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1. Introduction

The problem of control design for nonlinear systems has been paid much
attention in recent years [1]—[12]. In the present paper we consider a class
of nonlinear systems with uncontrollable first approximation. Such systems
play important role in control theory since most actual dynamical systems are
inherently nonlinear.

Consider the following nonlinear system

-/tl =u, |U’ S d7

Ty =C1%i—1, 1=2,...,n—1, (1)
2%+1

Tp = Cn—1T,_1

where k = %, p > 01is an integer, ¢ > 0 is an odd integer, v € R is a control, ¢;,

n—1

i=1,...,n—1 are real numbers such that [[ ¢; # 0, d > 0 is a given number.
i=1
System (1) is not stabilizable with respect to the first approximation. The
stabilization problem for system (1) with ¢; =1,i=1,...,n— 1, and k € N was

solved in [4]. In the present paper we consider the problem of global synthesis
of bounded controls for system (1). For the sake of brevity this problem will be
referred as the global synthesis problem.

The global synthesis problem for system (1) is to find a control u = u(z) such
that

(i) for every xzgp € R™ there exists a number T'(zg) < 4oo such that

lim x(t,z9) = 0, where z(t,zp) is a solution of system (1) with v = u(x)
t%T(Io)

that satisfies the condition z(0, zg) = xo;

(ii) the control u(zx) satisfies the restriction |u(z)| < d for all z € R".

The control law construction is based on the controllability function method,
which was proposed by V.I. Korobov [2] for a nonlinear system of the form

i=ot,x,u), reR" uweQCR", 0cintQ, (2)

where ¢(t,0,0) =0 for all t > 0.

Consider the case % =0 for all z € R", u € R. The main idea of the
controllability function method is to find a function ©(z) (O(z) > 0 for z # 0,
©(0) = 0) and a control u = u(z) such that the following inequality holds

Z 3% ) i@, u@) < 0% (2), $>0, a>o0. 3)

Denote by xz(t,zo) the solution of the closed-loop system & = (¢, z,u(x))
that satisfies the condition z(0,z9) = z¢. The last inequality ensures that the
trajectory of the closed-loop system steers any initial point xg € R™ to the origin
in some finite T'(xo) [1] and z(¢,z9) = 0 for all t > T'(zg). Moreover, the time of

motion satisfies the estimate T'(xg) < %@é(xo).
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It is important to note that inequality (3) guaranties that the origin is stable.
In this case the control u = u(x) is often called a finite-time stabilizing control;
and the origin is said to be a finite-time stable equilibrium [10] of system (2) with
u = u(x).

The paper is organized as follows. In Section 2 we consider the case ¢; = 1,
i=1,...,n— 1. Namely, we construct a class of controls u = u(z) that solve the
global synthesis problem for system (1). We also show that these controls satisfy

n—1

the condition |u(z)| < d. In Section 3 we consider the case [] ¢; # 0. Finally, the
i=1

example is given to illustrate the implementability of the approach proposed.

2. Control law construction for systems with power nonlinearity

Consider the global synthesis problem for system (1) in the case ¢; = 1,
i=1,...,n— 1. In this case system (1) takes the form

j:lzuu ’u‘gdv
:i’i:xi,l, i:2,...,n—1, (4)

where k = %, p > 0 is an integer, ¢ > 0 is an odd integer.

In this section we construct a controllability function and a class of bounded
controls that solve the global synthesis problem for system (4).

Let us introduce the following diagonal matrices

D(©) = diag (@™ 1, @™ 2 ... @™ " 1),

H=diag(m—1,m—-2,...,m—n+1,0),

where m = 2k(n — 1) + n.

Let ag > 0 be a fixed numbed. Suppose that F' is a positive definite matrix
such that the matrix F! = F — FH — HF is positive definite. The additional
conditions on ag and F will be obtained later.

We define the controllability function ©(z), for = # 0, as a unique positive
solution of the equation

2000°™ = (FD(O©)z, D(0)x). (5)

We remark that equation (5) has a unique positive solution, for every fixed z # 0,
if the matrix F'! is positive definite. Moreover, the function ©(x) is continuously
differentiable at every point x # 0. We complete the definition of ©(z) by putting
©(0) = 0. Thus ©(z) satisfies the following equality

2000%*™(z) = (FD(0(x))z, D(O(z))z). (6)
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Consider the following control law

1 21<:4E1
) = gy (0 D)) + g, @
where a = (a1, a2, ...,a,)* € R". The numbers a; < 0,7=1,...,n+ 1 are to be

chosen later.
We use the following notation

al as ... Gp—2 GQp_1 Gn n+1
1 0 0 0 0 0
A= ... . hp = (8)
0 0 ... 1 0 0 0
0 0 ... 0 0 0 1

Assume that the control uw = u(x) of the form (7) is applied to system (4).
Calculating the derivative of ©(x) along trajectories of the closed-loop system (4),
from (6) we obtain

_ (W F+FA)yO(),2),y(0(),r))
@ ((2mF—FH — HF) (O(x),x),y(O(x), z))
2(Fhy,y(O(x), 7)) 224 ' O(x)

n—

(2mF —FH - HF) O(z),2),y(0(x),))’

where y(O(x),z) = D(O(z))z.

We note that since the matrix A is singular, it is impossible to choose a
positive definite matrix F' so that the matrix A*F + F A is negative definite. So
we choose the positive definite matrix F' so that the matrix A*F + F A is positive
semi-definite. To this end, we consider the following Lyapunov matrix equation

A*F + FA =W, (10)

@(x))

9)

where W = {w; ;};';_, (wij = wj;, i # j) is some positive semi-definite matrix,
F'is an unknown matrix.
Let us introduce the following real symmetric matrix

wip o ot Win-l
W, | = . (11)
Win—-1 -+ Wn—-1n-1
Consider the case of the positive definite matrix W,_;. In [4, theorem 1] it

was proved that the matrix equation (10) is solvable in the class of all positive
definite matrices F' if and only if the matrix W has the form

w11 Win—1 Win—15.2
= 12
w Win-1 Wp—1n—1 Wp—1n— 1an 1 (12)
a?
Win—1 Wn—1n—1 Wn—1n—1,2

anl anl

Ap—1
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Further we need the following lemma, which was proved in [4, p. 77].

Lemma 1. The matric W given by (12) is positive semi-definite if and only
if the matriz W,,_1 given by (11) is positive semi-definite.

The following theorem describes the class of positive definite solutions of

matrix equation (10).

Theorem 1. Suppose that the matrices A and W are defined by (8) and (12)
respectively. Furthermore, suppose that the matriz W,,_1 defined by (11) is positive
definite, and eigenvalues of the matriz

ayr a2 -+ Ap—2 GQp—1
1 0 - 0 0

Ay = (13)
o 0o - 1 0

have negative real parts. Then matriz equation (10) is solvable and its positive
definite solutions have the form

Ju o Jin—1 o fin-1
e . . . e u
fln—l e fn—ln—l a:il fn—ln—l ’ ( )
a:il finer - a:T_Ll Jn—1n—1 frn

where elements of the matriz F,,_1 = {f”}?;:ll are defined by the matriz equation
A:_an,1 + anlAnfl — —Wn-1

and fnn > 0 is an arbitrary real number such that

an 15
fnn > a2 fn—ln—1~ ( )

n—1

Proof. This theorem is a simple consequence of theorem 1 and theorem 2
from [4].

Now we define the matrix F' and numbers a;, i = 0,...,n + 1 so that there
exists 4 > 0 such that O(z) W < —f. This means that inequality (3) holds for

a=1.

Suppose that the matrix Wy,_; is a given positive definite matrix of the
form (11). Then, by Lemma 1, the matrix W of the form (12) is positive semi-
definite. Suppose that the numbers a; < 0, ¢ = 1,...,n — 1 are such that the
matrix A,_1 of the form (13) is stable, i.e. eigenvalues of the matrix A,_; have
negative real parts. We define the matrix I’ as a positive definite solution of matrix
equation (10). Then, according to Theorem 1, F has the form (14).
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Thus, using (9), the derivative of the controllability function takes the form

ou| = ZUVHOE).2).9(O). ) + AFh O, M)HOE
(4) (F'y(©(z), ), y(0(x), ) ’
where F! =2mF — FH — HF.

We introduce the following notation I, o = diag(1,...,1,0,0) is a matrix of
dimension (nxn), I,,_1 1=diag (1,...,1,0) is a matrix of dimension (n—1)x(n—1),
I, is the identity (n — 1) x (n — 1) matrix, Z = (z1,...,Zp_1).

Since the matrix Wy,_; is positive definite, we have the following estimate

(Wn_12,2) > Apin(2,2) for all 7€ R"1,

where Apin > 0 is the smallest eigenvalue of the matrix W,,_. Therefore,
- ((Wn—l - A77%'77,171—1)/‘7?7 f) - )‘minxngl <0 forall ze Rnila

i.e. the matrix Wy,—1 — Aninp—1,1 is positive semi-definite. Then, by Lemma 1,
we have

— (W = Aminn2)z,z) <0 forall zeR"™ (17)
Introducing the notation b = —th, we get
bi = (flzan+1+ fzn 1) 'L':].,...,’I’L*17
bp = anpt1 = fln—l + fon-
n—1

We choose an41 so that b, = 0. Thus we put

Gl = Jon  Gn-1
+1=— : -
" Jin—1 Qn

Finally, we obtain

2
(flz fon — fin—1 ;Ln )an_l, i=1,...,n—1. (19)

fl”_ an—1

Combining (15) and (19), we deduce

2
Q an—1
b1 = (fnn fn In—1 2n > = > 0.

ap—1 n

Consider the following (n — 1) x (n — 1) matrix

xﬁ—l
0 0 Ami by 0L
min n—2 @k’(n—l)
ZUk ZUk
n—1 n—1
b1 b 2b,_1
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For definiteness we assume that

xk
>\min b1722k;
W mzn (@ ZU]_) - 2b1’ WAmin (@7 SCQ) = :L'k 9
2
bigar 2Dz

By direct calculation it can be shown that

Amin (In29(©,2),9(0, 7)) + 2(b, (0, z)) 2?10 =

N (20)
(Wa i (©,2)3(0, 2),5(0, 7)),
where :/y\(@’ l‘) — (551@771—17 . ’xn—Z@m_n+2 k+1@m n+2)‘
For n = 2 equality (20) reads as
Amin (I2,29(0,2),y(0, z)) + 2(b,y(@,:€))x§k+1@ — o2 t2em,
Using equality (20), we rewrite @(m)‘(4) in the form
@(m)’ (W = MninDn2)y(O(a), 7), y(O(w), 7))
@) (Fly(©(z),z),y(0(x),z)) 1)
(mem(G(w),xn 1)

where F' = 2mF — FH — HF.
Lemma 2. Let A\pin(©,2,-1) be the smallest eigenvalue of the matrix

W ©,2p-1). Then

m'Ln (

- 1 S
)\mln((—)7 .’En_l) = 5 )\mzn + 2bn—1 - (Amzn - 2bn—1)2 @2]{: n— 1 Z b2

forn > 3.
Proof. Denote by xa(A\) the characteristic polynomial of the matrix
Wi,in (©,25_1). It is not difficult to establish by induction that

x,

Qk n—2
XA()‘) = (>\mm - )\)n—B <)‘2 - (anfl + )\mm)/\ @2k Z b2 + an 1>\mm> .

By direct calculation, it is easy to verify that the smallest root of this equation is
Amin (0, p—1). Thus the lemma is proved.

Lemma 3. Suppose that ag satisfies the inequality

1
2n— min 2
b1 > . (22)

1
0< < =Apin(F
a0 < Amin )<b§+b§+---+bi_2
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Then the matriz Wy, . (O(x),zp—1) is positive definite for every fized x # 0.
Proof. The matrix F' is positive definite. Then, from (6), we obtain

2a00*™ () 2 Amin(F)[ly(©(2), )|, (23)
where A\pin (F') > 0 is the smallest eigenvalue of the matrix F'. Since
ly(©,2)[? > 220%™ i=1...n-1 and |[y(©,2)|*> 22,
it follows from (22) that

2
n 2CLO

©2m(z) = Apin(F)

2
T; 2ag . x

‘ =1,....,n—-1
@21($) — )\mln(F)7 1 ) 7n Y

for all z € R™\ {0}. In particular

Tp 2a9
< :
©2=1)(z) = Apin(F)

Combining (22) and (24), we obtain

(24)

1.721121 2bn71 )\mln
<
Q2k(n=1)(z) ~ b2+ b3+ -+ b2,

for all z € R™\ {0}. This inequality implies that

o~

)\mzn(@(x)a xn—l) > % <)\mzn + 2bn—1 _\/()\mzn - 2bn—1)2 + 8bn—1)\min >

- % </\mzn + 2bn—1 _\/()\mzn + 2bn—1)2 > =0.

Therefore the matrix Wy . (©(x),x,—1) is positive definite for every fixed x # 0.
This concludes the proof.

First we prove that ©(z) < 0 for any ag that satisfies condition (22). So
suppose ag satisfies condition (22). Let us introduce the following notation

n—2
5 _ 1 2 k 2
N = 5 Amin + 2601 — | Amin — 2bp_1)* + 4L Z;b ,

2(10

eigenvalue of the matrix W)

where L = . Then, by inequality (24), we obtain that the smallest

in(O(2), z) satisfies the following inequality
The last inequality implies that

(Wapin (O(2), 20-1)(O(), 2), §(O(), 7)) > \[F(O(x), )] (26)
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Due to positive definiteness of the matrix F'! we have the following estimate
(Fly(O(x),2),y(0(2),2)) < Amas(F)|ly(O(x), 2)||%, (27)

where \pqz(F1) > 0 is the largest eigenvalue of the matrix F''.
From (21), using (26) and (27), we obtain

(W = AminIn2)y(O(x),2), y(O(x),2)) + X - [§(O(x), )|
(1)~ Amaz(FD)[[y(0(x), )2

, (28)

where §(0(z),x) = (£:0™ 1(z), ..., 2y_0O™ " F2(z), 2K 1O F (2)).
Inequality (28) implies that

@(x))w <0 forall zeR"
Indeed, for ||[y(©(x),z)|| # 0 the last inequality is true since inequalities (17)
and (25) hold. For ||7(O(z),x)| = 0, from (28), we have

2

: Wp—1n—10

| < et g
(l') 4 )\ma:p(}?l)a2

n—1
where Apaz(FY) > 0, wy_1,1>0.

Thus the origin x = 0 is a globally asymptotically stable equilibrium of the
closed-loop system (4). Now we prove that there exists 5 > 0 such that

O(x) <5

n
Suppose that 2, i = 1,..., n are real numbers such that > [2?| # 0. Consider
i=1
a family of curves defined by
1 1
1 = aflap| " m sign(azy) || m sign(zn),

2 . 2 .
wy = e |~ m sign(zy) || sign(zy),
0‘7
n

Tp—1 = x%fl\x %sign(azg)\xn\%lsign(xn)

Ty = Tn.

We note that for every fixed point 2° = (z9,...,2%) € R?\ {0} such that 20 # 0
there is exactly one curve from the family passing through z°.
Suppose that the point 2 € R” lies on the curve (29) for some fixed z% # 0.

By direct calculation, it is easy to verify that

O(z) = (o) 2|~ |an| . (30)
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Now we estimate @(m)‘ N for every point x € R™ that lies on the curve (29)

with some fixed zg # 0. From (28), using (29) and (30), we obtain

~ n—2 2, k
(07 dwka) & (524 272 )

O(x < - , 31
@), < N (FD) 212 oy
where
29 o B
z2=(21,...,2n) = (:z:é@m_l(xo)’ 0 Lom—n+l(g), 1) .

We will show that the right-hand side of (31) is bounded from zero. Consider
the function G(%z) defined by

~ n—2 9 k
(W = Xnindn2)z,2) + A (Z 22 +ng_+12< ag ) )

- Fz, z)
G(Z)=-— = 2, (32
) M (F1) ]2 2
where z = (21,...,2,-1). Let R be an arbitrary number such that
1 n—
0<R<-. tn UWnoind (33)
2 ap—1 n—1 )
Win—1
=1
First we estimate the function G(p) for every point z = (21,...,2,-1) such

that 22 + -+ + 22_; < R%. From (32) and (33) we deduce that

o 2 n—1
((Wn—l - In—l)\min)zp Z) + agnl Wn—1pn—1 + 2a:i1 Z Win—1%;
n- i=1

G(E) = -

)‘max(Fl)HZHQ

S

n—1 9 n—I1 9
a
Wn—1n—1 = 2575 4 [ D0 Wi 14| 22 %
-1 i=1 i=1

<
B /\max(Fl)HpH2
o2 n—1
v -2 SR
1=
< -

Amaz(F1) (R +1) = —Mi(R) <0. (34)

Second we estimate the function G(z) for every point z = (z1,..., 2,—1) such
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that 22 + -+ + 22_; > R% From (32) and (33) we deduce that

~ k
2 2k+2
A (z%+-~-+z3_2+ <(F‘;0z)> F) )

- Amaz (F1)]|2]12

G ()

.o {1( Xnas F> } (N2 + o 22g) + 22547
- Amaz (F 1 2][2++2

~ k

A min {1, (/\ 2“0 } 2k+2 4 Z2k+2 + 22k+2)
< _
- Amaz (F |2[2++2

~ 2a0 k
_m “{1’( ) § o (e
= Az (F HzH2k+2

2a, k

P\ mln{ mazOF) } R2k+2
< — = —My(R) < 0. 35
= Amaz (F1)2(1—2)k + 1)k 2(R) (35)

Thus, from (34) and (35), we obtain
G(2) < —min {M;(R), Ma(R)} <0 forall ZecR" !

The last inequality implies that (;)(x)‘u) is bounded from zero for every point
x € R" such that z,, # 0. Since @(m)‘(4) is continuous at every point 2 € R™\ {0},
we have the following estimate

O(x) W < —min {M;(R), Ma(R)} forall z <€ R™\ {0}. (36)

Thus inequality (3) is satisfied for & = 1 and 8 = min {M;(R), M2(R)} > 0.
Therefore the equilibrium point = = 0 of the closed-loop system (4) is finite-time
stable.

We proceed now to establish conditions under which the control u = u(x)
defined by (7) satisfies the estimate |u(z)| < d.

Lemma 4. Suppose aj is a unique positive root of the equation

2ag 2ay >k
— Qn - = d’ 37
o (Ml = o (8 (7)
where a = (a1,...,ay), anr1 < 0, Apin(F) > 0 is the smallest eigenvalue of the

matriz F. If ag satisfies the inequality

0 < ap < ag,
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then the control u = u(x) defined by (7) satisfies the restriction |u(zx)| < d for all
x e R"™.
Proof. Consider the function

Bloo) = |5 (uan - anH(Amf:;’F))’“) .

The function ®(agp) is continuous and strictly increasing. Moreover, ®(ag) > 0 for
all ag > 0. It is clear that

®(0)=0, and ®(ag) — +o0 as ag — +o0.

Then there exists a unique number aj > 0 such that ®(af) = d.
Now we estimate the control u = u(x) defined by (7). Since 0 < ag < af),
using (23) and (24), we have

O(z)™ "em-n(z)  en—1(z)

<\t (lall = o (220 5)") < @(a) =

This completes the proof.

Finally, we summarize our discussion, and formulate the main result of this
section. The next theorem provides a solution of the global synthesis problem for
nonlinear system (4).

Theorem 2. Suppose that the numbers a; < 0, i =1,...,n— 1 are such that
the matriz A,_1 defined by (13) is stable, a,, is an arbitrary negative number, the
matriz Wy,_1 defined by (11) is an arbitrary positive definite matriz. Let the matriz
F of the form (14) be a positive definite solution of equation (10) with right-hand
side (12). Choose fnn by (15), and any1 by (18). Furthermore, suppose that the
matriz F' = 2mF — FH — HF is positive definite. Choose ag such that

. 1 2bn—1)\min B
0< < = Amin(F » 0 )
a0 mm{z ( )<b%+b§+---+bg_2) ao}

where Amin(F) is the smallest eigenvalue of the matriz F, Apmin s the smallest
eigenvalue of the matric Wy,_1, b; is defined by (19), and af is a unique positive
root of equation (37). Let the controllability function ©(z), for every x € R™, be
the positive solution of equation (5). Then the control w = u(x) defined by (7)
solves the global synthesis problem for system (4). Moreover, the time of motion
T(xo) from an arbitrary point xo € R™ to the origin satisfies the estimate

T(0) < !

= min{Ml(R),Mg(R)}Q(””O)’
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where My (R) and My(R) are defined by (34) and (35) respectively.

Proof. According to (36) the inequality (3) is satisfied for a« = 1 and
B = min{M;(R), M2(R)}. Then, by theorem 1 from [2], the control u = u(z)
of the form (7) solves the global synthesis problem for system (4), and T'(xq)
satisfies the estimate

1

T(Hfo) < 7@(3;0)5 - min {Ml(R),MZ(R)}

B

Moreover, by Lemma 4, the control u = u(x) satisfies the restriction |u(z)| < d.
This concludes the proof.

(9(3:0)

3. Global synthesis of bounded controls for systems with power
n—1
nonlinearity in the case [[ ¢; #0
i=1

Now we solve the global synthesis problem for system (1) in the case ¢,
it = 1,...,n — 1 are some known numbers such that nlz[l ¢; # 0. So consider
the following nonlinear system =

1 =1u
T = Ci_1Ti—1, t=2,...,n—1, (38)

2k+1

ITn = Cpn—1T,_1 ,

where k = %, p > 0 is an integer, ¢ > 0 is an odd integer.

Using the results obtained in the previous section, we formulate the following
theorem, which provides the solution of the global synthesis problem for nonlinear
system (38).

Theorem 3. Suppose that the conditions of Theorem 2 hold. Let the numbers
Ci, 1 =1,...,n be defined by

caa=1, ¢ =ci—1¢i—1, 1=2,....,n—1, ¢, =cp_1C

Let the controllability function ©(x), for every x € R™, be the positive solution of
the equation

2a00*" = (C~'FC~'D(0)x, D(O)z), (39)
where C = diag (¢1,...,¢Cn) is an n x n diagonal matriz. Then the control
1 A—1 An+1 wikjl
u(z) = o () (a, D(O(2))C "'x) + 5712541“1 . on1(2) (40)

solves the global synthesis problem for system (38). Moreover, the time of motion
T(xz0) from an arbitrary point xo € R™ to the origin satisfies the estimate

1
T(wo) < min {M;(R), Ma2(R)}

O(z0), (41)
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where My (R) and My(R) are defined by (34) and (35) respectively.

Proof. Assume that the control u = u(x) is applied to system (38). The change
of variables x; = ¢z;, i = 1,...,n (z = az, z € R™) maps the closed-loop
system (38) to the system

Z21 =v(z)
Zi = Zi—1, i:2,...,n—1, (42)
2z = 22K

where v(z) = u(éz) According to (39) and (40) we have

_ 1 ~ Z2hH1
v(z) =u(Cz) = 57 (a,D(O(2))z) + an“ém—il(z)’

where the function é(z), for every z € R™, satisfies the equation

2000%™ = (FD(O)z, D(0)z).

It is clear that O(z) = @(az). By Lemma 4, we deduce that the control v(2)
satisfies the estimate |v(z)| < d for all z € R"”. This implies that the control u(z)
is bounded by the same constant d > 0 for all x € R™.

Denote by z(t, z9) the solution of the closed-loop system (42) that satisfies the
initial condition z(0, z9) = z9. Thus, by Theorem 2, we obtain that for every fixed
29 € R™ there exists a number T'(z9) < +oo such that lim z(¢,29) = 0 and

t—T(20)
2(t, zp) = 0 for all t > T'(z9). Moreover, T'(zy) satisfies the estimate
1 -
T(z) < O(20)

min {M;(R), M2(R)}

for every zp € R™.
Denote by x(t,zo) the solution of the closed-loop system (38) that satisfies
the condition z(0,z¢) = xo. Since the matrix C' is nonsingular, we obtain

lim (t,z0) =0 and z(t)=0 forall t>T(z0),
t%T(on)

where T(zq) = T(C ~1zy).

This means that the control u = wu(z) of the form (40) solves the global
synthesis problem for system (38) and the time of motion T'(z¢) from an arbitrary
point xp € R™ to the origin satisfies the estimate (41). This concludes the proof.

Example 1. We solve the global synthesis problem for system (38) in the case
n=4,d=1,c1=-1,c = %, c3 =2, k = 1. So system (38) takes the form

T =u, J|ul<1,
9‘32 = —I1,

T3 = -T2,

3
iy = 223,
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We choose negative real numbers a1, ag, ag so that the matrix As defined
by (13) is stable. For example, we put a; = —3, ag = —3, az = —1. The matrix
W3 and the negative number a4 < 0 may be chosen arbitrarily. We define W3 by

100
Ws=1[ 0 5 0
0 0 1

and put agy = —1. Then, according to Theorem 1, the positive definite solution of
the matrix equation (10), for fq4 = 7, is given by

o2 11
16 16 2 2
2% 25 35 35
| 16 7 16 16
F=171 35 1
2 16 16 16
1 35 49
2 1% 16 1

Using (18), we have a5 = —14.
According to (39) we define the controllability function O(z) as a unique
positive definite solution of the equation

2a00% = (C ~'FC ~'D(0)z, D(O)z),

where
e 0 0 0 1 0 0 0
0 e 0 o ~ 0 -1 0 0
bO=1"0 0 e 0| ““lo o -3 0
2
0 0 0 1 0 0 0 -2
Put ag = 0.00178. Then, by Theorem 3, the control
T 9 T3 27 x4 x%
=3 3 3 — 378
ur) = =350 T36ee Pienr T 2ewmm T P en)y

solves the global synthesis problem for system (43). Moreover, u(z) satisfies the
restriction |u(z)| < 1 for all x € R™.

Assume that the control u = u(x) is applied to system (43). For instance, we
take g = (—0.1,0.1,—0.4,0.3) as an initial point. By numerical simulation, for
a solution z(t) (x(0) = z¢) of the closed-loop system (43), we have the following
results: ||z(100)|| = 0.051. .., |=(5000)| = 0.0079..., |[z(11000)|| = 0.00064...,
|z(15700)|| = 0.1142... x 1072%.
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