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The problem of the electromagnetic field an open spiral conductive sphere
is analyzing. The method of regularization of operator tasks is applied. The
integral equations with a weak singularity in the kernel is used. The infinite
system of algebraic equations of type II with a compact operator in f5 is
received. Some properties of electromagnetic fields are studied.
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1. Introduction

The methods of regularization of matrix and integral operators of applied
problems occupy a prominent place among the numerical-analytical methods [1],
[2]. The variant of methods [1], |2]| is used for analysis of the electrodynamic
properties of the unclosed spiral conductive spherical surface. The spiral antennas
and devices have small size and the lightweight. They are power saving ones. They
allow to control the polarization of the radiation fields. The spiral antennas have
been successfully used on mobile objects to communicate at short, medium and at
very long distances [3]-|5]. We note that there are many experimental papers on
this subject. The number of theoretical works is comparably small. The purpose of
our work is the construction of a numerical analytical algorithm for study of fields
properties of the spiral conductive unclosed sphere [1], [2]. The spiral conductive
unclosed sphere is irradiated by the vertical electric dipole field. The dipole is
placed above the sphere with a circular aperture on its axis of symmetry. We
apply the method of regularization of problem’s operator. We use the solutions
of integral equations with a weak singularity in the kernels. The main part of the
matrix operator is extracted and inverted. The infinite linear algebraic system of
second kind with compact operator in Hilbert space I is obtained. The limit cases
of formulation of the problem and properties of solutions are considered.

2. Formulation of the problem

The origin of Cartesian and spherical systems of coordinates are placed in
the geometrical center of the sphere of radius » = a. Let us cut the sphere by
a horizontal plane into two parts. Consider its upper part as an unclosed sphere
with a circular aperture. Let the polar angle 8 of the edge of the aperture be equal
fp. The polar angle 6 on the aperture is changing from 6y to w. Let the vertical
electrical dipole be placed on the axis of symmetry of the unclosed sphere on the
axis OZ at the point z = b > a. We assume that the surface of an unclosed sphere
is infinitely thin and spiral conductive. Let § will be the angle between the lines
of conductivity of the electric current on the unclosed sphere and the lines of the
meridians on the sphere. The sphere conducts the current in selected directions
only. We note that the line of the conductivity on the sphere may be represented
as follows: x = sin(n)cos(14n), y = sin(n)sin(14n), z = 1 + cos(n), where 7 is
a dimensionless parameter, which varies in bands [0,7/2] (fig.1).The dipole field
E ©), H© meets an unclosed sphere and creates secondary electromagnetic fields:
E(l), H® in the area 0 < 7 < a and E(Q), H®in the area r > a. By definition,
the total field in the area 0 < r < a is equal to E(l), HD According to the
superposition principle of electromagnetic fields, the total field in the area r > a
is the sum of fields E© + E® and H® + H®. The time dependence of the
fields is taken as exp(—iwt), where w is the angular frequency, w = 27/A, A is a
wavelength of the dipole field.

The total electromagnetic fields outside of the unclosed sphere satisfy the
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Fig.1: The line of spiral conductivity of the electric current.

following conditions: 1) the Maxwell and material equations:
rot E =ikH, rotH = —ikE, divD = 05 div B = 0, (1)
D=¢E, B=uH, J=0E;
where k = w\/@cfl, €, p and o are the dielectric permittivity, the magnetic
permeability and the conductivity of the medium, p is the charge density, c is the

speed of light in vacuum; 2) the energy boundedness in any restricted volume A
in R

/ (5\E|2 + u!ﬁ|2) dx dydz < oo, (2)
A

where the volume A may contain the edge of the unclosed sphere; 3) the condition
of fields radiation on infinity:

NG
1imr[g — kU] =0,r — oo,
r

where U is any component Eor H.

3. Boundary conditions

In addition to conditions 1)-3), the total fields satisfy the boundary conditions.
We write the conditions for the field’s components

—

E(E,,Ey,E,), H(H,,Hy, H,). (3)

in the spherical coordinate system.
B1) the field’s components on the surface of the unclosed sphere {r = a,0 <
0 < 6y, ¢ € [0,27|} satisfy the conditions of the spiral conductivity:
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(HY —HD) + (HD + HO — HW)tg5 =0,

(0) + E( ) Eél)a En,(o2) — E«,(01)7

B — BV tg8=0; (4)

B2) the total fields are continuous on the aperture of the unclosed sphere
{r=a,00 <0 <maeoel0,2n]}:

FO 4 BO Z FO @ 4 GO _ fO), (5)

The total fields satisfy the requirement for singularity in the dipole placement
point. The problem (1) - (5) has a unique solution [8].

To solve the problem (1) - (5), we use the methods of regularization of the
auxiliary integral and matrix operators. First, using the Debye u electric and v
magnetic scalar potentials, the components of the field (3) are written. The fields
components are uniquely expressed by the Debye potentials. The scalar potentials
u, v satisfy the Helmholtz equation, which follows from the Maxwell equations (1),
in particular, Au + k?u = 0. We write the Helmholtz equation in the spherical
coordinate system and separate the variables in the equation. The potentials are
represented by the Fourier series. We note that the magnetic potential of the
vertical electric dipole, placed on the axis OZ, is equal to zero: v(® = 0. The
electric potential of the dipole is present by the series of eigenfunctions of the
auxiliary the Sturm-Liouville problem as follows

> Po(cos ) [y (kr)én(kb), 7 <b,
nZlF ErE { in(kb)en(kr), 7> b, L) =2n+L o (6)
We note that the modulus of dipole moment f’, which is directed along the
axis OZ is equal to unity in the expression (6). We also take into account that
the dipole is placed in the upper half space on the axis OZ above the unclosed
sphere. In (6) 1, (x), &, (x) are spherical Bessel and Hankel functions in the Debye’s
notation of the first and 3-th kinds, respectively, of the n-th order of argument «;
P, (cos @) are Legendre polynomials of the first kind of the n-th power and zero
order of the argument cos . We look for the secondary potentials (7), (8) in the
form of series (6):

(cos 6?) Apthn(kr), r<a,
y(l) } ZF { Bpén(kr), r>a, (M)
u® > Py(cos®) [ Cpipn(kr), r<a,
v(2) } - nZ:l F(n) kr { D&, (kr), r> a. (8)

Here in (7), (8) we take into account the occurrence of magnetic potentials in the
secondary fields, which are scattered by the spiral conductive unclosed sphere. The
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unknown coefficients A,,, By, Cy,, Dy, of the series (7) and (8) belong to the Hilbert
space (see (2)) with certain weights, which are different for different coefficients.

4. The paired functional equations containing
the associated Legendre functions

Using the boundary conditions (4), (5), we get the three linear equations of
connection for four unknown coefficients A,, B,, Cn, D, for each n = 1,2,3,....
We used here the orthogonality of the associated Legendre functions of the first
kind of the first order with the weight sinf on the segment [0, w]. The coefficients
Ay, B, and D,, are expressed in terms of the coefficients C,, by the three equations
of connection. To find coefficients C),, we deduce the paired functional equations.
We use all the boundary conditions (4), (5) for all the components of the unknown
fields EO, HV E@ H® from (3). As a result, we obtain the system of paired
functional equations, which allows to find the coefficients (8) of potential u(?):

> CuF(n) (1]%) Pllcos®) =0, Gy <0<, (9)
n=1 n

> Gy s {(t98)nlka)6uha) + U1 (k) (o)} Ph{cos) =
n=1 n

—(kb)~? iF(n)%(ka)ﬁn(kb)wn(kb)Pﬁ(COS 0), 0<0<6, (10)
n=1

where the prime of the functions ¢, (-), £, (+) means the differentiation with respect
to the argument. To find all coefficients of the potential (7), (8) there is only one
paired system of functional equations. In contrast to [11], the questions of the
division of polarization fields and search for additional constants of integration
do not arise. The system of paired functional equations (9)-(10) is of the first
kind with complicated kernels, which involve various spherical functions. The
multipliers of the unknown coefficients C, in (9) and (10) are different and have
different rates of decrease as n — co. Even taking into account the orthogonality of
the associated Legendre functions with the weight sinf in Ly (0, ), such systems
can not be solved analytically. The systems of this type appear in many problems
of fields diffraction on open structures. There are many direct numerical methods
developed for their approximate solution. These methods are more general than
the analytical ones. However, such methods do not allow to evaluate the accuracy
of the solutions. This fact is important in the analysis, e.g., resonance oscillations
of the investigated fields. In addition, the direct numerical methods also require
the use of considerable computing resources. We apply analytical method for
the regularization of the system (9), (10) [7,9-15,19,20]. As a result, we obtain
the infinite system of linear algebraic equations of the second kind, which is
successfully solved numerically and analytically.
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5. The infinite system of linear algebraic equations of the second kind

We transform the system (9), (10) into an equivalent system of functional
equations, which include the trigonometric functions instead of Legendre
functions. For this purpose we use the convergence of the series (10) in Lo (0, )
and integrate the equation (10) term by term. Here we use the equality
Pl(cosf) = —[Py(cos)]’. Here the constant T of integration arises. We find
the constant T below in (16). The Meller-Dirichlet integral representation for
the Legendre polynomials (11)

P,(cost) = 1\[/ (cos ¢ — cos ) 790 cos(n + 0.5)p d¢ (11)

is substituted into the integrated equation (10). Then the integral representation
of the type Meller - Dirichlet for the associated Legendre functions (12)

1n (n+1)

1 . .
P, (cos0)=[rsinbd]~ g1

\f/ (cos — cos ¢) %5 cos(n+0.5)¢ - sin p dop (12)
is substituted into equation (9). Using the convergence of the series in Ly(0, ), the
order of integration and summation in both equations (9) and (10) changes. In this
case we have two integral equations of the first kind with the weak singularities
in the kernels. The singularities are due to the presence of radicals in (11) and
(12). So, we get from (10) the integral equation foe(cos ¢ —cos )75 f1(p) dep = 0,
where

f1(8) = 3202 F(n) {Cul), (ka)] = V[(tg B)2¢n(ka)én(ka) + 1, (ka)E), (ka)]—

P (ka)&n (kb) o (kb)/(kb)2} - cos(n + 0.5)¢ — T© cos(0.5) .

The solution of the integral equation is found in L9 (0, 7) by using the composition
with the kernel of the equation [6, 7, 15]. We receive the unique trivial solution:
f1(¢) =0,9 € (OaGO)

Similarly, from the equation (9), we obtain the integral equation [, (cos6 —
cos @) 90 fo(¢) dp = 0, where fo(¢) is represented by the trigonometric Fourier
series. That integral equation also has the unique trivial solution in Ly(0,7) :
fa(@) = 0,0 € (0p, 7). We receive a new system of functional equations of the
first kind. Next, we transform the system of the first kind into the system of the
second kind.

For this purpose we apply the methods [1,2,7,9-15,19,20] and use the
properties of the Bessel and the Hankel functions [21]. Then we do some linear
transformations of the system of functional equations and find the main part of
the system. Next, we relabel the coefficients C, to the new coefficients y,, (13)
and introduce the small parameters ¢, (14):

yn = CuF(n)n(n + 1) [} (ka)(2n+ 1)] ", (13)
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sn:1+ika(n2<”“{wn (ha)€, (ka) + (tg B)*Yn(ka)en(ka)}.  (14)

Now we inverse analytically the main part of the functional equations of the
second kind. For this, the methods [1,2,7,9-15, 19, 20] and the method of discrete
Fourier transform are used. As a result, we obtain the infinite system of linear
algebraic equations of the second kind:

_ ika
Yo = (1) Z YmEmn,m(0o) — fT( ) Gn.0(60)—

(15)
o Z F (1), (12) € (k0) g m (6)-

Also, we find the integration constant 7 for the equation (9) and substitute
it in (14) as

0 _ © S c ikal (ka m) - —2y @m,0(bo)
T kamzlym m {1+ ika ) (ka) &, (kb)F(m) - (kb) 2} @y (19
where 0
anm(00) = 2/0 [cos(n + 0.5)¢][cos(m + 0.5)¢|d¢. (17)

Consider the properties of the resulting system (15). For any values ka and
B € [0,%) the small parameter (14) vanishes comparably quickly, proportionally
ton~2, when n — oo. The auxiliary values g, m(6p) in (17) are uniformly bounded
by 27 for any n,m > 1 and any 6y € [0, 7]. In addition, the values gy m(6o) for
fixed n = ng vanish proportionally to n~!, when m — oo. Similarly, the values
n.m (00) for fixed m = my vanish, proportionally to n !, when n — co. The matrix
elements {Gy,m}po,—1 of the system Y = GY + @ (15) for fixed n = ng vanish
when m — oo and they vanish for fixed m = mg, when n — oo . The eigenvalues
of the system’s matrix operator differ from the unity. The right column of the
system (15) belongs to lp. The system (15) has the compact matrix operator in
lo and a unique solution in ls. It is solved numerically for arbitrary geometric
and frequencies parameters of the problem. The system is solved analytically, in
particular, by the method of successive approximations for the large apertures in
the sphere (0 < 6y < 1). This follows from the fact that the norm in Iy of the
matrix G of the system (15) is proportional to 6y for small 6y. This method can
be applied successfully for small apertures in the sphere (0 < m — 6y < 1) after
simple linear transformations of the system (15).

6. Conclusions

1. The system (15) is constructed for the study of electromagnetic fields in
the case of placing of an electrical dipole in the point z = b > a on the axis OZ.
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The system (15) can be modified for the case of the dipole placed in the point
z = —b on the axis OZ. For this it is necessary to relabel the coefficients F}, in
(6)-(8) as follows: FY = (=1)" T LF(n),n > 1.

2. Introducing the new coefficients yn1 = y,n"2,n > 1, instead of the coefficients
yn (13), the speed of convergence of the analytical and numerical methods for
solving the system (15) can be increased.

3. The polarization of the electromagnetic field of structure varies non monotoni-
cally from a linear to elliptical and almost circular with a change of the angle 5 of
the spiral conductivity of the sphere and with an increase of the angle 6y between
zero and 7.

4. The reduced resonant frequencies Xpm,n,m > 1 of the structure for small

01 = 7™ — 0y < 1 and small B differ from the ones of the closed sphere Xﬁ?,ln on

the coefficient, which is proportional to 01: xnm = X7(~82n + O(61), when 6; — 0
[10,16-20].

5. The sphere disappears completely when 6y — 0 and it turns into a closed spiral
conductive sphere when 69 — 7. The unclosed sphere becomes almost perfectly
conductive, if 8 decreases from /2 to zero. The electromagnetic field penetrates
almost completely through the spiral conductive sphere when 5 — 7/2.

6. The constructed numerical-analytical algorithm can be generalized, for
example, to calculate the electromagnetic fields of the horizontal dipole in the
presence of a spiral conductive unclosed sphere.
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