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Chica, Kadets, Martin and Soloviova demonstrated recently that the Bishop-
Phelps-Bollobds modulus <I>§< of a Banach spaces X can be estimated
from above through the parameter of uniform non-squareness «(X):

P (e) < V2e4/1—1a(X). In this short note we demonstrate that the
right-hand side in the above theorem cannot be substituted by anything

smaller than v/2¢ /1 — a(X).
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ConositoBa M. B. Moayai Bimona-®esica-Bosobaria B piBHOMIpHO
HeKBaJpaTHUX GaHaxoBux mpocripax. Yika, Kagenb, Maprin, ConosiioBa
HEIOJABHO JIOBEH, IO MOayJsb birmmona-®ennca-Bomgobaria <I>§( 6aHaAXOBOI'O
mpoctopa X Moxe OyTW OIiHEHWU 3BEpXy dUepe3 MMapaMerp piBHOMipHOI

nekaaparnocti a(X): ®5(e) < v2e4/1— 2a(X). ¥ uiii koporkiii crarri
MU TIOKAKEMO, MO NPaBa YaCTUHA OIiHKM HE MOXkKe OyTH 3MiHEHa Ha [IOCh

Menbie, Hix /2 /1 — a(X).
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HAaXOBOI'O POCTPAHCTBA X MOXKET ObITh OLIEHEH CBEPXY Yepe3 HapaMerp PaBHO-

MepHoii nekBagparHocTn a(X): O5 () < v2e4/1 — 1a(X). B aroii KOpoTKOii
CTaThe MBI TIOKAXKEM, ITO TIPABast 9aCTh ITOH OIEHKN HE MOXKET ObITh 3aMEHEHa
Ha 9TO-TO MeHbinee, deM v/2c /1 — a(X).
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Introduction
In this paper letter X stands for a real Banach space. A functional z* € X*
attains its norm, if there is an x € Sx with z*(z) = ||z*||. The classical Bishop-

Phelps theorem states that the set of norm attaining functionals on a Banach
space is norm dense in the dual space (|1], see also [6, Chapter 1]|). A refinement
of this theorem, nowadays known as the Bishop-Phelps-Bollobds theorem [2], was
proved by B. Bollobds and allows to approximate at the same time a functional
and a vector in which it almost attains the norm. Very recently, the following
quantity have been introduced [4] which measure, for a given Banach space, what
is the best possible Bishop-Phelps-Bollobds theorem in this space. Denote by Sx
and By the unit sphere and the closed unit ball of X respectively. We will also
use the notation

(X)) :={(z,2") € X x X* : [|z| = ||z*|| = 2*(z) = 1}.

Definition 1 (Bishop-Phelps-Bollobds modulus, [4])

Let X be a real Banach space. The spherical Bishop-Phelps-Bollobds modulus of
the space X is the function ®3 : (0,2) — RT such that given ¢ € (0,2), ®%(¢)
is the infimum of those 6 > 0 satisfying that for every (z,x*) € Sx X Sx» with
z*(x) > 1 —¢, there is (y,y*) € II(X) with ||z —y|| < 0 and ||z* —y*|| <.

It is known (see, for example, [4, Theorem 2.1|) that for every Banach space
X and every e € (0,2) one has ®3.(¢) < v/2e. This estimate is sharp for the

two-dimensional real space 6%2) (see [2] or [4, Example 2.5]).

Uniformly non-square spaces were introduced by James [7| as those spaces
whose two-dimensional subspaces are uniformly separated from £§2). The main
result of [7] — the reflexivity of uniformly non-square spaces — was the origin of
the theory of superreflexive spaces.

Recall that a Banach space X is uniformly non-square if and only if there is

o > 0 such that )
Sz +yl+lz—yl) <2-a

for all z,y € Bx. The parameter of uniform non-squareness of X, which we denote
a(X), is the best possible value of « in the above inequality. In other words,

a():=2 swp {3lle+ul+la -}

z,yEBx

With this notation X is uniformly non-square if and only if a(X) > 0. In a
uniformly non-square space the estimate <I>§((5) < v/2¢ can be improved.

Theorem 1 (Theorem 3.3 of [5]) Let X be a Banach space with o(X) > 0.
Then,
1

DX (e) < V2e 1—§a(X) for O<5<%—éa(X).
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Although we don’t know whether the above estimate of ®3-(g) through a(X)
is sharp, we are able to demonstrate (and this is the goal of this short article)
that this result cannot be improved too much. Namely, we demonstrate that
the unknown optimal estimate of ®%(g) through «(X) cannot be better than

V2ey/1—a(X).
The main result

We will make a use of “hexagonal spaces” X, introduced in [8] and the
description of II(X,) from that paper. Fix a p > % and denote X, the linear
space R? equipped with the norm

1-— 1—
(21, 22)[| = ||(561a1‘2)|’p=max{|$1— Pal, |2 — p$1|>|$1+$2|}~
In other words,
|z1 + 22|, if x120 > 0;
|(z1,z2)]| = |21 — I;p”a:g], if z129 <0 and |z1| > |zaf;

|zg — 1;/)”x1|, if z129 <0 and |z1] < |zal.

and the unit ball B, of X, is the hexagon abcdef, where a = (1,0);b = (0,1);

c=(=p,p);d=(-1,0);e = (0,~1); and f = (p, —p).
The dual space to X, is R? equipped with the polar to B, as its unit ball. So
the norm on X is given by the formula

(@1, m2)[I* = (1, z2)[l, = max{|ay], 22|, plz1 — 22},
and the unit ball B; of X7 is the hexagon a*b*c*d*e”f*, where a* = (1,1);
o (1= ). o = (1 1= o = (=1 —1): e = (=2 1)
b —( p,l),c = ( 1,p),d = (—=1,-1); e* = (p, 1),and

= ( ’_1_7/’). The corresponding spheres .S, and S; are shown on Fig. 1 and

2 respectively.

b a*

f /

e d* e*

Fig. 1: Unit sphere of X,,. Fig. 2: Unit sphere of X7.
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In the case of p = % the sphere of X, reduces to the square abde, and

consequently X5 is isometric to the spaces 852) and sz). When p > %, the
space X, is not isometric to Eg%). Let us calculate the parameter of uniform non-

squareness for X ,.

Lemma 1 Let p € [1/2,1]. Then, in the space X = X,

1
a(Xp)—l—?p. (1)

Proof. Consider ¢(z,y) = 3(||z+y| +|z—y|). Then a(X) = 2—sup{p(z,y) :
(z,y) € Bx, x Bx,}. Since ¢ : Bx, x Bx, — R is a convex function, it attains its
maximum at some extreme point of Sx, x Sx,, i.e. at a point of the form (z,y)
with x,y € {a,b,c,d,e, f}. Also, p(x,y) = ¢(y,x) = ¢(x, —y), so by symmetry
of the function and symmetry of the ball, is sufficient to check values of functions
¢ for the following two pairs (z,y): * = a,y = band z = a,y = c.

o =a=(1,0y=b=(0,1), then [lz+yl| = (L] = 2, [}z — yl| =
(1, =1)[| = 14+ 52 = 1. S0, p(a,b) =1+ 5.

Itz =a=(1,0),y = c=(—p,p), then [z+yl = (1= p.p)| = 1—p+p=1,
lz =yl = (L +p,=p)l| =1+ p+1—p=2.50, p(a,c) =144 <1+ 5.

Therefore max{yp(z,y) : (z,y) € Bx, x Bx,} = 1+ i, and consequently
a(Xy) =1- %. The lemma is proved.

The set II(X,) is the following polygon in R? x R?:
(X)) ={(a,z*) : 2* € [f*,a*]} U{(z,a") : © € [a,b]} U {(b,z*) : 2* € [a*,b*]}
U{(z,b*) :z € [b,} U{(c,z*) : x* € [b*, "]} U{(z,c") : x € [e,d]}
U{(d,z*) : * € [¢*, d*]} U {(z,d*) : x € [d,e]} U{(e,z*) : 2* € [d*, e*]}
U{(z,e*) : x € le, fIYU{(f,z*) : z* € [e*, ]} U{(x, f*) : x € [f,al},
where we use brackets like [-, -], [, [ to denote line segments in a linear space, for
example, [a,b] = {A\b+ (1 — N)a : 0 < X\ < 1}; and parenthesis (-,-) are reserved
to denote an element of a Cartesian product.

Theorem 2 For every o € [0,1/2] there is a Banach space X with o(X) = «

such that
05 (2) > v2e/1— a(X) (2)

for all 0 <e < 1.

Proof. Let us demonstrate that the space X = X, with p = m is what we are
looking for. The direct application of lemma 1 gives a(X) = «, so what remains
to show is (2).

Denote x = (1 — \/ep, \/Ep),z* = (1,1 — \/¢/p). Then, x €]a,b[, z* €]a*, f*
and z*(x) = 1 —e. In order to demonstrate (2) it is sufficient to prove the absence
of such a pair (y,y*) € II(X) that max{||z — y||, |lz* — v*|} < V2ev1 —a.



8 M. V. Soloviova

Denote r = v/2e4/1 — a and consider the set U of those y € Sx that ||z —y|| <
r. U is the intersection of Sx with the open ball of radius r centered in z (U is
the bold line in Fig. 3). The radius of the ball equals to the distance from x to a:

o= all = (3. V&)l = Vep+ L en = V/ep = VEVT=a =,

which explains the picture for small r. Also for bigger values of r the set U can
contain points b and ¢, but it never contains any point of [d, €], [e, f] and [f, a].
Observe that the open ball of radius 1/p centered in b contains the set U, as if
h € U, wehave [[b = h| < [|b — || + [l = All < [b — 2| + |z — al| = [b - al| =
1/p. Therefore it is sufficient to check that the distance from b to every point of
[d, €], e, f] and [f,a] is no less than 1/p. Indeed, if s = (—w,w — 1) is a point of
[d,e] (0 <w < 1), then

[b—sll =[[(w,2 —w)| =w+2-w=22>1/p.
Ifs:(w,Ppr—l) is a point of [e, f], 0 < w < p, and so

1-— 1-— 1-—
Hb—s”:\|(—w,1—pr+1)H:pr+2—7pw:221/p.

If s is a point of [f,a], p < w < 1, we shall consider cases p < 1 and p = 1

separately. For p < 1 we have s = (w, —lfpp(l —w)), then

p p p p
b—s|=|(-w,1+-—"—(1- = wr1+-L L w>2>1/p.
16— s[| = [|(—w, +1_p( w))|| LR sl s b /p

And for p =1 we have s = (1, —w), 0 < w < 1. Hence
16 = sl = (=11 + w)| = maz{1,1 +w} > 1=1/p.

So, U Cla,bjU[b,c]U]e,d].

/|

e d* e*

Fig. 3: The set U. Fig. 4: The set V.
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Consider also the set V' of those y* € Sx« that ||z* — y*|| < r. V is the
intersection of Sx+ with the open ball of radius r centered in z* (the bold line in
Fig. 4). The radius of the ball equals to the distance from z* to a*: [|z* — a*|| =
10, v/ /o)l = v/2lp = 7.

What remains to show is that (y,y*) ¢ II(X) for every y € U and every
y* € V. The latter fact follows immediately form the above descriptions of the
sets I1(X,) and U together with the fact that V' C]d*,e*] U [e*, f* ] U [f*,a"[.
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