. 3a); a is the temperature conducti-
on coefficient of the structural material of the planar wall; Ty, = const is the given
current temperature at the time moment ¢ = 0; u is the control.

e T
[ T T —
: : : Ly 1
[} ' '
[} ' ' n T2
] ] 1
' 1q.|., =0 . )
7], () . I T
1 n n+
1 0- 1 z : : . ! n n
. ! ' 1 ! | 1 1
! . ' b T
1 1 | 1
[ f ' 0
BRI ; 2004 4 Zka Zk Zpy w1 Zn Zant Z
] | !
a) b)

Pic. 3. The planar wall (a) and discretisation of their temperature state (b)

Further, we will find the control u so that in the some undefined time moment
t = ti; the temperature field of the considered planar wall will become to given:

T (2,te) = Treq V0 <z <It>ty, (35)

where Treq = const is the given required temperature so that Treq > Ttur-

During the times 0 < t < ¢y, corresponding to the transients between the
current and required temperature states it is necessary satisfying the strength
restriction which can be represented for the planar wall as follows:

u(t)-T 8 <3 vixo, (36)

where [o], E and [ are the the given permissible stress, the Young’s modulus
and the temperature expansion coefficient of the structural material of the planar
wall.
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The nature of the strength restriction (36) is not for discussing in this research,
but it is necessary to note that this restriction (36) represents limiting of the
temperature stresses on the planar wall with the fixed edges z = 0 and z = [
under the temperature field with the linear distribution along the thickness.

The requirement (9), (10) on the transients will be reduced in this example to
one of interesting particular cases corresponding to the high speed performance
problem:

tyy — min. (37)

Thus, we have the enough correspondence between the generalized formulation
(1)-(10) and the considered particular example (30)-(37).

Following the proposed approach, we will introduce the grid with n nodes
inside the interval 0 < z < [ as show on pic. 3b; this grid will have the n+ 2 nodes
with the coordinates which will allow introducing the temperature nodes values:

zk =k Az, Ty(t)=T(2,t), k=0,1,2,....n,n+1, (38)

where zj is the coordinate of the grid node and T} is the nodal value of the
temperature all corresponded with the grid node number k; Az = n%rl is the step
of the grid.

We will use the follows well-known formulas for approximate differentiating:

Ty, _ T 12T +Thyr 0Ty _ 3T —4Tp 14Tk 2 (39)
022 Az2 > 0z T 2Az :

The boundary condition (33) and second formula (39) with the boundary condi-

tion (34) allows to write:

To=u, Thy1= %Tn - %Tn—l- (40)

First formula (39) can be used for the "internal"nodes k = 1,2, ..., n only, but
and formula (17) is used to exclude the temperature 7},41 in the equation for the
k = n node. As the result, we will obtain the discrete approximation of the heat
conduction problem (30)-(34) in the form (13) in which we will have [12]

X (t) = (Ty (t) To(t) ... T ()" ,u= (u), (41)
-2 1 0 0 O 0 O 0 0
1 -2 1 0 O 0 O 0 0
0 1 -2 1 O 0 O 0 0
0 1 -2 1 ... 0 O 0 0
A":ALZQ : : : : o : : : : ’ (42)
0 0 0 O 1 -2 1 0
0 0 0 O 0o 1 =2 1
0 0 0 0 0 0 0 2/3 —2/3
B,=+5 (10000 ...0000)", (43)
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T
Xn(cur) = ( Tew Tew - Tew ) . (44)

Thus, we have the discrete approximation (38)-(44) of the considered heat
conduction process (30)-(34) and this discrete approximation (38)-(44) is the
similar to the general representation was discussed previously in the proposed
approach. Using the discrete approximation (38)-(44) of the considered heat
conduction process, we can reduce the conditions (35), (36) regarding the general
approach as follows:

Xnweq) = ( Trea Treq -+ Treq ) (45)
u(t) — (3Tu®) = $Ta ()| < V>0, (46)

It seems, the condition (46) is not same kinds than the considered above relati-
on (18), but we show that the condition (46) will be reduced to the view
(18). Really, from the physical sense of the considered particular problem we
have u(t) > (37T,(t) — 2T,—1(t)). Besides, corresponding to the high speed
performance problem (37), we can to reduce the inequality in the relation (46) to
the equality. As the results of all these, we can reducing the relation (46) to the
follows view:
u(t) = (3T, (1) — 3T (t) =32 w0 (47)
The condition (47) is the same kind that the condition (18). Defining the required
control Ueq is significantly simpler in this considering example comparing the
general case (24):
Ureq = Treq- (48)

Using the condition (47) with the relation (48), and we can beginning to build the
resolving Cauchy problem generally represented above as (26). In this consideri-
ng example, the resolving Cauchy problem generally represented as (26) will be
reduced to one ordinary first order differential equation with the initial condition:

w, O, 0 <t <ty 2o
% = { _;L/ (Zt(tsw) _ Ureq) e’Y(tsw*t)7 b tsw , U (0) = E[iﬁ] + Tcur7 (49)
wherewl = (0 0 ... 0 —1/3 4/3);y = 10 is some numerical parameter used
for the exponential approximating of the Dirac function.

The Cauchy problem (49) in this considered example is principally similar to
the Cauchy problem (26) in the general case. At the same time, it is necessary to
define the switching time ¢ = tg,, in the Cauchy problem (49). To do this, we will
use the analogue of the relation (25) which in this particular example can having
the follows view:

T (2m, tsw) = Treqs (50)

where m is the integer number can be chosen as m =0,1,2,...,n,n + 1.
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The correspondence between the particular relation (50) ant its general
representation (25) is really not clear at once, but it is can be understood that the
relation (50) will satisfy the general formulated relation like (50) form the physi-
cal meaning of the considered problem and it will be shown on the computational
results. In any case, we can use the any of the relation (50) corresponding to any
value m = 0,1,2,...,n,n + 1 and to have the numerical solution of the Cauchy
problem defined thru the relations (13), (41)-(44), (49), (50). As result of havi-
ng such numerical solutions, we can find the transient time t;, for any values
m=20,1,2,...n,n+ 1:

tiy =t (m), m=0,1,2,..n,n+ 1. (51)

Thus, to solve the problem about the optimal control in this particular case of the
high speed performance problem (37) it is necessary to minimize the numerically
built function (51).

Further, we will consider some results of computer simulations for the follows
input data:

a=15-10"%m/s,1 = 0,02 m, Tey = 290 K, Tyeq = 790 K,

B=10"°1/K, E = 195 GPa, [0] = 160 MPa. (52)

To make the computer simulations we will use the well-known and widely
used 4 order Runge-Kutta method. All further shown and discussed results are
corresponded to the count n internal grid nodes (see pic. 3b) and to the fixed time
integrating step At which are defined as follows:

n =31, At=0,01s. (53)

Some results of computer simulations using the proposed numerical approach are
presented on the pic. 4. The fastest heating up of the planar wall is provided for
the optimal control u corresponding to the value m = 18 as shown on the pic.
4a. We can see (pic. 4a) that the minimal value ¢, corresponding to the optimal
control u with the value m = 18 is approximately twice smaller than the worse
results, corresponded to the controls with the values m = 0 and m = 32, and this
circumstance illustrates the possible effect of optimization the control for industri-
es applications. The differences between the optimal control u corresponded to the
value m = 18 and the worse controls u with the values m = 0 and m = 32 can
be imagined from the pic. 4b. We can see that the control u corresponding to the
value m = 0 is worse due to premature stopping of increasing the temperature
on the edge z = 0, but the control u corresponding to the value m = 32 is worse
due to latecomer stopping of increasing the temperature on the edge z = 0; the
optimality of the control u corresponded to the value m = 18 is due to choosing
the optimal moment of stopping of increasing the temperature on the edge z = 0.
It is obviously, the optimization result is significantly depended on the value n of
the grid’s nodes, but the values (53) are seemed as sufficient in this research to
show the technique of using the proposed generalized approaches.
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5. Conclusions

This research allow to represent and to generalize the results obtained during
last three years, including the previous published results [12].

e It was proposed the generalized mathematical formulation of the problem
about the optimal control for the heat conduction processes represented by the
partial differential equation. At the same time, the proposed formulation not
includes the necessary clarifications about the conditions which must be satisfied
by the current and the required temperature fields, because it was difficult to
imagine the possible origin of such conditions. Nevertheless, during the further
generalized solving the formulated problem, it was established that the current
and required temperature fields must be agreed with the mathematical model of
the heat conduction processes so that to have possibilities to provide uniquely
these temperature fields by means the control vector. It is necessary to carefully
research this further.

e To solve the problem about the optimal control for the heat conduction
processes it was developed the numerical approaches based on reducing to the
especially built ordinary differential equations and minimization problem. This
reducing is based on discretisation the heat conduction problem and on defin-
ing the unknown control vector as the numerical solution of the especially built
Cauchy problem. To satisfy all limitations it is proposed to build the permissi-
ble velocity of the unknown control vector considering with the requirements of
necessary switching in some moments of the time. The proposed approach includes
some particulars which cannot be discussed for the generalized formulations and
must be resolved for each particular case. Considering these circumstances, it is
necessary to clarify further the proposed numerical approach to provide the most
universal satisfying the current and required temperature fields as well as the
restrictions on the transients.
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e The particular example of using the developed approaches will be consi-
dered to illustrate the application technique. It was shown that the proposed
generalized mathematical formulation is fully corresponded with the considered
particular example. It seems that uniform temperature fields used to define the
current and required states allow having the possibilities in providing uniquely
these temperature fields by means the control vector in most particular cases.
It is shown that the resolving Cauchy problem can be built and the switching
time can be found in the depending on the grid node choosing in this consi-
dered example. The minimization of the optimum defining parameter was reduce
to finding the minimum element of the array built by numerical integrating the
resolving Cauchy problems corresponded to the different possible switching times
of the control. It was shown that the transient time can be decrease almost twice
due to optimizing the control in the particular example at least.

All these results will allow to give the clear representation of the proposed
approaches and the technique of their using to solve the engineering problems
about the optimal control of the heat conduction processes in different industrial
systems.
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pO3’CHEHD IIOJI0 YMOB, SIKUM MOBUHHI BiOBiZaTH MOTOYHI Ta HeOOXiaHi TeMmreparyp-
Hi moJisi. AJjie, B mporieci y3araJbHEHOIO PO3B’si3yBaHHsI cOPMYJIBOBAHOI 3a/1a4i, BCTa-
HOBJIEHO, IO IIOTOYHE Ta HeOOXi/IHe TeMIlepaTypHi I0Jis MOBUHHI OyTHU y3rOIzKEeHUMU i3
MaTEeMATHIHOO MOJIEJIIIO TEILIONPOBIIHOCTI TAKAM YMHOM, IT00 MATH MOXKJIMBOCTI OJTHO-
3HAYHO 3a0€3MEYUTH Il TEeMIIEPATYPHI OJIs 38 JTOTOMOTOI0 HAJIE?KHOTO BUOOPY BEKTODY
yrupasiiuus. s po3s’sa3yBanHs chOPMYIbOBAHOI 3a/adi PO ONTUMAJIbHE YIIPaBIiH-
HeI TPOTIECAMHE TeILJIONPOBIIHOCTI PO3POOIEHO OOUNCTIOBAIBHI ITi/IX0/IM, IO 3aCHOBAaHI Ha
3BeJIEHHI JI0 CHeIiajbHO MOOYIOBAHUX 3BUYAHUX MuepeHIiaJbHIX PIBHSIHb Ta 3a1a4i
mimimizarnii. Ile 3BegeHHsT 3acHOBaHe Ha, AUCKPETH3AIil MPOOJEeMH TEILIOMPOBIIHOCTI 13
3aCTOCYBaHHAM METOJY CITOK Ta Ha BU3HAYEHHI HEBIIOMOTO BEKTOpA YIPABJIHHS IJIs-
XOM OOYHCIIOBAJIBLHOIO PO3B’I3yBAaHHS CIEIiaJbHO MOOYI0BAHOI M IHOTo 3amadi Ko-
. JIj1s1 3a/10BOJIEHHS BCiX MOTPIOHUX 0OMEXKeHb MTPOTIOHYETHCS TTOOYLYBATH JOIMYCTUMY
MIBUJKICTH HEBIJIOMOTIO BEKTOPA YIIPABJIHHS 3 ypaXyBaHHSIM HEOOXiTHOCTI MepeMUKAHHS
VIIPaBJIHHS B JlesKi MOMeHTH dacy. [[pukia BUKOpUCTaHHST 3aITPOTIOHOBAHUX y3araJibHe-
HUX TJIXOJIIB PO3IVISHYTO JIJIA 1TIOCTPAIlil TeXHIKN IXHBOro 3acTocyBanus. [lokazano, mo
3aIIPOIIOHOBAHA y3arajbHeHa MaTEMATHIHA [TOCTAHOBKA IMOBHICTIO BiIIOBiae pO3TJIsHY-
TOMY HPHUKJIAILY. Y IIbOMY PO3IJIAHYTOMY IIPUKJIAJl MOXKHA HOOYIYBATH PO3B’SI3yBAJILHY
3amaqy Korri, a 9ac mepeMukaHHs MOXKHA 3HAWTHU Y 3aJ€2KHOCTI BiJT BUOOPY By3J1a CiTKU.
Ilokazano, MO0 B pO3IVISHYTOMY NPHUKJI] HNEPEXiJHUN YaCc MOYKE 3MEHITYyBATHUCSA Maii-
JKe BJIBiYl 3a paxXyHOK ONTHMi3allil ympaB/iHHA. Yci Il pe3ysibTaTH J03BOJIAIOTEH JiTKO
VSBUTH 3AIIPOIOHOBAHI MiXOAM Ta TEXHIKY IXHBOIO BUKOPHUCTAHHS JIJIsi PO3B’si3yBaHHS
IHXKEeHEPHUX 33124 T0J/I0 ONTUMAJIBHOTO YIIPABJIHHS MPOIECAMH TEIJIONPOBIHOCTI B Pi-
3HUAX IIPOMHUCJIOBUX CHCTEMAX.
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It is proposed the generalized mathematical formulation of the problem about the optimal
control for the heat conduction processes representing by the partial differential equation.
The proposed formulation not includes the necessary clarifications about the conditions
which must be satisfied by the current and required temperature fields. But, during the
generalized solving of the formulated problem, it is established that the current and
required temperature fields must be agreed with the mathematical model of the heat
conduction so that to have possibilities to provide uniquely these temperature fields by
means the control vector. To solve the problem about the optimal control for the heat
conduction processes it is developed the numerical approaches based on reducing to the
especially built ordinary differential equations and minimization problem. This reducing
is based on discretisation the heat conduction by using the grid method and on defining
the unknown control vector as the numerical solution of the especially built Cauchy
problem. To satisfy the all limitations it is proposed to build the permissible velocity of
the unknown control vector considering with the requirements of necessary switching in
some moments of the time. The particular example of using the proposed generalized
approaches is considered to illustrate their application technique. It is shown that the
proposed generalized mathematical formulation is fully corresponded with the considered
particular example. In this considered particular example, the resolving Cauchy problem
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can be built and the switching time can be found in the depending on the grid node
choosing. It is shown that the transient time can be decrease almost twice due to optimi-
zing the control in the particular example at least. All these results will allow giving the
clear representation of the proposed approaches and the technique of their using to solve
the engineering problems about the optimal control of the heat conduction processes in
different industrial systems.

Keywords: control; modeling; optimization; methods; heat conduction.
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A study of a quasilinear model of the particles of a
suspension that are aggregated and settled in an
inhomogeneous field
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A quasilinear system of three differential equations of hyperbolic type, whi-
ch describes the settling of aggregating particles of a suspension placed in a
thin long tube in a field of external forces inhomogeneous along the tube, is
studied. The system of equations for mass and volume concentrations and the
average size of aggregates in a one-dimensional formulation allows disconti-
nuous solutions. The characteristics of the system correspond to the surfaces
of discontinuities, of which the outer one describes the subsidence rate, and
the inner one can have a different structure from a simple concentration jump
to a jump accompanied by a rarefaction wave and a fan of characteristics at
the moving boundary. A detailed study of the conditions for the existence of
different types of solutions is carried out. The application of the results for
different applied problems is discussed.

Key words: differential equations; hyperbolic systems; characteristics; sedi-
mentation; aggregation.

Kisinosa H. M., Ilocnaecekuit C. O., Bapanens B. O. HocaimkeHnHss KBa-
3iiHiltHOT MoOmesi ocimaHHSA YacCTUHOK CycCIieH3ii, 10 arperymoTb, B
HeoHOpigHOMY moJIi cuit. JlocaimKkyerbes KBa3niniitna CucTeMa TPhOX i~
depeHriaabHIX PIBHIHD TiTepOOJITHOTO TUITY, KA OMUCYE OCITaHHSA TaCTUHOK
cycriensii, mo arperyiorb. Cycnensis momiieHa B TOHKY JOBI'Y TPyOKy B HeO-
JIHOPIIHOMY y3/10B2K TpPyOKM 10J1i 30BHIMHIX cmii. Cucrema piBHSHB JjIsl Ma-
CcOBUX 1 00’€MHUX KOHIIEHTPAIIil i CepeIHBOIO PO3MIPY arperaTiB B OJHOMIPHOL
TIOCTAHOBIT JOITYCKAE PO3PUBHI PO3B’SI3KN. XapPaKTEePUCTUKU CUCTEMH BiIITOBII-
aloTh ITIOBEPXHSIM PO3PUBIB KOHIIEHTPAIII arperaTiB, 3 SKUX 30BHINIHS TOBEPX-
He BU3HAYAE IIBUJIKICTH OCIIAHHS, KA MOXKE BUMIPIOBATUCSH B €KCIEPHIMEHTAX,
a BHYTPIIIIHSI MOYXKe MaTHU Pi3HY CTPYKTYPY BiJ IPOCTOr0o CTPUOKA KOHIIEHTPAITiit
JI0 cTpuOKa, sIKAU CYIPOBOJXKYETHCSA XBUJIEIO PO3PI/ZKEHHST ab0 BisSJIOM Xapa-
KTEPUCTUK HA PYyXOMUU HUKHIi# rpanurni. [IpoBegeno meranbHe TOCTIIZKEHHST
YMOB iCHYBaHHSI Pi3HUX THUIIB pO3B’sa3KiB. OBroBOPIOETHCST 3aCTOCYBAHHS pe-
3yJIBTATIB /I PO3B’sA3aHHS PI3HUX MIPUKJIATHUX 33/1a4.

Kmowosi caosa: Tinepbostivni cucTeMu; XapaKTepUCTUKN; CEIMMEHTAITisT; arpe-
raifisi.
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Kusuiosa H. H., ITocnasckuit C. A., Bapanerny B. A. MccaenoBauue kBa-
3UJIMHENHOM MOJEeJIM OCe/IaHMsl arperupyromiux YacTUll CyCleH3un B
HEOIHOPOJAHOM I1oJie cuil. Vceienyercsa KBa3uinHeliHas cucremMa Tpex jud-
depeHnMaIbHbIX YPpaBHEHNUN TUIIEPOOIMIECKOTO TUIIA, KOTOPasi OMUCHIBACT OCe-
JaHue arperupyiomyx YacTULl CYCIeH3UN, IIOMEIIEHHOR B TOHKYIO IJIMHHYIO
TPYOKY B HEOJHOPOIHOM BJIOJIb TPYOKHU I10ojie BHeImHuX cujl. Cucrema ypaBHe-
HUl 77151 MACCOBBIX U 00'bEMHBIX KOHIIEHTPAIMI 1 CPEJIHEr0 pasMepa arperaronB
B OJIHOMEPHO IIOCTAHOBKE JIOMYCKAET Pa3PBIBHBIE PEIICHUs. XapaKTEePUCTUKN
CUCTEMBI COOTBETCTBYIOT TOBEPXHOCTSIM Pa3PBIBOB KOHIIEHTPAIUN arperaros,
13 KOTOPBIX BHEIIHSS [TOBEPXHOCTD OIPeesseT M3MePAeMyIO B 9KCIEePUMEHTAX
CKOPOCTD OCEeIaHN, 8 BHYTPEHHAA MOXKET HMETh PA3HyI0 CTPYKTYPY OT IIPOCTO-
r'o CKa9Ka KOHIIEHTPAIHii 10 CKAIKa, COIIPOBOK IAIOIIEr0Cs BOJIHON paspeskeHns
WIA BeepoM XapaKTePUCTHK Ha IOJBUKHON HuKHeil rpanune. IIposeneno me-
TaJIbHOE UCCJIEIOBAHNE YCIOBUIA CYINECTBOBAHUS PA3HBIX TUIOB penteruii. O6-
Cy2KIAeTcsl IIPUMEHEHNEe IIOJIYYEHHBIX Pe3Y/ILTATOB I PEIIeHUS PA3JIMIHBIX
IPUKIATHBIX 32024,

Kaouesvie caosa: runep0OIMIecKue CUCTEMBI; XapaKTEPUCTUKH; CEeIUMEHTa-
IUsl; arperamys.

2010 Mathematics Subject Classification: 35L57, 76 T20
1. Introduction

As is known, in contrast to solutions of systems of linear differential equations,
quasilinear equations of hyperbolic type

8ui+§:A-~%—B- i=1,..n (1)
ot 4 YO T T
7=1

where A;;(t,z,u1,...,un) and Bj(t,z,u1,...,up) is the matrix of coefficients
and the vector of the right-hand sides of the system, and the equation
det|A;; — A;;| = 0, where I;; is the unit matrix, has different real roots
(characteristic values), with smooth initial data admit discontinuous solutions
[1]. Such systems of equations describe wave propagation in multiphase 2] and
non-Newtonian fluids [3], filtration in porous media with suffusion [4], kinematic
waves in channels and cavities [5], as well as sedimentation of particles in polydi-
sperse suspensions |6, 7, 8|. Investigations of sedimentation models for particles
of dilute suspensions go back to the works of Batchelor [9, 10|. For concentrated
suspensions, it was shown that in the one-dimensional case the system of equations
describing the distribution of concentrations and volumes of settling aggregating
(coagulating) particles [6, 7|, as well as particles of a polydisperse suspension [8]
remains hyperbolic if the Stokes drag coefficient depends on the size and shape
of the aggregate, when settling in a field of inhomogeneous force, and with a
number of other complications of the original one-dimensional model. Studies of
the solvability of problems in the theory of coagulation are of great interest for
the theory of differential equations [11], as well as for modern nanosciences, bio
and nanotechnologies [12].
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In most works, instantaneous stratification of settling particles into a
compressible sediment layer (zone III) at the bottom of the sedimentation tube,
a zone of settling particles (hindered settling layer, zone II) above it, and an area
of a stationary carrier fluid in the upper part of the tube (clear layer, zone I) for
both technical [13] and biological [14] suspensions. In this case, the formulation of
problem (1) in these cases includes the balance equations for the mass of particles
with a mass concentration C' and a carrier liquid with concentrations 1 — C' in
the form [8, 13, 14|

oC  oCu' o(1-C) o(1-C)u*
o e Y Ta T e Y 2)

where u! and u? are velocities of the particles and fluid.
The sum of equations (2) with flow impermeability through the bottom of the
tube gives the relation
ut =~ (1 - C)us, (3)

where ug = u! —u? is the fluid velocity relatively to the aggregate [15].

The velocities u' and u? can be found from the momentum equations of parti-
cles and liquid [14], discrete equations of particle dynamics [16], or by introduci-
ng approximations for the coefficient us(C') accounting for the difficulty of flow
around settling particles in the zone II. Taking into account the known power-law
approximation for the viscosity of the concentrated suspension [17]

fepr =po(1—C)' 7", (4)

where pg is the viscosity of the basic fluid, n is the empirical coefficient, it was
accepted for us(C) [15]

[ —up(l-0O), C<Cr
us(C) = { 0, C > C, (5)

where ugg = 2(ps — pf)gR2 /9up is the sedimentation rate of spherical particles
of radius R in the basic fluid, ps, p; are the densities of the particles and liquid,
respectively, ¢ is the gravitational acceleration, C* is the critical concentration
at which the particles form a quasi-solid viscoelastic framework and cannot settle
(us = 0, and zone II transforms into zone III); i.e. at the boundary between zones
II and III, the condition C' = C* is satisfied, and it is often assumed for simplicity
that C* = 1, so that in zone III there is also no movement of the basic fluid [15].

In this simple case, both characteristics are discontinuity lines of particle
concentrations [18]

dC dz oF

—_— = 1 —_— = = —
where (C) is the characteristic equation, F' = Cv! (C) is the mass flow of the
particles, Z = z/L and T' = Lugy/h are dimensionless longitudinal coordinate and
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time, L is the height of the sedimentation tube, and the speed of the discontinuity
line (Rankine-Hugoniot condition) is

_F(CH-F(C)
o= M) (7)

where CF, C~ are the particle concentrations above and below the discontinuity
line.

The first characteristic separates zones I and II; it has a negative slope (z =0
and z = 1 correspond to the bottom and top of the tube, respectively) and
determines the sedimentation rate measured in experiments |2, 3, 5, 6, 8, 14]. The
second characteristic is usually called internal [18]; it has a positive slope and can
correspond (Fig. 1) either to a jump to maximum packing with the disappearance
of zone IT and the subsequent cessation of movement in zones I and III ( C~ = C*,
case 1), or a jump C~ # C* with a subsequent rarefaction wave up to C~ = C*
(case 2) or a jump with a fan of rarefaction waves (rarefaction fan, case 3). The
upper of the characteristics always has the highest speed ¢ (7), otherwise there
will be an intersection of the number of constitutive relations and conditions for
the evolutionary character of the discontinuity [1|. As a result, different types of
sedimentation curves are obtained (upper dashed lines in Fig. la-d).

5 I .\ I LR 1§ I ~ LI

1
/ g

\‘ N iy
; o Z\<\% H# ;///j/_{/ -,/ g
I - ]

N

%

T T T T

Fig. 1. Different options for internal concentration jump:
case 1 (a), case 2 (b, ¢), case 3 (d) (adapted from [18])

Similar versions of families of characteristics were obtained for a bidisperse
suspension [17]. As shown in a recently published article [16], discrete equations
of particle dynamics, taking into account all possible forces of interactions between
them, after averaging, give the Navier-Stokes equations of a two-phase suspension.
Similar calculations on discrete models of a suspension of settling aggregating
particles [19] showed good agreement with continual models [6, 8, 14].

In more complex cases, when the particles of the suspension during aggregation
can capture a part of the basic fluid, which is then gradually percolate through
the porous surface of the aggregate as it settles, the problem is reduced to a
hyperbolic system of three differential equations for the mass C' and volume H
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concentrations and the average volume w of the aggregates (Fig. 2a). Many bi-
ological microparticles exhibit similar properties, for example, blood erythrocytes
(Fig. 2b), polymers, nanoparticles [3, 5], etc.

B

a
Fig. 2. Structure of the aggregates in a three-phase liquid (a)
and in human blood (b).

In this case, in the hyperbolic systems of the form (1), (2) for the variables
{C, H,w}, a third family of characteristics appear, the slope of which can be either
positive or negative, depending on the parameters of the model [8|. For the case
of the aggregating particles in inclined tubes in an inhomogeneous external field,
it was shown that other variants of the arrangement of families of characteristics
can be added to the possible patterns of characteristics (Figs. la-d), which is also
confirmed by numerical calculations based on the initial hyperbolic system of the
continuum model [8, 20| by the finite volume method [21]. Since the settling of
the particles in inclined tubes at certain angles of inclination leads to a significant
acceleration of settling and separation of mixtures (Boycotte effect) and is wi-
dely used in oil and gas industry [22], biological [14, 23, 24| and nanotechnology
[3, 5], the study of such sort of problems is of interest not only for the theory
of hyperbolic differential equations, but also for many applied problems. Particle
sedimentation in the inhomogeneous field of centrifugal forces makes it possible to
accelerate the sedimentation process with the formation of sediments of different
variable density, which can be used for additional medical diagnostics in biomedi-
cal applications or for the manufacturing of various nanostructured samples of
particle-based materials in nanotechnology.

In this paper, a detailed analysis of the mathematical formulation of the
sedimentation for a three-phase suspension of aggregating particles [8] in an
inhomogeneous field is carried out. The difference of the studied model with similar
already known formulations is that the hyperbolic system of differential equations
is solved in the region (zone II), which has variable boundaries (characteristics of
the 1st and 2nd families), moving at the speeds ¢y, o, respectively.

2. Description of the mathematical model

The model of the three-phase suspension composed of a free fluid (phase 1),
particles (phase 2) and fluid captured inside the aggregates (phase 3) is considered.
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The main system of equations has a form [8]:

@Jr 2810_ w?
a " or Yo

OH OH oC ow oul
_ _ 8
o +7116 +V128 4-713a =0+(1 H)(?x’ (8)
oC n OH n oC n aw ou?
6 Y21 5 Or Y22 5 or V235 or 7&@ >
oul oul oul
11 = ul _(1_H)87H’ 712——(1—H)%, 713——(1—H)6w
2 2 2 ©)
ou ou ou
721—(7@7 Yoo = u? +C% ’723—0%,

where C' and H are mass and volumetric concentrations of aggregates, w is an
average volume of aggregate, ¢ is the aggregation rate, u',u?, are the phase

velocities, § = 63/ Pt 63 is the rate of the fluid capture during the aggregation.
In the matrix form the system (8)-(9) is:

2
w u? 0 0 w pw
O g O g |= c 10
ot p + Y13 Y11 Y12 o p = 0+ (1 —H)k1 ) ( )
Y23 Y21 Y22 —Cky
1 2
where k1 = ai, ko = %

x
The phase velocities are expressed explicitly through the variables x, w, H, C":

- _ 2

ul — _H(lF H) n (H DC) } Clps — pp)an??(z + a),
(1 )2 )2

=[O EZ o = ppyini(o ), (1)
co ma B B

where ps, py are physical densities of particles and free fluid, v is a centrifuge
rotation frequency, a is a distance from a disc center to tubes.
Thermodynamic coefficients F, D are [6]:

7\ 2/3
F=anH(1—-H)™™ <C) w23,

c\ ™ _
D = pn;C (1—H> w02/3,

(12)
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where o, 3,711,712 are positive constants, wg is a volume of one particle, ny is a
fluid viscosity.

This system is hyperbolic with characteristic values of the defining parameters.
Therefore, for its analysis and solution the method of characteristics is effective.
The characteristic values \i, A9, A3 are:

Ny — (1 + 722) £ /(11 — 722)% + 412721 (13)
2,3 =
’ 2

The families of characteristics and corresponding conditions at them are:

d—w =Us+u
dt 1—5 fs

(14)
dx 1
— = Ug —A(1++1— B/A?
<dt>273 s Tt ( / )
(i)
t) c’
= (15)
_ _ 2) _ _ 2
2[A1<1i 1 B/A) A2<1:F 1 B/A)}x
dH dc
X ((dt) s —9—(1 — H)]ﬂ) + 712 <Cl€2 + <dt>273> =0,
where
(1—H)2*C(ps — pp)dn*v*(z + a) (H — C)2Cl(ps — ps)anv?(z + a)
Us = , U = s
F D
L O0ug Ouy ~ Ous  Ouy B
Al—HaH—(l—H)aiH, AQ—CaC—I—aC, A=A+ As,
. 8u5 8Uf aus aqu
B—4C(aH‘ao‘ ac 8H>

The equations of the first family of characteristics coincide with the equations
for the trajectories of solid phase particles (similar to contact characteristics in gas
dynamics). Therefore, the boundary separating the area of settling particles from
the area occupied by a stationary fluid moves at the speed u? of those particles
(aggregates) that are on it. In this case, the effective densities and velocities of the
phases at this boundary are discontinuous. There is no need to set special jump
conditions here, because in the area occupied by the suspension, all parameters
are determined by integrating the characteristic equations (by the method of
characteristics).



Bicuuk XHY, Cep. «Maremaruka, IpuK/IaHa MaTeMaTuKa i MexaHikay, Tom 92 (2020) 51

The situation is quite different with the setting of boundary conditions at
the boundary of the compact zone. Depending on the relationship between the
characteristic speeds and the speed of this boundary, different regimes can be
realized.

If this boundary is a strong discontinuity, then corresponding conditions for
the limit values must be performed on it when approaching the jump from one
side and from the other:

wip =wrrr, (L= Hin)Zir—1r = (1= Hyp) (Zi—1r — uig) (16)
Zri-111Crir = (Zir—1r — vwi;) Cir,

where Zrr_jsr is a velocity of the discontinuity.
3. Analysis of possible cases

According to the general theory of discontinuous (or generalized, or weak)
solutions of systems of quasilinear equations [25, 26|, existence of an evolutionary
(not decaying into a system of waves) discontinuity is ensured by the following
condition. The number of characteristic lines arriving to the same point at the di-
scontinuity surface should be such that, in the problem of small perturbations, the
perturbations of all the quantities are uniquely determined from the conditions
along these characteristics and the constitutive relations at the discontinuity. For
example, if the same hyperbolic system of n quasilinear equations is satisfied in
regions on both sides of the discontinuity, then the number of arriving characteri-
stics from one side and from the opposite should be exactly n + 1. Indeed, in this
case, the number of unknowns is equal to 2n + 1 (n unknown functions on each
side of the discontinuity and an unknown speed of it), which means that there
should be the same number of equations for their determination. If, however, some
additional conditions are fulfilled at the jump, then the number of characteristic
lines arriving to the jump should be reduced by the number of conditions.

In the problem under consideration, the situation is somewhat different. The
main system of equations (8)-(9) is satisfied only on one side of the discontinuity,
and on the other, the state of all phases is considered to be specified (we mean the
packing density of aggregates and the volumetric content of fluid in the compact
zone, i.e., the values of Hyrr and Cyyy) ). Only the quantity wyr; remains unknown
in the compact zone, but it satisfies the condition wy;; = wyy.

Therefore, for the stability of the discontinuity, it is necessary that the
characteristics of two families enter the jump, and only the characteristics of
one family are outgoing (Fig. 3). Accordingly, the characteristic velocities and the
discontinuity velocity Zjr_rr;r must satisfy the following inequalities:

(ZHIH - (CZ>2> ' <ZHHI - <Zf)3> <0. (17)
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Fig.3. Location of characteristics relative to the strong discontinuity line.

If this condition is not satisfied, then there is no strong discontinuity on the
boundary of the compact zone, since it does not satisfy the evolutionary condition
and cannot be stable.

But then the structure of the solution should be different. Instead of a strong
discontinuity, the transition from zone I to zone III should be carried out in a
more complicated manner. Apparently, in this case, the mathematical model of
the studied process of particle sedimentation needs to be revised. At a sufficiently
high concentration of aggregates, the relationship between the phase velocities
and concentrations described by relations (11) is no longer sufficiently adequate.

4. Conclusions

In this paper, we consider the properties of solutions of a quasilinear hyperbolic
system of partial differential equations describing the process of settling and
aggregation of particles under conditions of an inhomogeneous field of external
forces. We study the conditions for the existence of different types of solutions.
The results obtained make it possible to analyze various modes and the influence
of model parameters on the sedimentation process. The estimation of the number
of incoming and outgoing characteristics for the strong discontinuity between the
zone of settling aggregates and the compact zone is carried out. The obtained
condition determines the existence and stability of this discontinuity. If it is not
satisfied, the mathematical model describing the process of settling and aggregati-
on of suspension particles requires correction. The results obtained can be used
to solve various applied problems, in particular, in the field of medicine.
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Hocaimkenas kBas3ijiHifiHol Moaesi oci/lanHs YacCTUHOK CycrneHs3il,
sIKi arperymoTb, B HEOJHOPiAHOMY MOJIi CHJI
Kizinosa, H. M., ITocaascekuit, C. O., Bapanens, B. O.
Xapxiscvruti Haytonasvrut ynisepcumem im. B. H. Kapasina
na. Ceoboou, 4, Xapxie, Yxpaina, 61022

MaremaTndHa MOJEb IPOIECY OCiMaHHS YaCTUHOK CyCIIeH3il 3a3BUYail ABJIs€ CODOIO
KBas3imiHifiny rimepboigHoro cucremMy audepeHIiaJbHIX PiBHSHD, JOMOBHEHY MOYaTKO-
BUMU i KpaifioBuMu ymoBaMu. B jmaHiit cTaTTi MOCTIIKYETHCS YCKJIaIHEHA MOJIE/b, IO
BPAXOBY€ arperyBaHHsI YaCTUHOK 1 HEOJHOPITHICTH ITOJIsT 30BHINIHIX MacoBux cui. Po3-
IJISTHY TO BUNQJIOK OJIHOPITHIX IMOYATKOBUX YMOB, KOJIU BCi TApAMETPH PYXY, IO BUHUKAE,
3aJ1e2KaTh TLIBKM Bill OfHIET TPOCTOPOBOI IeKapTOBOI KoopauHaT & i Bix wacy t. Ha Big-
MiHy BiJ[ BIZIOMUX [IOCTAHOBOK 3aJ1a4 JJisl KBa3LIIHIAHUX cucTeM DIBHsHDb (HAIPHUKJIALI, B
ra3oBiil JuHaMili), po3B’sI3KN SIKUX MICTATH CHJIbHI DO3PUBH, Yy MOCJIIRKYBaHIll mocTa-
HOBI[i OCHOBHA CHUCTEMa PiBHsHb BUKOHYETHCS TIILKHU 1O OJWH OIK BiJ JiHil po3puBy B
wionuai 3minnux (t;x). Io inmuit 6ik Big JiiHil PO3pUBY pIBHAHHS, B3araji KaxKydu,
MAalOTh IPUHIIAIOBO iHIMI BUTIs. Mu 0OMeX)XKyeMOoCsi BUBYEHHSM BUIAJIKY, KOJIA B KOM-
MaKTHIN 30Hi, 3afiHATII OCITUMK YaCTUHKAMU, HiSTKOTO PyXy HeMa€, TOOTO yci IBUIKOCTI
JIOPIBHIOIOTH HYJIIO i 00’€MHI 9acTKH BCiX (a3 He 3MIHIOIOTHCA 3 9acoM. PO3TyIsgHyTO 3a-
Jady PO CEJUMEHTAII0 €PUTPOIUTIB B IOJI BIIIIEHTPOBUX CHJI B IeHTpudy3i, npu i1
piBHOMIpHOMY 0OepTaHHI 3 KyTOBOIO MIBHJKICTIO w = const. IIpoBeneno mociiipxkenHst
YMOB icHyBaHHSI Pi3HUX THIIB po3B’s3KiB. O/Hi€I0 3 OCHOBHEUX € IPobJIeMa eBOJIIOIITHO-
cri (crifikocTi) BUHUKAIOUUX CUJIbHUX PO3pUBIB. Po3B a3anus niel npobsemu mos’s3aHo 3
aHAJI30M CIIIBBITHOIIEHD JJI XapaKTEPUCTUIHUX MIBUJIKOCTEN 1 MIBUIKOCTI ITepeMileH-
H¢l IOBEPXHI po3puBy. Biamosiap 3a/1eKuTh Bij unc/ia XapaKTEpUCTUK, 10 MTPUXOIATD 10
PO3PUBY, i BiJl KITBKOCTI JIOJJATKOBUX YMOB, IO 33IaI0THCSI Ha MTOBEpxHi po3ity. Po3pus
Ha HY2KHI# MexKi o6J1acTi, 3afiHaTOl YMCTOl IJIA3MOIO, 3aBXK M CTiiiKuil. AJje 11 noBepxHi
PO3PUBY, IO PO3ILJISE 30HU OCLINX 1 PyXOMHUX JaCTHHOK, YMOBA €BOJIIOIINHOCTI MOXKe TTO-
pymryBatucs. B mpoMmy BHUMaaKy HeOOXiTHe KOPUTYBAHHS BUXITHOI MATEMATHIHOI MOJIEITI.
Kmowosi caosa: TinepOOTiTHI cCTeMM; XapaKTEPUCTUKHI; CETUMEHTAIlisT; arperalis.

A study of a quasilinear model of the particles of a suspension
that are aggregated and settled in an inhomogeneous field
N. N. Kizilova, S. A. Poslavskyi, V. A. Baranets
V. N. Karazin Kharkiv National University,
4 Svobody sqr., Kharkiv, 61022, Ukraine
The mathematical model of the sedimentation process of suspension particles is usually
a quasilinear hyperbolic system of partial differential equations, supplemented by initial
and boundary conditions. In this work, we study a complex model that takes into account
the aggregation of particles and the inhomogeneity of the field of external mass forces.
The case of homogeneous initial conditions is considered, when all the parameters of
the arising motion depend on only one spatial Cartesian coordinate x and on time ¢. In
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contrast to the known formulations for quasilinear systems of equations (for example, as
in gas dynamics), the solutions of which contain discontinuities, in the studied formulati-
on the basic system of equations occurs only on one side of the discontinuity line in the
plane of variables (¢; ). On the opposite side of the discontinuity surface, the equations
have a different form in general. We will restrict ourselves to considering the case when
there is no motion in a compact zone occupied by settled particles, i.e. all velocities are
equal to zero and the volumetric contents of all phases do not change over time. The
problem of erythrocyte sedimentation in the field of centrifugal forces in a centrifuge,
with its uniform rotation with angular velocity w = const is considered. We have studied
the conditions for the existence of various types of solutions. One of the main problems
is the evolution (stability) problem of the emerging discontinuities. The solution of this
problem is related to the analysis of the relationships for the characteristic velocities
and the velocity of the discontinuity surface. The answer depends on the number of
characteristics that come to the jump, and the number of additional conditions set on
the interface. The discontinuity at the lower boundary of the area occupied by pure
plasma is always stable. But for the surface separating the zones of settled and of moving
particles, the condition of evolution may be violated. In this case, it is necessary to adjust
the original mathematical model.

Keywords: hyperbolic systems; characteristics; sedimentation; aggregation.
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VLADIMIR MIKHAILOVICH KADETS
To 60th anniversary

Vladimir Kadets (Bomomumup Muxaiiiosua Kagenp), a Professor of the
Department of Pure Mathematics in V. N. Karazin Kharkiv National Universi-
ty, a well-known expert on Banach space theory and a brilliant lecturer, turned
60 on November 15, 2020.

Vladimir was born on November 15,
1960 in Kharkiv. His mother, Diamara
Lazarevna, was a researcher at the
Institute for Medical Radiology; father,
Mikhail Tosifovich, was a mathematici-
an, famous for his outstanding results
in Banach space theory, which surely
influenced Vladimir’s choice of career.

After graduating of V.N. Karazin
Kharkiv University in 1982 Vladimir
became a PhD student of Naum Samoi-
lovich Landkof in Rostov Civil Engi-
neering Institute. Shortly after defendi-
ng in 1985 his PhD Thesis, Vladi-
mir obtained an elegant result by
constructing a conditionally convergent
series with non-convex set of sums in
any infinite dimensional Banach space,
and hereby obtained a complete solution for Problem 106 from the “Scottish
Book”. Since then, during some years, rearrangements of series in Banach spaces
were one of the favorite topics for Vladimir. The first monograph by V. M. Kadets
co-authored with his father was devoted to this topic.

Vladimir traveled a lot collaborating with mathematicians from other countri-
es: Poland, Israel, USA, Italy, Germany, France, Spain, Turkey, South Korea. As
a result, the majority of his papers were co-authored with colleagues from the
institutions visited by Vladimir. At the end of 20th century V. M. Kadets became
interested in the Daugavet equation in Banach spaces. One of the most important
papers by Vladimir was published in 2000, co-authored with Roman Shvidkoy,
Gleb Sirotkin and Dirk Werner. This paper had radically changed the approach
of specialists to investigation of the Daugavet property. Soon afterwards Vladimir
started a fruitful long-term cooperation with Spanish mathematicians (Bernardo

© S. Ju. Favorov, V. P. Fonf, V. I. Korobov, M. I. Ostrovskii, M. M. Popov,
A. M. Vishnyakova, A. L. Yampolsky, G. N Zholtkevych., 2020
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Cascales, Miguel Martin, Javier Meri and others). Among others, Vladimir jointly
with Maria Acosta (Spain) proved a Namioka’s hypothesis asserting that, every
nonreflexive Banach space admits an equivalent norm with respect to which the
set of all norm attaining functionals has empty interior. The second monograph by
V.M. Kadets “Spear operators between Banach spaces” co-authored with Spanish
colleagues was published in 2018.

Vladimir always enjoyed teaching activities. Since his student years, he liked
explaining mathematics to other people. When he became a teacher, this interest
was transformed into the exceptional clarity and rigor of his lectures. These quali-
ties attracted students to him, and many of Kharkiv’s students in mathematics
made their first steps in research under the supervision of V. M. Kadets. He was
an advisor of 8 PhD students. The situation in Ukraine in the late 20th century
contributed to the fact that some of his students finished their PhD programs in
other countries (e.g. D. Bilik, R. Vershynin, R. Shvidkoy).

From 1990 till nowadays V. M. Kadets works in V.N.Karazin Kharkiv National
University. In 1992 he passed habilitation in Warsaw “Conditional convergence
in infinite-dimensional spaces”’, and in 2014 — another habilitation in Kharkiv
“Banach spaces with the Daugavet property and Banach spaces with numeri-
cal index one”. During his scientific and pedagogical career Vladimir has got a
Kharkiv mathematical society Prize for young researchers (1989), Soros’ grants
(1995, 1996), Humboldt Research Fellowship (Germany, 1999), State Award of
Ukraine in Science and Technology (2005), Séneca Foundation Grant (Spain,
2010), and currently leads a group of mathematicians of his Department whi-
ch was awarded a grant of the National research foundation of Ukraine.

We congratulate Vladimir with the jubilee, wish him health, creative inspi-
ration for many years and success in his scientific and pedagogical activities.
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1OCHIT BOJIOAMMUPOBUY OCTPOBCBKMI (nekpouor)
6.04.1934 — 29.11.2020

29 ymcronama 2020 poKy Iic/ast BaXKKOI TPUBAJIOI XBOPOOHU IIINOB 3 >KUTTS
BUJIATHUIN MaTEMaTHK, YIeH-KopecrnoneHT HarionaabHol akageMil HayK YKpalHu
Vocun Bomogumuposra OcTpoBehKmii.

WMocun Bosoaumuposiry mapomuses y 1934 poni B duinponerposesky. Y 1951
porti BiH BcTynus 70 (HizuKO-MaTeMaTHIHOrO (haky/1bTeTy XapKiBCHKOro yHiBEp-
cuTery, lle IpalfoBajd Taki Bimomi MareMarukuy i megaroru, gk H. 1. Axiesep,
d. II. Bnawk, I'. 1. Hpiadgensa, B. 4. Jlesin, B. O. Mapuenko, O. ¢. ITos3uep,
O. B. Tloropenos, A. K. Cymkesuy.

VY 1956 pomi Mocun BosoauMupoBd BETyIae 10 ACMPAHTYDPH 0 OIHOTO 3
HPOBiIHUX Y CcBiTI axiBIiiB 3 KoMmIIeKkcHoro anasizy b.4. Jlesina, y 1959 zaxuriae
KaHIUJIATCHKY JUCEPTAINI0 «3B’I30K MiXK 3POCTAHHSIM MepOMOPQHOT PYHKIIT Ta
PpOBIOIIOM 11 3HAYEHD 38 apTyMEHTAMU».

VY 1958 pomui 1. B. OcTpoBchKHit HOYHHAE IPALIOBATH B XapPKIBCHKOMY VHIBED-
cureti, 3 1963 poky BiH 3aBixye xKademqporo Teopil OYHKINNE MHONO YHIBEPCUTETY,
a'y 1965, y Bimi 31 poky, 3aXuInae JOKTOPCHKY TUCEPTAII0 « ACHMITOTHYHI BJa-
CTUBOCTI IiJinX i MepoMopdHUX DYHKITN i JedKi 1X 3aCTOCY BAHHSI».

Y 1956 porii B XapkoBi mouas pobory Jierengapuuit ceminap b. f1. Jlesina 3 Te-
opii dynkriit. 1. B. OcTpoBchKuit 6yB aKTHBHIM yIaCHHKOM CEeMIiHADY, a Ii3HiIme
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pasom 3 B. 4. JleBinnm kepyBsas ioro po6oroio. Y 70-x pokax 1. B. Ocrposcbkmit
CTBOPUB CEMiHAp 3 AHAJITUYHUX MUTAHb Teopil HMOBIpHOCTEN.

V 1968 poui Mocun BotoauMuposid crae ciiBpobiTHIKOM Biyiiny Teopii ¢hyn-
kit Dizuko-rexHiuyHOrO iHCTUTYTY HEH3bKEX Temueparyp AH CPCP, a 3 1986
POKY OYOJIIOE TIell BiJIJIiJI, OJTHOYACHO ITPAIIOI0YHN 338 CYMICHUIITBOM B XapKiBChKO-
My yHiBepcureri. 3 1994 poky Nocun Bomogumuposua — mpodecop yHiBepcuTeTy
Binekent (Typeaunna).

Y 1978 poni Mocuna Bosomuvuposuda OCTPOBCHKONO OGHPAIOTH HIICHOM-
KopectoneHToM Akasiemii Hayk Ykpaincbkol PCP (3apas Hanjonasibua akajemist
HayK YKpaiHu).

OmuIeMo CTHCIO JesIKi HAIIPSIMKN HayKoBoi poborn 11.B. OcrpoBcsKoro.

Ha nouarky nHaykosoi gisibHocTi Mocun BosoauMupoBud oTpuMaB TOHKI pe-
3yJIBTATH MO0 3B 3Ky 3POCTaHHA MepoMOpPdHOI GyHKINI 3 posmomiaom i1 3Ha-
YeHb 110 apryMeHTax, sKi mocuinin kjaacudni reopemu JI. Bibepbaxa, P. Hepan-
airan, M. . Kpeitna, A. Expes. Cywicro 3 B. §1. Jlepinum 1. B. Ocrposchkmit
3afimaBcs pobsiemoro [lostia-Bimana onmcy kiracy miux mificaux QyHKIGH, j1st
AKNX yci Hynl camux BYHKIN 1 IX HOXIIHUX € JificHIMU.

VY 60-x poxax Mocun BosoguMupoBud pos3Hnoyas JOC/IKEHHsT AHATITHTHIX
nuTaHb Teopil iMoBipHocTeil. Bin mosis rimoresy HO. B. JlimHuka, TuM caMuM
IIOCHJIMBINN KJIacuuHy Teopemy Mapruakesnua. Vocun BosoquMuposud Takox
pPO3pOOUB HOBI aHAJITHYHI METOJHW i OTPUMAB BAroMi pe3y/bTaTH B apUQPMETHIL
WMOBIPHICHUX PO3IIOJILIIB.

Kracukoro cramu po6otn 1. B. Ocrposeskoro i B. O. Mapuenka 3 10C/Ti1KeH-
Hsl CIIEKTPY oreparopa Xijuta. BoHu rpyHTyIOThCA Ha apaMeTpu3aliil Kjaacy mifi-
CHUX IMnX PYHKIGH 3 mificauMu +1-Toukamu KOH(MOPMHUME BiOOpasKeHHIMEI
BEPXHBO! MiBILIONIMHU HA BEPXHIO MiBIJIOMIMHY 3 BePTUKAJILHUME po3pizamu. [ls
ImapaMeTpu3allis Bigirpae BaxkJmBy PoJib B Teopil omeparopis Ilrypma-Jliysimis
1y JOCIKEHHAX eKCTPEMAJIbHAX BJIACTHBOCTEN IIJINX (PYHKINH €KCIOHEHIa b
HOT'O THILY.

VY 80-x pokax 1. B. Ocrposcbkuii crinbro 3 A. A. Tonbabeprom ormcasm
ACHMIITOTUYHY HOBEIIHKY 1 PO3IO/ILI KOPEHIB IIJINX XapaKTePUCTUIHNX (DyHKIIii
CKIHYEHHOT'O TIOPSIJIKY.

le omun rukt pobit 1. B. OcTpoBebKoro 6yB HPUCBSYEHIH BUBUCHHIO KJIACIB
KOMILIEKCHO3HAYHUX OOpeIeBUX Mip Ha OCi, y IKAX MA€ MICIle OJTHO3HATHA BU3HA~
YEHICTb 3BYKEHHsAMU Ha MiBBich. L[i poboTu 1moB’sizani 3 KIaCUYHUME 3a]IaaMU
Teopil dyHKINE: Teopemoro TiTumapina Ipo 3ropTKy, APyroi OCHOBHOIO Teope-
Moro HeBamninaun-Kaprana /111 aHaIITHIHAX BEKTOP-PYHKINH, (DAKTOPU3AIIEIO Y
kiacax lapmi Ta iHIIIAME.

VY 90-x pokax Mocun BosoguMupoBud oTpuMye cepiio pesy/InTarTis y Teopii
KpaiioBol 3amadi PiMaHa 3 HECKIHUEHHNM iHIEKCOM.

B ocranni pokn 1. B. OcTpoBchbKuii 3aiiMaBcst 3a1a9aMi 3POCTAHHS aHAJITH-
9HUX (DYHKIH 1 pO3IIOiIy 3HaYeHb BiIPI3KiB Ta JUIIKIB IXHIX CTEIEHEBUX PSIIIiB,
NUTAHHAM 300paKyBaHOCTI rapMoHiUHUX (ByHKIH inTerpasamu tumy Ilyaccona,
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3B’I3KOM 9aCcTOTH OCImIAril pyHKIil i3 riaagkicTio 11 meperBopennsa Pyp’e, mpo-
OjieMaMi TOTaJIbHOI 1 KpaTHOI JOJaTHOCTI.

1. B. Ocrposcbkuii omy6itikysas 6ibire 150 HaykoBuX pobit, BiH € criBas-
TOPOM JBOX IIIMPOKO Bifomux MoHorpadiit «Pacupenenenne 3uadeHuii MepoMop-
dbubix byakuuit» (3 A. A. Tosbabeprom) ta «Pasiioxkenust ciydaiiHbIX BeJUYUH
u BekTopos» (3 FO. B. Jlinmukom). Moro po6oTn i KHurm Maju icTOTHUI BILINB
Ha TOAJIBINIH PO3BUTOK Teopil miimx i MepoMopdHUX (PYHKINH, aHATITUIHIX
UTaHb Teopil AMOBIpHOCTEN, 3HAMIIIM 3aCTOCYBaHHsI B Teopil ollepaTopiB, rap-
MOHIYHOMY aHaJIi3i Ta IHITIX 06/IaCTAX MATEMATHKN.

V 1992 pomi 1. B. Ocrposcekuii pazom 3 A. A. TomsaGeprom i B. 51. Jlepinum
orpumaB /lep:kaBuy npemiro Ykpainu 3a poboTu 3 Teopil (pyHKIIii.

IIporsironm 6ararsox pokis 1. B. Ocrposepkuii 6yB [Tpesumenron XapKiBebKo-
ro MareMaTHdHOro ToBapucrBa. 3 1966 mo 1993 poku BiH OYB BiAIOBiga/IbHIM
cekperapeM peakoJierii xkypaaiy «Teopis GpyHKIIH, DyHKIIOHAILHII aHaTI3 1 1X
3acTocyBaHHs», mizHime, 3 2000 mo 2005 poku — TOJIOBHEM pemgakTopoM «2Kyp-
HaJIy MaTeMaTUIHO! (Pi3uKHU, aHasi3y, reoMeTpiis.

Binbm sik copok pokis M. B. OcrpoBcbKuil BUKIagaB y XapKiBCHKOMY yHi-
BepcuTeTi. BararboM TOKOJIIHHAM CTYIEHTIB HOro JIeKIil 3amaM’ aTajucs JTUBO-
BIDKHOIO YiTKICTIO BUKJIA/y, IVIMOMHOK IPOHUKHEHHsI y TeMmy. st mMaitbyTHix
BUKJIQIAYIB BiH OyB OJMCKYYIUM 3Pa3KOM i HacHiayBauusd. 1lin KepiBHUIITBOM
1. B. OCTpPOBCHKOTO 3aXUCTUIN KAHIUJIATCHKI auceprariil monas 25 #oro yJHiB,
II'ATEPO 3 HUX CTAJH JOKTOPAMU HAyK.

Csitia mam’site po Mocuma Bosommvmposnaa OCTpoBCHKOTO HA3ABKIN 3a-
JIMIIUTHCA B CEPIAX HOTO BIAYHUX YUHIB, KOJIET 1 Ipy3iB.

Buwmnaxosa I M., 2Koamxesuw I. M., Iavincoxut O. 1., Invincoxa 1. 11,
Kamxosa O. M., Kopobos B. I., @asopos C. IO., Hmnorvcorxud O. JI.
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IIpaBuna nis aBTOpiB
«Bicauka XapkiBCbKOro HaI[iOHAJIBHOTO YHiIBEPCUTETY
imeni B.H.Kapaszina»,
Cepia «MaremaTuka, IpUKJaJgHas MaTeMaTUKa i MexXaHiKa»

Penakriist mpocuTh aBTOPIB IpU HAIIpaBJIEHH] CTaTell KepyBaTUCS HACTYITHIMUI
[IpaBUIAMU.

1. B xxypHasi myOJiKyOThCA CTATTI, 0 MAIOTh PE3Y/IbTATH MaTEMATUIHUX
JIOCJIJIZKeHDb (aHIVIICHKOI0, YKPAIHCHKOIO ab0 POCIHICKOI0 MOBaMN).

2. ITlomamusaM craTTi BBaXKa€ThCd OTPHUMAHHSI PeJakiiero daiiaiB crarTi
odopmitenux y pempakropi LATEX (Bepcist 2e), anorariiit, BijjoMmocTeil po aBTopiB
Ta apxiBa, o BKirodae LATEX daiian crarti Ta daitan MasoHkKiB. Paili-3pasok
odopMIIeHHST CTATTI MOXKHO 3HAWTU B PENAKIN] KYPHAJIy Ta Ha BeO-CTOPIHIL
(http://vestnik-math.univer.kharkov.ua).

3. CrarTsi HOBUHHA MOYMHATHCS 3 AHOTAIII, B IKMX MOBUHHI OyTH 1iTKO chop-
MYJIbOBAHI MeTa Ta pe3yabTaTu poboTn. AHoTaril MOBUHHI OyTH TPhOMA MOBAMU
(aHJIIICbKOIO, YKPATHCHKOKO Ta POCIHCKOIO): IEPINOK MOBUHHA CTOSTH aHOTAIlis
Ti€I0 MOBOIO, SIKOIO € OCHOBHUI TEKCT cTarTi. B anoTaril moBunui OyTH IPU3BUIIA,
ininiasm aBTOpIB, HA3Ba POOOTH, KJIIOUYOBI CJIOBA Ta HOMED 38 Mi>KHAPOHOIO MaTe-
marnaHo Kiaacudikaieo (Mathematics Subject Classification 2010). Anoraris
He TIOBMHHA MaTH IOCWJIaHb Ha JITepaTypy 4Yd MajtoHku. Ha meprriit cTopiHri
BkasyeTbest Homep YJIK knacudikarnii. B kiumi crarTi Tpeba gomaTu po3IInpeHi
(obcsirom me Menmr stk 1800 3nakiB KOYKHA) aHOTAINT AHIVIIHCHKOIO Ta YKPATHCHKOIO
MOBaMH.

4. Crucok JjiTeparypu HOBuUHEH OyTH OQOpPMIIEHWI JTATUHCHKUM MIPUMTOM.
[Ipukiagu odopMIIeHHSsT CIIUCKA JIiTepaTypu:

1. A.M. Lyapunov. A new case of integrability of differential equations of motion of

a solid body in liquid, Rep. Kharkov Math. Soc., — 1893. — 2. V.4. — P. 81-85.

2. A.M. Lyapunov. The general problem of the stability of motion. 1892. Kharkov
Mathematical Society, Kharkov, 251 p.

5. Koxnwmit MajioHok mnoBuHeH OyTH NPOHYMEDPOBAHUN Ta IPEJCTaBICHU
okpeMmuM ¢aitioM B ogaoMy 3 popmaris: EPS, BMP, JPG. B ¢aiiri crarTi MaJto-
HOK TIOBUHEH OyTu BcTaBjeHUil aBropom. Ilin MaifoHKOM TOBUHEH OYTH IIiIIuc.
HazBu ¢aiiiB MaIfoHKIB MOBUHHI TOYMHATUCH 3 IIPU3UIIA, IEPIIIOr0 aBTOPA.

6. BimomocTi 1po aBTOpiB ITOBMHHI MICTHTH: IpI3BHUINA, iMeHA, IO OATHKO-
Bi, cayk00Bi ajpecu Ta HOMepH TesiaedOHIB, aapecu eJeKTPOHHUX IMOIIT Ta iH-
dopmario npo maykosi npodaiiin aBropis (orcid.org, www.researcherid.com,
WWW.Scopus.com) 3 BianoBiaHuMu nocuiassmu. [IpoxaHHsi TakoXK MOBLIOMUTH
[pi3BUIIIE ABTOPA, 3 IKUM Tpeba BeCTHU JIMCTYBAHHS.

7. PexomeniyeMo BUKOPHUCTOBYBaTU B SKOCTI 3pa3ka O(MOPMJICHHS OCTAHHI
BuItycku Kyprauy (vestnik-math.univer.kharkov.ua/currentv.htm).

8. VY BunasKy nopyIieHHs IpaBui opOpMICHHS PEJAaKIlisa He Oyie po3risIaTu
CTATTIO.

Enexkrponna ckpunbka: vestnik-khnu@ukr.net
Enexrponna ajipeca B Inrepueri: http://vestnik-math.univer.kharkov.ua
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