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The stability of magnetizable medium stationary states at parametric
excitation of a magnetic �eld is studied. Parameters of exited acoustic wave
and the in�uence of oscillating magnetic �eld on the dispersion of sound
and its propagation velocity are determined using asymptotic and numerical
methods.
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Ïàöåãîí Ì. Ô., Ïîöåëó¹â C. I., Îá'¹ìíèé ïàðàìåòðè÷íèé ðåçîíàíñ

â ñåðåäîâèùàõ, ùî íàìàãíi÷óþòüñÿ. Âèâ÷à¹òüñÿ ìîæëèâiñòü âòðàòè
ñòiéêîñòi ñòàöiîíàðíèõ ñòàíiâ íàìàãíi÷óâàíèõ ñåðåäîâèù ïðè ¨õ ïàðàìåò-
ðè÷íîìó çáóäæåííi ìàãíiòíèì ïîëåì. Àñèìïòîòè÷íèìè òà ÷èñåëüíèìè
ìåòîäàìè âñòàíîâëåíi ïàðàìåòðè çáóäæóâàíèõ àêóñòè÷íèõ õâèëü, âïëèâ
îñöèëþþ÷î¨ ÷àñòèíè ìàãíiòíîãî ïîëÿ íà äèñïåðñíiñòü çáóäæóâàíîãî çâóêó
òà øâèäêiñòü éîãî ïîøèðåííÿ.
Êëþ÷îâi ñëîâà: ïàðàìåòðè÷íèé ðåçîíàíñ, îñöèëþþ÷å ìàãíiòíå ïîëå.

Ïàöåãîí Í.Ô., Ïîöåëóåâ C.È., Îáúåìíûé ïàðàìåòðè÷åñêèé ðåçî-

íàíñ â íàìàãíè÷èâàþùèõñÿ ñðåäàõ. Èçó÷àåòñÿ âîçìîæíîñòü ïîòåðè
óñòîé÷èâîñòè îäíîðîäíûõ ñîñòîÿíèé íàìàãíè÷èâàþùèõñÿ ñðåä ïðè èõ
ïàðàìåòðè÷åñêîì âîçáóæäåíèè ìàãíèòíûì ïîëåì. Àñèìïòîòè÷åñêèìè
è ÷èñëåííûìè ìåòîäàìè óñòàíîâëåíû ïàðàìåòðû âîçáóæäàåìûõ àêó-
ñòè÷åñêèõ âîëí, âëèÿíèå îñöèëëèðóþùåé ÷àñòè ìàãíèòíîãî ïîëÿ íà
äèñïåðñíîñòü âîçáóæäàåìîãî çâóêà è ñêîðîñòü åãî ðàñïðîñòðàíåíèÿ.
Êëþ÷åâûå ñëîâà: ïàðàìåòðè÷åñêèé ðåçîíàíñ, îñöèëëèðóþùåå ìàãíèòíîå
ïîëå.
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Introduction

Magnetic �uids (MFs) are widely used in modern acoustical devices in order
to increase their capacity, selectivity of certain sound frequencies and to increase
their operational resource [1]. There are possibilities to use ferro�uids as converters
of acoustic oscillations [2], a study of the connection between acoustic properties of
(MFs) and their structure are of the grate interest for physico-chemistry of disperse
systems in order to obtain the information about the stability, reconstruction
times of microstructure and irreversible phenomena in the process of structure
formation [3].The known results of ferro�uid acoustics are reduced to the study
of the in�uence of magnetic �eld on the propagation velocity and absorption
of ultrasonic vibrations [4]. In this paper we investigate the possibility of new
excitation mechanisms of acoustic vibrations in (MFs) during the loss of stability
of homogeneous �uid stationary states in oscillating magnetic �eld. This paper
continues the study, initiated in [5], and earlier studies of the stability of ferro�uid
free surface in oscillating magnetic and gravitational �elds [6, 7].

1. Basic equations

Magnetizable medium and electromagnetic �eld form closed thermodynamic
system. Therefore, dynamic equations of magnetizable medium take the form of
conservation laws [8]:

1. Mass conservation
∂ρ

∂t
+ divρ~v = 0 (1)

2. Momentum conservation

∂ρvi
∂t

= − ∂

∂xk
(ρvivk − pik) (2)

3. Energy conservation

∂

∂t

(
ρu+ ρ

v2

2

)
= −div ~Je (3)

4. Entropy balance equation

∂

∂t
ρ s = −div ~Js + σs. (4)

Here and below the following notation are introduced as: ρ is the density of
medium, ~v is the velocity, {pik} is the Cauchy symmetric stress tensor; u, s are
the density of the internal energy and the entropy; ~Je, ~Js are �ux density vectors
of the energy and the entropy, σs is internal entropy production, div ≡ ~∇ · (),
rot ≡ ~∇× ().

Equations (1)-(4) are supplemented by equations of quasi-stationary electro-
dynamics of non-conductive medium:

div ~B = 0, rot ~H = 0,
∂ ~B

∂t
= −c rot ~E, ~B = ~H + 4π ~M. (5)
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In equations (5) displacement currents are neglected, which is equivalently to the
basic ferrohydrodynamics assumption about the same order of the characteristic
frequency and size of changes of electromagnetic and hydrodynamic quantities.

Accepting the hypothesis of local equilibrium, the medium is concretized by
the Gibbs identity in the form

du = Tds− pd1

ρ
+

~H

4π
d

(
~B

ρ

)
. (6)

Here T is the temperature, p is the pressure, ~H, ~E are strength of magnetic and
electric �elds, ~B is magnetic induction, ~M is the magnetization.

It should be noted that implementation of equation (6) does not depend on
the way of magnetization of the medium (isotropic or anisotropic) [9].

Using methods of non-equilibrium thermodynamics [8], expressions for
unknown �ows in equations (1)-(4) are obtained

pik = −pδik + HiBk
4π + τik;

Jek = ρvk(u+ p
ρ + v2

2 ) + c
4π [ ~E∗, ~H]k − (~v ~H)Bk

4π − viτik + qk;

~Js = ρs~v + ~q
T ; σs = 1

T (τik
∂vi
∂xk
− ~q∇T ).

(7)

Where {τik} is the tensor of viscous stresses, ~q is the vector of heat �ux density,
~E∗ = ~E + 1

c [~v,
~B] is the electric �eld strength in the proper reference frame.

Satisfying the second law of thermodynamics, i.e. inequality σs ≥ 0, in the
linear approximation of the Onsager theory, constitutive equations are obtained

~q = −κ∇T, τik = 2ηvik + (ς − 2
3η)veeδik ,

κ ≥ 0, η ≥ 0, ς ≥ 0,
(8)

where κ , η , ς are coe�cients of conductivity, shear and bulk viscosities; {vik} is
the strain rate tensor.

Equations (1)-(5) should be supplemented by equations of the thermodynamic
state. To obtain them, the thermodynamic potential f is introduced as

f = u− Ts−
~B ~H

4πρ
. (9)

From the Gibbs equation (6) follows

df = −sdT +
p

ρ2
dρ−

~Bd ~H

4πρ
.

Therefore

s = −(
∂f

∂T
)ρ, ~H ; p = ρ2(

∂f

∂ρ
)T, ~H ; ~B = 4πρ(

∂f

∂ ~H
)ρ,T ,
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thus
s = s(ρ, T, ~H); p = p(ρ, T, ~H); ~B = ~B(ρ, T, ~H)

is the most common form of equations of the thermodynamic state. The �nal
equation determines the magnetization law of the medium.

For isotropic magnetizable medium equations of state have following form:

~B = µ ~H;µ = µ(ρ, T,H);

f = f0(ρ, T )− 1
4π

H∫
0

µ(ρ, T,H)HdH;

p = p0(ρ, T ) + ψ ; s = s0(ρ, T ) + s(m)

ψ = 1
4π

H∫
0

[µ− ρ(∂µ∂ρ )T,H ]HdH ;

s(m) = 1
4πρ

H∫
0

( ∂µ∂T )ρ,HHdH;

u = u0(ρ, T ) + BH
4πρ −

1
4π

H∫
0

(µ− TµT )HdH.

(10)

Here µ is a magnetic permeability of the medium; the expression fψ := ∂f/∂ψ
denotes the corresponding partial derivative, index � 0 � at the top marked
thermodynamic functions of the medium in the absence of the �eld. These
functions, which assumed known, satisfy the Gibbs equation in the absence of
the �eld

du0 = Tds0 − p0d1

ρ
.

Equations (1)-(5), (7)-(10) form a closed system of equations of the medium
dynamics with the equilibrium magnetization and written as [11],[15]:

dρ
dt + ρ div~v = 0,

ρd~vdt = −∇p+M∇H + η∆~v +
(
ς + 1

3η
)
∇div ~v,

ρT ds
dt = κ∆T + 2ηvikvik ,

div ~B = 0, rot ~H = 0 , ~B = µ ~H , µ = µ(ρ, T,H) ,

p = p0(ρ, T ) + ψ , s = s0(ρ, T ) + s(m) .

(11)

By virtue of (6), instead of the entropy equation in this system can be used
the energy equation in the form

∂
∂t

(
ρu+ ρv

2

2

)
= − ∂

∂xk

[
ρvk

(
u+ p

ρ + v2

2 −

−( ~B ~H)
4πρ

)
+ c

4π

[
~E × ~H

]
k
− κ ∂T

∂xk
− viτik

]
.

(12)
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2. E�ective nonmagnetic medium,

corresponding to magnetizable medium

One-dimensional unsteady motion of a magnetizable medium along x axis is
considered. Then vx = v, vy ≡ 0, vz ≡ 0 and besides

v = v(x, t), ρ = ρ(x, t), T = T (x, t), ~H = ~H(x, t).

From equations of electrodynamics (5) follows

Bx = Bx(t), Hy = Hy(t), Hz = Hz(t).

Denote
Bx(t) = χ 1(t), Hy(t) = χ 2(t), Hz(t) = χ 3(t).

Functions χi(t) are determined by boundary conditions.
Equations of motion (2) are reduced to the form:

∂ρ

∂t
+

∂

∂x
ρv = 0,

∂v

∂t
+ v

∂v

∂x
= −1

ρ

∂pe
∂x

+

(
ζ +

4

3
η

)
∂2v

∂x2
, (13)

ρT
ds

dt
= κ

∂2T

∂x2
+ 2η

(
∂v

∂x

)2

.

Taking into account that

div( ~E × ~H) = ~Hrot ~E − ~ErotH = −1

c
~H
∂ ~B

∂t

the energy equation (12) is written as

∂

∂t

(
ρue + ρ

v2

2

)
= − ∂

∂x

[
ρv(ue +

pe
ρ

+
v2

2
)− κ∂T

∂x
− vτ11

]
+ ρq.

Here the following notations are introduced:

pe = p− χ 2
1

4πµ
;

ue = u− µ

4πρ
(χ 2

2 + χ 2
3); (14)

ρq =
1

8πµ

d

dt
χ 2

1 −
µ

8π

d

dt
(χ2

2 + χ 2
3).

Thus, equations of one-dimensional motion of magnetizable medium are reduced
to equations of one-dimensional gas dynamics with special equations of state.

Equations have this form regardless from the way of magnetization (isotropic
or anisotropic). It a�ects only on the equation of state, i.e. function pe, ue. The
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energy equation (14) di�ers from the ordinary equation of gas dynamics by the
presence of term ρq on the right-hand side. Note that q = 0 if χi = const and this
case was considered in [10]. The value q 6= 0 can be interpreted as a mass density
of energy sources in the medium. This especially becomes clear from the Gibbs
equation (6), which for one-dimensional motions of magnetizable media can be
written as

due = Tds− ped
1

ρ
+ qdt. (15)

In the equation (15) the magnetic �eld strength is excluded. If q = 0 (χi =
const) this corresponds to a two-parametric medium with constitutive parameters:
ρ and s, mass density of internal energy ue and pressure pe, besides

ue = ue(ρ, s); pe = pe(ρ, s).

At q 6= 0 functions χi = χi(t) are given by appropriate boundary conditions.
They determine the energy exchange between the nonmagnetic medium and
external bodies. They can be considered as external control of nonmagnetic
medium from the external system, which is the magnetic �eld.

Nonmagnetic medium, de�ned by equations of state (14), below will be called
an e�ective medium, corresponding to the initial magnetizable medium.

Equations (14) can be written in the form:

pe(ρ, s, t) = p0(ρ, T )− χ 2
1

4πµ
+

1

4π

H∫
0

(µ− ρµρ)HdH,

ue(ρ, s, t) = u0(ρ, T ) +
χ 2

1

4πρµ
− 1

4πρ

H∫
0

(µ− Tµ T )HdH.

The temperature and the magnetic �eld strength in the right-hand side of
equations must be excluded using relations:

T = T (ρ, s, χi); H = H(ρ, s, χi) ;

χi := Bx(t) , Hy (t) , Hz (t).

To obtain them it is necessary to solve for T , H the following system of nonlinear
functional equations:

Φ = µ(ρ, T,H)H − [χ 2
1 + µ2(ρ, T,H)(χ 2

2 + χ 2
3)]

1
2 = 0,

Ψ = s− s0(ρ, T )− 1

4π

H∫
0

µTHdH = 0.

Conditions for the solvability of this system of equation for the T, H consist
of the inequality

∂(Φ,Ψ)

∂(T,H)
6= 0,
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which assumed to be satis�ed.
Thus, in the case of a linear isotropic magnetization, taking into account the

magnetocaloric e�ect (µ = µ(ρ, T )), we have:

s = s0(ρ, T ) +
1

8πµ2ρ
[µ2(χ 2

2 + χ 2
3) + χ 2

1]µT ,

H = [χ 2
2 + χ 2

1 + µ−2χ 2
1]

1
2 .

Then from the �rst equation the dependence T = T (ρ, s, χi) can be determined
and the second equation gives necessary relation H = H(ρ, s, χ i).

After that, equations of state of an e�ective medium are determined:

pe = pe(ρ, s, χi) = p0(ρ, T ) +
1

8πµ 2
[µ 2(µ−

−ρµρ)(χ 2
2 + χ 2

3)− (µ− ρµρ)χ 2
1],

ue = ue(ρ, s, χi) = u0(ρ, T )− 1

8πµ 2
[µ 2(µ−

−Tµρ)(χ 2
2 + χ 2

3)− (µ− Tµρ)χ 2
1].

If a non-linear law of magnetization is considered and magnetocaloric e�ect
can be neglected, i.e. µ = µ(ρ,H), then s = s0(ρ , T ), T = T (ρ, s) and the
dependence H(ρ, χ i) is directly determined by the law of magnetization.

As equations of state of the e�ective medium depend on the time explicitly,
such medium is non-stationary. This kind of medium has recently been studied in
electrodynamics [12]. It should be noted that equations (13)-(15) are essentially
nonlinear even in the case of an ideal medium because pe = pe(ρ, s, t). They are
quasi-linear only in the case χ i = const.

3. Excitation of acoustic vibrations

in oscillating magnetic �eld

At non-stationary parameters χi = χi(t) the equation (13) allows stationary
homogeneous solution:

ρ ≡ ρ0, v = v0 ≡ 0, s ≡ s0 = const.

In this case, the energy enters to e�ective medium according to the equation

∂ue
∂t

= q(t).

If magnetocaloric e�ect is neglected, the temperature of the medium will be
constant: T = T0. But when this e�ect is taken into account the temperature
of the homogeneous state depends on the time: T = T (t), so that the condition
of adiabaticity is performed (s = s0 = const). Furthermore, the magnetic
�eld is homogeneous: ~H = ~H(t). Depending on the type of source q(t) in the
magnetizable medium new e�ects, that have not previously been studied, become
possible.



Âiñíèê ÕÍÓ, Ñåð."Ìàòåìàòèêà, ïðèêëàäíà ìàòåìàòèêà i ìåõàíiêà�, Òîì 81 (2015) 27

The solution of system (13) for not heat-conducting medium (κ = 0) is sought
in the form

ρ = ρ0 + ρ′(x, t), v = v′(x, t),

where the prime denotes the perturbation of parameters.
By linearizing of equations (13) relative to homogeneous state, we obtain:

∂ρ′

∂ t
+ ρ0

∂v′

∂x
= 0 ;

ρ0
∂v′

∂ t
+ a2

∂ρ′

∂x
+

(
ζ +

4

3
η

)
∂2v′

∂x2
= 0; (16)

s ≡ s0 = const.

Here a2 = (∂pe∂ρ )s,χ i(t), i.e. derivative of the e�ective pressure is calculated at
constant entropy s and given functions χ i(t). Therefore

a2 = a2(ρ0, s0, χ1(t), χ2(t), χ3(t)) = a2(t).

As shown in [10], a2 is equal to the square of the velocity of sound propagation
in magnetizable medium and given by the following expression [4]:

a2 (ρ, t ) = L0 − L1 (1 + L2)
−1 ;

L0 = ρx31 + x23x32 ;
L1 = 4πρµ3m2

[
χ2
1(t) + µ−2(χ2

2(t) + χ2
3(t))

]
×

×(ρµρ + NµTx23 ) [ρ(µρ + µTTρ) + µTTs0 x23] ;
L2 = (µ2µ2TTs0Nm

[
χ2
1(t) + µ−2(χ2

2(t) + χ2
3(t))

]
−

−µ2µHB−1(χ2
2(t) + χ2

3(t)) )(µ2 + µHB)−1;
m−1 = 4πρµ(µ2 + µHB) ;
N−1 = 1 + Ts0 (smT − µTmB2) ;
x23 = ρN

[
mµTB

2(µρ + µTTρ) − smρ − smT Tρ
]

;

x31 = (p0ρ + ψρ + ψTTρ)/ρ + ρµρmB
2(µρ + µTTρ) ;

x32 = ( p0s0 + ψTTs0)/ρ + ρTs0µρ µTmB
2 ;

Ts0 =
(
∂T
∂s0

)
ρ

; p0s0 =
(
∂p0

∂s0

)
ρ
.

(17)

Due to the potentiality of one-dimensional motions v′ = ∂ϕ/∂x, where
ϕ = ϕ(x, t) is the velocity potential. Then from the second equation of (16)
the equation for density perturbations is obtained

ρ′ = −ρ0
a2

(
∂ϕ

∂t
+ ν0

∂2ϕ

∂x2

)
, ν0 =

1

ρ0

(
ζ +

4

3
η

)
. (18)

This allows to get from the �rst equation of (16) the following equation for velocity
potential

∂2ϕ

∂t2
− a2∂

2ϕ

∂x2
+ ν0

∂3ϕ

∂x2∂t
−
[
∂ϕ

∂t
+ ν0

∂2ϕ

∂x2

]
d

dt
(ln a2) = 0. (19)
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Trivial solution ϕ = const of this equation corresponds to the equilibrium
state of magnetic �uid ρ = const; v = 0. The stability analysis of this equilibrium
state is performed below.

The solution of equation (19) is sought in the form

ϕ(x, t) = ϕ(t)eikx.

For the amplitude of the perturbation ϕ(t) we get

ϕ̈ +

[
k2ν0 −

d

dt
ln(a2)

]
ϕ̇ + k2

[
a2 − ν0

d

dt
ln(a2)

]
ϕ = 0. (20)

For further study of equation (20) it is necessary to specify the explicit form
of a2(t), given by the expression (17). In the case of general isotropic law of
magnetization, equations for equilibrium state of e�ective medium can be obtained
only by using numerical methods. For the study of qualitative characteristics
of excited acoustic oscillations in magnetic �uids, the most important case of
isotropic magnetization is considered.

For an ideal paramagnet the magnetization is determined by the Langevin
equation [11]:

M = mnL(ξ), ξ =
mH

kT
, L = cthξ − ξ−1,

where: m is the magnetic momentum of ferromagnetic particle, n is the volume
concentration, k is the Boltzmann constant.

Then in weak �elds (ξ << 1) we obtain

µ = 1 + αρ; α =
4πc1m

2

3MkT
,

where c1 is mass concentration of magnetic particles, M is the mass of a single
ferromagnetic particle. If the temperature changes are neglected: α = const. Then

a2 = a20 +
(µ− 1)2

8πµ3
χ2
1; (21)

pe = p0(ρ, s0) + 1
8π (χ 2

2 + χ 2
3)−

2µ−1
8πµ2

χ 2
1; s0 = s0 = s; a20 = ∂p0(ρ,s0)

∂ρ .

Here a20 is the square of sound velocity in the medium in the absence of a
magnetic �eld.

In this case it is obtained, that the magnetic �eld components, perpendicular
to the direction of wave propagation, do not a�ect on the velocity of sound
propagation. Moreover, the velocity of sound propagation along magnetic �eld
direction is greater than in the absence of the �eld.

Suppose that the parameter χ10 is time-dependent according to harmonic law

χ1 = χ10 + β cos 2ωt. (22)
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Then for the sound velocity in the medium we have

a2(t) = a 2
0 +

(µ− 1)2

4πρµ3

(
χ2
10 +

β2

2
+ 2χ10β cos 2ωt+

β2

2
cos 4ωt

)
, (23)

where a0 = a0(ρ0, s0), µ = µ(ρ0) are constant parameters, determined at
equilibrium state. By substituting (23) in (20), the following equation is obtained

d2ϕ
dτ2

+ [ψ0 + 2ψ2s sin 2τ + 2ψ4s sin 4τ ] dϕdτ +

+[θ0 + 2θ2s sin 2τ + 2θ4s sin 4τ + 2θ2c cos 2τ + 2θ4c cos 4τ ]ϕ = 0,

(24)

where

ψ0 = k2ν0
ω , ψ2s = (µ−1)2χ10

2πρµ3A2 β, ψ4s = (µ−1)2
4πρµ3A2β

2,

θ0 = k2

ω2A
2, θ2s = (µ−1)2k2ν0χ10

2πρµ3ωA2 β, θ2c = (µ−1)2k2χ10

4πρµ3ω2 β,

θ4s = (µ−1)2k2ν0
4πρµ3ωA2 β

2, θ4c = (µ−1)2k2
16πρµ3ω2β

2, A2 = a 2
0 + (µ−1)2

4πρµ3
χ2
10,

τ = ωt is dimensionless time.
The equation (24) has periodic solutions, corresponding to acoustic waves.

4. Asymptotic solution

The equation (20) by substitution

ϕ(τ) = aZ exp

(
−k

2ν0τ

2ω

)
(25)

is reduced to the form

d2Z

dτ2
+

[
k2a2

ω2
− 2ν0k

2

ωa

da

dτ
−
(
k2ν0
16ω

− 1

8a

da

dτ

)2

+
d

dτ

(
1

a

da

dτ

)]
Z = 0.

In the case of time-dependent sound velocity in the form (23), by neglecting of
terms of order β2, the Hill equation for the function Z is obtained

d2Z

dτ2
+ [θ0 − ψ2

0 + 2(θ1c − ψ1s) cos 2τ + θ1s sin 2τ)]Z = 0. (26)

In the �rst approximation by the small parameter β marginal stability curves of
the �rst unstable region is given by

θ0 = 1 + ψ2
0 ± ((θ1c − ψ1s)

2 + θ21s)
1/2.

As follows from (25), it is necessary to �nd an unstable solution of the equation
(26). Using the method of Whittaker [13, 14], as a �rst approximation is taken
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Z = eγτ sin(τ − σ). (27)

By substituting (27) in (26) and equating coe�cients at sin τ and cos τ, for
the �rst unstable region is obtained

2γ = (θ1c − ψ1s) sin 2σ − θ1s
2

cos 2σ,

θ0 = 1 + ψ2
0 − γ2 + (θ1c − ψ1s) cos 2σ +

θ1s
2

sin 2σ.
(28)

From this

γ2 = −(1 + θ0 − ψ2
0)±

(
4(θ0 − ψ2

0) + (θ1c − ψ1s)
2 +

θ21s
4

)1/2
,

tgσ =
(θ1c−ψ1s)±[(θ1c−ψ1s)2+

θ21s
4
− 4γ2]1/2

2γ− θ1s/2 .

(29)

Values γ2 ≥ 0 , 0 ≤ σ ≤ π/2 correspond to unstable solutions.
In the �rst approximation, in view of (25) and (27), the solution of the

equation (20) is obtained

ϕ(t) = A exp((γω − k2ν0/2)t) sin(ωt− σ).

This is periodic solution if the following condition

γ =
k2ν0
2ω

is satis�ed. Then the equation (19) for the velocity potential has periodic solution

ϕ(x, t) = A exp(i(kx− ω t+ σ)) ,

which corresponds to the potential of small-amplitude waves, excited as a result
of parametric instability, and propagating at the velocity ω/k. The frequency of
excited waves is twice less then frequency of the parametric excitation.

Taking into account (29), the equation, that determines the magnitude of the
wave vector depending on parametric excitation frequency, is obtained:(

1− k2A2

ω2

)2
+ 1

16

(
k2ν0
ω

)2 [
9
(
k2ν0
ω

)2
+ 40

]
− 3

2
k2A2

ω2
k2ν0
ω =

=
[
βχ0(µ−1)2
4πρµ3A2

]2 [(
k2A2

ω2 − 2
)2

+
(
k2ν0
ω

)2]
.

(30)

Hence it follows that the excited waves are dispersive and the dispersion is a result
of the viscosity of the medium.



Âiñíèê ÕÍÓ, Ñåð."Ìàòåìàòèêà, ïðèêëàäíà ìàòåìàòèêà i ìåõàíiêà�, Òîì 81 (2015) 31

In the case of an ideal medium the equation (30) has two solutions

ω2

k2
= A2 (1± ε), ε =

βχ0(µ− 1)2

4πρµ3A2
. (31)

Thus in this case waves propagate without dispersion. As A is the wave velocity
in a constant �eld, the oscillating part of the magnetic �eld can leads to either
increase or decrease of their velocity.

Values (31) correspond to periodic solutions of the equation (26) and the value
of parameters, which belong to the boundaries of stability regions. Therefore, at
the same frequency of the magnetic �eld can be excited waves of di�erent lengths.

5. Numerical solution

For the case of weak magnetic �elds (ξ << 1) the equation (24) for the velocity
potential was obtained. The equation (24) includes periodic functions of time, so
the solution of this equation is sought in the Floquet form

ϕ(τ) = eγτY (τ),

where γ = s+ iα is the Floquet exponent; Y (τ) is a periodic function with period
π
ω , therefore it can be expanded in the Fourier series

Z(τ) =

∞∑
n=−∞

φ2ne
2nτi.

Then

ϕ(τ) =
∞∑

n=−∞
φ2ne

q2nτ , q2n = s+ i(α+ 2n). (32)

By substituting (32) in (24), we obtain

∞∑
n=−∞

eq2nτ [(q22n + q2nψ0 + θ0)φ2n +

+(θ2c − i(θ2s + q2nψ2s))φ2n+1 + (θ2c + i(θ2s + q2nψ2s))φ2n−1 + (33)

+(θ4c − i(θ4s + q2nψ4s))φ2n+2 + (θ4c + i(θ4s + q2nψ4s))φ2n−2] = 0.

In matrix form (33) can be written as

(C + βB + β2D)φ = 0, (34)

where C is diagonal matrix with complex coe�cients, B and D are banded
matrices with two and three subdiagonals:

C =



. . .
...

...
... ...

. . . c−1,−1 0 0 . . .

. . . 0 c0,0 0 . . .

. . . 0 0 c1,1 . . .

. .
. ...

...
...

. . .


;B =



. . .
...

...
...

... . .
.

. . . 0 b−1,0 0 0 . . .

. . . b0,−1 0 b0,1 0 . . .

. . . 0 b1,0 0 b1,2 . . .

. . . 0 0 b2,1 0 . . .

. .
. ...

...
...

...
. . .


;
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D =



. . .
...

...
...

... . .
.

. . . d−1,−1 0 d−1,1 0 . . .

. . . 0 d0,0 0 d0,2 . . .

. . . d1,−1 0 d1,1 0 . . .

. . . 0 d2,0 0 d2,2 . . .

. .
. ...

...
...

...
. . .


;

cn,n = q22n +
k2ν0
ω

q2n +
k2

ω2

(
a20 +

(µ− 1)2

4πρµ3
χ2
10

)
; dn,n =

(µ− 1)2

8πρµ3
k2

ω2
;

bn,n±1 =
(µ− 1)2

2πρµ3

[
k2

2ω2
∓

i(q2n + ν0k2

ω )

a20 + (µ− 1)2χ2
0/(4πρµ

3)

]
χ10;

dn,n±2 =
(µ− 1)2

4πρµ3

[
k2

4ω2
∓

i(q2n + ν0k2

ω )

a20 + (µ− 1)2χ2
0/(4πρµ

3)

]
.

In the case of pure oscillating magnetic �eld χ10 = 0 : bn,n±1 = 0. Then by
inverting of the matrix C, from (34) follows the ordinary eigenvalue problem:

(C−1D)φ =
1

β2
φ . (35)

At the stability analysis is usually used the following procedure [16]: the �rst
step is to �x the wavenumber k and the amplitude β, as well as values of other
hydrodynamic parameters of the system, and then the Floquet exponent γ = s+iα
is calculated. Marginal stability curves in the plane (k, β) are curves on which
s(k, β) = 0. This condition is satis�ed by interpolation of β at �xed k between
negative and positive values of s.

But in our calculations the method described in [17] is used: the Floquet
exponent γ = s + iα is pre-�xed, then the eigenvalue problem (35) is solved
at �xed value of k. The largest real positive eigenvalue 1

β2 , corresponding to a
minimum amplitude β, is sought by interpolation of k. To construct marginal
stability curves in the plane (k, β) we have to set s = 0 and α = 0 (α = 1),
which corresponds to the case of harmonic (subharmonic) oscillations. The above
method for calculation of boundaries of instability regions is used to solve the
problem (35). Matrices A and D are cut to size, providing the required accuracy
of calculations. In all calculations the typical ferro�uid parameters were accepted

ν = 0.1(P), µ = 2, σ = 30
( erg

cm2

)
, ρ = 1.2

( g

cm3

)
, a0 = 1.5 · 105

(cm
s

)
.

Boundaries of the �rst two unstable regions (the Ince-Strutt diagram for a
viscous �uid) is shown on Fig.1.a) and Fig.1.b). Marginal stability curves form
narrow regions ("tongues"), the value of parameters outside (inside) of these
regions corresponds to stability (instability). The absolute minimum of this curves
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Fig. 1. a) The �rst and b) the second region of parametric instability
at excitation frequency ω = 100 (Hz) of magnetic �eld.

determines the critical wavenumber kc and the critical amplitude βc, at which
instability occurs.

Fig.2.a) shows, that if magnetic �eld frequency increases, acoustic waves with
less wavelength are excited. Moreover, at increasing of frequency for excitation of
parametric instability must be applied the oscillating �eld of greater amplitude
(see Fig.2.b) )

Fig. 2. The dependence of a) the critical wavenumber kc and b) the critical
amplitude βc on the frequency ω of oscillating magnetic �eld.

In the case, when the magnetic �eld consist of constant and oscillating parts,
the eigenvalue problem (34) must be solved. Using the column vector φ := βξ,
the equation (34) reduces to the ordinary eigenvalue problem for matrix doubled
in size (

−D−1B −D−1C
I 0

)(
φ
ξ

)
= β

(
φ
ξ

)
, (36)

where I is the identity matrix, which has the same size as B, C and D.
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Fig. 3. a) The �rst and b) the second region of parametric instability for
di�erent values of stationary �eld χ10 and frequency ω = 100 (Hz).

Similarly to the previous case, to construct regions of parametric instability
in the plane of parameters (k, β) at �xed values of χ10, the smallest real
positive eigenvalue β of the problem (36) is sought. The calculation revealed
that stationary component of the magnetic �eld has less (greater) impact on
the structure of odd (even) instability regions. For the �rst unstable region at
increasing of χ10 critical amplitude βc remains almost unchanged, but exited
sound waves have larger wavelength (see Fig.3.a)). Whereas for the second
unstable region Fig.3.b) shows, that if χ10 increases, the critical amplitude βc
also increases, i.e. instability threshold shifts to higher values.

Conclusions

The parametric instability of ferro�uid volumes in weak homogeneous
magnetic �eld, which consist of constant and oscillating parts, is considered.
The appearance of unstable zones is studied. The problem was reduced to the
Hill equation, which is studied using asymptotic and numerical methods. Marginal
stability curves, that form narrow unstable regions corresponding to acoustical
oscillations in ferro�uid, were obtained. The dependence of a structure of unstable
tongues on the frequency ω and constant part χ10 of magnetic �eld is studied.
It is shown, that increasing of ω leads to increasing of critical wavenumber kc
and critical amplitude βc of magnetic �eld, required for the onset of instability.
Also the increasing of χ10 causes to the appearance of shorter wavelength and
can shifts a threshold of instability.
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