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Continual distribution with screw modes
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Explicit approximate solution of the Boltzmann equation for the hard-sphere
model are built. It has the kind of continual distribution in the case of local
Maxwellians of special form describing the screw-shaped stationary equilibrium
states of a gas. Some limited cases, in which this distribution minimized the
uniform-integral remainder between the sides of this equation are obtained.
Keywords: hard spheres, Boltzmann equation, Maxwellian, screws, uniform-
integral remainder, continual distribution.

Topnescokuit B. /1., Cazonosa O.C. KoHTunyanapHuUii po3mnoij 3 rBuH-
ToBUMHU MomaMu. [loOymoBaHo siBHMIT HAOJMKEHWI PO3B’A30K HETIHIHHOTO
piBHstHHS BosibIiMana J1j1st MoJ1es1i TBepanx KyJib. BiH Mae B KOHTUHYaJIbHOI'O
PO3MOJITY V BUNAJKY JOKAJbHUX MAKCBEJIAHIB, IO OMHUCYIOTH CTAIlOHAPHI
pPIBHOBaKHI CTaHU rasy, HOIOHI rBUHTAM. 37400yTO JesiKi TpAaHUYHI BUIIAIKH,
B SIKUX IIei PO3IOILN MiHIMI3ye PIBHOMIDHO-IHTErpaJbHAN BIIXMJI MiXK 9aCTH-
HAMU DIBHAHHS.

Kmovwosi caosa: TBepai Kymi, piBHsAHHA DBosbIiMaHa, MaKCBeJiaH, TBUHTH,
PiBHOMipHO-iHTErpaJbHUN BiIXW/I, KOHTHHYAJIbHUN PO3ITOIIJI.

Topnesckuii B. /1., Cazonosa E. C. KonTrHya/ibHOE pacnpe/iejieHue ¢ BUH-
TOBBIMU MogamMu. [locTpoeHo siBHOe MPHUOINKEHHOE peIeHne HeJTMHEHHOrO
ypaBueHusi bBosbrimana jist Mojiesn TBepabix cdep. OHO mMeeT BUJ KOHTH-
HyaJIbHOT'O PACIIPEIEJIEHUSI B CIydae JIOKAJIbHBIX MaKCBEJIHAHOB, OIHCHIBAIO-
[UX BUHTOOOPA3HbIE CTAIIMOHAPHBIE PABHOBECHBIE COCTOSTHUS rasa. [loydenbr
HEKOTOPBIE IIPEJIEJIbHBIE CJIyYUan, B KOTOPBIX 9TO PACIIPE/IEIEHNe MITHIMU3UPY-
€T PAaBHOMEDHO-UHTETPAJIBHYIO HEBSA3KY MEXKJIy YaCTsSIMU yPABHEHUS.
Kmoueswie carosa: TBepbie cdepbl, ypaBHeHne bosbiiMana, MaKCBeIINAH, BUH-
ThI, PABHOMEPHO-UHTErPaJIbHAsI HEBSI3Ka, KOHTHUHYAJbHOE pacipeie/ieHue.
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1. Introduction

The interaction between flows of a gas of hard spheres is described by the
kinetic integro-differential Boltzmann equation [1]-[3]:

D) = QU ), )
()= 4ol 2

d2
Q(f7 f) =5 dv dOé‘(U -V ,a)][f(t,v’,x)f(t, Ulax)_
QRZ 2/ 1 1 )

- f(t,vl,x)f(t,v,:v)],

where f(t,v,z) is the distribution to be found, that describes the number of
particles that in the moment of time t have velocity v and are in the point of
space x, Of /Ox is its spatial gradient, t € R! is the time, x = (2!,22 2%) € R?
and v = (v!,v%,v3) € R® are the molecule coordinate and the velocity, d > 0 is
its diameter, v and vy are the molecule velocities before the collision, o € 3, ¥
is the unit sphere in R3. The molecule velocities after the collision are defined by
the formulae

vVV=v—alv—-v,a), v]=v+alv-uv,aq), (4)

The well-known exact solutions of (1) — (4) are the global and local
Maxwellians [1]-[3]. Some other exact solutions were obtained only for the case of
Maxwellian molecules and for some of its generalizations [4]-[6].

That is why the question of the search of explicit approximate solutions of
this kinetic integro-differential equation and satisfying it with arbitrary accuracy
was occured.

Then bimodal distributions including both global and local Maxwellians of
different particular kinds describing screw-shaped [7], [8], tornado-like [9], [10]
and other equilibrium states of a gas were studied [11].

Then a new approach to the search for explicit approximate solutions of the
Boltzmann equation was proposed in the paper [12]|, namely the continual kind of
distribution function. It was supposed, that mass velocity of the global Maxwellian
does not take discrete values but becomes an arbitrary parameter taking any
values in R3.

Attempts to transfer the results of [12] and other works in the case of local
Maxwellians of the most general form have not been successful due to occur at
the same time significant difficulties.

The objective of this paper is to study the behavior of the continual
distribution involving local Maxwellians of a special form that describe the screw-
shaped stationary equilibrium states of a gas (in short-screws or spirals) |7, 8, 14].
Every Maxwellian of this type is defined by the formula

3
M(v,u,x) = poel’ ™ (B) * o Blo—u—fwxal)? (5)

™
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Physically, distribution (5) corresponds to the situation when the gas has an

inverse temperature 3 = 2T> where T' = 1 f (v —u)?fdv and rotates in whole as

a solid body with the angular velocity w € R3 around its axis on which the point
zo € R3 lies,
[w X u]

rog —

: (6)

The square of this distance from the axis of rotation is

w?

P = Slox (o - ao)) 7)

and the density of the gas has the form:
2.2
p=poe™ (8)

(po is the density of the axis, that is 7 = 0), u € R? is the arbitrary parameter
(linear mass velocity for z), for which z||lw, and u + [w x z] is the mass velocity
in the arbitrary point x. The distribution (5) gives not only a rotation, but also
a translational movement along the axis with the linear velocity

(W, u)

2 Y
w
Thus, it really describes a spiral movement of the gas in general, moreover, this
distribution is stationary (independent of ¢), but inhomogeneous.
We will consider the continual distribution [12] such form as:

f= /go(t,:c,u)M(v,u,x)du, 9)
R3

It is assumed, that the coefficient function ¢ (¢, z, u) is non-negative and belong
to C' (R7). It is required to find functions ¢(¢,z,u) and the behavior of all
parameters such that the uniform-integral remainder [13]

— sw / ID(f) - QUf. )ldv, (10)

(t,x €]R4

tends to zero.

In the section 2 asymptotical expressions for some upper estimations of
remainder Delta with 8 — 400 and other assumptions about the behavior of
the vector for angular velocity w.

2. Main results

Before formulating and proving the main results it is necessary to reconstruct
the right part (10). First we must to obtain and estimate the integral with variable
v, substituting distributions (5), (9) in (1)—(3) according to

D(M) = Q(M, M) = 0. (11)
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Thus,

/D Mdu—/D )P M du (12)

/dm/da\v—vl, )| x

x 2Bw?r? L/ dulap(t,x,ul)ﬁ(v’l,ul,x)/dqu(t,x,ug)M(v’,ug,x)—

3 R3

—/dulgo(t,a:,ul)j\\j(vl,ul,x)/duzw(t,x,ug)ﬁ(v,ug,m)l,

R3 R3
(13)
where the denotation
—~ 3 _
M =Mv,u,x)=p (B> e~ Bl=1)? (14)
0
t=1u(r) =u+ [w x ]
were introduced
Then
dy 0y 2,2~
D(f - - 22 BT du—
/| s ) dv = /LJ(at+Uax>e du
3
—/dvl/da| v — v, Q)| X
(15)

% €2Bw r /gp(t,$,u1)<ﬁ(t,$7u2) [M(vi,ul,x)ﬁ(v/,w,x)_
R6

— M(vl,ul,m)ﬂ(v, ug,x)]dulduz dv.

As usual, we introduce the notion of "gain"G and "loss" L parts of the collision
integral @)

2
G(r.9) =% [ dvn [ dalw = vnolft o ogltona), (10
R3 D)

2
= dQ/dvl/ da|(v —v1,a)|g(t,v1, ). (17)
R3 ¥
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Because, as is known [1]:

/G(Ml,MQ)d'U = /MlL(Mg)d’U, (18)

we obtain the next upper estimation

/ ID(f) — Q(f, f)| dv < ’ Z21 PN dudv+
+ 2 / (b, 2w )t 3, 1) / (4L (V) + (19)
R6 R3
+ MgL(Ml)] duidusdv

According to (19) for the correctly define of remainder (10) on coefficient
functions it is necessary to impose new conditions of fast decrease on a spatial
variable x. Therefore we will introduce the new denotation

o(t,z,u) = Y(t, x, u)e*ﬁ“ﬂ’ﬂ, (20)

where the functions are continuously differentiable and non-negative. Then
according to (19), (20) and (7) the estimate (19) takes a form

/ D(f) — QUf. )] dv <
R3

/ ‘ ( =289 |[[w x (z — z)] x w]) ‘ M dudv+ (21)
+ /@/}(t,x,ul)w(t,x,ug) /[MlL(Mg) + MgL(Ml)] duldugdv
R6 R3
Theorem. Let conditions (5), (14), (20) be valid, and
= %k (22)

where s > 0 is any constant, wy is arbitrary fived vector (the other pammeters are
also arbitrary and fized so far). Also we assume that the functions 1, |2 5 i ‘8x|

[[wo x z]|v, ([wo X ], %) , are bounded with respect to t and x on R” and that
the quantities

00 w0
U lul, oo SE St e @) (23

in the variable u uniformly in tand x on R*. Then the quality A defined by formula
(10) is meaningful (i.e., the finite inyegral and the finite supremum), and we have
A’ such that

A <A (24)
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If

1

3 < k<1, (25)
or

1 1

Sek< 2

1 <k<s, (26)
and

[wo x u] =0, (27)

then there is the finite limit

L= lim A'= sup [ ‘ du+

B—r—+00 (t,x)ER4

(28)

+27T3d2p2/Q,Z)(t,:c,ul)i/)(t,x,uzﬂul — ug|duydug | .
RG

To prove Theorem we need the following lemma 7|, which gives a sufficient
condition for the continuity of supremum of the function of special kind of many
variables. The supremum is taken respectively to a part of variables.

Lemma. Let the function g(y,z) : Y x Z — RYLY € RP; Z € RY; and let the
following conditions be satisfied:

1)Vz € Z, g(y, z) is bounded in Y;

2) g(y, z) is continuity in z uniformly with respect to y, i.e.,

V2o € Z,Ve > 0,36 > 0,Vy € Y,Vz € Z,

|2 =20l <0 = lg(y,2) — 9(y, 20)| < e

Then the function

I(z) = sup |g(y, 2)|
yey

18 continuity on the set Z.
Proof the Theorem. From (10), (21), (23) and the properties of supremum,
there are follows the existence of the remainder A, and

(t,z)eR*

A<A = sup L ‘ ( 2ﬁw[[wx(x—x0)]xw>‘Mdvdu+

+/1/J(t,x,u1)¢(t,x,uQ)/[MlL(Mg)+J\72L(]\71)]dvdu1duQ].

RS R3
(29)
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In (29) we also interchange the integration order; the validity of this procedure
can be justified as follows.
The integrand in the first term is continuous and

/’ < 25¢[[W><($—900)]><w>’Mdu

converges uniformly in R3 (by the Weierstrass theorem),

<

[ (22 -t e ) (2) e

<o(2)" e (|20] oy (|22 + 23] x o - zom )

™

is integrable by virtue of condition (23).

The integrand in the second term is continuous by the theorem conditions, and
the inner integral converges uniformly in u; and ug by the Weierstrass theorem
because we have an integrable majorizing function. We can therefore also change
the integration order here.

Changing the variables as \/B(v—1u) = w and v = % +u= % + [w x ],
we have
A= sup [,mr 3/2/‘ ( +u—|—[w><x]>><
(t,x)eR?
X (gﬁﬁ — 289w x (z — )] x ]) e dwdu | +

+ sup /¢ t T, Uy w(t T UQ)/ [MlL(MQ) +M2L(M1) dde1dUQ
(t,x)eR*
R3

(30)
Let us consider the integrand of the second supremum in expression (30):

ML(M)—M<w+ﬂ u x>d2/dvx
1 2 \/B 1, %1, 2R3 1

w . i (Y . & (B 3/2
<\/B+U1 /Ulva> (UlaUan) - <\/B+ulau17x> ?P <7T> X

Y
x/dvlz/dOZ(\wf ~—v1,)

e Blur—i2)?




Bicuuk XHY, Cep. «Maremaruka, IpukjiajiHa MaTeMaThka i Mexankas, Tom 84 (2016) 119

We introduce the replacement

=4

\/B(vl—f@):z; 01:%4‘ 2:%+u2+[wxaz].

MlL(MQ):M(\%+ﬂ1,u1,x)p7r3/2/ E/ ( —jB—fm,a)

w_ _z _
Let 0 be the angle between the vectors <\/B + NG u2) and «. Then we

e

have

~ o~ w d? 2
M{L(Msy) = M <—|—€L1,u1,x> p7r3/2/dze_z X
Wo) =M\ 75
w
— tu + [wxzx]—

2
xz/da\/g

We direct the z-axis along the vector (% + ug — \ifﬁ — ug) and introduce the

RS

—ug — [w X ]| | cos b.

VB

spherical coordinate system on Y. Integrating over the angles 6 and ¢, we then
obviously obtain

w d? _2|w z
MlL(MQ):M(\/B+U1,U1)\/;/dZ€ : 7&+u17ﬁ*u2 .
R3
Analogously, we have
w d? _2 | w w
MyL(My) =M <\/B+u2,u2> \/g/dze ’ ﬁ—i—ug — ﬁ —uyl.
R3
Hence, we obtain
/¢1¢2/ M (w-i-ul Ul) 53/2de/d2622 i—i—ul 2 —ug| +
P VB VT ) VB VB

Uy ]dwduldm =

2
+M (\;UB + u2,u2> 53/2%]1%/3 dze ug — % -

2
— *3/2 7w2d p/ 7z2
/ P12 / [pw e NG dze
R6 R3 R3

=3/2—w? d*p

\F

w
— +u

VBT BT

_2 | W
z — + uy

VBT VB

=2/w1wz/ e 2d22/d
RS R3

+ pr dze

U1 ]dwduldug =

)

+ up — us| | dwduqdus
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For expression simplification (30) we introduce the notation:

v = ﬁ (31)
d? 2
A(w,u,t,x) = p—= [ dze" |wy + (u1 — uz) — 27| (32)
|
B(w,u,t,z) = <\1/UB+u+[w ><:1:]> <gixb — 289 [[w X (x — )] xw]) =
= <\/B—|—u—|—[w><m]) X
X gi)—l—?ﬁ*w(w(w,x—xo) — w? <x— [w(;;u])) =
—iuwxa—@b w(w,z) — 2w + [wx u]) =
_<\/B+ +[><]>><a$+26¢((,) + [w x u])
_W Y b
_8x<\/ﬁ+ + [w x ])-l—
+2¢\/B{(w,w)(w7x) - wz(x,w) + (w, [w % u])} =
_ (v u+wxx
_ax<\/ﬁ+ + [w x ])+
+20V/B {~[w x w]fw x 2] + (w, [w x u])}
(33)
Using expressions (23) and (31), we will obtain the following:
B(w,u,t,z) = ?}Zﬁ (w’y—i—u%—*y%[wo x z]) + (34)

+ 2¢ys { (w, [wo x u]) — s7*{wo x w]wo X 7]}

Taking formulas (32) and (34) into account, we rewrite expression (30) as

e’ dwdu +

A = sup [pﬂ3/2/'aw+3(w,u,t,x)
Oz
R3

(t,z)ER*

+ sup [2p7r_3/2/w(t,x,ul)w(t,x,uQ)/A(w,ul,ug,t,x)dwduldW]
(t,x)eR4
R6 R3

(35)

We apply the aforesaid Lemma to each supremum contained in (35), where
y=(t,x),Y =R 2= (w,7), Z =R3 x R! . Fulfillment of the first and second
conditions follows from (23), (32), (34) and the theorem conditions.
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Because the lemma conditions are satisfied for each of these supremums, the
whole quantity A’ is continuous in v on ]R}r. So, in (35) we can pass to the limit
with 8 — 400, which is equivalent to the tending of v to zero. Thus dependence
on z and w is reduced only to expressions ¢ in (32) and e in (35). As a result
of integration by z and w we come to (28).

Now, based on the obtained expression for the limit as 8 — 400, we can find
the sufficient condition for the mismatch A to tend to zero, which we formulate
as a corollary of Theorem.

Corollary. Let all the theorem conditions be valid. Then the statement

A0 (36)

holds if the function v defined by formula (8) has the form

P\3/? )
Blta) = Cla—u) (2] e, (37)

™

where C' is any smooth, positive and bounded function together with all its
derivatives, ug € R? is an arbitrary fived vector, and P — 400.

Proof. Let us use limit expression (28) and substitute expression (37) in it.
The integrand of the first term then vanishes,

C'(x — ut)(—u) + uC’(x — ut) = 0.

We consider the integral in the second term (the proof of integral convergence
and it tending to zero as P — +o0 is analogous to proof in [12]). The corollary is
proved.

Remark 1. Relation (36) also holds at a fixed P in expression (37) under the
additional condition that d — 0 (the near-Knudsen gas).

Remark 2. In (37), we can obviously take C([ux z]) instead of the first factor
C(z — ut) and take other d-functions instead of the second factor.

Remark 3. The common property of all obtained distributions is that they
describe the non-uniform cooling gas (8 — +00). Besides, the rotation of spiral
decelerates (w — 0), although in different degrees in accordance with (22) and
under the conditions of (25), (26). As corollary shows, the estimate (21) and the
limit in expression (28) ensure the further arbitrary smallness of the remainder
A for the given coefficient functions and sufficiently small absolute temperature,
which only means assuming that the thermal constituent of the molecule velocities
is small when an arbitrary value of the mass velocity of a flow is preserved. At the
same time, the distribution f itself does not tend to any of Maxwellians (i.e. to
the known exact solution of the Boltzmann equations). It’s defined by (37), (9),
(5).

In summary, in this paper we managed a few to generalize results, which
obtained in [12] and [14]. We have here constructed continual distribution for
the case of local Maxwellians describing the screw-shaped stationary equilibrium
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states of a gas and satisfying Boltzmann equation (1)-(3) in the sense of
minimizing mismatch (10).
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