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The problem of the electromagnetic �eld an open spiral conductive sphere
is analyzing. The method of regularization of operator tasks is applied. The
integral equations with a weak singularity in the kernel is used. The in�nite
system of algebraic equations of type II with a compact operator in `2 is
received. Some properties of electromagnetic �elds are studied.
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Ðåçóíåíêî Â.Î. Ïîëå âåðòèêàëüíîãî åëåêòðè÷íîãî äèïîëÿ, ÿêèé

ðîçìiùåíèé íàä ñïiðàëüíî ïðîâiäíîþ íåçàìêíåíîþ ñôåðîþ.

Äîñëiäæó¹òüñÿ çàäà÷à ïðî åëåêòðîìàãíiòíå ïîëå ñïiðàëüíî ïðîâiäíî¨
íåçàìêíåíî¨ ñôåðè. Çàñòîñîâàíî ìåòîä ðåãóëÿðèçàöi¨ îïåðàòîðà çàäà÷i,
âìêîðèñòîâàíî ðîçâ'ÿçêè iíòåãðàëüíèõ ðiâíÿííü iç ñëàáêîþ îñîáëèâiñòþ
ó ÿäði. Îäåðæàíî íåñêií÷åííó ñèñòåìó àëãåáðà¨÷íèõ ðiâíÿíü II ðîäó ç
êîìïàêòíèì îïåðàòîðîì ó `2. Âèâ÷åíi äåÿêi âëàñòèâîñòi åëåêòðîìàãíiòíèõ
ïîëiâ.
Êëþ÷îâi ñëîâà: ñïiðàëüíî ïðîâiäíà ñôåðà, âåðòèêàëüíèé äèïîëü, êîìïàêò-
íèé îïåðàòîð.

Ðåçóíåíêî Â.À. Ïîëå âåðòèêàëüíîãî ýëåêòðè÷åñêîãî äèïîëÿ, ðàç-

ìåù¼ííîãî íàä ñïèðàëüíî ïðîâîäÿùåé íåçàìêíóòîé ñôåðîé.

Èññëåäóåòñÿ çàäà÷à îá ýëåêòðîìàãíèòíîì ïîëå ñïèðàëüíî ïðîâîäÿùåé
íåçàìêíóòîé ñôåðû. Ïðèìåíåíû ìåòîä ðåãóëÿðèçàöèè îïåðàòîðà çàäà÷è,
èíòåãðàëüíûå óðàâíåíèÿ ñî ñëàáîé îñîáåííîñòüþ â ÿäðå. Ïîëó÷åíà
áåñêîíå÷íàÿ ñèñòåìà àëãåáðàè÷åñêèõ óðàâíåíèé II ðîäà ñ êîìïàêòíûì
îïåðàòîðîì â `2. Èçó÷åíû íåêîòîðûå ñâîéñòâà ýëåêòðîìàãíèòíûõ ïîëåé.
Êëþ÷åâûå ñëîâà: ñïèðàëüíî ïðîâîäÿùàÿ ñôåðà, âåðòèêàëüíûé äèïîëü,
êîìïàêòíûé îïåðàòîð.
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1. Introduction

The methods of regularization of matrix and integral operators of applied
problems occupy a prominent place among the numerical-analytical methods [1],
[2]. The variant of methods [1], [2] is used for analysis of the electrodynamic
properties of the unclosed spiral conductive spherical surface. The spiral antennas
and devices have small size and the lightweight. They are power saving ones. They
allow to control the polarization of the radiation �elds. The spiral antennas have
been successfully used on mobile objects to communicate at short, medium and at
very long distances [3]-[5]. We note that there are many experimental papers on
this subject. The number of theoretical works is comparably small. The purpose of
our work is the construction of a numerical analytical algorithm for study of �elds
properties of the spiral conductive unclosed sphere [1], [2]. The spiral conductive
unclosed sphere is irradiated by the vertical electric dipole �eld. The dipole is
placed above the sphere with a circular aperture on its axis of symmetry. We
apply the method of regularization of problem's operator. We use the solutions
of integral equations with a weak singularity in the kernels. The main part of the
matrix operator is extracted and inverted. The in�nite linear algebraic system of
second kind with compact operator in Hilbert space l2 is obtained. The limit cases
of formulation of the problem and properties of solutions are considered.

2. Formulation of the problem

The origin of Cartesian and spherical systems of coordinates are placed in
the geometrical center of the sphere of radius r = a. Let us cut the sphere by
a horizontal plane into two parts. Consider its upper part as an unclosed sphere
with a circular aperture. Let the polar angle θ of the edge of the aperture be equal
θ0. The polar angle θ on the aperture is changing from θ0 to π. Let the vertical
electrical dipole be placed on the axis of symmetry of the unclosed sphere on the
axis OZ at the point z = b > a. We assume that the surface of an unclosed sphere
is in�nitely thin and spiral conductive. Let β will be the angle between the lines
of conductivity of the electric current on the unclosed sphere and the lines of the
meridians on the sphere. The sphere conducts the current in selected directions
only. We note that the line of the conductivity on the sphere may be represented
as follows: x = sin(η)cos(14η), y = sin(η)sin(14η), z = 1 + cos(η), where η is
a dimensionless parameter, which varies in bands [0, π/2] (�g.1).The dipole �eld
~E(0), ~H(0) meets an unclosed sphere and creates secondary electromagnetic �elds:
~E(1), ~H(1) in the area 0 6 r < a and ~E(2), ~H(2)in the area r > a. By de�nition,
the total �eld in the area 0 6 r < a is equal to ~E(1), ~H(1) . According to the
superposition principle of electromagnetic �elds, the total �eld in the area r > a
is the sum of �elds ~E(0) + ~E(2) and ~H(0) + ~H(2). The time dependence of the
�elds is taken as exp(−iωt), where ω is the angular frequency, ω = 2π/λ, λ is a
wavelength of the dipole �eld.

The total electromagnetic �elds outside of the unclosed sphere satisfy the
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Fig.1: The line of spiral conductivity of the electric current.

following conditions: 1) the Maxwell and material equations:

rot ~E = ik ~H, rot ~H = −ik ~E, div ~D = ρ, div ~B = 0, (1)

~D = ε ~E, ~B = µ ~H, ~J = σ ~E;

where k = ω
√
εµc−1, ε, µ and σ are the dielectric permittivity, the magnetic

permeability and the conductivity of the medium, ρ is the charge density, c is the
speed of light in vacuum; 2) the energy boundedness in any restricted volume A
in R3: ∫

A

(
ε| ~E|2 + µ| ~H|2

)
dx dy dz <∞, (2)

where the volume A may contain the edge of the unclosed sphere; 3) the condition
of �elds radiation on in�nity:

lim r[
∂Ψ

∂r
− ikΨ] = 0, r →∞,

where Ψ is any component ~E or ~H.

3. Boundary conditions

In addition to conditions 1)-3), the total �elds satisfy the boundary conditions.
We write the conditions for the �eld's components

~E(Er, Eθ, Eϕ), ~H(Hr, Hθ, Hϕ). (3)

in the spherical coordinate system.
B1) the �eld's components on the surface of the unclosed sphere {r = a, 0 ≤

θ < θ0, φ ∈ [0, 2π]} satisfy the conditions of the spiral conductivity:
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(H
(2)
θ −H

(1)
θ ) + (H(2)

ϕ +H(0)
ϕ −H(1)

ϕ ) tg β = 0,

E
(0)
θ + E

(2)
θ = E

(1)
θ , E(2)

ϕ = E(1)
ϕ ,

E
(1)
θ − E

(1)
θ tg β = 0; (4)

Â2) the total �elds are continuous on the aperture of the unclosed sphere
{r = a, θ0 < θ ≤ π, φ ∈ [0, 2π]} :

~E(2) + ~E(0) = ~E(1), ~H(2) + ~H(0) = ~H(1). (5)

The total �elds satisfy the requirement for singularity in the dipole placement
point. The problem (1) - (5) has a unique solution [8].

To solve the problem (1) - (5), we use the methods of regularization of the
auxiliary integral and matrix operators. First, using the Debye u electric and v
magnetic scalar potentials, the components of the �eld (3) are written. The �elds
components are uniquely expressed by the Debye potentials. The scalar potentials
u, v satisfy the Helmholtz equation, which follows from the Maxwell equations (1),
in particular, ∆u + k2u = 0. We write the Helmholtz equation in the spherical
coordinate system and separate the variables in the equation. The potentials are
represented by the Fourier series. We note that the magnetic potential of the
vertical electric dipole, placed on the axis OZ, is equal to zero: v(0) = 0. The
electric potential of the dipole is present by the series of eigenfunctions of the
auxiliary the Sturm-Liouville problem as follows

u(0) =
∞∑
n=1

F (n)
Pn(cos θ)

k3rb2

{
ψn(kr)ξn(kb), r < b,
ψn(kb)ξn(kr), r > b,

F (n) = 2n+ 1. (6)

We note that the modulus of dipole moment ~P , which is directed along the
axis OZ is equal to unity in the expression (6). We also take into account that
the dipole is placed in the upper half space on the axis OZ above the unclosed
sphere. In (6) ψn(x), ξn(x) are spherical Bessel and Hankel functions in the Debye's
notation of the �rst and 3-th kinds, respectively, of the n-th order of argument x;
Pn(cos θ) are Legendre polynomials of the �rst kind of the n-th power and zero
order of the argument cos θ. We look for the secondary potentials (7), (8) in the
form of series (6):

u(1)

ν(1)

}
=

∞∑
n=1

F (n)
Pn(cos θ)

kr

{
Anψn(kr), r < a,
Bnξn(kr), r > a,

(7)

u(2)

ν(2)

}
=

∞∑
n=1

F (n)
Pn(cos θ)

kr

{
Cnψn(kr), r < a,
Dnξn(kr), r > a.

(8)

Here in (7), (8) we take into account the occurrence of magnetic potentials in the
secondary �elds, which are scattered by the spiral conductive unclosed sphere. The
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unknown coe�cients An, Bn, Cn, Dn of the series (7) and (8) belong to the Hilbert
space (see (2)) with certain weights, which are di�erent for di�erent coe�cients.

4. The paired functional equations containing

the associated Legendre functions

Using the boundary conditions (4), (5), we get the three linear equations of
connection for four unknown coe�cients An, Bn, Cn, Dn for each n = 1, 2, 3, ....
We used here the orthogonality of the associated Legendre functions of the �rst
kind of the �rst order with the weight sinθ on the segment [0, π]. The coe�cients
An, Bn and Dn are expressed in terms of the coe�cients Cn by the three equations
of connection. To �nd coe�cients Cn we deduce the paired functional equations.
We use all the boundary conditions (4), (5) for all the components of the unknown
�elds ~E(1), ~H(1), ~E(2), ~H(2) from (3). As a result, we obtain the system of paired
functional equations, which allows to �nd the coe�cients (8) of potential u(2):

∞∑
n=1

CnF (n)
1

ψ′n(ka)
P 1
n(cos θ) = 0, θ0 < θ ≤ π, (9)

∞∑
n=1

Cn
F (n)

ψ′n(ka)

{
(tg β)2ψn(ka)ξn(ka) + ψ′n(ka)ξ′n(ka)

}
P 1
n(cos θ) =

−(kb)−2
∞∑
n=1

F (n)ψ′n(ka)ξn(kb)ψn(kb)P 1
n(cos θ), 0 ≤ θ < θ0, (10)

where the prime of the functions ψn(·), ξn(·) means the di�erentiation with respect
to the argument. To �nd all coe�cients of the potential (7), (8) there is only one
paired system of functional equations. In contrast to [11], the questions of the
division of polarization �elds and search for additional constants of integration
do not arise. The system of paired functional equations (9)-(10) is of the �rst
kind with complicated kernels, which involve various spherical functions. The
multipliers of the unknown coe�cients Cn in (9) and (10) are di�erent and have
di�erent rates of decrease as n→∞. Even taking into account the orthogonality of
the associated Legendre functions with the weight sinθ in L2(0, π), such systems
can not be solved analytically. The systems of this type appear in many problems
of �elds di�raction on open structures. There are many direct numerical methods
developed for their approximate solution. These methods are more general than
the analytical ones. However, such methods do not allow to evaluate the accuracy
of the solutions. This fact is important in the analysis, e.g., resonance oscillations
of the investigated �elds. In addition, the direct numerical methods also require
the use of considerable computing resources. We apply analytical method for
the regularization of the system (9), (10) [7,9-15,19,20]. As a result, we obtain
the in�nite system of linear algebraic equations of the second kind, which is
successfully solved numerically and analytically.
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5. The in�nite system of linear algebraic equations of the second kind

We transform the system (9), (10) into an equivalent system of functional
equations, which include the trigonometric functions instead of Legendre
functions. For this purpose we use the convergence of the series (10) in L2(0, π)
and integrate the equation (10) term by term. Here we use the equality
P 1
n(cos θ) = −[Pn(cos θ)]′. Here the constant T (0) of integration arises. We �nd

the constant T (0) below in (16). The Meller-Dirichlet integral representation for
the Legendre polynomials (11)

Pn(cos θ) = π−1
√

2

∫ θ

0
(cosφ− cos θ)−0.5 cos(n+ 0.5)φdφ (11)

is substituted into the integrated equation (10). Then the integral representation
of the type Meller - Dirichlet for the associated Legendre functions (12)

P 1
n(cos θ)=[πsinθ]−1

n(n+1)

2n+1

√
2

∫ π

θ
(cos θ− cosφ)−0.5 cos(n+0.5)φ · sinφdφ (12)

is substituted into equation (9). Using the convergence of the series in L2(0, π), the
order of integration and summation in both equations (9) and (10) changes. In this
case we have two integral equations of the �rst kind with the weak singularities
in the kernels. The singularities are due to the presence of radicals in (11) and

(12). So, we get from (10) the integral equation
∫ θ
0 (cosφ− cos θ)−0.5f1(φ) dφ = 0,

where

f1(φ) =
∑∞

n=1 F (n)
{
Cn[ψ′n(ka)](−1)[(tg β)2ψn(ka)ξn(ka) + ψ′n(ka)ξ′n(ka)]−

ψ′n(ka)ξn(kb)ψn(kb)/(kb)2
}
· cos(n+ 0.5)φ− T (0) cos(0.5)φ.

The solution of the integral equation is found in L2(0, π) by using the composition
with the kernel of the equation [6, 7, 15]. We receive the unique trivial solution:
f1(φ) = 0, φ ∈ (0, θ0).

Similarly, from the equation (9), we obtain the integral equation
∫ π
θ (cos θ −

cosφ)−0.5f2(φ) dφ = 0, where f2(φ) is represented by the trigonometric Fourier
series. That integral equation also has the unique trivial solution in L2(0, π) :
f2(φ) = 0, φ ∈ (θ0, π). We receive a new system of functional equations of the
�rst kind. Next, we transform the system of the �rst kind into the system of the
second kind.

For this purpose we apply the methods [1,2,7,9-15,19,20] and use the
properties of the Bessel and the Hankel functions [21]. Then we do some linear
transformations of the system of functional equations and �nd the main part of
the system. Next, we relabel the coe�cients Cn to the new coe�cients yn (13)
and introduce the small parameters εn (14):

yn = CnF (n)n(n+ 1)
[
ψ1
n(ka)(2n+ 1)

]−1
, (13)
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εn = 1 + ika
2n+ 1

(n(n+ 1))

{
ψ′n(ka)ξ′n(ka) + (tg β)2ψn(ka)ξn(ka)

}
. (14)

Now we inverse analytically the main part of the functional equations of the
second kind. For this, the methods [1,2,7,9�15, 19, 20] and the method of discrete
Fourier transform are used. As a result, we obtain the in�nite system of linear
algebraic equations of the second kind:

yn = (π)−1
∞∑
m=1

ymεmqn,m(θ0)−
ika

π
T (0)qn,0(θ0)−

ia

kπb2

∞∑
m=1

F (m)ψ1
m(ka)ξm(kb)qn,m(θ0).

(15)

Also, we �nd the integration constant T (0) for the equation (9) and substitute
it in (14) as :

T (0) =
i

ka

∞∑
m=1

ymεm
{

1 + ikaψ1
m(ka) ξm(kb)F (m) · (kb)−2

} qm,0(θ0)

q0,0(θ0)
, (16)

where

qn,m(θ0) = 2

∫ θ0

0
[cos(n+ 0.5)φ][cos(m+ 0.5)φ]dφ. (17)

Consider the properties of the resulting system (15). For any values ka and
β ∈ [0, π2 ) the small parameter (14) vanishes comparably quickly, proportionally
to n−2, when n→∞. The auxiliary values qn,m(θ0) in (17) are uniformly bounded
by 2π for any n,m ≥ 1 and any θ0 ∈ [0, π]. In addition, the values qn,m(θ0) for
�xed n = n0 vanish proportionally to n−1, when m → ∞. Similarly, the values
qn,m(θ0) for �xedm = m0 vanish, proportionally to n

−1, when n→∞. The matrix
elements {Gn,m}∞n,m=1 of the system Y = GY + Q (15) for �xed n = n0 vanish
when m→∞ and they vanish for �xed m = m0, when n→∞ . The eigenvalues
of the system's matrix operator di�er from the unity. The right column of the
system (15) belongs to l2. The system (15) has the compact matrix operator in
l2 and a unique solution in l2. It is solved numerically for arbitrary geometric
and frequencies parameters of the problem. The system is solved analytically, in
particular, by the method of successive approximations for the large apertures in
the sphere (0 ≤ θ0 � 1). This follows from the fact that the norm in l2 of the
matrix G of the system (15) is proportional to θ0 for small θ0. This method can
be applied successfully for small apertures in the sphere (0 ≤ π − θ0 � 1) after
simple linear transformations of the system (15).

6. Conclusions

1. The system (15) is constructed for the study of electromagnetic �elds in
the case of placing of an electrical dipole in the point z = b > a on the axis OZ.
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The system (15) can be modi�ed for the case of the dipole placed in the point
z = −b on the axis OZ. For this it is necessary to relabel the coe�cients Fn in

(6)-(8) as follows: F
(1)
n = (−1)n+1F (n), n ≥ 1.

2. Introducing the new coe�cients y
(1)
n = ynn

−2, n ≥ 1, instead of the coe�cients
yn (13), the speed of convergence of the analytical and numerical methods for
solving the system (15) can be increased.
3. The polarization of the electromagnetic �eld of structure varies non monotoni-
cally from a linear to elliptical and almost circular with a change of the angle β of
the spiral conductivity of the sphere and with an increase of the angle θ0 between
zero and π.
4. The reduced resonant frequencies χn,m, n,m > 1 of the structure for small

θ1 = π − θ0 � 1 and small β di�er from the ones of the closed sphere χ
(0)
n,m on

the coe�cient, which is proportional to θ1: χn,m = χ
(0)
n,m + O(θ1), when θ1 → 0

[10,16-20].
5. The sphere disappears completely when θ0 → 0 and it turns into a closed spiral
conductive sphere when θ0 → π. The unclosed sphere becomes almost perfectly
conductive, if β decreases from π/2 to zero. The electromagnetic �eld penetrates
almost completely through the spiral conductive sphere when β → π/2.
6. The constructed numerical-analytical algorithm can be generalized, for
example, to calculate the electromagnetic �elds of the horizontal dipole in the
presence of a spiral conductive unclosed sphere.
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