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The time-optimal control problem for the system @, = u, i = 11, i3 = 2}
is considered. Explicit formulas for finding optimal controls are given. The
explicit solution of the optimal synthesis problem is obtained.
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Introduction

The time-optimal problem is one of the most investigated optimal control
problems. Different approaches were developed which give a description of optimal
controls. However, in the general case an answer hardly can be obtained in an
explicit form. So, for the simplest linear time-optimal control problem
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Pr=wu, Fi=xi_1, 1=2,...,n u®) <1, z(0)=2° z(#) =0, 6 — min,
in the case n = 2 the well-known explicit solution directly follows from the
Pontryagin Maximum Principle [1]. However, for n > 3 the answer is much
more complicated and entirely non-obvious. Specifically, the Pontryagin Maximum
Principle says that any optimal control equals +1 and has no more than n — 1
switchings, however, it does not give a direct way for finding the optimal time and
switching moments. The analytical solution of this problem was obtained in [2]. It
was shown that for an arbitrary initial point 20 the optimal time is a root of one
of two special polynomials of degree $n(n+2) for even n and 1(n+1)2 for odd n
with coefficients depending on z°. So, for n = 3 equations of degree 4 should be
solved. Moments of switching can be found also as roots of certain polynomials.

For nonlinear systems the solution can be much more complicated; in
particular, singular controls may occur. In [3], as an example, the time-optimal
control problem for the system &y = u, &9 = z1, 23 = m% was considered and
the explicit solution was given. By arguments essentially using the concrete form
of the system, it was shown that the optimal control (if exists) takes the values
+1, —1, 0 and has no more than two switchings.

Generally, it is an interesting problem to find classes of systems for which
time-optimal controls can be described more or less explicitly. In the paper [4]
one of such classes was presented, namely, the class of dual to linear systems,

1 = u, z.‘i:Pi(:L‘l)>2.227"'7717
where Ps(x1),..., Py(x1) are linearly independent real analytic functions of one
variable such that P»(0) = --- = P,(0) = 0. We emphasize that such systems

are non-controllable w.r.t. the first approximation for n > 3. It was shown that a
time-optimal control is piecewise constant and takes the values +1, —1 and 0 only.
Moreover, for any initial point 2° # 0 and any optimal control u(t), z € [0,5],
steering 2¥ to the origin (if exists) there exists a function

P(z) = =0 — VY2 Pa(z) — -+ - — ¥ Pu(2), (1)

where g > 0,1, ..., 1, are real parameters, 1/134—@[1%%—- --+12 > 0, such that the
first component of the optimal trajectory (t) satisfies the following properties:

— P(Z1(t)) > 0 for t € [0, 0]; hence, 71 (t) belongs to the connected component
of the set {z : P(z) > 0} containing the point z = 0;

—if ¢ is a switching moment for u(t), then Z1(f) is a root of the function P(2);

— if t is a switching moment for u(t) such that u(t +0) = 0 or u(t — 0) = 0,
then 71 (%) is a multiple root of the function P(z);

— any value can be taken by the function Z1(¢) no more than twice when
t € [0, 0], except of the value 0 which can be taken for three times if 2§ = 0.

These properties essentially reduce the set of possible optimal controls. In
particular, if P;(z1) are polynomials, the number of switchings can be estimated.
As an example, in [4] the following time-optimal control problem was considered,

Ty =u, T3 =1, T3 = SC?, ‘U(t)| <1, QZ(O) = ‘Toa ‘T(Q) =0, 6 — min, (2)
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and all controls satisfying the above-mentioned conditions were described.
Nevertheless, the questions remained whether all these controls are realized as
optimal ones and whether an optimal control can be non-unique for some points.

In the present paper we give the complete solution of the time-optimal control
problem (2). It turns out that all possible types of controls mentioned above are
realized as optimal ones. Unlike the linear case, optimal controls and the optimal
time can be found by ezplicit formulas. For each of such controls we describe the
domain where it is optimal. We give the solution of the optimal synthesis problem,
i.e., describe the domains where the optimal control equals +1 and —1, and the
surfaces where it equals 0. Also, we describe surfaces where the optimal control is
non-unique. In Sections 1-3 we consider all possible optimal controls in the case
29 > 0 only; for 2§ < 0 the solution can be obtained by symmetry arguments. In
Section 4 we sum up the results and briefly consider the case z{ = 0.

1. Optimal controls

First, let us discuss the results of [4] in connection with the particular
problem (2). For a given z°, denote by 6, w(t), Z(t) the optimal time, an
optimal control, and the corresponding optimal trajectory. Let us introduce the
Pontryagin-Hamilton function H = tqu + 1x1 + 132} and consider the dual
system

Y1 = —thy — 3hsal, =0, h3=0, (3)

hence, 19 and 13 are constants. According to the Pontryagin Maximum Principle,
there exist numbers ¢y < 0, b2, 13 and a function ¢y (t) satisfying (3) such that
Ug + 93 + 93 + (Yi(t))* # 0 for t € [0,0] and

(4)

-~

u(t) = sign(¢1(t)) a.e. for all ¢t € [0, 5] such that ¢ (¢) # 0,
Yo+ [P1(t)] + 2T (t) + 33 (t) = 0 for all ¢ € [0,6].

In particular, we get 13 + %3 + 93 # 0. Now we introduce the function (1); for
this example it equals a (nontrivial) polynomial

P(2) = —tpg — thoz — 132°, (5)

then (3), (4) imply

i (t)] = P(@1(t), 4n(t) = P'(F1(t)), t € [0,6]. (6)

In particular, it follows that Z;(¢) belongs to the connected component of the set
{z: P(z) > 0} containing the point z = 0.

If 91 (t) = 0 identically in some segment (71,72), then (6) implies that z;(t)
equals a root of P(z) for t € (11, 72). However, P(z) has no more that three real
roots, hence, 71 (t) equals one of them, Z;(t) = const, therefore, U(t) = Z1(t) = 0
for all ¢t € (71, 72). (Moreover, due to (6), 1(¢) should equal the multiple root
of P(z).) The question arises whether the set of roots of ;(¢) may have more
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complicated structure (for example, include convergent sequences of isolated roots
or some nowhere dense subsets of positive measure). R

It was proved in [4] that the answer is “no”. More specifically, for any ¢ € (0, 0)
there exists € > 0 such that 11 (t) keeps its sign on the intervals (¢ — ¢,%) and
(t,t + ¢); for the points ¢ = 0 and ¢ = # the same is true with the intervals (0, ¢)
and (5—5, é\) (Here we assume sign(0) = 0.) Clearly, this implies that the optimal
control u(t) is piecewise constant and can take the values +1 and 0 only.

In our example, let us consider all possible functions P(z) of the form (5)
for all (nontrivial) sets of parameters ¢g < 0, ¥2, 3. Since the coefficient of 22
vanishes, a relation between roots arises. Fig. 1-4 show all four possible types of
P(z) admitting optimal controls with at least two switchings (controls with no
more that one switching can be regarded as partial cases, so, we do not consider
them separately).

P(2) / P(7)
AN/

[= Z | z,\
Fig. 1. Function P(z) of type 1, Fig. 2. Function P(z) of type 2,
21+29+23=0 221+ 29 =0
P(z) P(z)

NS 2\ [ 2

Fig. 3. Function P(z) of type 3, Fig. 4. Function P(z) of type 4,
z1+22+23=0 21 +220=0

It was shown in [4] that any nonzero value can be taken by Z;(¢) no more
than twice. Let us illustrate the reason for this by an example. It is convenient to
draw z1(t) instead of u(t). Suppose a control u(t) taking values +1 steers some
point 2° to the origin in the time 6 and assume that 21(¢) has the form shown
in Fig. 5 (a). Then z1(¢) takes the value p for three times. Due to very special
form of the system (2), x2(0) and 23(0) equal the area under the curves —x;(t)
and —x3(t) respectively. Now, let us successively transform z1(t) as is shown in
Fig. 5 (b) and (c); obviously, the mentioned areas are the same as in case (a),
hence, the corresponding controls also steer z° to the origin in the same time 6.
However, the control of case (¢) cannot be optimal since four different vales p;,
2, [3, pa cannot be roots of a function of the form (5).
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x, (z)

Fig. 5. Transformation of non-optimal trajectory; graphs of x;(t)

2. Domains of solvability

Below we describe all possible controls compatible with the requirements
mentioned above for the case 2§ > 0. For the sake of briefness, we omit the
upper index of 20, i.e., we write x; instead of x?. We use the notation

1.2 1.4
S11 =y — 571, S =x3— 777,

1.2 1,4
S = wo + 577, S = x3+ 777,

Case 1 corresponds to P(z) of type 1 (Fig. 1), the control is of the form

1 iftel0,t),
w(t) =4 —1 ittelh,b), (7)
1 ifte [t2,9].

The graph of z1(t) is shown in Fig. 6.

25
20
3 15]
104 P
1
3 4 5 6
%
2
Fig. 6. Graph of z(t), case 1 Fig. 7. Intersection of the domain Dy

and the plane z; = 1; P, = (%’ %)
Denote z1(t1) = A, x1(t2) = —B, then
A=m+h>m, —B=wz+t—(la—t)=21+20 -1 <0

Let z1 < 0 < 292 < z3 be the roots of the function P(z) (Fig. 1), then A = zy,
B = —z. Since z1 + 22 + 23 = 0, we get —z1 = 29 + z3 > 229, therefore, B > 2A.
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Integrating the equations d2(t) = x1(t) and i3(t) = x3(t) on the time interval
t € [0,0] and taking into account the conditions x2(6) = z3(f) = 0 we get

—:vgz—%:r%—i-AQ—BQ and —ax3= —le 1A4 1B4.

Thus, in this case

Sp = B2 — A2, A2—%—*S117
28y = B — A%, & B? = 2 4 15,
AthBZQAv AZ$17B22A

Let us study the solvability of this system. If S;; < 0, then B? < A2, which
contradicts the requirement B > 2A. Hence, S11 > 0, therefore, the solvability
conditions are

S1 >0, S1 >0,
% 1511 > 22, & 2891 — St > 27511, (8)
P4+ 181 > 4(8 - $5n), 6521 — 557 < 0.

This system implies 5(223511 + S3) < So1 < Sn, hence, #3511 < £5%. This
gives .CCl < S11, which is equivalent to zg > .CCl Substituting the expressions
for S11 and 521 to (8), we get the solvability domaln for case 1, i.e., the domain
in which the control of case 1 exists:

. 7.2 5 11,4
Dl: {xeZ DEE x2+ .%'1(132—71'1 <$3< x2_6$1$2+24331

For any point x € D; the switching moments and the time of motion can be found
explicitly by the formulas

tle—xl, t2:2A+B—CL‘1, 0:2A+2B—CL‘1, (9)

521 1 521 1
B=/—+45511. 1
=1\ S0 5511, 5, + 5511 (10)

Case 2 corresponds to P(z) of type 2 (Fig. 2), the control is of the form

where

-1 ifte0,t1),
u(t) — 0 ifte [tl,tg),
1 ifte [t2,9].

Denote —A = x1 —t1 = z1 and B =ty — t1, then 1 < 29 = —227 = 2A. We have

—T9 = — A2 - AB and —ua3= 1A4 A%B
Then
Sio = A2 + AB, A* — 2815 A% + 255 = 0,
Sap =AY+ A’B, & B=52_ A

A> 1z, B>0, A>1lz, B>0.
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Fig. 8. Graph of x1(t), case 2 Fig. 9. Intersection of the domain Dy
and the plane 1 =1; P, = (_%’ _312)

The equation A* — 251942 + 2855 = 0 has real roots iff d = S%Q — 2559 > 0,
and then A2 = S15 +Vd. However, B > 0 iff A2 < Si9. Hence, the minimal root
should be chosen, A2 = 512 — Vd. The condition A > %ml can be rewritten as
A2 =815 —d>1 :vl, which is equivalent to a pair of inequalities S0 — 4:U1 >0
and (S12 — 1351) > d. Substituting the expressions for S1o and Sag, we get the
solvability domain for case 2:

2 1,2 5 4 1,2 , 1,2 1.4
{w To > — 4:131, 1T1T2 — 32x1§x3§§x2+§m1x2—§x1}.

Then

th=A+x, to=A+B+x1, 0=2A+ B+ 21, (11)
where g

A=1/S1s—Vd, d=5%—25, B_%—A (12)

Case 3 also corresponds to P(z) of type 2 (Fig. 2), the control is of the form

1 ifte [0 tl)
. -1 ifte [tl,tz),
ut) =9 if t € [ta, t3),
1 ifte [t3,9]

Denote A = 21 +t1 = 29 and B = t3 — to, then

—Ty = —%:L‘% + %A2 — %AB and —x3= —%x% + %A4 - %A?’B

The solvability conditions are
Sii=31AB - 342 9A% — 8811 A2 + 3255 = 0,
So1=1A’B-1B4Y & B=21 434,
A>zq, B>0, A>z1, B>0.



28 S. Yu. Ignatovich
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Fig. 10. Graph of z(t), case 3 Fig. 11. Intersection of the domain D3

and the plane z1 =1; P3 = (%’ %)

To analyze the biquadratic equation 94% — 8517 A% + 32551 = 0, let us introduce
the function f(z) = 922 — 85112 + 32551; then A? is a (positive) root of f(z).

(a) If So; < 0, then the function f(z) has one non-negative root. Hence, the
biquadratic equation has one non-negative root (the maximal one). The condition
A > x1, which can be expressed as A2 > 22, is equivalent to

f(zH) <0 < 9z] — 851123 4 3255, < 0. (13)

If S11 > 0, then the condition B > 0 is obviously satisfied. If S1; < 0, then
this condition can be expressed as A% > —%SH and is equivalent to

F(—3511) €0 9(—3511)°—8511(—3511)+3251 <0 < 557,465 < 0. (14)

otherwise; recall that if S;; > 0, then only condition (13) should be required.
Hence, the solvability domain in case (a) is

We note that condition (13) implies (14) if 27 > —%5’11, and (14) implies (13)

. 1.4 5.2, 5.2 1.4 : 1.2
{o: 23 < qat, w3 < —2a3+ 2afwy + g7 if wg < —gai,
1.2 5.4 - 1.2
T3 < XTIy — 35T if 1o > —3x7 }

and

tle*l‘l, tQI%A*SL‘l, th%A+B*IL‘1, 0:3A+B*{L‘1, (15)

2 .
Azgm, d= S} — 185y, B= i%gA. (16)

(b) Let Sa1 > 0. If S1; < 0, then the function f(z) has no nonnegative roots,
therefore, the biquadratic equation has no real roots. If S;; > 0, then f(z) has

where
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nonnegative roots iff d = Sfl — 18551 > 0. The condition B > 0 is obviously
satisfied. The condition A > 1 will be considered later.

Now, suppose the equation 94* —881; 4243255, = 0 has two different positive
r00t8 Apmazr > Amin > x1. Let us compare the corresponding times of motion 6,42
and 0. For both values (15) holds, hence,

9
Omin = jAmin A — 21, Omaz = QAmaa: A I1.
min max

Since A2 . and A2

man max

Therefore, O > Omage iff

are different roots of f(z), we have %SH = A2+ A2

mazx min -

%A2 + 2511 gAgnax + 2511 3A2 . 4+ A2 342 + A2

min 2 min max max min

2 A 2
Amin Amaz Amin Amax ’

which is equivalent to the obvious inequality (Amaz — Amin)® > 0. Thus, Opmnin
cannot be the optimal time. This means that the maximal root of the biquadratic
equation should be taken, A = A4z, therefore, in this case (15), (16) hold as
well. The condition A% = %(Sn +Vd) > 22 implies S11 > 0 and is equivalent to

927 —S11 <0 or d> (327 —Si)? & 921 —8Sn17] + 3252 < 0.

We note that d > (%x% — 511)2 implies d > 0. Thus, the solvability domain in case
(b) is

1 . 11

< Zm%xg - %az‘f if 29 < zx%,

1 1 1 . 11

r3 < 1—856% — Eﬂ?%l‘g + Tgfll if a9 > Zaz%}.

Combining the obtained results, we get the solvability domain in case 3

— . 5.2 4 5.2 1.4 : 1,2
D3 = {:L’ tox3 < —3T5 + griTe + 5577 if 29 < — 377,
1.2 5.4 1.2 11,2
r3 < qrimy — gpay U — g <@ < Fag,

1.2 1.2 19 4 : 11,2
3 < 1573 — fgiTe + et if 22 > Fail.

The time of motion and switching moments are found by formulas (15), (16).
Case 4 corresponds to P(z) of type 3 (Fig. 3), the control is of the form (7).
Using the notation of case 1, we have

Snsz—Az, A2:%_%Sllv
2551 = B* — A%, & { B?=2 415,
A>x, A>2B >0, A>x, A>2B>0.

If S;1 > 0, then B? > A2, which contradicts the requirement A > 2B. If
S11 < 0, then the solvability conditions are

S11< 0, 2891 + 53 <0, S11 <0, 289 < 5%,
% - %Sll > x%a = 2591 < S%l + 2%%511,
21— 151 > 4( + Su), 551 + 6521 > 0.
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Fig. 12. Graph of z(t), case 4 Fig. 13. Intersection of the domain Dy

and the plane 1 =1; Py = (_%’ _%)

Notice that these conditions imply S1;1 < —%x%. Notice also that in this case

—S2 < 82, +2228y; iff S11 < —z?. Substituting the expressions for S1; and So1,
we get the solvability domain for case 4:

. 1,2 5.2 5
Dy={x: za < —zaf, a3>—ga3+ 67102 + 3171,
1.2 4 2
r3 < 5902 + Jadwy + ol if wo < —1a3,
1 1.4
vy < 573 + gaiwy — gay if xp > —gai}

and the time of motion and switching moments are found by (9), (10).
Case 5 corresponds to P(z) of type 4 (Fig. 4) with the control of the form

1 if t €10,t1),
u(t) =4 0 if t € [t1,t2),
-1 ifte [t2,9].

Denote A =21 +1t1 = 290 and B =ty — t1, then

—xy = —%x% + A2+ AB and —ua3= —%:c‘ll + %A‘l + A®B

Hence,
511 =A% AB, Al + 2511142 — 2521 = 0,
So1 = —3A*— A*B, & B=-31_4
AZ{ELBZO, AZI’l,BZO

The biquadratic equation A*+2517; A%2—285,=0 has real roots iff d:S%1+2Sgl >0,
and then A2 = —S;; + v/d. However, B > 0 iff A2 < —S;,. Hence, the minimal
root should be chosen, A2 = —S;; — v/d. The condition A > z; can be written
as A2 = —S1; — Vd > 22 and is equivalent to S11 + 2% < 0 and d < (S11 + 29)%
Therefore, the solvability domain is

2
:{x: xgg—%:pl, 2 2+ xla:2+ x1<x3<x1x2+4x1}
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Fig. 14. Graph of z(t), case 5 Fig. 15. Intersection of the domain Ds
and the plane x1 =1
In this case
tle—xl, thA—l-B—aZl, 9:2A+B—$1, (17)
where s
A=1\/-S —Vd, d=5%+25,, B:—%—A. (18)

Case 6 corresponds to P(z) of type 4 (Fig. 4) with the control of the form

1 ifteo,t),
u(t) = 0 ifte [tl,tg),
-1 ifte [tg,g].

Denote A = x1 — t1 = 29 and B = t9 — t1, then
—T9 = %m% +AB and —a3= ix‘f + A3B.

If A=0or B =0, then o = —%x% and x3 = —ix%; obviously, for this point the

optimal control has no switchings and equals —1. Below we assume A > 0 and
B > 0. Then

Slgz—AB, A2:%>
522:_A3Ba ~ B:_%7
0<A<uz, B>0, 0<A<uz, B>0.

The solvability domain equals
2 2 4 4
D¢ = {x T2 < _%551, T1T2 + ixl <z3 < —%ml},
and in this case

tlzl’l—A, tQZSUl—A'f-B, 0:$1+B, (19)
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Fig. 16. Graph of z(t), case 6 Fig. 17. Intersection of the domain Dg
and the plane x1 =1

S22 S12
A=/22 p=_22 2

Case 7 corresponds to P(z) of type 4 (Fig. 4) with the control of the form

where

1 ifte [O,tl),
0 ifte [tl,tg),
-1 ifte [tg,tg),
1 ifte [t3,0].
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~2Ar— e -201
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o
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w

Fig. 18. Graph of x1(t), case 7 Fig. 19. Intersection of the domain D7
and the plane 1 =1; P5 = (_7’ _T)

Denote A = x1 +t1 = 29 and B = t5 — t1, then
—Ty = —%x% — 3424+ AB and —a3= —ix‘ll - %Azl + A3B.
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Hence,
S11 = 342 — AB, 9A* + 2511A2 — 28551 = 0,
So1 =241 - A°B, = B =51 434,
AZ.%'l,BZO, Ale,BZO

Analogously to case 3, we introduce the function f(z) = 022 4+ 25112 — 259
(a) If Sa1 > 0 then f(z) has one non-negative root. The condition A > x,
which can be expressed as A2 > 22, is equivalent to

f?) <0 & 927 +2827 — 289 <0. (21)

If S11 < 0, then the condition B > 0 is obviously satisfied. If S1; > 0, then the
condition B > 0, which can be expressed as A% > %SH, is equivalent to

f(%Sn) <0 & 9(%511)2 + 2511(%511) — 2521 <0 & 55%1 — 6521 <0. (22)

Condition (21) implies (22) if 23 > 1511, and (22) implies (21) otherwise; if
S11 < 0 then only (21) should be required. Thus, the solvability domain in case (a)

is
{z: 23> %l‘%, T3 > Thwg + %xf‘ it 29 < %x%,
5.2 5.2 11,4 - 7.2
T3 > gr5 — gTiT2 + 5y if wo > §x1},
and the formulas for switching moments and the optimal time are

th=A—-x1, to=A+B—x1, t3=4A+B—x1, 0=6A+ B — x1, (23)

S
Azém, d=Sh +1850, B=-"1 +3A, (24)

(b) Let So1 < 0. If S1; > 0, then the function f(z) has no nonnegative roots.
If S11 < 0, then f(z) has nonnegative roots iff d = 5%, +18S; > 0. The condition
B > 0 is obviously satisfied.

Suppose the equation 9A4% +2571 4% —255; = 0 has two different positive roots
Amaz > Amin > 1. Let us compare the corresponding times of motion 6,,;, and
Omaz- For both values (23) holds, then

where

9A2 . — S1q 9A2 .. — Su1
0. . — min o 0 _ max B )
min A Ty, mazx Ao X1
Since A%, and A2, are different roots of f(z), we have —2S1; = A2, + A2 ..
Then 0,5 > Omaz iff
942 . — S11 9A2 — S11 3A2 . -+ A2 3A2 + A2 .
min > max @ min max > max min ,
Amin o Amax Am'm - Amax

which is equivalent to (Aae— Amin)® > 0. Hence, 0,4, cannot be the optimal time
and the maximal root of the biquadratic equation should be taken, A = A, 4z-
The condition A% = %(—Su + \/&) > 22 implies S1; < 0 and is equivalent to

91‘% +51 <0 or d> (Qx% + 511)2 = 956‘31 + 251156% — 259 <0.
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The condition d > (922 + S11)? implies d > 0. Therefore, the solvability domain
in case (b) is

: 2, 1 4 2
{z: 3 < g2, z3>— 181:2 —|— Tg¥iT + 72x1 it 29 < — 3:1,
T3 > rimy + x‘ll if x9 > — 12735%

Combining the obtained results, we get the solvability domain in case 7

— . 1,2, 1 4 _17.2
Dr={z: z3>-— 18x2 —|— kTiTo + 72£U1 if 1y < —5a7,
T3 > xlxg + Lot if — a2 <y < a2, (25)

5 11,4 7
r3 > 2 :cz—ga;la:g—i—mxl if xo > 52 1}.

The time of motion and switching moments are found by (23), (24).
Case 8 corresponds to P(z) of type 4 (Fig. 4) with the control of the form

-1 ifte [O t1>
B 0 ifte [tl, tg)
WO =N 1 it e [toty),
1 ifte [tg, 0]
P
1
x (1) 5
X
1
A= Y3
} | I o 0
tl B 1‘2 I P4
| P
5
24— "
-10 -5 0 5
%
2
Fig. 20. Graph of z;(t), case 8 Fig. 21. Intersection of the domain of

solvability Dg and the plane x; = 1

Denote A = x1 —t1 = 29 and B =ty — t1, then

—T9 = —4A? + AB  and —a3= —8A*+ A®B
If A =0, then B = 0 and, therefore, x5 = —%m% and 3 = —%x‘ll; for this point
the optimal control equals —1. Below we require A > 0. Then
S19 = 4A2% — AB, 4A* + SleQ — S99 =0,
Sy = 8A% — A3B, & B=-512 444,

0< A<z, B>0, 0< A<z, B>0.
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Analogously to the cases 3 and 7, we introduce f(z) = 422 + S92 — Sa9.
(a) If S9o > 0, then f(z) has one non-negative root. The condition A < z; is
equivalent to
fz3) >0 <& da]+ Sppx? — Sy >0. (26)

If S12 <0, then the condition B > 0 is satisfied. If S1o > 0, then B > 0 iff
f(%Slz) <0 & 4(%512)2 + Slg(%Sm) —599 <0 & S%Z — 2559 < 0. (27)

Conditions (26) and (27) imply S12 < 4z%. Hence, the solvability domain in
case (a) is

4

{z: —i2] <ay <afwy+ af, 23> Lol + Lafey — Lo if — Jaf <2y < Iaf}

and
tlle—A, t2=.%'1—A+B, t3=x1+2A+B, 0:x1—|—4A+B, (28)

where

S
A=\[§(=S+Vd), d=5hH+165n, B=-"F+44.  (29)

(b) Let S22 < 0. If S12 > 0, then the function f(z) has no nonnegative roots.
If S12 < 0, then f(z) has nonnegative roots iff d = S%, 4+ 16522 > 0. The condition
B > 0 is satisfied. Now we consider the condition A < z1. Suppose the roots of
the equation 44% + S12A4% — Sog = 0 are Apin < Amaz.

(b1) First, let us consider the case when A% . < 22 < A% . which is

equivalent to f(x?) < 0; this inequality implies S1o < 0. Then we get the condition

S99 < 0 and lei1 + 5121‘% — 59 <0 < 1‘1.7;2 + 7 17 4 <z3 < — %7

which implies o < —%azl Analogously to (28), the time of motion BOgmin

corresponding to Ay, equals Ogmin = 8 Amin — 12 + x1. It is easy to see that in
this domain the control corresponding to case 6 ex1sts the time of motion g can

be found by (19), (20). Let us show that 6g,,in > 0s. Since Afnm+A2max = 4512,
A% A2 — —%Sgg, we get

min‘-maxr

8A2 . +4(A2. + A2

min ma:c) + T 4 min

3A2 . 4+ A2

9 ' _ m’LTL max
8min = Amm L= Ami’n T
16(A2,, + A2,..)° \/(A%“n * Aaa)’
Og = 'n;zn 5 +x1=4 + 71
AmznAmaac AminAmaz
Hence, Ogmin > 0p iff
3AZ,, + A2 \/ (Aiin + A’
min max min e (3A?nzn + A%n,aaj) A?nax (A72nm + A’znam) °

Amin AminAma:c
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This is equivalent to the obvious inequality A2, (642, A2 ~+3A% —A%. )>0

Thus, the control in case (bl) cannot be optimal. In Fig. 21 and in formula (30)
we do not indicate points satisfying case (bl).

(b2) Now let us consider the case when A2, = $(—S12 4+ vd) < 2%, which is
equivalent to a pair of conditions 8z% + S12 > 0 and d < (822 + S12)?. Let Ogmax
be the time of motion corresponding to A;.q.. As above, we have

2 2 2 2
Osmin = 4M +x1,  O8maz = 43Amax = Amin + 1,

Amin Amax

50, O8min > Osmaz is equivalent to (Ayez — Amin)® > 0. Thus, the maximal root

A = A4 should be chosen. The solvability domain in case (b2) is

. 17 .2 12 4 17
{1:. Fr] S w2 < —5xf, w3 < — xl, :103<3:2:101—|-43:17

2 _ 1.2 17 4
T3 > — 16:1;2 162102 — g1 l1ys-
Combining the obtained results, we get the solvability domain in case 8 (recall
that we do not include points corresponding to the case (bl))

.o _17,2 4
DgZ{l'. - 22 <<t xl, 3<m1x2+ o,
12 1.2 17,4 1,2
x3 > _El‘? 16:r11:2 gir1 if @o < —5a7, (30)
xr3 > 5 1a3 + 1:1:62 - %x‘ll it x9 > —facl}

The time of motion and switching moments are found by (28), (29).
3. Overlapping solvability domains

In this section we analyze the solvability domains which overlap.
Cases 2 and 3. The domain where both controls exist is

_ ) 1,2 1.2 5 4 1.2 1 19,4
D273—{l’. To > GxY, [T1T2 — 3507 S w3 < 305 — 18x1$2+721‘1

(see Fig. 22). The times of motion # and 03 for cases 2 and 3 can be found by
(11), (12) and (15), (16). Let us introduce the function F' = 63 — 69, i.e.,

F( ) 6511+ 3 — 1859 2519 — \/S — 2599 9. (31)
\/511 + /5% — 185y \/512 — /8%, — 259

Then 69 = 05 iff x belongs to the surface

Myg = {x: zy > Lai, Jatws — o] < a3 < ka3 — fafey + Hai, F(z) =0}
and for any point z € Dy 3 one has 6y < 03 iff F'(z) > 0.
Our nearest goal is to show that the surface M>3 has a unique point of

intersection with any vertical line with fixed 1 > 0 and zo > %x% To this

end, let us fix any 1 > 0 and zo > 14137% and suppose xz runs through the
segment [Z3min, T3maz| = [%x%xz — %x‘f, 11893% 118:1:1m2 + 72301] Then
S12 2511
O = O2(x3) = A+ —— + 71, O3 = O3(x3) = §A3 + —— — 1,

A2 Ad
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where

Ay = Ay(x3) = \/512 —\/S%, — 280, Az = As(z3) = 3\/511 + /5% — 18551.

~

By O(x) we denote the optimal time for the point z; it is continuous as a
function of x, what follows from [5].

First, consider the lower bound, i.e., £3 = Z3min. Let us notice that for points
x5 = (21, T2,235), where 235 = T3min — 0 with § > 0, the control of case 2 does

~

not exist and the control of case 3 is optimal. Then 6(zs5) = 03(x35). We notice
that the function 03(x3) is continuous. Hence,

~ ~

03(3min) = %ig(l) 3(x3,5) = (%ig(l] O(xs5) = 0(xo), where xo = (1,22, Z3min),

which implies 03(x3min) < 02(23min). Analogously, for the upper bound we get
02 (x3max) < 93(x3m(zm)-

Notice that Sp; and Sis are constants while Sy and Sge are increasing
functions of x3. Hence, As increases and A3 decreases (as functions of x3). Since
A% < S19, we see that Ay decreases as function of As. Analogously, A% > %Sn
implies that f3 increases as function of A3. As a result, both functions 69 and 63
decrease as functions of 3.

Let us introduce the functions

. 271‘3 . 27%3
ha(z3) = Oa(x3) + 27\/5—%17 hs(x3) = 0s(x3) + 2\/5—%7
and show that ho(x3) decreases and hs(zs) increases. To this end, we find their

derivatives. Since /5%, — 2529 = — (A3 — S12), we get
00 00y 0As S12 —2 1
4As(

dxs  9Ay dry \& A% AZ—Sp) 243

and analogously

09280y i 4

vy 0A3 Oxz \2 A2 6A3(%A§ - Sn) A3
Hence,

Oha(x3) 1 27 Ohs(x3) 4 27

dus | 2A3ws) 258, Oz Alws) | 2v/sh

Then
algg?’) <0 & 945(z3) < S & 13 < 5h5(6823 + oz, — 181af).

However, x3 < %x% - 1—183:%1'2 + %x‘f for x € Do 3 and

2 2 4 2 2 4 2 11,2
Las— Lafwo+ Dal < 55 (6823 +4atzs —181]) & (w2 +4x7)(z2— LFat) >0,
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which is true for x € Dy 3. Hence, %827(?3) <0, i.e., ho(x3) decreases. For hs we
have
oh /
;(x3> >0 < 914%(1‘3) > 4511 s 4 S%l — 18521 > O,
T3

. . . h . .
which is obvious. Hence, 0 §£§3) > 0. i.e., hg(x3) increases. As was shown above,

O2(z3min) > 03(3min) and 03(3maz) > 02(3maz ), hence,

h2(x3min) > h3(m3min) and h3($3maz) > h2($3mar)'

Thus, there exists a unique point Ts € [Z3min, L3maz] Such that ho(Z3) = hs(Z3)

or, equivalently, 05(Z3) = 05(Z3) for any fixed 21 > 0 and zo > a2,

2,
_20_
M
1.5 2,3
i =301
X
3 3 Pﬁ
1,
-404
P
3 Ms, .
0.57
: : : : -50+ ; . :
3 4 5 6 -40 =30 -20
X X
2 2

Fig. 22. Intersection of the domain Dy 3 Fig. 23. Intersection of the domain Ds 7
and the surface M 3 and the surface Ms 7
with the plane z; =1 with the plane z; = 1;
Ps = (ca, o+ 1) = (—36.175, —35.925)
Cases 5 and 7. The domain where both controls exist is

. 17,2 1.2, 1.2 17,4 2 14
Dsy={z: 22 < —H a1, —{523 + 32122 + 321 < 23 < 2172 + 321}

These conditions imply zo < r2?, where r = (—177 — 6v/2) ~ —16.98528. Denote
the corresponding times of motion by 05 and #7. Formulas (17), (18) and (23),
(24) imply

0 2811 — /5%, + 259 R —6511 + 3/ S% + 185y
5= — &1, 7= -
\/_Sll IV 5121 + 2521 \/—511 + \/ 8121 + 18521

Hence, 05 > 07 iff

(=251 — /Sy +2521)° o (=651 +3 S7) +18521)° (32)

—S11 — /5% + 28 —S11 + /53, + 18591
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Let us write down this relation in an explicit form w.r.t. x3. Taking into
account that in Ds7 the inequalities S11 < 0 and S2;1 < 0 hold, we denote

1+18% < land w=,/1+2% = 142 +8 < 1. Then (32) reads

2 2
Sll Sll

2—w S 6+ 3v
VIi—w 1+

Substituting w? 911 +8 g, we get the equivalent inequality

& (2—w)*(1+v) > (6+3v)* (1 —w).

9w (902 + 320 + 32) > —v® + 80v? + 280v + 280;
its both sides are positive for 0 < v < 1. Hence, we get
9(v? + 8)(9v? + 320 + 32)? > (—v> + 80v? 4 280v + 280)2,
which is equivalent to
(910 + 4860° + 73602 — 584)(1 +v)% > 0.

The function 91v* + 4860 + 73602 — 584 increases as v > 0 and its unique
positive root equals v; ~ 0.71826. Hence, (32) holds iff v > vy. Substituting the
expression of v we get that (32) holds iff So1 > ¢15%, i.e., w3 > iﬁJrCl (:pg—%x%)Q,
where ¢1 = 1—18(11% — 1) &~ —0.026895. Due to the definition of the domain Ds 7,

this condition implies c¢j(xy — %1:%) < 22z or, equivalently, 75 < cox?, where

cy = HHAtVIT2a o 3617491,

Thus, 951 = 07 iff x belongs to the surface

Ms7={x: 22 < Cox?, T3 = iZL'le +c1(xg — %x%)2}

and for any point € Ds 7 one has 07 < 05 iff 3 > ix‘f + c1(xe — %x%)Q
Cases 6 and 8. The domain where both controls exist is

2 4 17,4
Dg g = {:c ——:J[:1 <a2 < —fznl, ry < — 4£U1, z3 < 23wo + 171
2 1.2 17 4
T3 > — 16x2 162122 — 5a%1s-
Let us compare 03 = 0Osmae, and 0g. We use the arguments and notation of

case 8 (bl). Namely, let 0 < A2, < A% be the roots of the equation

min

f(Z) = 422 + S122 — S22 = 0. Then 0 < g iff

2 2 (A% + Afa)?
3Amaz + Amm \/ 3A2 +A2

= ( max min
Ama:r Amzn Amaa:

)2A2 A%mn—’_Azna:p) ?

m'm—(

which is equivalent to the inequality 642, A2 +3A% Al < 0.Substituting

expressions for A2, and A2 . and taking into account that Sjo < 0 and Sz < 0,
we get that 0g < g iff

S2, — 1655y < —28121/ 52, + 165y < 25652, — 9657529 — 351, < 0.
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This condition is equivalent to the inequality Soo > k182, or, what is the same,
vy > — 1] + ky(z2 + 523)%, where ki = 1:(3 — 2V/3) &~ —0. 0290064 Due to the
definition of the domam De g, this condltlon implies k (z2 —|— 12)? < wo2? +

or, equivalently, zo > kox?, where ko = 1= k1+2vk3+16k % — % —5. 118802
Thus, g = 0g iff x belongs to the surface
Mgg = {x: koal <o < —1ai, 33 = — 1ot + ki (22 + $27)%}

and for any point x € Dg g one has 0g < g iff 23 > —ix‘f + k1(x2 + %x%f

0_
104
x3 201

_30,

- 404

Fig. 24. Intersection of the domain Dgg Fig. 25. Intersection of the domain Dg 7
and the surface Mg g and the surface Mg 7
with the plane x; = 1; with the plane ;1 =1

Pr = (kg, ko + 1) ~ (—5.119, —0.869)

Cases 6 and 7. The domain where both controls exist is

4 4
Dgr={z:a35<— 1:1, x3>x1x2+4m1 if :1;2<mc1,
2, 1 4 17,2
T3 > — 18a32 + 181’1562 + 729:1 if ra? <29 < — 5T
3>x1x2+ (L’ll —1—72<x2<—7 }

where r = —% — 6v/2 ~ —16.98528 was introduced above. The times of motion
0 and 607 for cases 6 and 7 can be found by (19), (20) and (23), (24). Let us
introduce the function G = g — 07, i.e.,

S3 —65 3/S%, + 188
P12 11 + 11 + 21 +2 1

522 \/—511 + /5% + 18S9

then 0g = 07 iff & belongs to the surface

G(z) = (33)

M7:{aj: ziTo + a:1<x3< :Cllf C2x1<$2<7”$1,
HERAT I 4 17,2
18362 + 1grize + 72x1 <z3< —fxl if ref < ap < —Hai,

xlxg + 7 Tpd <a3 < — x‘ll if — 12730% < xg < ko2,

_0}
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and for any point x € Dg 7 one has 67 < 6g iff G(z) > 0.

Now we study this surface in detail. Let us fix any 21 > 0 and x5 < —%x% and
suppose z3 runs through the segment [23,,in, —ifﬁ‘l‘), where 3y s given by the
description of the domain Dg 7. First let us consider the lower bound, x3 = Z3min.

(a) If 29 < 722, then asgmm = x1x2+ 1x1. For these points usmg (17) (18) one
easily finds S%; 42521 = (22 —|— 72)?, hence 05 (x3min) = gf + 2361. On the other
hand, Soo = Si22?, hence, by (19), (20) we get Og(T3min) = —% + %xl. Thus,
05(23min) = 06(T3min)- Using the results obtained above for the domain Ds 7, we
get

—if @9 < cox?, then 96(373mm) = 05(x3min) > 07(T3min);

—if cox? < w9 < ra:l, then Og(z3min) = 05(3min) < 97(x3mm)

(b) If ra? < 2o < — 2 a:l, then T3min = —11—830% + 118331372 + 72x1 As above, we
consider points x5 = (21,22, x35), where x35 = T3y, — 0 with small 6 > 0. For
points x5 the control of case 7 does not exist and the control of case 6 is optimal,
ie., g(a:(;) = 0g(x3,5). Due to continuity of 6 and 6, we have

o~

06 (23min) = %ig(l) O(23,5) = %ig(lj 0(xs) = 0(x0), where xg = (21,29, T3min),

therefore, O6(x3min) < 07(T3min)-

(c) If —1—7:1:% < x2 < —g:cl, then z3min = xlxg + Lzt For these points
So1 = Szt + :L'l, hence, S% + 18521 = (S11 +922)%. Slnce S11+ 922 > 0, using
(23), (24) we get O7(z3min) = m +1 xl On the other hand, Say = S1o2? + 427,
therefore, S%, + 16522 = (S12 +8:z:1) Slnce S12+8x2 > 0, using (28), (29) we get
Os(x3min) = “ +1 xl Thus, 07(z3min) = 08(T3min). Using the results obtained
for the domam D6 8, We get

—if k‘Q.%'l < x9 < — :El, then 97(:E3mm) = Hg(xgmm) < 96($3mm)

—if T9 < k2x17 then €7(x3mzn) = 08(3737717,77,) > HG(xSmm)-

Thus, we get the following relations.

- If 0275% <ap < ka%a then 06(x3min) < 97(x3min)- (34)
—If 13 < coz? o1 koa? < 12 < —%x%, then 07(x3min) < 06(T3min)-

Now let us study 6¢(x3) and 67(x3) as functions of z3 € [Z3min, —ix‘f). By
(19), (20) and (23), (24),

53 S
06 = O6(z3) = 1| S;z + 1, 07 =07(x3) =9A7 — z‘Tl?l — 11,

A7 = Aq(x3) \/ Si1 44/ SE + 18591.

Since S11 < 0 and S12 < 0 are constants while Se; < 0 and Sa2 < 0 are increasing
functions of x3, we see that 0g(x3) and Az(z3) increase. However, 942 > —Syq,
hence, 07(z3) also increases.

and
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Let us introduce the functions

27.7}3 27:63
2/-55 2/-55

and show that hg(z3) increases and hr(x3) decreases. We have

8h6(x3) . \/—5:132 _ 27 6h7(3c3) 1 27

h6($3) = 06($3) — h3($3) = 97(-T3> -

Hence, ah7(x3) < 0iff A7 > £/=S11 which is obvious. Thus, h7(z3) decreases.

3h6$(x3) > 0 iff 9592 + 511512 > 0 or, what is the same,
x5 > —§(23 +221). If € Dg 7, then the inequality x5 > — ka3 + Lafzs + ot
holds. Moreover, 118$%—|- 118x1x2+ %g:p% > —7(;1;24_2;31) for any z1, z2. Therefore,

. Oh,
T3 > —%(1‘% + 22%) in Dg 7, hence, %;’33) > 0.

Thus, hg(rs) increases and hr(x3) decreases and, besides, relations (34) imply
that

For h6(1’3) we have

—if 621,‘% < a9 < k’gl‘%, then hG(xdmin) < h7($3mm),
—if 29 < CQIL’l or k?gxl < Ty < — :IZ%, then h7($3mm) < hﬁ(xgmm).

Concerning the upper bound, we have hg(r3) — 400 as x3 — —%x‘f while
h7(—%21) < +oo. Therefore, we obtain the following result.
— If 29 < 222 or kox? < 29 < — 1:1, then h7(z3) < he(xs), and therefore,
97(.%’3) < 96(1‘3> for all z3 € [xgmm, }lxil)
~ If cor? < w9 < kox?, then there exists a unique point T3 € [Z3min, —%x‘f)
such that h6(§3/3) = h7(§3) or, equivalently, 96(%’3) = 07(53)
In other words, if x € Mg 7, then czx% <z < k:gx% Moreover, the surface
Mpg 7 has a unique point of intersection with any vertical line with fixed x; > 0

and 023:% <9 < kigﬂ?%.
4. Time-optimal controls

Combining the results obtained above we formulate the explicit solution of
the time-optimal control problem (2). Suppose a point x with z1 > 0 is given. In
order to set the point to a certain case, one has to check all the conditions from
the list corresponding to this case; they are collected in Table 1. The optimal time
and the optimal control are found by explicit formulas depending on the case.

Recall that ¢ = %8(1)% —1) ~ —0.026895, where v is the unique positive root

of the equation 91v* + 48613 + 73602 — 584 = 0, ¢y = FATVIF2 36 17491,

2c1
k1= 15(3 = 2v/3) & —0.0290064, kp = FFREEHON = 5 — S~ 5118802,
and r = (—1f — 6v/2) ~ —16.98528; the functions F(z) and G(z) are given by

formulas (31) and (33). Fig. 26 shows the intersection of the plane z; = 1 with
domains where controls corresponding to cases 1-8 are optimal.
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Case 1: Ty > % 2 and %x% + %x%xz — éx% <zx3 < %x — %Jrlxg + 2430‘11
(1,—-1,1)
Case 2: xy > —32% and 123 v} <ay < i3+ ladas — o
. 2 Z 734 142 — 321—3 2 142 7 g1
1 1 1
(—1,0,1) if 2o > 22 then 23 > 18:17% 18m1$2 + 72331 or F(z) > 0.
Case 3: if xg < —7951 then z3 < — ac2 + [Ell‘g + 2495‘11,
(1,-1,0,1) | if =123 <2y < L2 then 25 < ia:%:z:g — 2af
1
if x9 > a2 then vy < 1523 — Lalzy + Pat and F(z) < 0.
Case 4: g < —fml and 333 —*$2 + 5$1m2 + 4:£‘1L,
(1,-1,1) 1f — 12} < 29 < —1a? then a3 < 132 + 131172 — 1,
if 25 < —12% then z3 < —Ja3 + Laday +
Case 5: 9 < —fxl and —fx2 + *:EISCQ + *551 <z3 < x%xz + ix‘ll,
(1,0,—-1) if 5 < cp2? then x5 < 121+ c1 (22 — 223)%

Case 6: cort <y < —5951 and x5 > z3z9 + le,
(-1,0,—-1) |if CQ.Z’% < w9 < ra? then G(x) <0,
if ra? < 2o <—112? then 23 <— 181'2—1—183:11'2—1—723:1 or G(z)<0,
if —3l2? <y < k:gacl then x3 < xlxg + Lzt or G(z) <0,
if kox? S To < —ixl then z3 < fle + k1(xo + §$1)2-
Case T: if 29 < coz? then 3 > %x‘f + c1(xe — %:L‘%)Q,
(1,0,-1,1) | if co2? < @ < raf then z3 > —1af
or x3 > Towi + %xff and G(z) >0,
if ra? <y < —g;v% then x3 > —l rf
or xg > — 183:2—1-183:13:2—1— T2} and G(z)>0,
if — 12733% < 29 < kox? then x3 > —fx‘ll
or x3 > ZL'll'Q + Hm‘f and G(z) > 0,

if kopw? < w9 < I fa% then z3 > afzs + x‘ll,
if 29 > I 22? then x5 > 2 223 — %mlxg + %}Lx‘f
Case 8: kox? < x5 < %1:1 and z3 < 2319 + 1?7:701,
(=1,0,—1,1)] if kot <y < —lx% then zg > —lafll + kl(xg + 32%)2,

f—fxl <z <! Ta? then x5 > 23 + :clxg éx‘ll

Table 1. Description of optimal controls for points with 1 > 0

Also, we obtain the solution of the optimal synthesis problem, i.e., describe
the optimal control as a function on x. To this end, we take into account that the
controls of cases 1, 3, 4, 5, 7 begin with +1 and the controls of cases 2, 6, 8 begin
with —1. The value 0 corresponds to limit cases (between cases 5 and 6, between
cases 7 and 8). There exist surfaces for which both values +1 and —1 are possible;
they are described by the equations F(x) = 0 and G(z) = 0 (between cases 2
and 3, between cases 6 and 7). Fig. 27 shows the solution of the optimal synthesis
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problem, namely, the intersection of the plane 1 = 1 with the domains in which
the optimal control as a function of x equals +1 or —1. The intersection with
surfaces corresponding to the value 0 are drawn by dotted lines; the intersection
with surfaces where both values +1 and —1 are possible are drawn by bold lines.
Let us show that the rest part of the border (drawn by thin lines) corresponds
to the value —1. In fact, the upper thin curve separates cases 1 and 2 and the
lower thin curve consists of two segments: one segment separates cases 8 and 4
and the second segment separates cases 2 and 3. At all these points A = x1 where
A corresponds to cases 1, 4, and 3 respectively, hence, at these points u = —1.

X X
2 2
Fig. 26. Optimal controls Fig. 27. Optimal synthesis
on the plane 1 =1 on the plane z1 =1

For the points with z1 < 0 we use the symmetry arguments. Namely, let us
solve the time-optimal control problem for the point —x; suppose u(t, —x) is the
optimal control and #(—zx) is the optimal time. Then the optimal control and the
optimal time for the initial point equal u(¢,z) = —u(t, —x) and 0(z) = 0(—=x).

Finally, let us find optimal controls for points with z; = 0. In this case the
analysis of possible types of control is shorter since cases 6 and 8 are impossible.
Since x1 = 0, controls of cases 1, 3, 4 and 7 can be chosen in two forms; as an

example, two forms of the control of case 3 are shown in Fig. 28.

Fig. 28. Graph of z(t) for two variants of the optimal control of case 3

Moreover, domains corresponding to cases 1 and 4 are symmetric to each
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other; the same holds for cases 2 and 5 and for cases 3 and 7. We notice that,
from the point of view of the synthesis problem, in these cases the both values
+1 and —1 are possible.

Arguing analogously to the previous sections, one can find the domains in
which controls corresponding to these cases exist, and analyze the overlapping
domains. We give the final answer only, see Table 2, Fig. 29 and Fig. 30.

Case 1: | 22 > 0 and 23 < z3 < 223

Case 2: | z9 > 0 and —clmQ <axg<i :1:2,

Case 3: | if 29 > 0 then 23 < —01:132, if 29 <0 then z3 < —%:v%.

Case 4: | 2o <0 and — 223 < 23 < —1a3.

Case 5: | 290 <0 and —fx2 <z < clx%

Case 7: | if 9 <0 then x3 > cle, if zo > 0 then z3 > 5 %

Table 2. Description of optimal controls for points with 1 =0

2 2
Fig. 29. Optimal controls Fig. 30. Optimal synthesis
on the plane 1 =0 on the plane 1 =0

Example. As was shown above, for some points there exist two different
optimal controls. As an example, let us consider the point x with ;1 = 1 and

xo = —8, then — 2 xl < a9 < l{:gxl (recall that ko ~ —5.12). Let us find x3 so
that 65 = 67. To this end We solve the equation G(z) = G(1,-8,z3) = 0 on
the interval z3 € [vzs + Yaf, —1at) = [ 22, —1) and get 23 ~ —1.879. For

this point both controls of cases 6 and 7 are optimal. Fig. 31 and 32 show the
components of the optimal trajectories corresponding to these optimal controls;
the time of motion equals g = 07 =~ 17.092.

Acknowledgement. The author is grateful to Sergey Shugaryov for
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(1] [m=—x,(1) — x,(1) — 500

[—x () —x(1)

Fig. 31. Components of the optimal Fig. 32. Components of the optimal
trajectory for the point trajectory for the point
xr = (1,-8,—1.879), case 6 x = (1,—-8,—1.879), case 7
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