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Chica, Kadets, Mart��n and Soloviova demonstrated recently that the Bishop-
Phelps-Bollob�as modulus ΦS

X of a Banach spaces X can be estimated
from above through the parameter of uniform non-squareness α(X):

ΦS
X(ε) ≤

√
2ε
√

1− 1
3α(X). In this short note we demonstrate that the

right-hand side in the above theorem cannot be substituted by anything
smaller than

√
2ε
√

1− α(X).
Keywords: Bishop-Phelps theorem; uniformly non-square spaces.

Ñîëîâéîâà Ì. Â. Ìîäóëi Áiøîïà-Ôåëïñà-Áîëîáàøà â ðiâíîìiðíî

íåêâàäðàòíèõ áàíàõîâèõ ïðîñòiðàõ. ×iêà, Êàäåöü, Ìàðòií, Ñîëîâéîâà
íåùîäàâíî äîâåëè, ùî ìîäóëü Áiøîïà-Ôåëïñà-Áîëîáàøà ΦS

X áàíàõîâîãî
ïðîñòîðà X ìîæå áóòè îöiíåíèé çâåðõó ÷åðåç ïàðàìåòð ðiâíîìiðíî¨

íåêâàäðàòíîñòi α(X): ΦS
X(ε) ≤

√
2ε
√

1− 1
3α(X). Ó öié êîðîòêié ñòàòòi

ìè ïîêàæåìî, ùî ïðàâà ÷àñòèíà îöiíêè íå ìîæå áóòè çìiíåíà íà ùîñü
ìåíüøå, íiæ

√
2ε
√

1− α(X).
Êëþ÷îâi ñëîâà: òåîðåìà Áiøîïà-Ôåëïñà, ðiâíîìiðíî íåêâàäðàòíi ïðîñòîðè.

Ñîëîâüåâà Ì. Â.Ìîäóëè Áèøîïà-Ôåëïñà-Áîëëîáàøà â ðàâíîìåðíî

íåêâàäðàòíûõ áàíàõîâûõ ïðîñòðàíñòâàõ ×èêà, Êàäåö, Ìàðòèí, Ñî-
ëîâü¼âà íåäàâíî äîêàçàëè, ÷òî ìîäóëü Áèøîïà-Ôåëïñà-Áîëëîáàøà ΦS

X áà-
íàõîâîãî ïðîñòðàíñòâà X ìîæåò áûòü îöåíåí ñâåðõó ÷åðåç ïàðàìåòð ðàâíî-

ìåðíîé íåêâàäðàòíîñòè α(X): ΦS
X(ε) ≤

√
2ε
√

1− 1
3α(X). Â ýòîé êîðîòêîé

ñòàòüå ìû ïîêàæåì, ÷òî ïðàâàÿ ÷àñòü ýòîé îöåíêè íå ìîæåò áûòü çàìåíåíà
íà ÷òî-òî ìåíüøåå, ÷åì

√
2ε
√

1− α(X).
Êëþ÷åâûå ñëîâà: òåîðåìà Áèøîïà-Ôåëïñà, ðàâíîìåðíî íåêâàäðàòíûå ïðî-
ñòðàíñòâà.
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Introduction
In this paper letter X stands for a real Banach space. A functional x∗ ∈ X∗

attains its norm, if there is an x ∈ SX with x∗(x) = ‖x∗‖. The classical Bishop-
Phelps theorem states that the set of norm attaining functionals on a Banach
space is norm dense in the dual space ([1], see also [6, Chapter 1]). A re�nement
of this theorem, nowadays known as the Bishop-Phelps-Bollob�as theorem [2], was
proved by B. Bollob�as and allows to approximate at the same time a functional
and a vector in which it almost attains the norm. Very recently, the following
quantity have been introduced [4] which measure, for a given Banach space, what
is the best possible Bishop-Phelps-Bollob�as theorem in this space. Denote by SX
and BX the unit sphere and the closed unit ball of X respectively. We will also
use the notation

Π(X) :=
{

(x, x∗) ∈ X ×X∗ : ‖x‖ = ‖x∗‖ = x∗(x) = 1
}
.

De�nition 1 (Bishop-Phelps-Bollob�as modulus, [4])
Let X be a real Banach space. The spherical Bishop-Phelps-Bollob�as modulus of
the space X is the function ΦS

X : (0, 2) −→ R+ such that given ε ∈ (0, 2), ΦS
X(ε)

is the in�mum of those δ > 0 satisfying that for every (x, x∗) ∈ SX × SX∗ with

x∗(x) > 1− ε, there is (y, y∗) ∈ Π(X) with ‖x− y‖ < δ and ‖x∗ − y∗‖ < δ.

It is known (see, for example, [4, Theorem 2.1]) that for every Banach space
X and every ε ∈ (0, 2) one has ΦS

X(ε) ≤
√

2ε. This estimate is sharp for the

two-dimensional real space `
(2)
1 (see [2] or [4, Example 2.5]).

Uniformly non-square spaces were introduced by James [7] as those spaces

whose two-dimensional subspaces are uniformly separated from `
(2)
1 . The main

result of [7] � the re�exivity of uniformly non-square spaces � was the origin of
the theory of superre�exive spaces.

Recall that a Banach space X is uniformly non-square if and only if there is
α > 0 such that

1

2
(‖x+ y‖+ ‖x− y‖) ≤ 2− α

for all x, y ∈ BX . The parameter of uniform non-squareness ofX, which we denote
α(X), is the best possible value of α in the above inequality. In other words,

α(X) := 2− sup
x,y∈BX

{
1

2
(‖x+ y‖+ ‖x− y‖)

}
.

With this notation X is uniformly non-square if and only if α(X) > 0. In a
uniformly non-square space the estimate ΦS

X(ε) ≤
√

2ε can be improved.

Theorem 1 (Theorem 3.3 of [5]) Let X be a Banach space with α(X) > 0.
Then,

ΦS
X(ε) ≤

√
2ε

√
1− 1

3
α(X) for 0 < ε <

1

2
− 1

6
α(X).
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Although we don't know whether the above estimate of ΦS
X(ε) through α(X)

is sharp, we are able to demonstrate (and this is the goal of this short article)
that this result cannot be improved too much. Namely, we demonstrate that
the unknown optimal estimate of ΦS

X(ε) through α(X) cannot be better than√
2ε
√

1− α(X).
The main result

We will make a use of �hexagonal spaces� Xρ introduced in [8] and the
description of Π(Xρ) from that paper. Fix a ρ > 1

2 and denote Xρ the linear
space R2 equipped with the norm

‖(x1, x2)‖ = ‖(x1, x2)‖ρ = max

{
|x1 −

1− ρ
ρ

x2|, |x2 −
1− ρ
ρ

x1|, |x1 + x2|
}
.

In other words,

‖(x1, x2)‖ =


|x1 + x2|, if x1x2 ≥ 0;

|x1 − 1−ρ
ρ x2|, if x1x2 < 0 and |x1| > |x2|;

|x2 − 1−ρ
ρ x1|, if x1x2 < 0 and |x1| ≤ |x2|.

and the unit ball Bρ of Xρ is the hexagon abcdef , where a = (1, 0); b = (0, 1);
c = (−ρ, ρ); d = (−1, 0); e = (0,−1); and f = (ρ,−ρ).

The dual space to Xρ is R2 equipped with the polar to Bρ as its unit ball. So
the norm on X∗ρ is given by the formula

‖(x1, x2)‖∗ = ‖(x1, x2)‖∗ρ = max{|x1|, |x2|, ρ|x1 − x2|},

and the unit ball B∗ρ of X∗ρ is the hexagon a∗b∗c∗d∗e∗f∗, where a∗ = (1, 1);

b∗ =
(
−1−ρ

ρ , 1
)

; c∗ =
(
−1, 1−ρρ

)
; d∗ = (−1,−1); e∗ =

(
1−ρ
ρ ,−1

)
; and

f∗ =
(

1,−1−ρ
ρ

)
. The corresponding spheres Sρ and S∗ρ are shown on Fig. 1 and

2 respectively.

Fig. 1: Unit sphere of Xρ. Fig. 2: Unit sphere of X∗ρ .
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In the case of ρ = 1
2 the sphere of Xρ reduces to the square abde, and

consequently X1/2 is isometric to the spaces `
(2)
1 and `

(2)
∞ . When ρ > 1

2 , the

space Xρ is not isometric to `
(2)
∞ . Let us calculate the parameter of uniform non-

squareness for Xρ.

Lemma 1 Let ρ ∈ [1/2, 1]. Then, in the space X = Xρ,

α(Xρ) = 1− 1

2ρ
. (1)

Proof. Consider ϕ(x, y) = 1
2(‖x+y‖+‖x−y‖). Then α(X) = 2−sup{ϕ(x, y) :

(x, y) ∈ BXρ×BXρ}. Since ϕ : BXρ×BXρ → R is a convex function, it attains its
maximum at some extreme point of SXρ × SXρ , i.e. at a point of the form (x, y)
with x, y ∈ {a, b, c, d, e, f}. Also, ϕ(x, y) = ϕ(y, x) = ϕ(x,−y), so by symmetry
of the function and symmetry of the ball, is su�cient to check values of functions
ϕ for the following two pairs (x, y): x = a, y = b and x = a, y = c.

If x = a = (1, 0), y = b = (0, 1), then ‖x + y‖ = ‖(1, 1)‖ = 2, ‖x − y‖ =
‖(1,−1)‖ = 1 + 1−ρ

ρ = 1
ρ . So, ϕ(a, b) = 1 + 1

2ρ .

If x = a = (1, 0), y = c = (−ρ, ρ), then ‖x+ y‖ = ‖(1− ρ, ρ)‖ = 1− ρ+ ρ = 1,
‖x− y‖ = ‖(1 + ρ,−ρ)‖ = 1 + ρ+ 1− ρ = 2. So, ϕ(a, c) = 1 + 1

2 ≤ 1 + 1
2ρ .

Therefore max{ϕ(x, y) : (x, y) ∈ BXρ × BXρ} = 1 + 1
2ρ , and consequently

α(Xρ) = 1− 1
2ρ . The lemma is proved.

The set Π(Xρ) is the following polygon in R2 × R2:
Π(Xρ) = {(a, x∗) : x∗ ∈ [f∗, a∗]} ∪ {(x, a∗) : x ∈ [a, b]} ∪ {(b, x∗) : x∗ ∈ [a∗, b∗]}
∪{(x, b∗) : x ∈ [b, c]} ∪ {(c, x∗) : x∗ ∈ [b∗, c∗]} ∪ {(x, c∗) : x ∈ [c, d]}
∪{(d, x∗) : x∗ ∈ [c∗, d∗]} ∪ {(x, d∗) : x ∈ [d, e]} ∪ {(e, x∗) : x∗ ∈ [d∗, e∗]}
∪{(x, e∗) : x ∈ [e, f ]} ∪ {(f, x∗) : x∗ ∈ [e∗, f∗]} ∪ {(x, f∗) : x ∈ [f, a]},
where we use brackets like [·, ·], [·, ·[ to denote line segments in a linear space, for
example, [a, b] = {λb + (1 − λ)a : 0 ≤ λ ≤ 1}; and parenthesis (·, ·) are reserved
to denote an element of a Cartesian product.

Theorem 2 For every α ∈ [0, 1/2] there is a Banach space X with α(X) = α
such that

ΦS
X(ε) ≥

√
2ε
√

1− α(X) (2)

for all 0 < ε < 1.

Proof. Let us demonstrate that the space X = Xρ with ρ = 1
2(1−α) is what we are

looking for. The direct application of lemma 1 gives α(X) = α, so what remains
to show is (2).

Denote x = (1−√ερ,√ερ), x∗ = (1, 1−
√
ε/ρ). Then, x ∈ ]a, b[, x∗ ∈ ]a∗, f∗[

and x∗(x) = 1−ε. In order to demonstrate (2) it is su�cient to prove the absence
of such a pair (y, y∗) ∈ Π(X) that max{‖x− y‖, ‖x∗ − y∗‖} <

√
2ε
√

1− α.
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Denote r =
√

2ε
√

1− α and consider the set U of those y ∈ SX that ‖x−y‖ <
r. U is the intersection of SX with the open ball of radius r centered in x (U is
the bold line in Fig. 3). The radius of the ball equals to the distance from x to a:

‖x− a‖ = ‖(−√ερ,√ερ)‖ =
√
ερ+

1− ρ
ρ

√
ερ =

√
ε/ρ =

√
2ε
√

1− α = r,

which explains the picture for small r. Also for bigger values of r the set U can
contain points b and c, but it never contains any point of [d, e], [e, f ] and [f, a].
Observe that the open ball of radius 1/ρ centered in b contains the set U , as if
h ∈ U , we have ‖b − h‖ ≤ ‖b − x‖ + ‖x − h‖ < ‖b − x‖ + ‖x − a‖ = ‖b − a‖ =
1/ρ. Therefore it is su�cient to check that the distance from b to every point of
[d, e], [e, f ] and [f, a] is no less than 1/ρ. Indeed, if s = (−w,w − 1) is a point of
[d, e] (0 ≤ w ≤ 1), then

‖b− s‖ = ‖(w, 2− w)‖ = w + 2− w = 2 ≥ 1/ρ.

If s = (w, 1−ρρ w − 1) is a point of [e, f ], 0 ≤ w ≤ ρ, and so

‖b− s‖ = ‖(−w, 1− 1− ρ
ρ

w + 1)‖ =
1− ρ
ρ

w + 2− 1− ρ
ρ

w = 2 ≥ 1/ρ.

If s is a point of [f, a], ρ ≤ w ≤ 1, we shall consider cases ρ < 1 and ρ = 1
separately. For ρ < 1 we have s = (w,− ρ

1−ρ(1− w)), then

‖b− s‖ = ‖(−w, 1 +
ρ

1− ρ
(1− w))‖ =

ρ

1− ρ
w + 1 +

ρ

1− ρ
− ρ

1− ρ
w ≥ 2 ≥ 1/ρ.

And for ρ = 1 we have s = (1,−w), 0 ≤ w ≤ 1. Hence

‖b− s‖ = ‖(−1, 1 + w)‖ = max{1, 1 + w} ≥ 1 = 1/ρ.

So, U ⊂ ]a, b] ∪ [b, c] ∪ [c, d[.

Fig. 3: The set U . Fig. 4: The set V .
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Consider also the set V of those y∗ ∈ SX∗ that ‖x∗ − y∗‖ < r. V is the
intersection of SX∗ with the open ball of radius r centered in x∗ (the bold line in
Fig. 4). The radius of the ball equals to the distance from x∗ to a∗: ‖x∗ − a∗‖ =
‖(0,−

√
ε/ρ)‖ =

√
ε/ρ = r.

What remains to show is that (y, y∗) /∈ Π(X) for every y ∈ U and every
y∗ ∈ V . The latter fact follows immediately form the above descriptions of the
sets Π(Xρ) and U together with the fact that V ⊂ ]d∗, e∗] ∪ [e∗, f∗] ∪ [f∗, a∗[.
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