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1. Background and statement of the problem

In this paper we deal with the time-optimal control problem for autonomous
nonlinear affine systems of the form

& =a(x)+ub(z), zeR", ueR, a(0)=0, (1)
lu(t)| <1, 2(0) = 2°, 2(f) =0, § — min, (2)
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where a(z) and b(x) are real analytic vector fields in a neighborhood of the origin.
The requirement a(0) = 0 means that the origin is a rest point for this system.
For brevity, we denote the system by {a,b}.

Now we briefly recall some results obtained in [I, 2]. Below, S, = Sq4(6,u)
denotes the map taking a pair (0,u) to the initial point 2° which is steered to
the origin by the control u = u(t) in the time #. This map can be expressed as a
series

IEO = Sa7b(9, u) = Z Z 'Uil...ikgml...mk (G,U),

m=1my++my+k=m

where &, i, (0,u) are nonlinear power moments of the form

6 rm Thk—1 k e
émlmk(e,u) = / / / HT] Ju(Tj)di"'dTl7
0 0 0 j=1

and vy, .m, are constant vector coefficients which can be found by the formula

Umy..my, = 7‘ad7£‘in 0:-+0 adngbE(x)|$:o, (3)
where the operators R, and R, are defined as R,¢(z) = ¢ (x)a(x) and
Ryp(x) = ¢p(x)b(x), operator brackets adjp Rj are defined as ad?%aRb = Ry,
ad’]{leb = [Rq,ad, Rp], m > 0 ([-,-] means the operator commutator), and
E(xz) = x. Since a(z) and b(z) are real analytic, there exist C,Cy > 0 such that
Vmy.me || < k!010511+"'+m’“+k for all k > 1 and mq,...,my >0 [3].

For any fixed 6 > 0, let us consider nonlinear power moments as functionals
defined on the unit ball of the space Ls[0, 8], i.e., on the set BY = {u € L[0,9] :
|lu(t)]] < 1}. The linear span (over R) of all such functionals form an associative
algebra AY with the concatenation product

fml...mk (9> ) \% gjqu (9, ) = émlmkjqu (95 )

One can show that the algebra A? is free for any 6 > 0. On the other hand, since
Emyomy (0,0) = gmat—tmatke o (1,@) where @(t) = u(td), t € [0,1], we can
regard the number ord(&,,, . .m, ) = m1+- - -+my+k as the order of the functional
Ema..my (6, ). This concept allows us to introduce a graded structure in A°.

Notice that algebras A? with different § > 0 are isomorphic to each other.
Therefore, it is convenient to deal with more abstract object. Namely, let us
consider the set of abstract free elements (letters) &,,, m > 0. Strings of letters
(words) &m, - - - €m,, are denoted by &y, m, . In the set of words, the concatenation
is defined: &y, V $ireda = Sma.muiidq- All finite linear combinations of
words (over R) form a graded free associative algebra A = > >~ | A™, where
homogeneous subspaces A" are defined as follows,

A™ =Lin{&m, . my, c 1 + - +mp +k=m}, m> 1.
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This algebra is isomorphic to A? for any 6 > 0; we call it the algebra of nonlinear
power moments. Below we identify A? and A.

We say that an element z € A™ is homogeneous and the number ord(z) =m
is its order. It is convenient to supplement 4 with the unity element 1 (which
can be thought of as the empty word) and consider the algebra A° = A + R.
Throughout the paper we assume &,,..m, = 1 if p > q. We also use the notation
Vi=¢V--- VL (q times).

In A we consider the free graded Lie algebra £ =3, L™ generated by the
letters &, m > 0, with the Lie brackets [¢1,f3] = €1V o — l3 V £1; then A is
its universal enveloping algebra. We also use the shuffle product operation in A
defined by the following recurrent formula

Eivei &y gy = i V (ineiu &Gy gig) F &5V Gy W gy )

and such that 1wz = zwl = z for any z € A°. Below we also use the
notation 2" = zw - .- wz (g times). We say that P(21,...,2;) is a homogeneous
shuffle polynomial of order m if P(z1,...,2,) = 3. gy qr 2 P - - Luz:/,';"'q’c where
Qg,..q. € R and the sum is taken over all ¢i, ..., g, such that Zle giord(z;) = m.

Finally, we introduce the inner product (-,-) in A so that the basis &, .,
becomes orthonormal.

Let us now consider the set of vector coefficients . They generate the linear
map v : A — R” defined as v(&m,...my,) = Um,...m,- The important role is played
by the restriction of this map to the Lie algebra £ C A. Namely, let us suppose
that the Rashevsky-Chow condition holds,

v(L) =R" (4)
and consider the following subspaces
Pl={teL':v)=0}, Pr={tecLr:vl)col+---+L" )}, k>2.

We say that
Lop=> P
k=1

is a core Lie subalgebra corresponding to the system {a,b}. We say that
Tap=Lin{lVz:l€ Lyp,z€ A}

is a right ideal corresponding to the system {a, b}. Due to properties of the map v,
if 2 € JupNA™ then v(z) € v(Al+---+A™"1). One can show that L, = JupNL,
hence, L, and J, define each other.

We notice that the Rashevsky-Chow condition implies the attainability for
the system {a,b}. This means that the set of all initial vectors #° which can be
steered to the origin has nonempty interior and the origin belongs to the closure
of this interior.
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Suppose {1, ..., ¥, are homogeneous Lie elements such that
L=Lin{ly,.... 0.} + Lay,
and {(;}32, , is a homogeneous basis of £, 5. As is well known [4], the set
v VL | - .
{gillh \/-"\/giqu <L <, k> 1}

forms a basis of the algebra A; we call it a Poincaré-Birkhoff-Witt basis.

Suppose {d* %1 is a dual basis, that is,

'Ll...ik

(di B GV VT = 1 s =k, i = Gy G = T

110 7 T

Then [5] it can be expressed as

dq1-~~¢Zk _

1 gy Waqz

010 qﬂ---qk!dil w '“”Jdik ’
where d; = d}. In other words, the sequence {d; }52, defines all other elements of
the dual basis. Hence, the map S, can be expressed as a series w.r.t. the dual
basis,

1 Vq Vg, Wq g
Sa7b(0,u) = Z m@(ﬁh VRS \/E%k)dll 'w Lle,Lk k,
E>1, i1 <-<ig, g;>1

Moreover, if i1 > n+ 1 then ¢;, € L, and therefore Kz/lql \VEREAY, K;;q’“ € Jap- This
representation justifies the result which was obtained in [2]: for any system {a, b}

satisfying condition there exists (polynomial) nonsingular change of variables
y = ®(z) (¢(0) = 0) such that

¥ = (®(2°) = di(0,u) + pp(6,u), k=1,...,n,

where py, € Zfiord(dk) 41 Ai. Tt turns out that there exists a (autonomous) system
{a*,b*} such that
(Sarp# ) = di(0,u), k=1,...,n.

Let us notice that the components of the series of this system are homogeneous as
elements of A. In such a case we say that the system {a*,b*} is homogeneous. It
can be shown that if v(J,« ) = 0 then there exists such a change of coordinates
that (F(Sa»p+))k = dj(6,u), k = 1,...,n, where dj are homogeneous elements (of
dual basis). In other words, the algebraic representation becomes homogeneous
after a change of coordinates y = F(x). Then we also say that the system is
homogeneous and the coordinates y are privileged for the system {a*,b*}.

Definition 1 Suppose a homogeneous system {a*,b*} is such that Jo« p» = Tap
(or, what is the same, Lo« p» = Lqyp). Then we say that {a*,b*} is an algebraic
approximation of {a,b}.
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It can be shown that if {a, b} is autonomous then its algebraic approximation
{a*,b*} can be chosen as autonomous.

In 2] we propose the connection of such approximation with time optimality.
Let us adopt the following definition of equivalence in the sense of time optimality.
Consider two time-optimal control problems of the form , for systems
{a*,b*} and {a,b}. Suppose there exists an open domain Q C R™\{0}, 0 € Q,
such that the time-optimal control problem for the system {a*,b*} has a unique
solution (6%, u%,) for any 2% € Q. Denote by U,o(6) C BY the set of all controls
which steer the point 2° to the origin by virtue of the system {a, b} in the time 6,

then the optimal time for this system equals 6,0 = min{6 : U,0(0) # @}.

Definition 2 We say that the system {a*,b*} approzimates the system {a,b} in
the sense of time optimality in the domain ) if there exists a (real analytic)
nonsingular map ®(x) of the neighborhood of the origin (®(0) = 0) and a set of
pairs (6,0, Ty0), 20 € Q, such that U0 € UQ(JCO)(gxo) and

03 (20) 0,0
—1 z
9 9;0

*
20

1 /¢ _
— 1, 0/ ’uzo(t)fuxo(t)}dt%() as CCO—)O, xOGQ,
0

where § = min{07%,, O,0}).

Controls u,0(t) can be regarded as “almost optimal” controls for the system
{a, b} which steer the point ®(z°) to the origin in the “almost optimal” time 6,0.

In [2] the following result was obtained. Suppose the system {a*,b*} is an
algebraic approximation of the system {a,b}. Suppose also that there exists an
open domain 2 C R"\{0}, 0 € Q, such that

(i) the time-optimal control problem for the system {a*,b*} has a unique
solution (6%,,u%,) for any 20 e,

(ii) the function 6%, is continuous w.r.t. z° € Q;

(iii) for the set K = {u*,(t0%) : 2° € Q} C Ly[0,1], the weak convergence
implies the strong convergence.

Then there exists a set {Q(d)}s>0 of domains, Q(d1) C Q(d2) if 61 > 0do,
Usso ©2(6) = Q, such that {a*,b*} approximates {a,b} in the sense of time
optimality in each domain §2(9).

In other words, if the system {a*,b*} approximates {a,b} in the algebraic
sense then, under some conditions, it approximates {a,b} in the sense of time
optimality.

In [I] we considered a subclass of systems {a, b} whose approximation {a*, b*}
is linear. In this case we proved also the converse implication. Roughly speaking,
the result is as follows: if the system {a,b} is approximated by a linear system
in the sense of time optimality then its algebraic approximation is linear, i.e.,
di = &m,, @ = 1,...,n. The proof used essentially the fact that optimal controls
for linear systems are piecewise constant and, for a set of initial points of nonzero
measure, have n — 1 switchings.
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The question remains whether this statement can be proved for more general
class of approximating systems. In [6] we partially answered this question. The
main idea was to consider those systems {a*,b*} whose optimal controls are
piecewise constant with n — 1 switchings for a set of initial points with nonempty
interior.

In the present paper we develop the idea proposed in [6] and prove analogous
statement for autonomous systems under much weaker assumptions concerning
optimal controls. Preliminary lemmas are given in Section 2. The main result
(Theorem 1) is proved in Section 3.

2. Preliminary results

Notation. (a) Denote by ¢ : A+ R — A and ¢’ : A — A+ R differentiations in
A defined by
(&m) = (m+ 1)&mi1,  ¢(1) =0,
90/(50) =0, @/(fm) =m&m—1, m > 1,
then
k

k
@(frmmk) = Z(mz + 1)€m1,,,(mi+1),,,mk, cp’(fml...mk) = Zmzfml(mlfl)mk
i=1

i=1
(b) Denote by ¢y : A+ R — A and ¢, : A — A+ R linear mappings defined
by
wO(Emlmk) = gmlmk V 507 ¢0(1) = 507

wé(é—o) - 1’ ¢6(§m1mk) = { 07 Mk 7& 0’

fml...mk,p mg = 0.
Lemma 1 (a) Mappings ¢ and ¢' are transpose to each other, i.e., for any
y1 € A+ R and any yo € A

(1), y2) = (y1, ¢ (y2))-

(b) Mappings 1o and ¢y are transpose to each other, i.e., for any y1 € A+R and
any ys € A

(o(y1),y2) = (y1,%0(y2))-

Proof. (a> Notice that <@(§i1---is)7§m1---mk> =0 and <£i1---is7 @l(gml---mk)> =0if
s # k. Hence, suppose s = k. For any ¢ =1,... )k

<£i1...iq...ikafml...(mq—l)...mk> = 0 lf iq + 1 # mQ'
Hence, for any &,,..m, € Aand any &, ;, € A+R
k

<<P(£lek)7§m1mk> = Z(Zq + 1)<§i1...(’iq+1)...ik7§m1~~~mq~~-mk> =

q=1

k
= Zmq<§i1---iq---ik7§m1...(mq71)...mk> = <§z1lk7 @l(fml---mk»'
q=1
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(b) For any &,,..m, € Aand any &, ;. € A+R

<w0(§i1...is)a£m1...mk> = <£les vaagml...m;J — { (()gil...isyfm1...mk_1> lf ke = 07

otherwise,

which, obviously, equals (&, ., ¥4 (&my.my))-

Lemma 2 (a) Im(p) + Im(¢g) = A; (b) ker(¢’) Nker(¢y)) = {0}.

Proof. (a) First, let us show that any &, .m, € A belongs to Im(¢) +Im(t)yp).
We use the induction w.r.t. my.

If my =0 then &y my = %0 (§my..my_y) € Im(¢ho) for any mq, ..., mg_q.
Suppose p > 0 and &, .my,_,p € Im(p) +Im(t)) for any mq,...,mg_1. Then

@(gml...mk_w) = So(é‘my..mk_l \ Ep) = (p + 1)€m1...mk,1(p+l) + So(fmy..mk_l) \ §p~

By the induction supposition, ¢(&{m,..m,_,) V &p € Im(p) + Im(1)g). Hence,

§m1...mk71(p+1) = ﬁ (‘P<£m1---mk—1p) — @(&my.my_y) V §p) € Im(¢p) + Im(zo).

The induction arguments complete the proof.
(b) Now, let y1 € ker(y’) Nker(¢))). Then Lemma [I| implies that for any
ypeA+R

(p(y2),91) = (Y2, 9" (1)) = 0, (o(y2),y1) = (y2,9(y1)) = 0.

Hence, y; is orthogonal to Im(p) 4+ Im(ty) = A, therefore, y; = 0.

Remark. It follows from [3] that if 7, is a right ideal corresponding to the
system {a, b} then ¢ and vy are J, p-invariant, i.e.,

@(ja,b) C ja,ba wﬂ(ja,b> - ja,b- (5)

Relation is necessary and sufficient for the ideal J;; to be a right ideal of an
autonomous control system.

Corollary 1 Suppose J,p is a right ideal corresponding to the system {a,b}.
Then ¢’ and 1 are J -invariant, i.e., ¢'(J:5) C T4 and y(T5) € T

Remark. Formally, Corollary [1| requires the system {a,b} to be autonomous.
However, one can weaken this condition by assuming that the algebraic
approximation of {a,b} is autonomous. On this way, Theorem [I| (which uses
Corollary |1)) can be slightly generalized.

Lemma 3 Let us fir 0 > 0 and consider u(t), t € [0,6], such that there exists
w(0) = limy— 1o u(t). Let us consider 85 = 6 — 6 and us(t) = u(t + 0), t € [0, 65]
for 0 <6 < by < 6. Then for any z € A

(0, 05) 510 = —2'(2)(0, ) — w0} (=) (0, u).
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Proof. It suffices to consider z = &,,..m, . We have

0—6 0—5 6—6 k )
§m1 M 95,165 / / / T] +5)d7’1 -d1, =
// / 7 — 6)"u(ry)dry - - - dTy,.

d
75m1mk (957 Ué) -

Then

gkl

— (1 — 8)™Fu(Ty, / / / )" u(;)dr - AT | =5 —
k
_Zmz/ / / T — 8)"™ (1 — 5)mi71Hu(7—j)dT1~-~d7—k,
2 JFi j=1
Hence, when 6 — +0 we get
( k
— ;ngml(mz_l)mk (07 u) - U(O)éml--.mk,1(07 u)
d if my, =0,
%gmlmk (05, us)|s=+0= k
_ Z mzfml (m;—1). (0,u)
if mg, #0

which completes the proof.
3. Equivalence of autonomous homogeneous systems

In this section, a system {a*,b*} is supposed to be homogeneous. Then in
privileged coordinates we get (Sg«p+)r = df, where ord(dy) = wy, k= 1,...,n.
For such a system we introduce a dilation H.(x) acting as (H.(z)), = e%kxy,
k=1,...,n. Notice that

i o0y = 020 amd o) () = wlo(!), 1 € (0,0, (6)

Let us suppose that an open domain Q C R™\{0}, 0 € Q, is such that the
time-optimal control problem for the (homogeneous) system {a*,b*} has a unique
solution (0%, u%,) for any 20 € Q. We assume that in € optimal controls are
continuous from the right at ¢ = 0, i.e., there exists u%,(0) = lim_,youlo(t) for
any z° € Q. Without loss of generality we may assume that the domain € is
pseudo-conic w.r.t. {a*,b*}, i.e., if x € Q then H.(z) € Q for any 0 < & < &.

Now let us denote by x*(t), t € [0,0%,] the optimal trajectory corresponding

to an optimal control u*, () (here z*(0) = 2° and 2*(6%,) = 0). Then obviously

9;*(5) = 9:30 — (5 and U;*((s)(t) = U;O(t + 5), t e [0,0;*(5)], fOl" (S € (0, xo) (7)
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We assume that € is open, hence, for any 2° € Q some segment of the optimal
trajectory starting at 2° belongs to €, i.e., there exists 5o > 0 such that 2*(5) €
for 0 <9 < dp < 0.

Finally, we call the set L = {z € R" : x1,...,2,_1 are fixed, z, € R} a
vertical line.

Theorem 1 Suppose a homogeneous autonomous system {a*,b*} approximates
the autonomous system {a,b} in the sense of time optimality in any of (pseudo-
conic) domains ;, i € I, with the same map ®(x) (where I may be finite or
infinite set of indices) and for all 2° € Uier $4 the time-optimal control problem
for {a*,b*} has a unique solution (07o,u%) such that u?y(t) is continuous from
the right at t = 0. Suppose there exists an open subset Q' C |J;c; Qi which satisfies
the following condition in privileged coordinates for the system {a*,b*}:

For any vertical line L, if the intersection M = Q' N L is nonempty
then the function f(x) = u%(0), x € M, is not constant.

(L)
Then {a*,b*} is an algebraic approximation of {a,b}.

Proof. Let L= p+ and L, j, be core Lie subalgebras corresponding to the systems
{a*,b*}, {a,b} and let {¢;}7_, {¢x}}_, be homogeneous Lie elements such that

L= Lln{f{, ce ,é;} + Ea*,b* = Lin{ﬁl, R ,én} + 'Ca,b-

Suppose {d;}}7_; and {dj}}_, are the corresponding elements of dual basis and
wy, = ord(dy), wy = ord(dy), where wi < --- < w) and wy < -+ < w,. We
notice that for autonomous systems without loss of generality we may assume
b =107 =dy =dj = &.

We suppose the coordinates are privileged for the system {a*,b*}, then

(Sarp )k = di(0,u), k=1,...,n,
and
o =dy(0%0,uo), k=1,...n 8)
Also, without loss of generality we assume
(Sap)k = di(0,u) + pr(0,u), k=1,...,n.

and pp € anozwk +1A™. By the supposition, the system {a*,b*} approximates
{a, b} in the sense of time optimality. Taking into account Definition [2] we suppose
Uyo € U¢($0)<9$0), then

((I)(xo))k = dk(emoaﬂro) + pk(exoaazo)a k=1,...,n.

Therefore,
dk(gxovamo) + pk(§m0>ﬂx0) = ((I)(di( ;0’ u;0)7 ceey d;(;( ;O,U;O)))k =
n w,

* * * * * * * * * 9
= awdi (00, uko) + > prn(di, . d3) (00, uho) + Re(0%0, ulo), ©)
=1

m=1
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where the matrix {a;x} is nonsingular (it equals ®'(0)), pyi are shuffle polynomial
without linear terms, ord(pni(di,...,d:)) = m, and Ry € > LA™

m=wg+
Without loss of generality we assume that the elements {¢;}}_, are chosen so

that ®’(0) equals the identical matrix.
Due to Definition [2| for any z € A™ and any i € I we have

2(040,TUg0) = 2(0%0,uko) +0((05)™) as 2° — 0, 2° € Q..

Then @ implies for any z° € €

di(030, %) = dj, (630, 1%0) +mek di, o dp) (B30, wh) + 6((050)™),  (10)

k=1,...,n. Let us denote

d*){ di 4+ pmi(dy, ..., dY) if m=w},

P (e Pk (i, ..., dY) otherwise.

(11)
Considering (10)) for 22 = H.(2°) € ;, 0 < € < €9, instead of z°, we get
Ekdk 3307 Zs Pmkdla"'ad )( 205 U )+0( )

as € — 0, which implies

Proi(dy, ..., dy) (00, uto) =0, m < wy — 1, (12)
(%0, u%o) = Pui(dl, ... d5) (0%, uko), k=1,....n, (13)
for any 2% € ;. Using we get from ([12)
P2, ..., 20y =0, m < wy — 1,

for any 2% € Uicr €, which implies that polynomials Py,x are zero, P, = 0. In

particular, (11)) gives w} > wg.
Now we consider ([13)) and use the induction arguments. Assume

Wj =+ =Wjyq = C,
wg<c if s<j—1 andws>c if s>j+q+1.

Suppose j =1 or
di=dy, k=1,...j—1. (14)

As is shown above, w; > wj;. Hence, if j > 2 then, due to the induction
supposition,

Ty NA™ = Jk o NA™, m=1,....c—1 (15)
Since ord(Py(jtry(d],-..,dy)) = c and w; > ws > c for s > j + q, we get

Pojim(dis. .. dy) = Pyjir)(di,....dj,,). For brevity, we temporarily denote

Fivr = Pegipn (d], - . ,d;+q)



Bicuuk XHY, Cep."Maremaruka, npukjiaiia MareMaTuka i Mmexanika”, Tom 84 (2016) 19

Since €2; is open then z*(0) € Q; for 0 < 0 < §y. Therefore, considering
for 2*(0) instead of 20, we get

dj+r(05)u5) = fj+T(9(57u5)7 r= Oa -4, 0<d< 507

where 05 = 0%, — 6, us(t) = Uy (5) (t) = ulo(t +9), t € [0,0s]. Hence, Lemma
gives

' (djr) (0, 1) + w(0)Y' (djgr) (0 1) = @' (fir) (0, u) + w(0)Y (f4r)(0, 1), (16)

where 6 = 07, u = u’,. By constructlon djir € jab and fjy, € ja* b+ hence,
applying Corollary |1] I and using we have

¢ (djer), Yo(djr) € TapNATH = jaJ;,b*mAc_lv ' (fjer)s Yo (fir) € Tar e DA,

therefore, for any r =0,...,¢
90,( j+r — fi+r) € ja* b N AT 17 wé)(dj—&-r — fj4r) € jaJ;,b* nA!

However, a basis of jaj; p is formed by polynomials of {d},...,d;}. Let us take
into account that ord(d;1,) = ord(fjt+r) = ¢ < wj. Hence, for some polynomials
Plr and PQT

@l(dj+r—fj+r) :Plr( Ta"w ;—1)7 ¢[/)(dj+T_fj+7") :PZT( T?"'a ;—1)' (17)
Hence, implies
Py(di,...,d; io1)(0,u) + u(0) Por( T,...,dj )O,u)=0
where 0 = 67,, u = u’,. Now recalling we get
Pl?’(x?v"-a T 1)+U(O)P2T(x?7"->$?—1) =0 (18)

for any 2% € J;c; Qi, where u(0) = u*,(0).

Suppose the polynomial Ps, is not identically zero. Let us apply condition (L).
Namely, let us consider the set Q" = {z € Q' : Py (x1,...,2j-1) # 0} which is
nonempty since the nonempty set €’ is open. For any x € €” the optimal control

P T ) )
% hence, it depends only on the first 7 —1 coordinates

of the point x (where j —1 < n — 1). Hence, the optimal control is constant on
the intersection of Q" with any vertical line, what contradicts condition (L).

Hence, the polynomial P, is zero, therefore, Py, also is zero. Then implies
djtr — [j4r € ker(¢’) Nker(y)). Now, Lemma [2| gives dji, = fj4r. Thus,

equals u(z) =

dj-H” = Pc(j+r)( Tv s 7d;<+q) (19)
If wi,, > wji, = c then, by , Pejyn(dr, . .. ,d;‘erq) = Pe(j4r)(d], - - cdi 1)
is a shuffle polynomial without linear term, hence, Pp(;i,(df,... ,d;k+q) € Lt

However, d;i, & L1, therefore, li leads to contradiction.
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Hence, wj,, = wjqy = cforallr=0,...,¢. Then and give
djyr = d5 1y + Per)(dis -y diy), T7=0,...,q. (20)

We recall that monomials of p.(; 1, are elements of the dual basis. So, if p; )
contains the monomial (%)% w - - w (d;‘-fl)l“qj*1 with nonzero coefficient then
Pe(j+r)(d7, -+, df_y) is not orthogonal to the element (£7)Y% V.-V (£5_;)V%-1.
However, the induction supposition implies ¢; = {;, k=1,...,j — 1, hence,
both dj;, and d}_, are orthogonal to this element. Then implies that the

Jtr
polynomial pej i,y is zero, pe(jir)(d7, - - ,d;f_l) = 0, and therefore,
dj+T:d;+7., TZO,...,Q.
Using the induction arguments we get that d, = dj for k = 1,...,n. Therefore,

jalb = .7; p<» which implies J, 5 = Jo= p=. The theorem is proved.

Remark. In Theorem the controls u’, are time-optimal. However, the
optimality itself is not used in the proof. Instead, the following two properties
of controls u?, are applied: the requirement @ connected with the homogeneity,
and the property which is justified by the autonomy of the system. One can
generalize the theorem assuming that for any point 2° € Q a control uyo is chosen
which steers the point z° to the origin by virtue of the system {a*,b*} and steers
the point ®(z°) to the origin by virtue of the system {a,b} and, in addition,
satisfies @, , and condition (L). Then equality holds and, as one can
obtain by repeating the rest of the proof of the theorem, the systems {a*,b*} and
{a, b} have the same right ideals.

Remark. Let us also notice that condition (L), which is used in the proof in
order to conclude the identities Py, = P», = 0 from equality , can be replaced
by some other condition. For example, one can require the existence of a € R
and two open sets My, My C |J;c; Qi such that u?,(0) = a for any 20 € M; and
% (0) # o for any 2¥ € Mo.

Example. As {a*,b*}, let us consider the nonlinear homogeneous system of
the form
T =u, &9 = T1, I3 :x‘i’.

As was shown in [7], for any 2° the optimal control u*,(t) equals +1 or 0 and
has finite number of switchings. In [8] domains where the time-optimal control
problem for this system has a unique solution were described. In particular, it
turns out that conditions (i)—(iii) mentioned in Section 1 are satisfied in several
open domains. Hence, if {a*,b*} is an algebraic approximation of {a,b} then
{a*,b*} approximates {a,b} in the sense of time optimality in these domains.
Moreover, there exists a domain ' satisfying the conditions of Theorem 1; for
example, one can choose ¥ = {z : 1 > 1, —2% < 29 < 0}. Therefore, if {a*,b*}
approximates {a, b} in the sense of time optimality in some domains ; such that
' C U,er Qi then {a*,b*} is an algebraic approximation of {a,b}.
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