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We prove the existence of a compact �nite dimensional global attractor
for a coupled PDE system comprising a nonlinearly damped semilinear
wave equation and a thermoelastic Mindlin-Timoshenko plate system with
nonlinear viscous damping. We show the upper semi-continuity of the
attractor with respect to the parameters related to the coupling terms and
the shear modulus of the plate.
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Ôàñòîâñêàÿ Ò. Á., Ãëîáàëüíûé àòòðàêòîð íåëèíåéíîé ñèñòåìû
äëÿ âîëíîâîãî óðàâíåíèÿ è òåðìîóïðóãîé ñèñòåìû êîëåáàíèÿ
ïëàñòèí. Äîêàçûâàåòñÿ ñóùåñòâîâàíèå êîíå÷íîìåðíîãî êîìïàêòíîãî
ãëîáàëüíîãî àòòðàêòîðà ñèñòåìû, ñîñòîÿùåé èç íåëèíåéíîãî âîëíîâîãî
óðàâíåíèÿ ñ íåëèíåéíûì äåìïèíãîì è ñèñòåìû Ìèíäëèíà-Òèìîøåíêî,
îïèñûâàþùåé àêóñòè÷åñêóþ êàìåðó ñ óïðóãîé ñòåíêîé. Äîêàçàíà
âåðõíÿÿ ïîëóíåïðåðûâíîñòü àòòðàêòîðà ïî ïàðàìåòðàì çàäà÷è.
Êëþ÷åâûå ñëîâà: ìîäåëü àêóñòèêè, àòòðàêòîð, âåðõíÿÿ ïîëóíåïðåðûâ-
íîñòü.

Ôàñòîâñüêà Ò. Á., Ãëîáàëüíèé àòðàêòîð íåëiíiéíî¨ ñèñòåìè äëÿ
õâèëüîâîãî ðiâíÿííÿ òà òåðìîïðóæíî¨ ñèñòåìè êîëèâàííÿ
ïëàñòèí. Äîâåäåíî iñíóâàííÿ ñêií÷åííîìiðíîãî êîìïàêòíîãî ãëîáàëü-
íîãî àòðàêòîðà ñèñòåìè, ùî ñêëàäà¹òüñÿ ç íåëiíiéíîãî õâèëüîâîãî
ðiâíÿííÿ ç íåëiíiéíèì äåìïiíãîì òà ñèñòåìè Ìiíäëiíà-Òèìîøåíêà,
ùî îïèñó¹ àêóñòè÷íó êàìåðó ç ïðóæíîþ ñòiíêîþ. Äîâåäåíî âåðõíþ
íàïiâíåïåðåðâíiñòü àòðàêòîðà çà ïàðàìåòðàìè çàäà÷i.
Êëþ÷îâi ñëîâà: ìîäåëü àêóñòèêè, àòðàêòîð, âåðõíÿ íàïiâíåïåðåðâíiñòü.
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Introduction
The mathematical model considered consists of a semilinear wave equation

de�ned on a bounded domain, which is strongly coupled with thermoelastic
Mindlin-Timoshenko plate equation on a part of the boundary. The model includes
a weak structural damping and a thermal damping. This kind of models referred
to as structural acoustic interactions, arise in the context of modelling gas pressure
in an acoustic chamber which is surrounded by a combination of rigid and �exible
walls (see, e.g. [13, 22]). The pressure in the chamber is described by the solution
to a wave equation, while vibrations of the �exible wall are described by the
solution to a plate equation. The Mindlin-Timoshenko model describes dynamics
of a plate in view of transverse shear e�ects (see, e.g., [15, 24] and references
therein).

More precisely, let Ω ∈ R3 be a smooth bounded open domain with the
boundary ∂Ω =: Γ = Γ0 ∪ Γ1 consisting of two open (in the induced topology)
connected disjoint parts Γ0 and Γ1 of positive measure. Γ0 is �at and is referred
to as the elastic wall. The dynamics of the acoustic medium in the chamber Ω is
described by a interactive system of a semilinear wave equation and a Mindlin-
Timoshenko system of thermoelasticity:

ztt + g(zt)−∆z + f(z) = 0, x ∈ Ω, t > 0, (1)
∂z

∂n
= 0, x ∈ Γ1,

∂z

∂n
= κwt, x ∈ Γ0 (2)

vtt −Av + µ(v +∇w) + β∇θ + b(vt) + v[h(|v|2) + γw] = 0 x ∈ Γ0, t > 0, (3)
wtt − µdiv(v +∇w) + b0(wt) + h0(w) + κzt = 0, (4)

θt −∆θ + βdivvt = 0 (5)
v = w = θ = 0 ∂Γ0 (6)

supplemented with initial conditions:

z(0, ·) = z0, zt(0, ·) = z1,
v(0, ·) = v0, vt(0, ·) = v1,

w(0, ·) = w0, wt(0, ·) = w1, θ(0, ·) = θ0.
(7)

The variable z describes the dynamics in the acoustic medium, while v denotes
the angles of de�ection of the �laments, w - the transverse displacement of the
middle surface, and θ - the temperature variation averaged with respect to the
thickness of the plate. The operator A is de�ned as follows

A =




∂2
x1

+ 1−ν
2 ∂2

x2

1+ν
2 ∂x1x2

1+ν
2 ∂x1x2

1−ν
2 ∂2

x1
+ ∂2

x2


 = ∇div− 1− ν

2
rotrot,

where 0 < ν < 1 is the Poisson ratio.
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The non-decreasing functions b(s), b0(s), and g(s) describe the dissipation
e�ects in the model, the terms f(z), h(v), h0(w), vw · v represent nonlinear forces
acting on the wave and on the plate components respectively. The boundary term
κzt|Γ0 represents the pressure exercised by the acoustic medium on the wall.

The parameter 0 ≤ κ ≤ 1 has been introduced to cover the case of non-
interacting wave and plate equations (κ = 0), while the parameter 0 ≤ β ≤ 1 -
the case of decoupled plate and heat conduction equations. The parameter µ > 0
describes the shear modulus of the plate.

Due to broad engineering applications in aerospace industry, structural
acoustic models have recently attracted an ample attention. A very large literature
devoted to this model in the context of the control theory, (see e.g. the monograph
[16] and references therein). The investigation of the uniform stability of structural
acoustic models with thermoelastic wall in the case of a single equilibrium can be
found in [17, 18, 19, 21]. The nonlinear structural acoustic model with thermal
e�ects and without mechanical dissipation in the plate component comprising
wave and thermoelastic Berger's equations has been studied in [2] in that the
existence of a compact global attractor and it's properties were investigated.
The same results were obtained for the wave/ Berger's system with mechanical
damping without thermal e�ects [3]. Long-time behavior of a nonlinear structural
acoustic model comprising wave and thermoelastic von Karman plate equations
has been studied in [9]. We also refer to the paper [23] devoted to the problem of
dynamics of a clamped von Karman plate in a gas �ow in the presence of thermal
e�ects. The existence and upper semicontinuity of attractors of the elastic and
thermoelastic Mindlin-Timoshenko plate system were studied in [5, 10].

We consider the nonlinear acoustic model comprising wave and Mindlin-
Timoshenko equations with thermal e�ects with and without non-conservative
nonlinearity in the plate part.
The paper is organized as follows. Section 1 is devoted to the conservative system
with monotone energy. We begin with the abstract formulation of the problem
and its well-posedness. Our �rst main result, Theorem 3 states the existence
of global attractors for problem (1)-(7) under rather general conditions on the
nonlinearities. Since the dynamical system generated by the system without
non-conservative nonlinearity is gradient, the main issue to be explored is the
asymptotic compactness of the semi-�ow. To show this property we use the idea
due to Khanmamedov [14] in the form suggested in [8]. In comparison to the
acoustic interaction with the Berger's and von Karman plate [3, 9] the existence
of the compact global attractor requires the additional condition on the nonlinear
damping referred to the elastic component (see Statement 3).

The next main results, Theorem 5 concerns the �nite dimensionality of the
attractors.

The main result of Section 2, Theorem 9, concerning problem (1)-(7) is the
upper semicontinuity of the attractors with respect to the shear modulus and the
coupling parameters. In contrast to the system considered in [2] the attractor is
upper-semicontinuous not only with respect to the parameter decoupling wave
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and plate components but also with respect to the parameter decoupling plate
and thermal components.

In Section 3 we establish the same results for the system with non-conservative
nonlinearity. Due to the lost of monotonicity of the energy the existence of an
absorbing ball is proved supplementary.

System with conservative forces (γ = 0).
In this section we consider the conservative model ( the case γ = 0), which

implies the monotonicity of the energy.
Basic assumptions. We impose the following basic assumptions on

the nonlinearities of the problem. Note that the listed assumptions on the
nonlinearities f , g and bi, i=0,1,2 were �rst formulated in [9, Section 6.3, 12.3].

Statement 1 • g ∈ C(R) is a non-decreasing function, g(0) = 0, and there
exists a constant C > 0 such that

|g(s)| ≤ C(1 + |s|p), s ∈ R, (8)

where 1 ≤ p ≤ 5.

• f ∈ Liploc(R) and there exists a positive constant M such that

|f(s1)− f(s2)| ≤ M(1 + |s1|q + |s2|q)|s1 − s2|, s1, s2 ∈ R, (9)

where q ≤ 2. Moreover,

λ =
1
2

lim
|s|→∞

inf
f(s)

s
> 0 (10)

.

• h ∈ Liploc(R+), h0 ∈ Liploc(R) and there exists a positive constant M1 such
that

|h(s1)− h(s2)| ≤ M1(1 + sq1
1 + sq1

2 )|s1 − s2|, s1, s2 ∈ R+, (11)

and

|h0(s1)− h0(s2)| ≤ M(1 + |s1|q2 + |s2|q2)|s1 − s2|, s1, s2 ∈ R, (12)

where q1, q2 ≥ 0. and

h∗ = lim
s→∞ inf

h(s)
s

> 0, h∗0 = lim
|s|→∞

inf
h0(s)

s
> 0. (13)

• b ∈ C(R2), b0 ∈ C(R) are non-decreasing functions such that b(0) = 0,
b0(0) = 0.
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Statement 2 For any ε > 0 there exists cε such that s ∈ R
•

s2 ≤ ε + cεsg(s), s ∈ R (14)

•
s2 ≤ ε + cεsb0(s), s ∈ R, |s|2 ≤ ε + cεsb(s), s ∈ R2 (15)

Statement 3 • There exist C > 0 and 1 ≤ p, p0 < ∞ such that

|b(s)| ≤ C(1 + |s|p), s ∈ R2, |b0(s)| ≤ C(1 + |s|p0), s ∈ R. (16)

Statement 4 • There exist positive constants m > 0, M > 0 such that

m ≤ g(s1)− g(s2)
s1 − s2

≤ M(1 + s1g(s1) + s2g(s2))2/3, s1, s2 ∈ R, s1 6= s2.

(17)

• There exist mi > 0, Mi > 0, i = 1, 2 such that

m1|s1 − s2|2 ≤ (b(s1)− b(s2))(s1 − s2), (18)
bj(s1)− bj(s2)

s1 − s2
≤ M1(1 + s1bj(s1) + s2bj(s2)), s1, s2 ∈ R, s1 6= s2, (19)

where j = 1, 2, b = (b1, b2).

m2 ≤ b0(s1)− b0(s2)
s1 − s2

≤ M2(1 + s1b0(s1) + s2b0(s2)), s1, s2 ∈ R, s1 6= s2.

(20)

• f ∈ C2(R),
|f ′′(s)| ≤ C(1 + |s|), s ∈ R. (21)

• h0 ∈ C2(R), h ∈ C2(R+) and there exists a constant c > 0 and 1 ≤ p2 < ∞,
1 ≤ p3 < ∞ such that

|h′′(s)| ≤ c(1 + sp2), s ∈ R+ (22)

and
|h′′0(s)| ≤ c(1 + |s|p3), s ∈ R. (23)

Abstract formulation. We represent the system (1)-(7) as an abstract
evolution equation in an appropriate Hilbert space. For this purpose we introduce
the following spaces and operators.Denote u = (v, w) = (v1, v2, w).

Let A : D(A) ⊂ [L2(Γ0)]3 → [L2(Γ0)]3 be the positive self-adjoint operator on
D(A) = [H2 ∩H1

0 (Γ0)]3 de�ned by

A =
( −A + µI µ∇

−µdiv −µ∆

)
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De�ne also a positive self-adjoint operator L : D(L) ∈ L2(Ω) → L2(Ω) by the
formula

L = −∆ + λI,

with
D(L) = {H2(Ω) :

∂

∂n
|Γ = 0}

and λ is given by (9). Next, let N0 be the Neumann map from L2(Γ0) to L2(Ω)
de�ned by

ψ = N0φ ⇔
{

(−∆ + λ)ψ = 0
∂ψ
∂n |Γ0 = φ, ∂ψ

∂n |Γ1 = 0

It is well-known [20] that N0 is continuous from L2(Γ0) to H3/2(Ω) ⊂ D(A3/4−ε),
for any ε > 0, and the following trace result takes place

N∗
0 Lh = h|Γ0 , h ∈ D(A1/2). (24)

We also introduce the operators R1 : H1
0 (Γ0) → [L2]3(Γ0) and R2 : [H1

0 ]2(Γ0) →
L2(Γ0) de�ned by the formulas

R1θ = β(∂1θ, ∂2θ, 0)

and
R2 = β∂1v1 + β∂2v2 = βdivv.

Now we are at the point to give the abstract formulation of problem (1)-(7). With
the above dynamic operators initial-value problem (1)-(7) can be rewritten as
follows

ztt + G(zt) + Lz + F1(z)− κLN0ut = 0, x ∈ Ω, t > 0, (25)
Dutt + Au + R1θ + B(ut) + F2(u) + κN∗

0 Lzt = 0 (26)
γ1θt −∆θ + R2ut = 0 (27)

z(0) = z0, zt(0) = z1, u(0) = u0, ut(0) = u1, θ(0) = θ0. (28)

where the nonlinear terms are given by the following operators

G(h) = g(h),

B(u) = (b(v), b0(w)),

here u = (v, w). Denote

Π(z) =
∫

Ω

∫ z

0
(f(ξ)− λξ)dξdx. (29)

Then
F1(z) = Π′(z). (30)
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The term F2(u) is represented as follows

F2(u) = (v1h(|v|2), v2h(|v|2), h0(w)). (31)

Denote

Π0(u) =
1
2

∫

Ω

|v|2∫

0

h(s)dsdx +
∫

Ω

w∫

0

h0(s)ds, (32)

It follows from (10) and (13) that

Π(z) ≥ −Mf (33)
Π0(u) ≥ −Mh (34)

for some nonnegative constants Mf and Mh. The natural energy functions
associated with the solutions to the uncoupled wave and plate models are given
respectively by

Ez(z(t), zt(t)) = E0
z (z, zt) + Π(z) (35)

and
Eu,θ(u(t), ut(t)) = E0

u(u, ut) + E0
θ (θ) + Π0(u). (36)

Here we have set
E0

z (z, zt) =
1
2
(‖L1/2z‖2

Ω + ‖zt‖2
Ω), (37)

E0
u(u, ut) =

1
2
(‖Au‖2

Γ0
+ ‖ut‖2

Γ0
), (38)

and
E0

θ (θ) =
1
2
‖θ‖2

Γ0
. (39)

Denote also
Ez(z, zt) = E0

z (z, zt) + Π(z) + Mf , (40)

Eu,θ(u, ut, θ) = E0
u(u, ut) + E0

θ (θ) + Π0(u) + Mh, (41)

Finally we introduce the total energy E(t) = E(z(t), zt(t), u(t), ut(t), θ(t)) of
the system

E(t) = Ez(z, zt) + Eu,θ(u, ut, θ), (42)

where Ez(z, zt) and Eu,θ(u, ut, θ) are given by (35) and (36) respectively. Denote
also

E0(t) = E(z, zt, u, ut, θ) = E0
z (z, zt) + E0

u(u, ut) + E0
θ (θ). (43)

The positive part of the total energy is given by

E(t) = E(z, zt, u, ut, θ) = Ez(z, zt) + Eu,θ(u, ut, θ), (44)

where Ez(z, zt) and Eu,θ(u, ut, θ) are given by (40) and (41) respectively.
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It follows from (33) and (34) that there exist positive constants c, C, M0 such
that

cE(t)−M0 ≤ E(t) ≤ CE(t) + M0 (45)
The phase spaces Y1 for the acoustic component [z, zt] and Y2 for the plate

component [u, ut, θ] of system are given by

Y1 = D(L1/2)× L2(Ω) = H1(Ω)× L2(Ω)

and

Y2 = D(A1/2)× [L2(Γ0)]3 × L2(Γ0) = [H1
0 (Γ0)]3 × [L2(Γ0)]3 × L2(Γ0)

with the norms
‖(z1, z2)‖2

Y1
= ‖L1/2z1‖2

Ω + ‖z2‖2
Ω

and
‖(u1, u2, θ)‖2

Y2
= ‖A1/2u1‖2

Γ0
+ ‖D1/2u2‖2

Γ0
+ ‖θ‖2

Γ0

respectively. The phase space for the problem (25)-(28) is de�ned as

H = Y1 × Y2 (46)

with the norm
‖y‖2

H = ‖(z1, z2)‖2
Y1

+ ‖(u1, u2, θ)‖2
Y2

for y = (z1, z2, u1, u2, θ) and the corresponding inner product.

Well-posedness.

De�nition 1 A triplet of functions (z(t), u(t), θ(t)) which satisfy initial condi-
tions (28) and such that

(z(t), u(t)) ∈ C([0, T ];D(L1/2)×D(A1/2)) ∩ C1([0, T ]; L2(Ω)× [L2(Γ0)]3)

and
θ(t) ∈ C([0, T ]; L2(Γ0))

is said to be
(S) a strong solution to problem (25)-(28) on the interval [0, T ], i�

• for any 0 < a < b < T

(zt, ut) ∈ L1([a, b], D(L1/2)×D(A1/2)), θt ∈ L1([a, b], L2(Γ0))

and
(ztt, utt) ∈ L1([a, b], L2(Ω)× [L2(Γ0)]3)

• L[z(t) − ακN0ut] + G(zt(t)) ∈ L2(Ω), u(t) ∈ D(A), θ ∈ H2 ∩ H1
0 (Γ0) for

almost all t ∈ [0, T ]
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• equations (25)-(27) are satis�ed in L2(Ω)× L2(Γ0)× L2(Γ0) for almost all
t ∈ [0, T ]

(G) a generalized solution to problem (25)-(28) on the interval [0, T ], i� there
exists a sequence {(zn(t), un(t), θn(t))} of strong solutions to (25)-(28) with initial
data (z0

n, z1
n, u0

n, u1
n, θ0

n) such that

lim
n→∞ max

t∈[0,T ]
{‖∂tz(t)− ∂tzn(t)‖Ω + ‖L1/2(z(t)− zn(t))‖Ω} = 0

lim
n→∞ max

t∈[0,T ]
{‖D1/2(∂tu(t)− ∂tun(t))‖Γ0 + ‖A1/2(u(t)− un(t))‖Γ0} = 0

and
lim

n→∞ max
t∈[0,T ]

{‖θ(t)− θn(t)‖Γ0} = 0

Theorem 1 Under Assumptions 1, 3 for any initial conditions

y0 = (z0, z1, u0, u1, θ0) ∈ H

there exists a unique generalized solution y(t) = (z(t), zt(t), u(t), ut(t), θ(t)) to the
PDE system (25)-(28), which depends continuously on initial data. This solution
satis�es the energy inequality

E(t) +

t∫

s

(G(zt), zt)Ωdτ +

t∫

s

(B(ut), ut)Γ0dτ

+

t∫

s

‖∇θ‖2
Γ0

dτ ≤ E(s), 0 ≤ s ≤ t, (47)

with the total energy E(t) given by (42). Moreover, the generalized solution to
problem (25)-(28) is also weak, i.e. it satis�es the following system of variational
equations:

d

dt
(zt, φ)Ω + (L1/2z, L1/2φ)Ω + (g(zt), φ)Ω − κ(ut, N

∗
0 φ)Γ0 + (f(z), φ)Ω = 0 (48)

d

dt
(ut + κz, ψ)Γ0 + (A1/2u,A1/2ψ)Γ0 + (B(ut), ψ)Γ0

+ (F2(u), ψ)Γ0 + (R1θ, ψ)Γ0 = 0 (49)

d

dt
(θ, χ)γ0 + (∇θ,∇χ)Γ0 + (R2ut, χ)Γ0 = 0 (50)

for any φ ∈ H1(Ω), ψ ∈ [H1
0 ]3(Γ0), and χ ∈ H1

0 (Γ0) in the sense of distributions.
If initial data are such that

z0, z1 ∈ D(L1/2), u0 ∈ D(A), u1 ∈ D(A1/2), θ0 ∈ (H2 ∩H1
0 )(Γ0),
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and
L[z0 − κN0u

1] + G(z1) ∈ L2(Ω)

then there exists a unique strong solution y(t) satisfying the energy identity:

E(t) +

t∫

s

(G(zt), zt)Ωdτ +

t∫

s

(B(ut), ut)Γ0dτ

+

t∫

s

‖∇θ‖2
Γ0

dτ = E(s), 0 ≤ s ≤ t,

Both strong and generalized solutions satisfy the inequalities

E(t) ≤ E(s), t ≥ s, (51)

and
E(z(t), zt(t), u(t), ut(t), θ(t)) ≤ C(1 + E(z0, z1, u0, u1, θ0)), (52)

where E is given by (44) and C does not depend on κ, µ, and β.

Proposition 1 Theorem 1 enables us to de�ne the dynamical system (H, St) with
the phase space H given by (46) and with the evolution operator St : H → H
de�ned by the formula

Sty0 = (z(t), zt(t), u(t), ut(t), θ(t)), y0 = (z0, z1, u0, u1, θ0)

where (z(t), u(t), θ(t)) is a generalized solutions to problem (25)-(28). Moreover,
the monotonicity of the damping operators G and B, the Lipschitz conditions on
F1 and F2 and the energy bound in (52) implies that the semigroup St is locally
Lipschitz on H. Namely, there exist a > 0 and b(ρ) > 0 such that

‖Sty1 − Sty2‖H ≤ aeb(ρ)t‖y1 − y2‖H , ‖yi‖H ≤ ρ, t ≥ 0. (53)

Stationary points. It follows from (45) that the energy E(z0, z1, u0, u1, θ0) is
bounded from below on H and E(z0, z1, u0, u1, θ0) → +∞ when
‖(z0, z1, u0, u1, θ0)‖H → +∞. This implies that there exists R∗ > 0 such that
the set

WR = {y = (z0, z1, u0, u1, θ0) ∈ H : E(z0, z1, u0, u1, θ0) ≤ R}

is a non-empty bounded set in H for all R ≥ R∗. Moreover, any bounded set
B ∈ H is contained in WR for some R and it follows from (51) that the set is
forward invariant with respect to the semi-�ow St , i.e. StWR ⊂ WR for all t > 0.
Thus, we can consider the restriction (WR, St) of the dynamical system (H, St)
on WR, R ≥ R∗.
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We introduce the set of stationary points of St denoted by N,

N = {V ∈ H : StV = V, t ≥ 0}
Every stationary point has the form V = (z, 0, u, 0, 0), where z ∈ H1(Ω) and
u ∈ H1

0 (Ω) are weak solutions to the problems

−∆z + f(z) = 0 in Ω,
∂z

∂n
= 0 on Γ,

and
−Av + µ(v +∇w) + h(|v|2)v = 0 x ∈ Γ0, t > 0,

−µdiv(v +∇w) + h0(w) = 0,
v = w = θ = 0 ∂Γ0.

It is clear that the set of stationary points does not depend on κ and µ. Therefore,
one can easily prove the following assertion.

Lemma 1 Under Assumption 1 the set N of stationary points for the semi-group
St generated by problem (25)-(28) is a closed bounded set in H, and hence there
exists R∗∗ ≥ R∗ (independent of κ, β, and µ) such that N ⊂ WR for every
R ≥ R∗∗.

Later we will also need the notion of unstable manifold Mu(N) emanating from
the set of stationary points.

De�nition 2 The unstable manifold Mu(N) emanating from the set of stationary
points N is a set of all V ∈ H such that there exists a full trajectory γ̄ = {V (t) :
t ∈ R} with the properties

V (0) = V and lim
t→−∞ distH(V (t),N) = 0.

Existence of attractors. The main aim of the paper is to show the existence
of a global attractor for the dynamical system generated by problem (25)-(28),
and to study its properties.

By de�nition (see, e.g. [1, 6, 26]) a global attractor is a bounded closed set
A ⊂ H such that StA = A for all t ≥ 0 and

lim
t→+∞ sup

y∈B
dist(Sty, A) = 0

for any bounded set B ∈ H.
The fractal dimension

dimf M = lim sup
ε→0

ln N(M, ε)
ln(1/ε)

,

where N(M, ε) is the minimal number of closed sets of diameter 2ε which cover
the set M .

To prove the existence of the compact global attractor of the dynamical system
(H,St) we need to show some preliminary results.
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Lemma 2 Let Assumptions 1 and 3 hold. Assume that y1, y2 ∈ H, such that
‖yi‖H ≤ R, i = 1, 2 and denote

Sty1 = (d(t), dt(t), ν(t), νt(t), ψ(t))

and
Sty2 = (ζ(t), ζt(t), ω(t), ωt(t), ξ(t)).

Let
z(t) = d(t)− ζ(t), u(t) = ν(t)− ω(t), θ(t) = ψ(t)− ξ(t) (54)

There exist T0 > 0 and positive constants Ci, i = 1, 4 and C5(R) independent of
T , κ, µ, and β such that for every T ≥ T0 the following inequality holds:

TE0(T ) +

T∫

0

E0(t)dt ≤ C1[(

T∫

0

‖zt‖2 + ‖∇θ‖2 + ‖ut‖2dt)

+ GT
0 (z) + RT

0 (u)] + C2H
T
0 (z) + C3Q

T
0 (u) + C4ΨT (z, u)

+ C5(R)

T∫

0

(‖z‖2 + ‖u‖2)dt, (55)

where E0(t) is given by (43). We also introduce the notations

Gt
s(z) =

t∫

s

(G(ζt + zt)−G(ζt), ζt)Ωdτ, (56)

Ht
s(z) =

t∫

s

|(G(ζt + zt)−G(ζt), ζ)Ωdτ, (57)

Rt
s(u) =

t∫

s

(B(νt + ut)−B(νt), νt)Γ0dτ, (58)

Qt
s(u) =

t∫

s

|(B(νt + ut)−B(νt), ν)Γ0dτ, (59)

and

ΨT (z, u) = |
T∫

0

(F1(z), zt)dt|+ |
T∫

0

T∫

t

(F1(u), ut)dτdt|+ |
T∫

0

(F2(z), zt)dt|

+ |
T∫

0

T∫

t

(F2(u), ut)dτdt| (60)
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with
F1(z) = F1(ζ + z)− F1(ζ), and F2(u) = F2(ω + u)− F2(ω), (61)

where F1 and F2 are the same as in (30), (31).
Proof. Step 1 (Energy identity)Without loss of generality, we can assume that
(d(t), ω(t), ψ(t)) and (ζ(t), ν(t), ξ(t)) are strong solutions. By (45) there exists a
constant CR > 0, independent of κ, µ, and β, such that

E0
d(d(t), dt(t)) + E0

ζ (ζ(t), ζt(t)) + E0
ν(ν(t), νt(t)) + E0

ω(ω(t), ωt(t))

+ E0
ψ(ψ(t)) + E0

ξ (ξ(t)) ≤ CR (62)

for all t ≥ 0. We establish �rst an energy type equality.

Lemma 3 For any T > 0 and all 0 ≤ t ≤ T E0(t) satis�es

E0(T ) + GT
t (z) + RT

t (u) +

T∫

t

‖∇θ‖2dτ

= E0(t)−
T∫

t

(F1(z), zt)dτ −
T∫

t

(F2(u), ut)dτ, (63)

where GT
t (z) and RT

t (u) are given by (56), (58) while F1(z) and F2(u) are de�ned
by (61).

Proof. It is easy to see that the di�erences (54) satisfy the following system of
coupled equations

ztt + G(zt + ζt)−G(ζt) + Lz + F1(z)− κLN0ut = 0, x ∈ Ω, t > 0, (64)
Dutt + Au + R1θ + B(ut + ωt)−B(ωt) + F2(u) + κN∗

0 Lzt = 0 (65)
θt −∆θ + R2ut = 0. (66)

By standard energy methods, taking the inner products in (64)-(66) with zt, ut

and θ respectively, we obtain

E0
z (T ) + GT

t (z) = E0
z (t)−

T∫

t

(F1(z), zt)Ωdτ + κ

T∫

t

(LN0ut, zt)Ωdτ, x ∈ Ω, t > 0,

(67)

E0
u(T ) + RT

t (z) = E0
u(t) +

T∫

t

(R1θ, ut)Γ0dτ

−
T∫

t

(F2(u), ut)Γ0dτ + κ

T∫

t

(N∗
0 Lzt, ut)Γ0dτ = 0 (68)
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E0
θ (T ) +

T∫

t

‖∇θ‖2
Γ0

dτ = E0
θ (t)−

T∫

t

(R2ut, θ)Γ0dτ = 0. (69)

Then, collecting (67)-(69) we readily obtain the statement of the lemma.
Step 2. Reconstruction of the energy integralMultiplying equation (25)

by z and integrating between 0 and T we obtain

T∫

0

‖L1/2z‖2 ≤ C(E0
z (T ) + E0

z (0))

+

T∫

0

‖zt‖2dt + HT
0 (z) + κ

T∫

0

|(ut, N
∗
0 Lz)|dt +

T∫

0

|(F1(z), z)|dt. (70)

It follows from (9) that

|(F1(z), z)| ≤ CR‖L1/2z‖Ω‖z‖Ω. (71)

Besides, using well-known interpolation results we get for 0 < δ < 1/4

|(ut, N
∗
0 Lz)| ≤ ‖ut‖Γ0‖N∗

0 L1/2+δ‖‖L1/2−δz‖Ω

≤ ε‖ut‖2
Γ0

+ ε1‖L1/2z‖2
Ω + Cε,ε1‖z‖2,

for any ε, ε1 > 0. Then, by appropriately choosing ε and ε1 we obtain from (70)
and (71) that

T∫

0

‖L1/2z‖2dt ≤ C(E0
z (T ) + E0

z (0)) + ε

T∫

0

‖ut‖2

+ 2

T∫

0

‖zt‖2dt + C1H
T
0 (z) + C2(R, ε)

T∫

0

‖z‖2dt (72)

for any ε > 0.
After multiplication (26) by u and integration between 0 and T

T∫

0

‖A1/2u‖2 ≤ C(E0
u(T ) + E0

u(0)) +

T∫

0

‖B1/2ut‖2dt + QT
0 (u)

+

T∫

0

(F2(u), u)d +

T∫

0

(R1θ, u)dt + κ

∫ T

0
(N∗

0 Lzt, u)dt. (73)
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Multiplying equation (27) by (−∆)−1θ and integrating between 0 and T we obtain

T∫

0

‖θ‖2 ≤ C(E0
θ (T ) + E0

θ (0)) + C3

T∫

0

‖ut‖2dt (74)

Combining (73) and (74) we arrive at

T∫

0

‖A1/2u‖2dt +

T∫

0

‖θ‖2dt ≤ C(E0
u(T ) + E0

u(0) + E0
θ (T ) + E0

θ (0))

+ C1(

T∫

0

‖∇θ‖2dt +

T∫

0

‖ut‖2dt) + QT
0 (u) + C(R)

T∫

0

‖z‖2dt

+ C(R)

T∫

0

‖u‖2dt. (75)

Collecting (72) and (75) we get

T∫

0

E0(t)dt ≤ C(E0(T ) + E0(0)) + C1

T∫

0

(‖zt‖2 + ‖ut‖2 + ‖∇θ‖2)dt + C2H
T
0 (z)

+ C3Q
T
0 (u) + C4(R)

T∫

0

(‖z‖2 + ‖v‖2)dt, (76)

where HT
0 (z) and QT

0 (u) are de�ned in (57) and (59). It follows from energy
relation (63) that

E0(0) = E0(T ) + GT
0 (z) + RT

0 (u) +

T∫

0

‖∇θ‖2dt

+

T∫

0

(F1(z), zt)dt +

T∫

0

(F2(u), ut)dt (77)

and

TE0(T ) ≤
T∫

0

E0(t)dt−
T∫

0

T∫

t

(F1(z), zt)dτ −
T∫

0

T∫

t

(F2(u), ut)dτ (78)

therefore, combining (77) and (78) with (76) we arrive at (55) .
To prove the existence of a compact global attractor of the dynamical system

(H,St) we need to show that it is asymptotically smooth. We recall [11] that a
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dynamical system (H, St) is called asymptotically smooth i� for any bounded set
B in H such that StB ⊂ B for t > 0 there exists a compact set K in the closure
B of B, such that

lim
t→+∞ sup

y∈B
distX{Sty, K} = 0

In order to establish this property we apply the compactness criterion due to [14].
This result is recorded below in the abstract formulation given and used in [8].

Proposition 2 Let (H, St) be a dynamical system on a complete metric space H
endowed with a metric d. Assume that for any bounded positively invariant set B

in H and for any ε > 0 there exists T = T (ε,B) such that

d(ST y1, ST y2) ≤ ε + Ψε,B,T (y1, y2), yi ∈ B,

where Ψε,B,T (y1, y2) is a nonnegative function de�ned on B×B such that

lim inf
m→∞ lim inf

n→∞ Ψε,B,T (yn, ym) = 0 (79)

for every sequence {yn} in B. Then the dynamical system (H, St) is asymptotically
smooth.

Lemma 4 Let Assumptions 1-3 hold. Then, for any ε > 0 and T > 1 there exist
constants Cε(R) and C(R, T ) such that

E(T ) ≤ ε +
1
T

[Cε(R) + ΨT (z, u)] + C(R, T )lot(z, u), (80)

where
lot(z, u) = sup

[0,T ]
[‖z(t)‖Ω + ‖u(t)‖Γ0 ]

Proof. To establish (80) we return to inequality (55) and proceed with the
estimate of its right hand side. Preliminary we recall inequalities which hold under
Assumptions 1 and 3 only (see, e.g. [3]). There exists a constant C0 > 0 and such
that

|(G(ζ + z)−G(ζ), h)| ≤ C0[(G(ζ), ζ)+ (G(ζ + z), ζ + z)]‖L1/2h‖+C0‖h‖ (81)

for any ζ, z, h ∈ D(L1/2) and

|(B(ω + u) − B(ω), l)| ≤ C0[(B(ω), ω) + (B(ω + u), ω + u)]‖A1/2l‖ + C0‖l‖
(82)

for any ω, u, l ∈ D(A1/2).
It follows readily from (81), (82) that

HT
0 (z) ≤ CR + CTlot(z, u) (83)
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and
QT

0 (z) ≤ CR + CTlot(z, u). (84)
Next, using Assumption 2 we get

T∫

0

(‖zt‖2
Ω + ‖ut‖2

Γ0
+ ‖∇θ‖2

Γ0
) ≤ εT + Cε(R) (85)

for every ε > 0. On the other hand, taking t = 0 in (63) and using the fact that
E(0) ≤ CR, we get

GT
0 (z) + RT

0 (u) +

T∫

0

‖∇θ‖2dt ≤

CR + |
T∫

0

(F1(z), zt)dτ |+ |
T∫

0

(F1(u), ut)dτ | (86)

therefore, (80) follows from Lemma 2 and estimates (83)-(86).

Theorem 2 Let Assumptions 1-3 hold. Then the dynamical system (H, St)
generated by problem (25)-(28) is asymptotically smooth.

Proof. It follows from Lemma 4 that given ε > 0 there exists T = T (ε) > 1 such
that for initial data y1, y2 ∈ B we have

‖ST y1 − ST y2‖H = ‖(z(T ), zt(T ), u(T ), ut(T ), θ(T ))‖H ≤
C|E(T )|1/2 ≤ ε + Ψε,B,T (y1, y2), (87)

where
Ψε,B,T (y1, y2) = Cε,B,T {ΨT (z, u) + lot(z, u)}1/2

where ΨT (z, u) is given by (60) and satis�es (79) (see e.g. [3]). Then, by
Proposition 1 (87) implies the statement of the theorem.

Our �rst main result provides the existence of a global attractor for problem.

Theorem 3 Under Assumptions 1-3 the dynamical system (H, St) generated by
problem (25)-(28) possesses a compact global attractor A which coincides with the
unstable manifold Mu(N) emanating from the set N of stationary points for St.

The proof is similar to that given in [3].

Stabilizability estimate. In this section we derive a stabilizability estimate
which will play a crucial role in the proofs of both �nite-dimensionality and
regularity of attractors.

The following lemma can be found in [3].
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Lemma 5 Under Assumption 4 the following estimate holds true for some δ > 0

|
T∫

t

(F1(z), zt)dτ | ≤ CR,T max
[0,T ]

‖z‖2
1−δ

+ ε

T∫

0

‖L1/2z‖2dτ + Cε(R)

T∫

0

(‖dt(t)‖2 + ‖ζt(t)‖2)‖L1/2z‖2dτ

for all t ∈ [0, T ], where ε > 0 can be taken arbitrarily small. Here, F1 is given by
(61).

Now we state the analogue of Lemma 4 for the plate component which follows
immediately from Assumption 1.

Lemma 6 Under Assumptions 1 and 4 the following estimate holds true for all
t ∈ [0, T ]

|
T∫

t

(F2(u), ut)dτ | ≤ CR max
[0,T ]

‖u‖2 + ε

T∫

0

(‖A1/2u‖2 + ‖ut‖2)dτ, (88)

where ε > 0 can be taken arbitrarily small. Here, F2 is given by (61).

Now we are in position to estimate ΨT (z, u) de�ned in (60).

Lemma 7 For any ε > 0 the following estimate holds true

ΨT (z, u) ≤ ε

T∫

0

E0(t)dt + C(T,R)ΣT (z, u)

with ΣT (z, u) given by

ΣT (z, u) = C max
[0,T ]

(‖u‖2
1−δ + ‖z‖2

1−δ) +

T∫

0

Gd,ζ(τ)‖L1/2z‖2dτ

+

T∫

0

Bω,ν(τ)‖A1/2u‖2dτ, (89)

here Gd,ζ is given by

Gd,ζ = m−1[(G(d(t)), d(t))Ω + (G(ζ(t)), ζ(t))Ω] (90)
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Proof. It follows by the lower bound in (17) that ms2 ≤ sg(s), where i = 1, 2 and
thus

‖dt(t)‖2
Ω + ‖ζt(t)‖2

Ω ≤ Gd,ζ , ‖ωt(t)‖2
Γ0

+ ‖νt(t)‖2
Γ0
≤ Bω,ν .

Therefore, using Lemma 5 and Lemma 6 and the elementary inequality ‖ξ‖ ≤
ε + (4ε)−1‖ξ‖2, valid for arbitrary small ε > 0, we obtain the statement of the
lemma.

To proceed we need the following assertion

Lemma 8 For any T ≥ T0 > 0 the following estimate holds true:

TE0(T ) +

T∫

0

E0(t)dt ≤ C[GT
0 (z) + RT

0 (u)

+

T∫

0

‖∇θ‖2dτ ] + C2(T, R)ΣT (z, u), (91)

where ΣT (z, u) is the same as in (89).

Proof. It follows from Assumption 4 [7] that for every ε > 0 there exists Cε > 0
such that

|G(ζ + z)−G(ζ), l| ≤ Cε(G(ζ + z)−G(ζ), z)

+ ε(1 + (G(ζ), ζ) + (G(ζ + z), ζ + z))‖L1/2l‖2 (92)

for any ζ, z, l ∈ D(L1/2) and

|B(ω + u)−B(ω), l| ≤ Cε(B(ω + u)−B(ω), u)

+ ε(1 + (B(ω), ω) + (B(ω + u), ω + u))‖A1/2l‖2 (93)

for any ζ, z, l ∈ D(A1/2).
Owing to estimates (92) and (93) it is immediately seen that

HT
0 (z) ≤ CεG

T
0 (z) + ε

T∫

0

E0(t)dt + εm

T∫

0

Gd,ζ(τ)‖L1/2z‖2dτ

and

QT
0 (z) ≤ CεR

T
0 (z) + ε

T∫

0

E0(t)dt + εm

T∫

0

Bω,ν(τ)‖A1/2u‖2dτ,

where

Bω,ν = min{m1, m2}−1[(B(ω(t)), ω(t))Γ0 + (B(ν(t)), ν(t))Γ0 ]. (94)
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Consequently,

HT
0 (z) + QT

0 (z) ≤ ε

T∫

0

E0(t)dt + Cε[RT
0 (z) + GT

0 (z) + ΣT (z, u)]. (95)

Notice that by the lower bounds in (17), (18), (20) we have

T∫

0

‖zt‖2dt ≤ 1
m

GT
0 (z),

T∫

0

‖ut‖2dt ≤ 1
min{m1,m2}RT

0 (u). (96)

Now we apply estimates (95), (96) and Lemma 7 to the basic inequality in Lemma
2. Choosing ε su�ciently small we obtain the statement of the lemma.

Now we are in position to prove the stabilizability inequality for the dynamical
system (H,St).

Theorem 4 Let Assumptions 1-4 hold. Then there exist positive constants C1, C2

and ω depending on R such that for any y1, y2 ∈ WR the following estimate holds
true for any δ < 1 and independent of κ, β, µ:

‖Sty1 − Sty2‖2
H ≤ C1e

−ωt‖y1 − y2‖2
H + C2 max

[0,t]
(‖z(τ)‖2

1−δ + ‖u(τ)‖2
1−δ) (97)

Above we have used the notation

Sty1 = (d(t), dt(t), ω(t), ωt(t), ψ(t)), Sty1 = (ζ(t), ζt(t), ν(t), νt(t), φ(t)).

Proof. Using inequality (63) and Lemma 8 we obtain that

GT
0 (z)+RT

0 (z)+

T∫

0

‖∇θ‖2dτ ≤ E0(0)−E0(T )+ε

T∫

0

E0(τ)dτ+C(T,R)ΣT (z, u)

for any ε > 0. Combining this estimate with (91) we get that there exists T > 1
such that

E0(T ) ≤ qE0(0) + CR,T ΣT (z, u), 0 < q ≡ q(T, R) < 1. (98)

Applying the procedure described in [4] we get from (98) that there exists ω > 0
such that

E0(t) ≤ C1e
−ωtE0(0)

+ C2[

t∫

0

e−ω(t−τ)[Dh,ζ(τ) + Bω,ν(τ) + ‖∇θ‖2]E0(τ)dτ + lott(z, u)]
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for all t ≥ 0. Therefore, by the Gronwall's lemma we get

E0(t) ≤ [C1e
−ωtE0(0) + C2lott(z, u)]e

tR
0

e−ω(t−τ)[Dh,ζ(τ)+Bω,ν(τ)+‖∇θ‖2]dτ

≤ C1e
−ωtE0(0) + C2lott(z, u).

The above estimate and (62) yield estimate (97).

Properties of attractor. In this Subsection we establish the properties of the
attractor to problem (25)-(28), namely, the �nite dimensionality, boundedness in
the higher-order spaces and upper-semicontinuity with respect to the parameters
µ, β, κ.

Theorem 5 Let Assumptions 1-4 hold. Then the attractor A has a �nite fractal
dimension.

The proof is similar to that given in [3].

Theorem 6 The attractor A is a bounded set in the space

H∗ = W 2
6/p(Ω)×D(L1/2)×D(A)×D(A1/2)×D(−∆)

for 3 < p ≤ 5 and in the space

H∗∗ = H2(Ω)×D(L1/2)×D(A)×D(A1/2)×D(−∆)

in the other cases. Moreover,

sup
t∈R

{‖z‖2
W 2

6/p
(Ω) + ‖zt‖2

H1(Ω) + ‖ztt‖2} ≤ C (99)

sup
t∈R

{‖vtt‖2 + ‖wtt‖2 + ‖vt‖2
[H1

0 (Ω)]2 + ‖θt‖2} ≤ C, (100)

sup
t∈R

‖wt‖2
H1

0 (Ω) ≤ C, (101)

sup
t∈R

‖θ‖H2∩H1
0 (Ω) ≤ C, (102)

sup
t∈R

‖w‖H2∩H1
0 (Ω) ≤ C, (103)

sup
t∈R

‖v +∇w‖ ≤ 1√
µ

C (104)

sup
t∈R

‖vt +∇wt‖ ≤ 1√
µ

C, (105)

where C does not depend on κ, µ, and β.

Proof. Estimate (104) follows readily from the uniform, with respect to κ and µ,
boundedness of the attractor in H. Let {y(t) = (z(t), zt(t), u(t), ut(t), θ(t))} ∈ H
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be a full trajectory from the attractor A. Let |σ| ≤ 1. Applying Theorem 4 with
y1 = y(s + σ), y2 = y(s) for the interval [s, t] in place of [0, t] we obtain

‖y(t + σ)− y(t)‖2
H ≤ C1e

−ω(t−s)‖y(s + σ)− y(s)‖2
H

+ C2 max
τ∈[s,t]

(‖z(τ + σ)− z(τ)‖2
1−δ + ‖u(τ + σ)− u(τ)‖2

1−δ)

for any t, s ∈ R such that s ≤ t and |σ| ≤ 1. Letting s → −∞ gives

‖y(t + σ)− y(t)‖2
H ≤ C2 max

τ∈[−∞,t]
(‖z(τ + σ)− z(τ)‖2

1−δ

+ ‖u(τ + σ)− u(τ)‖2
1−δ) (106)

By interpolation we get

‖z(τ + σ)− z(τ)‖2
1−δ + ‖u(τ + σ)− u(τ)‖2

1−δ ≤ ε‖y(t + σ)− y(t)‖2
H

+ Cε(‖z(τ + σ)− z(τ)‖2 + ‖u(τ + σ)− u(τ)‖2) (107)

for every ε > 0. Therefore we obtain from (106) and (107)

max
τ∈[−∞,t]

‖y(t + σ)− y(t)‖2
H ≤ C max

τ∈[−∞,t]
(‖z(τ + σ)− z(τ)‖2

+ ‖u(τ + σ)− u(τ)‖2) (108)

for any t ∈ R and |σ| < 1. On the attractor we have

1
σ
‖z(τ + σ)− z(t)‖ ≤ 1

σ

σ∫

0

‖zt(τ + t)‖dτ ≤ C, t ∈ R,

and
1
σ
‖u(τ + σ)− u(t)‖ ≤ 1

σ

σ∫

0

‖ut(τ + t)‖dτ ≤ C, t ∈ R,

which gives with (108)

max
τ∈R

∥∥∥∥
y(τ + σ)− y(τ)

σ

∥∥∥∥
2

H

≤ C for |σ| < 1.

This implies

‖ztt‖2 + ‖L1/2zt‖2 + ‖utt‖2 + ‖A1/2ut‖2 + ‖θt‖2 ≤ C (109)

and (105).
It follows readily from (5) that

‖∆θ(t)‖ ≤ C(‖ut‖H1(Γ0) + ‖θt‖) ≤ C
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and from (4) that
‖∆w‖ ≤ C(

1
µ

+ ‖v‖H1(Γ0)) ≤ C,

which implies (102) and (103). From (3) and (4) we conclude

‖Au‖ ≤ C(µ). (110)

In case 1 ≤ p ≤ 3 we have for the wave component

‖g(zt)‖ ≤ C(1 + ‖zt‖2
L2p(Ω)) ≤ C(1 + ‖zt‖2

1)

Therefore z(t) solves the problem

(−∆ + λ)z = h1(t) in Ω,
∂z

∂n
= h2(t) on Γ, (111)

where h1(t) ∈ L∞(R, L2(Ω)) and h2(t) ∈ L∞(R,Hs(Ω)) for any s < 3/2. By the
elliptic regularity theory we conclude that z(t) is a bounded function with values
in H2(Ω).

In case 3 < p ≤ 5 we have that g(zt) is bounded in L6/p(Ω) and therefore,
z solves (111) with h1(t) ∈ L∞(R, L6/p(Ω)). The elliptic regularity theory gives
that z(t) is a bounded function with values in W 2

6/p(Ω), which implies together
with (109) estimate (99).

Estimate (110) gives the boundedness of the component v in H1 ∩H1
0 (Γ0) on

the attractor for every µ > 1, but not uniformly.
The following result is a corollary of Theorems 3, 5, 6.

Theorem 7 Let f and g satisfy the conditions in Assumptions 1 and 2. Then the
dynamical system (H1, S

1
t ) generated by the problem

ztt + g(zt)−∆z + f(z) = 0 in Ω× (0, T )
∂z
∂n = 0 on Γ× (0, T )

(112)

possesses a compact global attractor A1 ≡ Mu(N1), where N1 is the set of equilibria
for (112). If f and g satisfy Assumption 4, then the attractor A1 has a �nite
fractal dimension and A1 is a bounded set in the space W 2

6/p(Ω)×D(L1/2) in case
3 < p ≤ 5, and in the space D(L)×D(L1/2) in other cases.
Arguing as in [10] one can obtain the following result on the existence of attractor.
Theorem 8 Let bi, i = 1, 2, h, and h0 satisfy the conditions in Assumptions 1 -
3 and H2 = H2

0 (Γ0)×H1
0 (Γ0). Then the dynamical system (H2, S

2
t ) generated by

the problem
(1−∆)wtt + divb(−∇wt) + b0(wt) + ∆2w − div[h(|∇w|2)∇w] + h0(w) = 0,

w(x, t) = 0, ∇w(x, t) = 0 x ∈ ∂Γ0, t > 0
(113)

possesses a compact global attractor A2 ≡ Mu(N2), where N2 is the set of equilibria
for (113). If f , h, h0, bi, i = 1, 2 satisfy additionally Assumption 4, then the
attractor A2 has a �nite fractal dimension.
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Our last main result consists in the upper-semicontinuity of the family of
attractors of problem (25)-(28) with respect to the parameters µ, κ, β.

Theorem 9 Let Assumptions 1-4 hold. Denote by Sµ,κ,β
t the evolution operator

of problem (25)-(28) in the space

Hµ = H = (L1/2)× L2(Ω)×D(A1/2)× L2(Γ0)×H1(Γ0).

Let Aµ,κ,β be a global attractor for the system (Sµ,κ,β
t ,Hµ). Then the family of the

attractors Aµ,κ,β is upper semi-continuous on Λ = [1,∞)× [0, 1]× [0, 1]. Namely,
we have that

lim
(µ,κ,β)→(∞,0,0)

sup
y∈Aµ,κ,β

{distHδ1,δ2 (y, A1 × A2 × 0)} = 0, (114)

where

Hδ1,δ2 = (L1/2−δ1)× L2(Ω)× [[H1−δ2(Γ0)]2 ×H1(Γ0)]× L2(Γ0)× L2(Γ0).

Here δ2 > 0, δ1 ≥ 0 in case p < 5 and δ1 > 0 in case p = 1.

Proof. We base the proof on the idea presented in [12]. Assume that the statement
of the theorem is not true. Then there exists a sequence {(µn, κn, βn} → (∞, 0)
such that µn ≥ µ∞, κn ≤ κ0, βn ≤ β0 and for any n ∈ N and a sequence
yn ∈ Aµn,κn,βn such that

distHδ1,δ2 (y, A1 × A2 × 0) ≥ ε, n = 1, 2, ... (115)

for some ε > 0. Let yn(t) = {zn(t), zn
t (t), un(t), un

t (t), θn(t)} be a full trajectory
in Aµn,κn,βn passing through yn (yn(0) = yn). The functions yn satisfy equations
(25)-(28). It follows from (100), (101), (103) that the sequence {zn(t), wn(t), θn(t)}
is uniformly with respect to n bounded in the space

C1 =
(
Cbnd(R; W 2

6/p(Ω)) ∩ C1
bnd(R; D(L1/2)) ∩ C2

bnd(R; L2(Ω))
)

× (
Cbnd(R; (H2 ∩H1

0 )(Γ0)) ∩ C1
bnd(R; H1

0 (Γ0)) ∩ C2
bnd(R;L2(Γ0))

)×(
Cbnd(R; H2 ∩H1

0 (Ω)) ∩ C1
bnd(R; L2(Ω))

)
.

Hence, by Aubin's compactness theorem [25] {zn(t), wn(t), θn(t)} is a compact
sequence in the space

W1 =
(
C([−T, T ]; (L1/2−δ1)) ∩ C1([−T, T ]; L2(Ω))

)

×
(
C([−T, T ];H1

0 (Γ0)) ∩ C1([−T, T ]; L2(Γ0))
)

× C([−T, T ];H1(Γ0))
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for every T > 0. Estimate (100) yields that the sequence {vn} is uniformly with
respect to n bounded in the space

C2 =
(
Cbnd(R; [H1

0 (Ω)]2) ∩ C1
bnd(R; [H1

0 (Ω)]2
) ∩ C2

bnd(R; [L2(Ω)]2
)
.

Thus, we deduce that there exists a function {z(t),w(t), Θ(t)} ∈ C1 such that

lim
k→∞

max
[−T,T ]

{‖znk(t)− z(t)‖2
D(L1/2−δ1 )

+ ‖znk
t (t)− zt(t)‖2

L2(Ω)

+ ‖wnk(t)−w(t)‖2
H1

0 (Γ0) + ‖wnk
t (t)−wt(t)‖2

L2(Γ0)

+ ‖θnk(t)−Θ(t)‖2
H1

0 (Γ0) = 0 (116)

for any δ1 > 0 in case p < 5 and δ1 ≥ 0. Analogously, the sequence {vn} is
compact in the space C([−T, T ]; [H1−δ2

0 (Ω)]2)∩C1([−T, T ]; [L2(Γ0)]2). Moreover,
by (104), (105) we get that

lim
k→∞

max
[−T,T ]

{‖vnk +∇w‖
[H

1−δ2
0 (Γ0)]2

+ ‖vnk
t +∇wt‖[L2(Γ0)]2} = 0 (117)

for every T > 0. By the trace theorem we infer from (117) that

lim
k→∞

‖vnk +∇w‖[L2(∂Γ0)]2 = 0,

therefore,
∇w|∂Γ0 = 0.

We can choose functions φ, ψ and χ in (48)-(50) of the following form: ψ(t) =
(−∂x1 l,−∂x2 l, l) ·p(t) and χ(t) = χ ·p(t), where φ ∈ (L1/2), l ∈ H2

0 (Ω), χ ∈ H1
0 (Ω)

and p(t) is a scalar continuously di�erentiable function such that p(T ) = 0. It is
easy to see that

(Aunk , ψ) = [−ν(divvnk ,∆l)− (1− ν)
∫
Ω

[∂x1v
nk
1 · ∂2

x1
l + ∂x2v

nk
2 · ∂2

x2
l

+(∂x1v
nk
2 + ∂x2v

nk
1 )∂x1x2 l]dx]p(t).

(118)

Therefore, passing to the limit k →∞ we get

lim
k→∞

T∫

0

(Aunk , ψ)dt =

T∫

0

(∆w, ∆l)p(t)dt.

By Assumptions 1, 2, 3 we pass to the limit in the nonlinear terms. Observing
(116) and (118) we get

−
T∫

0

(zt, φ
′(t))dt +

T∫

0

(L1/2z, L1/2φ)dt +

T∫

0

(g(zt), φ)dt +

T∫

0

(f(z), φ)dt

= (z1, φ (0)) (119)
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−
T∫

0

(wt, l)p ′(t)dt−
T∫

0

(∇wt,∇l)p ′(t)dt +

T∫

0

(Kw,Kh)p (t)dt

+

T∫

0

(divb(∇wt) + b0(wt), l)p (t)dt

+

T∫

0

(div[l(|∇w|2)∇w], l)p (t)dt = (w1, l)p (0) + (∇w1,∇l)p (0), (120)

−
T∫

0

(Θ, τ)p ′(t)dt +

T∫

0

(∇Θ,∇τ)p (t)dt = (θ0, τ)p (0), (121)

where K : H2
0 (Γ0) → L2(Γ0) such that K2 = ∆2 : H4 ∩H2

0 (Γ0) → L2(Γ0).
One can deduce from (119)-(121) that z(t), w(t) are weak solutions to

problems (112) and (113) possessing the properties

sup
t∈R

{‖z(t)‖2
D(L1/2)

+ ‖zt(t)‖2
L2(Ω)} ≤ C

sup
t∈R

{‖w(t)‖2
H2∩H1

0 (Γ0) + ‖wt(t)‖2
H1

0 (Γ0) + ‖Θ(t)‖2
L2(Γ0)} ≤ C

and
∇w|∂Γ0 = 0.

Consequently, {z(t), zt(t)} and {w(t),wt(t)} are full trajectories to (112) and
(113) which belong to the attractor A1 and A2. The function Θ(t) is a full
trajectory to the problem

Θt + ∆Θ = 0, x ∈ Γ0, t > 0
Θ = 0, x ∈ ∂Γ0,

which is exponentially stable. Consequently, Θ ≡ 0. Thus, it follows from (116)
and (117) that

lim
nk→0

{‖vnk(0) +∇w(0)‖2

[H
1−δ2
0 (Γ0)]2

+ ‖wnk(0)−w(0)‖2
H1

0 (Γ0)

+‖vnk
t (0) +∇wt(0)‖2

[L2(Γ0)]2 + ‖wnk
t (0)−wt(0)‖2

L2(Γ0)

+‖θnk(0)‖2
H1

0 (Γ0)
} = 0

and

lim
nk→0

{‖znk(0) + z(0)‖2
D(L1/2−δ1 )

+ ‖znk
t (0)− zt(0)‖2

L2(Ω)} = 0

and we obtain a contradiction to (115). Consequently, (114) holds true.
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System with non-conservative forces (γ 6= 0).
Consider now system (1)-(7) with γ 6= 0. This case corresponds to the non-

conservative nonlinearity and non-monotone energy.
Note that Assumption 1 with h∗h∗0 > 2γ2 guarantees that there exist a positive

constant C0 such that

H(r) = C0 +
1
2

r∫

0

h(ξ)dξ ≥ 0, r ∈ R+, H0(s) = C0 +
1
2

s∫

0

h0(ξ)dξ ≥ 0, s ∈ R.

Moreover, there exist positive constants C,C1 and C2 such that

γrs + H(r) + H0(s) + C ≥ 0, r ∈ R+, s ∈ R. (122)

and
γrs ≤ C1(σ2 + H(r)) + C2, r ∈ R+, s ∈ R. (123)

The additional assumption for the non-conservative case is the following:

Statement 5 • There exist positive constants c1 and c2 such that

−rh(r) ≤ −c1H(r) + c2, r ∈ R+ (124)

and
−rh0(r) ≤ −c1H0(r) + c2, s ∈ R (125)

• For any ε > 0 there exists a positive constant Cε such that

−γrs ≤ ε[H(r) + H0(s)] + Cε, r ∈ R+, s ∈ R (126)

and
γrσ ≤ ε[σ2 + H(r)] + Cε, r ∈ R+, σ ∈ R. (127)

• There exist positive constants c1 and c2 such that

−rf(r) ≤ −c1Π(r) + c2, r ∈ R (128)

The assumptions (124)-(127) were made to guarantee the existence of the global
attractor for the Mindlin plate system in [4]. Now we are in position to give the
abstract formulation of system (1)-(7). Denote

F ∗(u) = (0, 0,
γ

2
|v|2),

F2(u) = (v1[γw + h(|v|2)], v2[γw + h(|v|2)], h0(w)). (129)

and
Π1(u) =

γ

2

∫

Ω
w|v|2dx.
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Let
E0(t) = E0

z (z, zt) + E0
u(u, ut) + E0

θ (θ) + Π(z) + Π0(u), (130)

where E0
z , E0

z , E0
z , Π, Π0 are given by (37)-(39) and (29), (32) respectively. We

de�ne the total energy in the following way:

E(t) = E0(t) + Π1(u). (131)

It is easy to see from (122) and (123) that

−1
2
Π0(u)− C1 ≤ Π1(u) ≤ C2

∫

Ω

[|w|2 + H(|v|2)]dx + C3 (132)

Applying the same arguments as in case γ = 0 we obtain the following theorem.

Theorem 10 Under Assumptions 1 with h∗h∗0 > 2γ2, 3 for any initial conditions

y0 = (z0, z1, u0, u1, θ0) ∈ H

there exists a unique generalized solution y(t) = (z(t), zt(t), u(t), ut(t), θ(t)) to the
PDE system (25)-(28) with F2 de�ned by (129), which depends continuously on
initial data. This solution satis�es the energy inequality

E(t) +

t∫

s

(G(zt), zt)Ωdτ +

t∫

s

(B(ut), ut)Γ0dτ

+

t∫

s

‖∇θ‖2
Γ0

dτ ≤ E(s) +

t∫

s

(F ∗(u), ut)dτ, 0 ≤ s ≤ t,

with the total energy E(t) given by (131). Moreover, if initial data are such that

z0, z1 ∈ (L1/2), u0 ∈ D(A), u1 ∈ D(A1/2), θ0 ∈ D(−∆)

and
L[z0 − κN0u

1] + G(z1) ∈ L2(Ω)

then there exists a unique strong solution y(t) satisfying the energy identity:

E(t) +

t∫

s

(G(zt), zt)Ωdτ +

t∫

s

(B(ut), ut)Γ0dτ

+

t∫

s

‖∇θ‖2
Γ0

dτ = E(s) +

t∫

s

(F ∗(u), ut)dτ, 0 ≤ s ≤ t. (133)
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In contrast to the conservative case, the non-conservative system is not gradient
and the energy is not monotone, i.e. one cannot guarantee the existence of a
bounded absorbing set without additional arguments. To prove the dissipativity
of system (25)-(28) in case γ 6= 0 we resort to the Lapunov's method combined
with the barriers method.
Theorem 11 Let Assumptions 1-3, 5 hold. Then the dynamical system (H, St)
generated by problem (25)-(28) possesses an absorbing ball B(R) of the radius R
independent of β, κ, and µ.
Proof. Consider the functional

V (z, zt, u, ut, θ) = E(t) + δ[(zt, z) + (ut, u)],

where δ > 0 will be chosen later. It follows from (132) that there exist positive
constants Ci, i = 1, 4 such that

C1E
0(z, zt, u, ut, θ)− C2 ≤ V (z, zt, u, ut, θ) ≤ C3E

0(z, zt, u, ut, θ) + C4.

After di�erentiating the Lyapunov function by t we obtain
d

dt
V = (G(zt), zt) + (B(ut), ut)− (F ∗(u), ut) + δ[‖zt‖2 + ‖ut‖2

− (G(zt), z)− ‖L1/2z‖2 − κ(LN0ut, z)− (F1(z), z)− ‖A1/2u‖2 − (R1θ, z)
− (B(ut), u)− (F2(u), u)− κ(N∗

0 Lzt, u)].

Taking under consideration (24), (124)-(126), 128 we get
d

dt
V ≤ −(G(zt), zt)− (B(ut), ut)− (F ∗(u), ut)− ‖∇θ‖2 + δ[‖zt‖2 + ‖ut‖2

− (G(zt), z)− 1
2
‖L1/2z‖2 − 1

2
‖A1/2u‖2 + ‖∇θ‖2

− (B(ut), u) + C[‖zt‖2 + ‖ut‖2]− c1/2[Π0(u) + Π(z)] + C]. (134)
It follows from (127) that for any ε > 0

(F ∗(u), ut) =
γ

2

∫

Ω

|v|2wtdx ≤ ε

∫

Γ0

[|w|2 + H(|v|2)]dx + C2

≤ ε[‖wt‖2 + Π0(u)] + C. (135)
Consider now the term (B(ut), u). Let Γ1

0 = {x ∈ Γ0 : |ut(x)| ≥ 1} and Γ2
0 =

Γ0 \ Γ1
0. We obviously have that

|(B(ut), u)| ≤
∫

Γ0

|b(ut)||u|dx ≤
∫

Γ1
0

|b(ut)||u|dx + C

∫

Γ2
0

|u|dx

≤ ([
∫

Γ1
0

|b(ut)|
p1

1+p1 dx]‖A1/2u‖+ C‖u‖2)

≤ C(B(ut), ut)E0(z, u, θ) + C̄‖u‖2 ≤ C(B(ut), ut)[V + 1]1/2 + C̄‖u‖2. (136)
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Analogously,
|(G(zt), z)| ≤ C(G(zt), zt)[V + 1]1/2 + C̄‖z‖2. (137)

Consequently, collecting Assumption 2, (134)-(137) and choosing δ = 4ε(1/2 +
C̄ max{λz, λu}), where λz and λu are the �rst eigenvalues of L and A respectively,
we get

d

dt
V (t) + εV (t) ≤ d1(ε + C)

+ d2(ε[1 + V (t)]1/2 − d4)[(G(zt), zt) + (B(ut), ut)]. (138)

Applying to (138) the barriers method described in [7, Th. 3.15] we obtain the
statement of the theorem.

Applying the same arguments as in Section 2 we get the following theorem

Theorem 12 Let Assumptions 1-5 hold. Denote by Sµ,κ,β
t the evolution operator

of problem (25)-(28) in the space

Hµ = H = D(L1/2)× L2(Ω)×D(A1/2)× L2(Γ0)×H1(Γ0).

Let Aµ,κ,β be a global attractor for the system (Sµ,κ,β
t ,Hµ). Then the family of the

attractors Aµ,κ,β is upper semi-continuous on Λ = [1,∞)× [0, 1]× [0, 1]. Namely,
we have that

lim
(µ,κ,β)→(∞,0,0)

sup
y∈Aµ,κ,β

{distHδ1,δ2 (y, A1 × A3 × 0)} = 0,

where

Hδ1,δ2 = (L1/2−δ1)× L2(Ω)× [[H1−δ2(Γ0)]2 ×H1(Γ0)]× L2(Γ0)× L2(Γ0).

and A3 is the attractor of the system

(1−∆)wtt + divb(−∇wt) + b0(wt) + ∆2w − div[h(|∇w|2)∇w]
+h0(w)− γ/2∆[w2] = 0,

w(x, t) = 0, ∇w(x, t) = 0 x ∈ ∂Γ0, t > 0
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