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The stability of magnetizable medium stationary states at parametric
excitation of a magnetic field is studied. Parameters of exited acoustic wave
and the influence of oscillating magnetic field on the dispersion of sound
and its propagation velocity are determined using asymptotic and numerical
methods.
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Introduction

Magnetic fluids (MFs) are widely used in modern acoustical devices in order
to increase their capacity, selectivity of certain sound frequencies and to increase
their operational resource |1]. There are possibilities to use ferrofluids as converters
of acoustic oscillations [2], a study of the connection between acoustic properties of
(MFs) and their structure are of the grate interest for physico-chemistry of disperse
systems in order to obtain the information about the stability, reconstruction
times of microstructure and irreversible phenomena in the process of structure
formation [3].The known results of ferrofluid acoustics are reduced to the study
of the influence of magnetic field on the propagation velocity and absorption
of ultrasonic vibrations [4]. In this paper we investigate the possibility of new
excitation mechanisms of acoustic vibrations in (MFs) during the loss of stability
of homogeneous fluid stationary states in oscillating magnetic field. This paper
continues the study, initiated in [5], and earlier studies of the stability of ferrofluid
free surface in oscillating magnetic and gravitational fields |6, 7].

1. Basic equations

Magnetizable medium and electromagnetic field form closed thermodynamic
system. Therefore, dynamic equations of magnetizable medium take the form of
conservation laws [8]:

1. Mass conservation

g’: + divpv = 0 (1)
2. Momentum conservation
35;& = _(g)?Uk(PUivk — Pik) (2)
3. Energy conservation
8825 <pu + pi) = —divJ, (3)
4. Entropy balance equation
P 5= —divJ, + 0. (4)

Here and below the following notation are introduced as: p is the density of
medium, U is the velocity, {p;x} is the Cauchy symmetric stress tensor; u, s are
the density of the internal energy and the entropy; J—;, J, are flux density vectors
of the energy and the entropy, oy is internal entropy production, div = V- 0,
rot =V x ().

Equations (1)-(4) are supplemented by equations of quasi-stationary electro-
dynamics of non-conductive medium:

—

B L. L .
— = —crotE, B=H +4nM. (5)

divB = 0, rotH = 0,
ot
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In equations (5) displacement currents are neglected, which is equivalently to the
basic ferrohydrodynamics assumption about the same order of the characteristic
frequency and size of changes of electromagnetic and hydrodynamic quantities.

Accepting the hypothesis of local equilibrium, the medium is concretized by
the Gibbs identity in the form

1 H (B
du =Tds — pd— + —d () . (6)
p o Am \p

Here T is the temperature, p is the pressure, H,E are strength of magnetic and
electric fields, Bis magnetic induction, M is the magnetization.

It should be noted that implementation of equation (6) does not depend on
the way of magnetization of the medium (isotropic or anisotropic) [9].

Using methods of non-equilibrium thermodynamics [8|, expressions for
unknown flows in equations (1)-(4) are obtained

Dik = pézk’ + k + Tik;
2 S T GH) B,
Jok = pon(u+ B+ %) + £ B, Hlx — T —viry 4 gy (7)

Jo=psti+4; o5 =t — GVT).

Where {7;;} is the tensor of viscous stresses, ¢ is the vector of heat flux density,

E*=F + 17, B] is the electric field strength in the proper reference frame.
Satisfying the second law of thermodynamics, i.e. inequality o5 > 0, in the

linear approximation of the Onsager theory, constitutive equations are obtained

7= —kVT, T =20 + (s — 37)Veedit
(8)

k20, 120, ¢=0,

where k,7,¢ are coefficients of conductivity, shear and bulk viscosities; {v;} is
the strain rate tensor.

Equations (1)-(5) should be supplemented by equations of the thermodynamic
state. To obtain them, the thermodynamic potential f is introduced as

BH
—u—Ts— . 9
fu-Ts- 40 )
From the Gibbs equation (6) follows
BdH

df = —sdT + Ldp - .
p dmp

Therefore

of
SZ_(aiT)pJ;ﬁ p:p2(aip)Tﬁ; B_4ﬂ-p(aH)pT7
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thus . .
s=s(p,T,H); p=pp,T,H); B=DB(p,T H)

is the most common form of equations of the thermodynamic state. The final
equation determines the magnetization law of the medium.
For isotropic magnetizable medium equations of state have following form:

§=Mﬁ;u=u(p,£ﬂ);

f=1pT)~ 4 [ wp, T, H)HdH;

=BT+ 5 = 0(p,T) + 5

= ﬁf[u—p(g’,ﬁ)T,H]HdH; (10)

Here ;1 is a magnetic permeability of the medium; the expression fy := 0f/0¢y
denotes the corresponding partial derivative, index “ 0 7 at the top marked
thermodynamic functions of the medium in the absence of the field. These
functions, which assumed known, satisfy the Gibbs equation in the absence of
the field

du’ = Tds® — pod;.

Equations (1)-(5), (7)-(10) form a closed system of equations of the medium
dynamics with the equilibrium magnetization and written as [11],[15]:

% + pdivt = 0,
pll = —Vp+ MVH +nAT+ (s + in) Vdiv 7,
pT% = KAT + 2nvipvik (11)
divB=0, rotH=0, B=upH, w=ulp,T,H),

p=pp,T) +1, s=5p,T)+ s .

By virtue of (6), instead of the entropy equation in this system can be used
the energy equation in the form

|

2 2
t(pu+p”7) :_% {pvk (u—i—%—i—%—

Q

(12)

BH = =
—(4@)) + 4= [EXHL—R% —vink] .
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2. Effective nonmagnetic medium,
corresponding to magnetizable medium

One-dimensional unsteady motion of a magnetizable medium along z axis is
considered. Then v, = v,v, = 0,v, = 0 and besides

—

U:U(:Eat)a p:p(:z,‘,t), T:T($,t), ﬁ:H($,t)
From equations of electrodynamics (5) follows
By = B,(t), H,=Hy(t), H,=H.(t).

Denote
Bx(t) = Xl(t); Hy(t) = XZ(t)ﬂ Hz(t) = XS(t)'

Functions x;(t) are determined by boundary conditions.
Equations of motion (2) are reduced to the form:

op 0
LY =0
ot * oz ="
ov v 1 Jp. 4 0%v
v _ ! =) 2 13
8t+vaaz p Ox + <C+377) 0z? (13)
ds o0’T ov\?
y S, VY )
o = v +20(5;)
Taking into account that
— — — — — 1 e d é
div(E x H) = HrotE — ErotH = —fHa—
c Ot
the energy equation (12) is written as
0 n v? 0 (e + De n 112) oT .
u — | =—=|pv(te + —+ =) — K —vT .
(%Pe P2 (%P e P 5 Or 11 pq

Here the following notations are introduced:

Pe=p— X1 .
e 471_”7
I
Ue = u 47Tp(><§ +x3); (14)
_ 1 d 2 pod 2 2
=g X gy 7 X2+ X3)-

Thus, equations of one-dimensional motion of magnetizable medium are reduced

to equations of one-dimensional gas dynamics with special equations of state.
Equations have this form regardless from the way of magnetization (isotropic

or anisotropic). It affects only on the equation of state, i.e. function p, ue. The
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energy equation (14) differs from the ordinary equation of gas dynamics by the
presence of term pq on the right-hand side. Note that ¢ = 0 if x; = const and this
case was considered in [10]. The value ¢ # 0 can be interpreted as a mass density
of energy sources in the medium. This especially becomes clear from the Gibbs
equation (6), which for one-dimensional motions of magnetizable media can be
written as

1
due = T'ds — ped— + qdt. (15)
p

In the equation (15) the magnetic field strength is excluded. If ¢ = 0(x; =
const) this corresponds to a two-parametric medium with constitutive parameters:
p and s, mass density of internal energy u. and pressure pe, besides

ue:ue(p’5)§ Pe :pe(p,S)-

At g # 0 functions y; = x;(t) are given by appropriate boundary conditions.
They determine the energy exchange between the nonmagnetic medium and
external bodies. They can be considered as external control of nonmagnetic
medium from the external system, which is the magnetic field.

Nonmagnetic medium, defined by equations of state (14), below will be called
an effective medium, corresponding to the initial magnetizable medium.

Equations (14) can be written in the form:

% L

pE(p7$7t) :po(p7T> 47T

H
/ 1 — ppp)HdH,

0

H

1

/ pw—Tur)HdH.
0

t)y=u’(p, T
ue(p757) U(p, )+4TFPM 47TP

The temperature and the magnetic field strength in the right-hand side of
equations must be excluded using relations:

T:T(pVSin); H:H(prin);
Xi = Ba(t), Hy(t), H (t).

To obtain them it is necessary to solve for T', H the following system of nonlinear
functional equations:

1
® = pu(p,T,H)H — [x7 + 1*(p, T, H) (x5 + x3)]2 =0,
H
1
U=s5—5"p,T)— /MTHdH:O.
4
0

Conditions for the solvability of this system of equation for the T, H consist

of the inequality
(2, V)

o) 7
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which assumed to be satisfied.
Thus, in the case of a linear isotropic magnetization, taking into account the
magnetocaloric effect (u = u(p,T)), we have:

[1*(x3 + x3) + xiler,

1
0
= T

_ 1
H=[x3+x1+p 7.
Then from the first equation the dependence T' = T'(p, s, x;) can be determined

and the second equation gives necessary relation H = H (p, s, X 4).
After that, equations of state of an effective medium are determined:

pe = pe(ps s, xi) =" (0, T) + Sra : 5[ (

—pe) (X5 + X3 ( plip)X T,
ue:ue(pasaxi):u ( ) [:uz(
Io)X

1.

If a non-linear law of magnetization is considered and magnetocaloric effect
can be neglected, i.e. u = pu(p,H), then s = s%(p,T), T = T(p, s) and the
dependence H(p, x ;) is directly determined by the law of magnetization.

As equations of state of the effective medium depend on the time explicitly,
such medium is non-stationary. This kind of medium has recently been studied in
electrodynamics [12]. It should be noted that equations (13)-(15) are essentially
nonlinear even in the case of an ideal medium because p. = pe(p, s,t). They are
quasi-linear only in the case y; = const.

) —
~Tpe)(x5+x3) — (

3. Excitation of acoustic vibrations
in oscillating magnetic field

At non-stationary parameters x; = x;(t) the equation (13) allows stationary
homogeneous solution:

p=po, v=1v9=0, s=sg=const.

In this case, the energy enters to effective medium according to the equation

Oue
=q(t).
5 q(t)

If magnetocaloric effect is neglected, the temperature of the medium will be
constant: T = Tj. But when this effect is taken into account the temperature
of the homogeneous state depends on the time: T' = T'(t), so that the condition
of adiabaticity is performed (s = sy = const). Furthermore, the magnetic
field is homogeneous: H = H(t). Depending on the type of source ¢(t) in the
magnetizable medium new effects, that have not previously been studied, become
possible.
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The solution of system (13) for not heat-conducting medium (x = 0) is sought
in the form
p:po—l—pl(x,t), v :U/(Zﬁ,t),
where the prime denotes the perturbation of parameters.
By linearizing of equations (13) relative to homogeneous state, we obtain:

8,0 61) _ 0
ot Mgz ~
o' 00 4\ 0%
— — = — =0 16
Por T o T\CTET) G T 18)
s = sg = const.
Here a®> = (%%f)s,xi(t)a i.e. derivative of the effective pressure is calculated at

constant entropy s and given functions y ;(¢). Therefore

a® = a*(po, s0, x1(t), x2(t), x3(t)) = a*(t).

As shown in [10], a? is equal to the square of the velocity of sound propagation
in magnetizable medium and given by the following expression [4]:

a’(p,t) = Lo — Ly (1 + Lo)™

Lo = px31 + 96239632,

Ly = drppm? [X3(t) + p2(3(t) +x3(1)) | x

X(ppp + NMTUCQ?,) oy + pr T) + MTT0$23] ;

Ly = (42 MTTon [Xl( )+ w2030 +x31) ] -

—pPua BT 0B () +x3(1) ) (W + paB)7h

m~! = 477,0#(#2 + paB); (17)
N7l =1+ Ty (sf — urmB?);

x93 = pN [murB*(u, + prT,) — sy — s, ] ;

r31 = (pp + Yp + UrTp)/p + prpmB?(pp + prTp);

232 = (p% +U1rTy)/p + pTsopp prmB?;
Op°
T = (&5),: bl = (QL> :
P
Due to the potentiality of one-dimensional motions v/ = 0¢/dz, where

¢ = ¢(x,t) is the velocity potential. Then from the second equation of (16)
the equation for density perturbations is obtained

dp 0% 1 4
/__7 v _ =
P = <8t+ 082>, 2 p0<<+377>- (18)

This allows to get from the first equation of (16) the following equation for velocity
potential

—a + 1 — + V=5

o Py Po [y &
ot? Ox? 0x20t ot 0x?

] d(lna ) =0. (19)
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Trivial solution ¢ = const of this equation corresponds to the equilibrium
state of magnetic fluid p = const; v = 0. The stability analysis of this equilibrium
state is performed below.

The solution of equation (19) is sought in the form

pla,t) = p(t)e™.

For the amplitude of the perturbation ¢(t) we get

¢+ |k — dln(a2)] ¢ + k2 {CLQ -1 iln(a2) v =0. (20)
dt dt

For further study of equation (20) it is necessary to specify the explicit form
of a?(t), given by the expression (17). In the case of general isotropic law of
magnetization, equations for equilibrium state of effective medium can be obtained
only by using numerical methods. For the study of qualitative characteristics
of excited acoustic oscillations in magnetic fluids, the most important case of
isotropic magnetization is considered.

For an ideal paramagnet the magnetization is determined by the Langevin
equation [11]:

M =mnL(€), £=-——, L=cthé—¢1,

where: m is the magnetic momentum of ferromagnetic particle, n is the volume
concentration, k is the Boltzmann constant.
Then in weak fields (£ << 1) we obtain

dreym?

3MET’

where c; is mass concentration of magnetic particles, M is the mass of a single
ferromagnetic particle. If the temperature changes are neglected: a = const. Then

p=1l+ap, a=

—1)2
a® = aj + (MSM;J,) X; (21)
_ ap°(p,s°
pe=1"(p,s%) + = (x3+x}) - Eax} L =so=s5 aj=2L)

Here a% is the square of sound velocity in the medium in the absence of a
magnetic field.

In this case it is obtained, that the magnetic field components, perpendicular
to the direction of wave propagation, do not affect on the velocity of sound
propagation. Moreover, the velocity of sound propagation along magnetic field
direction is greater than in the absence of the field.

Suppose that the parameter x1g is time-dependent according to harmonic law

X1 = X10 + [ cos 2wt. (22)
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Then for the sound velocity in the medium we have

—1)? 2 2
a’(t) = al + %Tpu?)’ (X%o + % + 2x100 cos 2wt + % cos 4wt> ) (23)
where ay = aop(po,so), p = p(po) are constant parameters, determined at

equilibrium state. By substituting (23) in (20), the following equation is obtained

Lo 4 [0+ 2hossin 27 + by, sindr] 42 4
(24)
+[0p + 2025 8in 27 + 2604 sindT + 2605, cos 27 + 2604, cosdt] p =0,

where

k2 1 1)2
Yo = wuo’ as = gwp23§§067 Yas = 4:[,#3142ﬁ2

_ k% 42 _ (e=1)%*K*vox10 _ (p=1) )2k2x10
90 - TA ; 025 — T 2mppPwA? ﬁa A ppBw? Ba

_ (u=1)%k?v0 52 (p=1)%k* 52 42 _ (n—1)°
943 ~ dnppBwA? ; 940 — 16mpu3 wzﬁ A CLO + Ampp® Xl()a

T = wt is dimensionless time.
The equation (24) has periodic solutions, corresponding to acoustic waves.

4. Asymptotic solution
The equation (20) by substitution

o(T) = aZexp <— kzz()”) (25)

is reduced to the form

&7z |Ka®  200k® da <k21/0 1da)2 d<1da>

dr2

Z =0.

w? wa dr \ 16w Sadr dr \adr

In the case of time-dependent sound velocity in the form (23), by neglecting of
terms of order 32, the Hill equation for the function Z is obtained

£z
dr2

In the first approximation by the small parameter § marginal stability curves of
the first unstable region is given by

Op = 1+ Y2 £ (010 — th1s)% + 02,)/2.

+ [0o — i + 2(01c — Y15) cos 27T + O1,8in27)] Z = 0. (26)

As follows from (25), it is necessary to find an unstable solution of the equation
(26). Using the method of Whittaker [13, 14], as a first approximation is taken
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Z = €' sin(1 — o). (27)

By substituting (27) in (26) and equating coefficients at sin7 and cos T, for
the first unstable region is obtained

0
27y = (01c — Y1) sin 20 — # cos 20, (28)
28
0
=1+ 1/)% — 72+ (010 — 15) cos20 + %sin2a.

From this

2 _ 2 2 2, 03.\'?
72 = —(1+ 00— v}) + (400 — vB) + (Bro — w12 + %)

(29)

02
(01c—1p15)E[(rc—th15)2+ 18 — 442]1/2

tgo = 2y —015/2

Values 72 >0, 0 <o <m/2 correspond to unstable solutions.
In the first approximation, in view of (25) and (27), the solution of the
equation (20) is obtained

o(t) = A exp((yw — k?vo/2)t) sin(wt — o).
This is periodic solution if the following condition

. k2V0
= 2w

is satisfied. Then the equation (19) for the velocity potential has periodic solution
o(z,t) = Aexplilkx —wt+o0)),

which corresponds to the potential of small-amplitude waves, excited as a result
of parametric instability, and propagating at the velocity w/k. The frequency of
excited waves is twice less then frequency of the parametric excitation.

Taking into account (29), the equation, that determines the magnitude of the
wave vector depending on parametric excitation frequency, is obtained:

2 2 2
(1) a5 (1) o (122) " 00] - izt e =

L] (-9 ()]

Hence it follows that the excited waves are dispersive and the dispersion is a result
of the viscosity of the medium.

(30)
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In the case of an ideal medium the equation (30) has two solutions

w? —1)?
5= A(=xe), &= %. (31)
Thus in this case waves propagate without dispersion. As A is the wave velocity
in a constant field, the oscillating part of the magnetic field can leads to either
increase or decrease of their velocity.

Values (31) correspond to periodic solutions of the equation (26) and the value
of parameters, which belong to the boundaries of stability regions. Therefore, at

the same frequency of the magnetic field can be excited waves of different lengths.
5. Numerical solution

For the case of weak magnetic fields ({ << 1) the equation (24) for the velocity
potential was obtained. The equation (24) includes periodic functions of time, so
the solution of this equation is sought in the Floquet form

p(r) =Y (7),

where v = s+ i« is the Floquet exponent; Y (7) is a periodic function with period
=, therefore it can be expanded in the Fourier series

20)= 3 g

Then - B
o(1) = Z b€ qon = s+ i(a+ 2n). (32)
By substituting (32) in (2n4:),_ov:;e obtain
i e [(g3,, + qantbo + 00)dan +
+(02c — i(925n;_q<>20nw25))¢2n+1 + (O2¢ + i(02s + q2n¥2s))P2n—1 + (33)

+(94C - Z'(945 + q2nw4s))¢2n+2 + (940 + i(94s + q2n¢4s))¢2n72] = 0.

In matrix form (33) can be written as
(C+ BB+ 8°D)¢ =0, (34)

where C' is diagonal matrix with complex coefficients, B and D are banded
matrices with two and three subdiagonals:

0 bag O 0
P I T B PR
C|iB= o0 bipg 0 bip
0 0 ca1 ... .. 0 0 b1 O
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d1-1 0 dag O
0 doo 0 dop2

i1 0 diy 0 ... |
0  dyo 0  dop

)

kvy k> (p—1)° (b —1)* K
Cnn = Qo + o Lt 3 (ag + WX%O> s dnn = Wﬁé

(=12 [ 1 et ]
S R 10,
2mppd | 202 T af + (p— 1)2x3/ (4w pp)
(=12 [ B ilan + )
drpp? | 4w? T af + (p—1)2xq5/(4mppd) |

bn,n:l:l =

dn,n:I:Q =

In the case of pure oscillating magnetic field x10 = 0 : by n+1 = 0. Then by
inverting of the matrix C, from (34) follows the ordinary eigenvalue problem:

0. (35)

At the stability analysis is usually used the following procedure [16]: the first
step is to fix the wavenumber k£ and the amplitude 3, as well as values of other
hydrodynamic parameters of the system, and then the Floquet exponent v = s+ia
is calculated. Marginal stability curves in the plane (k,3) are curves on which
s(k,B) = 0. This condition is satisfied by interpolation of § at fixed k between
negative and positive values of s.

But in our calculations the method described in [17] is used: the Floquet
exponent v = s + i« is pre-fixed, then the eigenvalue problem (35) is solved
at fixed value of k. The largest real positive eigenvalue é, corresponding to a
minimum amplitude [, is sought by interpolation of k. To construct marginal
stability curves in the plane (k, ) we have to set s = 0 and o = 0 (o = 1),
which corresponds to the case of harmonic (subharmonic) oscillations. The above
method for calculation of boundaries of instability regions is used to solve the
problem (35). Matrices A and D are cut to size, providing the required accuracy
of calculations. In all calculations the typical ferrofluid parameters were accepted

(C™'D)¢ =

v =0.1(P), p =2, 0:30(3@, p:1.2(i3), ap=1.5-10° (C—m>
cm cm s

Boundaries of the first two unstable regions (the Ince-Strutt diagram for a

viscous fluid) is shown on Fig.1.a) and Fig.1.b). Marginal stability curves form

narrow regions ("tongues"), the value of parameters outside (inside) of these

regions corresponds to stability (instability). The absolute minimum of this curves
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Fig. 1. a) The first and b) the second region of parametric instability
at excitation frequency w = 100 (Hz) of magnetic field.

determines the critical wavenumber k. and the critical amplitude B., at which
instability occurs.

Fig.2.a) shows, that if magnetic field frequency increases, acoustic waves with
less wavelength are excited. Moreover, at increasing of frequency for excitation of
parametric instability must be applied the oscillating field of greater amplitude
(see Fig.2.b) )
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Fig. 2. The dependence of a) the critical wavenumber k. and b) the critical
amplitude 5. on the frequency w of oscillating magnetic field.

In the case, when the magnetic field consist of constant and oscillating parts,
the eigenvalue problem (34) must be solved. Using the column vector ¢ := ¢,
the equation (34) reduces to the ordinary eigenvalue problem for matrix doubled

<_DI—IB —D0‘10><?>:B<?>, (36)

where I is the identity matrix, which has the same size as B, C' and D.
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Fig. 3. a) The first and b) the second region of parametric instability for
different values of stationary field y19 and frequency w = 100 (Hz).

Similarly to the previous case, to construct regions of parametric instability
in the plane of parameters (k,3) at fixed values of xj9, the smallest real
positive eigenvalue [ of the problem (36) is sought. The calculation revealed
that stationary component of the magnetic field has less (greater) impact on
the structure of odd (even) instability regions. For the first unstable region at
increasing of xi1g critical amplitude (5. remains almost unchanged, but exited
sound waves have larger wavelength (see Fig.3.a)). Whereas for the second
unstable region Fig.3.b) shows, that if yio increases, the critical amplitude S,
also increases, i.e. instability threshold shifts to higher values.

Conclusions

The parametric instability of ferrofluid volumes in weak homogeneous
magnetic field, which consist of constant and oscillating parts, is considered.
The appearance of unstable zones is studied. The problem was reduced to the
Hill equation, which is studied using asymptotic and numerical methods. Marginal
stability curves, that form narrow unstable regions corresponding to acoustical
oscillations in ferrofluid, were obtained. The dependence of a structure of unstable
tongues on the frequency w and constant part xi9 of magnetic field is studied.
It is shown, that increasing of w leads to increasing of critical wavenumber k.
and critical amplitude 5. of magnetic field, required for the onset of instability.
Also the increasing of y19 causes to the appearance of shorter wavelength and
can shifts a threshold of instability.
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