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Introduction

The mathematical model considered consists of a semilinear wave equation
defined on a bounded domain, which is strongly coupled with thermoelastic
Mindlin-Timoshenko plate equation on a part of the boundary. The model includes
a weak structural damping and a thermal damping. This kind of models referred
to as structural acoustic interactions, arise in the context of modelling gas pressure
in an acoustic chamber which is surrounded by a combination of rigid and flexible
walls (see, e.g. [13, 22]). The pressure in the chamber is described by the solution
to a wave equation, while vibrations of the flexible wall are described by the
solution to a plate equation. The Mindlin-Timoshenko model describes dynamics
of a plate in view of transverse shear effects (see, e.g., [15, 24] and references
therein).

More precisely, let © € R3 be a smooth bounded open domain with the
boundary 02 =: I' = I'g UI'; consisting of two open (in the induced topology)
connected disjoint parts I'g and I'y of positive measure. I'g is flat and is referred
to as the elastic wall. The dynamics of the acoustic medium in the chamber € is
described by a interactive system of a semilinear wave equation and a Mindlin-
Timoshenko system of thermoelasticity:

zu+9(z) — Az + f(2) =0, z € Q,t >0, (1)
0z 0z
%—0,$€F1,%—ﬂwt,$ero (2)

vy — Av + (v + Vw) + BV + b(v,) + v[h(|v|*) + yw] = 0 x € To,t > 0,
wy — pdiv(v + Vw) + bo(we) + ho(w) + k2 = 0,
0, — AG + Bdive, = 0
v=w=60=0 9

supplemented with initial conditions:

2(0,) = 20, 2:(0,") = 21,
v(0,) =vo, vt(0,-) = v, (7)
w(0,-) = wp, w(0,-) =wq, 0(0,)=bp.

The variable z describes the dynamics in the acoustic medium, while v denotes
the angles of deflection of the filaments, w - the transverse displacement of the
middle surface, and 6 - the temperature variation averaged with respect to the
thickness of the plate. The operator A is defined as follows

a%1 + 1;211852 H_Tyaxle 1
A= = Vdiv —
SON TR

— UV

rotrot,

2

where 0 < v < 1 is the Poisson ratio.



6 T. B. Fastovska

The non-decreasing functions b(s), bo(s), and g(s) describe the dissipation
effects in the model, the terms f(z), h(v), ho(w), vw - v represent nonlinear forces
acting on the wave and on the plate components respectively. The boundary term
Kzt|r, represents the pressure exercised by the acoustic medium on the wall.

The parameter 0 < x < 1 has been introduced to cover the case of non-
interacting wave and plate equations (k = 0), while the parameter 0 < 8 < 1 -
the case of decoupled plate and heat conduction equations. The parameter p > 0
describes the shear modulus of the plate.

Due to broad engineering applications in aerospace industry, structural
acoustic models have recently attracted an ample attention. A very large literature
devoted to this model in the context of the control theory, (see e.g. the monograph
[16] and references therein). The investigation of the uniform stability of structural
acoustic models with thermoelastic wall in the case of a single equilibrium can be
found in [17, 18, 19, 21]. The nonlinear structural acoustic model with thermal
effects and without mechanical dissipation in the plate component comprising
wave and thermoelastic Berger’s equations has been studied in [2]| in that the
existence of a compact global attractor and it’s properties were investigated.
The same results were obtained for the wave/ Berger’s system with mechanical
damping without thermal effects [3]. Long-time behavior of a nonlinear structural
acoustic model comprising wave and thermoelastic von Karman plate equations
has been studied in [9]. We also refer to the paper [23]| devoted to the problem of
dynamics of a clamped von Karman plate in a gas flow in the presence of thermal
effects. The existence and upper semicontinuity of attractors of the elastic and
thermoelastic Mindlin-Timoshenko plate system were studied in [5, 10].

We consider the nonlinear acoustic model comprising wave and Mindlin-

Timoshenko equations with thermal effects with and without non-conservative
nonlinearity in the plate part.
The paper is organized as follows. Section 1 is devoted to the conservative system
with monotone energy. We begin with the abstract formulation of the problem
and its well-posedness. Our first main result, Theorem 3 states the existence
of global attractors for problem (1)-(7) under rather general conditions on the
nonlinearities. Since the dynamical system generated by the system without
non-conservative nonlinearity is gradient, the main issue to be explored is the
asymptotic compactness of the semi-flow. To show this property we use the idea
due to Khanmamedov [14] in the form suggested in [8]. In comparison to the
acoustic interaction with the Berger’s and von Karman plate |3, 9] the existence
of the compact global attractor requires the additional condition on the nonlinear
damping referred to the elastic component (see Statement 3).

The next main results, Theorem 5 concerns the finite dimensionality of the
attractors.

The main result of Section 2, Theorem 9, concerning problem (1)-(7) is the
upper semicontinuity of the attractors with respect to the shear modulus and the
coupling parameters. In contrast to the system considered in [2| the attractor is
upper-semicontinuous not only with respect to the parameter decoupling wave
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and plate components but also with respect to the parameter decoupling plate
and thermal components.

In Section 3 we establish the same results for the system with non-conservative
nonlinearity. Due to the lost of monotonicity of the energy the existence of an
absorbing ball is proved supplementary.

System with conservative forces (7 = 0).

In this section we consider the conservative model ( the case v = 0), which
implies the monotonicity of the energy.

Basic assumptions. We impose the following basic assumptions on
the nonlinearities of the problem. Note that the listed assumptions on the
nonlinearities f, g and b;, i—=0,1,2 were first formulated in 9, Section 6.3, 12.3].

Statement 1 e g € C(R) is a non-decreasing function, g(0) = 0, and there
exists a constant C > 0 such that

lg(s)] < C(L+s["),s € R, (8)
where 1 < p < 5.
o f € Lipjo.(R) and there exists a positive constant M such that
[f(s1) = f(s2)] < M(L+ [s1]? + |s2]")[s1 — s2f,  s1,s0€ R, (9)
where ¢ < 2. Moreover,

)\:} lim inf®>0 (10)

|s|—o0 S

o h € Lipjoe(Ry), ho € Lipjoc(R) and there exists a positive constant My such
that

‘h(81)—h(82)‘ §M1(1+S?1+Sgl)’81—82’, s1,82 € Ry, (11)
and
[ho(s1) — ho(s2)| < M (1 + [s1]|% + [s2]®)|s1 — s2f,  s1,2 €R, (12)

where q1,q2 > 0. and

h* = lim inf@ >0, hy= lim inth(S) > 0. (13)

S—00 S |s|~>oo S

e b c CR?, by € C(R) are non-decreasing functions such that b(0) = 0,
bo(0) = 0.
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Statement 2 For any € > 0 there exists c. such that s € R

s2 <etecesg(s), s€R (14)
s2 < e+ cosby(s), scER, 5|2 < e + cesb(s), s€R? (15)

Statement 3 o There exist C >0 and 1 < p,py < oo such that
b(s)| < C(1+|sP),s € R?,  |bo(s)] < C(1 + |s[0),s € R. (16)

Statement 4 o There exist positive constants m > 0, M > 0 such that

g(s1) — g(s2)

m < pr— <M1+ s19(s1) + 829(82))2/3, s1,82 € R, 51 # s9.
(17)
o There exist m; > 0, M; >0, i = 1,2 such that
milsi — sa|* < (b(s1) — b(s2)) (51 — s2), (18)
W < Mi(1+ s1bj(s1) + s2bj(s2)), 51,52 € R, 51 # s2, (19)

where j = 1,2, b= (b1, ba).

< bO(Sl) — 50(82) S

mg < s1 — 89 Ms(1 + s1bo(s1) + s2bo(s2)), s1,52 € R, 81 # s9.
(20)

o fEC*(R),
If"(s)] < C(1+]1s]), seR. (21)

e hy € C%(R), h € C%(R,) and there exists a constant ¢ > 0 and 1 < py < 00,
1 < p3 < o0 such that

|n"(s)| < c(1+ sP?), s € Ry (22)

and
|ho(s)] < (14 [s%), s € R. (23)

Abstract formulation. We represent the system (1)-(7) as an abstract
evolution equation in an appropriate Hilbert space. For this purpose we introduce
the following spaces and operators.Denote u = (v, w) = (v1, v, w).

Let A: D(A) C [L2(To)]® — [L2(To)]?® be the positive self-adjoint operator on
D(A) = [H? N H}(Ty)]? defined by

A A+ pul  puVv
N —pdiv —pA
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Define also a positive self-adjoint operator L : D(L) € La(2) — L2(Q) by the
formula
=—A+ A,
with 9
D(L)={H*(Q): =—r=0
(1) = (H*(9) : 5-Ir =0}
and A is given by (9). Next, let Ny be the Neumann map from L2(Ig) to L2(12)

defined by
(—A+ Ny

’ ¢7 a’ﬁ:‘rl _O

It is well-known [20] that N is continuous from Lo (I'g) to H3/2(Q) € D(A3/4~¢),
for any € > 0, and the following trace result takes place

szo<Z><:>{

NiLh = h|r,, he D(AY?). (24)

We also introduce the operators Ry : H}(['g) — [L2]3(T) and Rg : [H}]?(To) —
Ly(T'y) defined by the formulas

R0 = (3(010,020,0)

and
Ry = 801v1 + BOave = Bdivv.

Now we are at the point to give the abstract formulation of problem (1)-(7). With
the above dynamic operators initial-value problem (1)-(7) can be rewritten as
follows

zit + G(z) + Lz + Fi(z) — kLNogu; = 0, © € Q,t > 0, (25)
Duy + Au+ R16 + B(u) + Fao(u) + kNg Lz, =0 (26)
16 — A0 + Rouy = 0 (27)

2(0) = z0, 2:(0) = 21, u(0) =wug, u(0) =wuy, 6(0) = bp. (28)

where the nonlinear terms are given by the following operators

here u = (v, w). Denote

Then



10 T. B. Fastovska

The term Fy(u) is represented as follows

Fy(u) = (vih([v[*), vah([v]*), ho(w)). (31)
Denote of?
Hg(u):;//h(s)dsda?—i—//ho(s)ds, (32)
Q0 Q0

It follows from (10) and (13) that

I1(z)
Ho(u)

— My (33)

>
> —Mj (34)
for some nonnegative constants My and M. The natural energy functions
associated with the solutions to the uncoupled wave and plate models are given
respectively by

&.(a(), (1) = Bz 2) + TI(2) (3)
and
&0 (u(t), ua(t)) = BO(u, ue) + E§(6) + Tho(u). (36)
Here we have set
B2z, 2) = g (IL2213 + ], (37)
B2t ue) = (I Aul, + Juell3,) (38)
and
B36) = 511013, (39)
Denote also
Bz, %) = Bz, 2) +T1(2) + My, (10)
Eyo(u,ug,0) = Eg(u,ue) + Eg(0) + Ho(u) + My, (41)

Finally we introduce the total energy E(t) = E(2(t), z¢(t), u(t), u(t),6(t)) of
the system
E(t) = €.(2,2t) + Eup(u, ug, 0), (42)

where €.(z,2) and &€, 9(u,us, 0) are given by (35) and (36) respectively. Denote
also
E°(t) = E(z, 21, u,up, ) = E2(2, 2) + By (u, up) + By (). (43)

The positive part of the total energy is given by
E(t) = E(z, zt,u,ut,0) = E.(2,2t) + Eyp(u, us, 6), (44)

where F,(z,2) and Ey g(u, us,0) are given by (40) and (41) respectively.
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It follows from (33) and (34) that there exist positive constants ¢, C', My such
that
cE(t) — My < E(t) < CE(t) + My (45)

The phase spaces Y7 for the acoustic component [z, 2] and Ya for the plate
component [u, u, 0] of system are given by

Y1 = D(LY?) x Ly(Q) = Hi(Q) x La(Q)
and
Yy = D(AY?) x [Ly(To)J* x La(T'o) = [Hy (To)]* x [La(To)J* x La(T'o)

with the norms
(21, 22) 15, = L% 213 + l|22%

and
(1, u2, 0|3, = |4 us IR, + 1D ?us|E, + 10113,

respectively. The phase space for the problem (25)-(28) is defined as
H=YxYs (46)

with the norm
lyll7r = 11(21, 22) 113, + [I(u1, ua, )13,
for y = (21, 22, u1, u2, ) and the corresponding inner product.

Well-posedness.

Definition 1 A triplet of functions (z(t),u(t),0(t)) which satisfy initial condi-
tions (28) and such that

(2(1),u(t)) € C(10,T]; D(LY?) x D(AY?)) N C ([0, TT; La(R) x [L2(L0)]*)

and
0(t) € C([0,T7; La(Io))

1s said to be
(S) a strong solution to problem (25)-(28) on the interval [0,T], iff

o forany0<a<b<T
(z,ut) € Li([a,b], D(LY?) x D(AY?)), 6, € Li([a,b], La(Ty))

and
(21, ue) € L1 ([a, b], La(€2) x [La(To)]?)

o L[z(t) — arNou] + G(z(t)) € L3(Q), u(t) € D(A), 0 € H?> N H(Ty) for
almost all t € [0, T
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o cquations (25)-(27) are satisfied in La(Q) x Lo(Tg) x Lo(Ty) for almost all
te[0,7T)
(G) a generalized solution to problem (25)-(28) on the interval [0,T], iff there

exists a sequence {(zn(t), un(t), 0, (1))} of strong solutions to (25)-(28) with initial
data (29,21, u®, ul, 60°) such that

n»~n’ 'nr 'nrv'n

lim max]{H@tz(t) — ()l + |1 LV2(2(t) = 2n(t))la} = 0

n—o0 t€[0,T

lim max}{HDl/Q(@tu(t) — Ayun(®))llry + A2 (u(t) — un(t)lIn,} = 0

n—oo ¢te[0,T"
and

lim max {[|6(¢) — 0 ()|, } = 0

n—0o0 t€[0,T]
Theorem 1 Under Assumptions 1, 3 for any initial conditions
yo = (2%, 21,00, 0°) e H

there exists a unique generalized solution y(t) = (z(t), z¢(t), u(t), u(t), 0(t)) to the
PDE system (25)-(28), which depends continuously on initial data. This solution
satisfies the energy tnequality

E(t) + /(G(Zt),Zt)QdT + /(B(ut),ut)podT

t
+ [I96,dr <e(s), 0<s <t @

with the total energy E(t) given by (42). Moreover, the generalized solution to
problem (25)-(28) is also weak, i.e. it satisfies the following system of variational
equalions:

& (et 9)o + (L1722, 1) + (9(22), 0 — 5l Nyd)ey + (1(2),0) = 0 (48)

Lty + 1z, )y + (A2, AYV29) 0, + (Bue), )rg

dt
+ (F2(u), ¥)ry + (R16,9)r, =0 (49)

d
%(07)()70 + (VH’ VX)FO + (RQutu X)Fo =0 (50)
for any ¢ € HY(Q), ¢ € [H}3(To), and x € HE(To) in the sense of distributions.

If initial data are such that

22t e D(ILMY?), u’ e D(A), u e D(AY?), 6° e (H? N H}) (o),
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and
L[z° — kNogu'] + G(2}) € Ly(Q)

then there exists a unique strong solution y(t) satisfying the energy identity:

E(t) + /(G(Zt),zt)QdT + /(B(ut),ut)podT

t
+ / IV6|2,dr = £(s), 0<s<t,

Both strong and generalized solutions satisfy the inequalities
E(t) <E&(s), t=>s, (51)

and

E(z(t), z(t),u(t), u(t),0(t)) < C(1+ E(zo, zl, uo, ul, 00)), (52)

where E is given by (44) and C does not depend on K, p, and (3.

Proposition 1 Theorem 1 enables us to define the dynamical system (H, Sy) with
the phase space H given by (46) and with the evolution operator Sy : H — H
defined by the formula

StyO = (Z(t)aZt(t)7u(t)7ut(t)79<t))v Yo = (Zovzlvuovulveo)

where (z(t),u(t),0(t)) is a generalized solutions to problem (25)-(28). Moreover,
the monotonicity of the damping operators G and B, the Lipschitz conditions on
Fi and F» and the energy bound in (52) implies that the semigroup St is locally
Lipschitz on H. Namely, there exist a > 0 and b(p) > 0 such that

1Sey1 = Seyellir < ac® P gy — wollm. lyiller < p, t > 0. (53)

Stationary points. It follows from (45) that the energy &(zo, 21, ug, u1, 6p) is
bounded from below on H and &(z0,21,up,u1,0p) — +oo when
l(z0, 21, w0, u1,600)||r — +oo. This implies that there exists R, > 0 such that
the set

WR = {y = (207215,“07“1700) S o 8(2’0,21,’&0,’&1,00) é R}

is a non-empty bounded set in H for all R > R,. Moreover, any bounded set
B € H is contained in Wg for some R and it follows from (51) that the set is
forward invariant with respect to the semi-flow S; , i.e. S;Wgr C Wg for all t > 0.
Thus, we can consider the restriction (Wg,S;) of the dynamical system (H,S)
on Wg, R > R,.
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We introduce the set of stationary points of Sy denoted by N,
N={VeH:5V=V t>0}

Every stationary point has the form V = (z,0,u,0,0), where z € H'(2) and
u € H} () are weak solutions to the problems

%:0 on I,

—Az+ f(2) =0 in Q, o

and
—Av + (v + Vw) + h(|v]?)v = 0z € Ty, t > 0,

—pdiv(v + Vw) + ho(w) =0,
v=w=0=0 9JIYy.

It is clear that the set of stationary points does not depend on k and u. Therefore,
one can easily prove the following assertion.

Lemma 1 Under Assumption 1 the set N of stationary points for the semi-group
Sy generated by problem (25)-(28) is a closed bounded set in H, and hence there
exists Ry > R (independent of k, 3, and p) such that N C Wg for every
R > R...

Later we will also need the notion of unstable manifold M*(N) emanating from
the set of stationary points.

Definition 2 The unstable manifold M*(N) emanating from the set of stationary
points N is a set of all V € H such that there exists a full trajectory ¥ = {V (¢t) :
t € R} with the properties

V(0)=V and tliEH distg(V(t),N) =0.

Existence of attractors. The main aim of the paper is to show the existence
of a global attractor for the dynamical system generated by problem (25)-(28),
and to study its properties.

By definition (see, e.g. |1, 6, 26]) a global attractor is a bounded closed set
A C H such that S;2 =2 for all £ > 0 and

lim supdist(Sy,A) =0
t——+00 yeB
for any bounded set B € H.
The fractal dimension

dim; M = lim sup M,
e—0 ln(l/ 6)
where N (M, ¢) is the minimal number of closed sets of diameter 2¢ which cover
the set M.
To prove the existence of the compact global attractor of the dynamical system
(H, S;) we need to show some preliminary results.
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Lemma 2 Let Assumptions 1 and 3 hold. Assume that y1,y2 € H, such that
lyillz < R, i=1,2 and denote

Styl = (d(t)a dt(t)? V(t)7 Vt(t)a ¢(t))
and
Sty2 = (C(t), Ce(t), w(t), we(t), £(1))-
Let
2() = d(t) — C(), u(t) = v(t) —w(t), 60) = () &0 (59

There exist To > 0 and positive constants C;, i = 1,4 and C5(R) independent of
T, k, u, and B such that for every T > Ty the following inequality holds:

TEYT) + / E°(t)dt < G / 2412 + V0] + [l 2dt)

+ GE(2) + RY ()] + CoHE (2) + C3QE (u) + C1¥ (2, )
T

+Cs(R) / (U2l + ul®)dt, (55)

0

where E°(t) is given by (43). We also introduce the notations

j GG+ ) — G(G). Cadr, (56)

HY(:) = / (GG + ) — GG, Oadr, 67)
= /t B(vy + ug) — B(v), v)r,dr, (58)

Qi(u) = / (B + ) — B(), )y, (59)

T T T T
0 0 t 0
2

T T
+|//ff
0 t

and

,up)drdt|  (60)
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with
Fi(2) = Fi(C+2) = F1(¢), and Fa(u) = Fr(w +u) — Fa(w), (61)
where F1 and Fy are the same as in (30), (31).

Proof. Step 1 (Energy identity) Without loss of generality, we can assume that
(d(t),w(t),(t)) and (¢(t),v(t),£(t)) are strong solutions. By (45) there exists a
constant Cr > 0, independent of x, u, and 3, such that
Eq(d(t),di(t)) + EZ(C(1), G(t)) + Ep(v(t), (1)) + ES(w(t), wi(t))
+ By (v(1) + B¢ (§(t) < Cr (62)
for all t > 0. We establish first an energy type equality.

Lemma 3 For any T >0 and all 0 <t < T E%(t) satisfies

ENT) + GT(2) + R (u /||v9\| dr

T T
/ ), 2)dr — / (Fo(u), u)dr, (63)

where G (z) and RI (u) are given by (56), (58) while F1(z) and Fa(u) are defined
by (61).

Proof. 1t is easy to see that the differences (54) satisfy the following system of
coupled equations

2z + Gz + G) — G(¢) + Lz + F1(2) — kLNguy = 0, x € Q,t > 0, (64)
Duy + Au+ R10 + B(uy + wi) — B(wy) + Fo(u) + kNjLz =0 (65)
0, — AO + Royuy = 0. (66)

By standard energy methods, taking the inner products in (64)-(66) with z;, u;
and 6 respectively, we obtain

T T
EO( )+ GT / ), zt)dT + H/(LNout, zt)odr, x € Q,t > 0,
t t
(67)
T
EXNT) + RI(» +/Rmmmm
t

T T
/ ), u F0d7'+li/ N§Lzi,u)rodr =0 (68)
t t
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T
BT / V6|2, dr = ES(1) / Rous, 0)r,dr = 0. (69)
t

Then, collecting (67)-(69) we readily obtain the statement of the lemma.
Step 2. Reconstruction of the energy integral Multiplying equation (25)
by 2z and integrating between 0 and T" we obtain

/ |LY22)2 < C(EY(T) + E2(0))

T
/Hthth—i-Ho —i—fi/\ ut,Nng)dt+/](3"1(z),z)]dt. (70)
0

It follows from (9) that
(F1(2), 2)| < CrILY?z[alzl0- (71)

Besides, using well-known interpolation results we get for 0 < 6 < 1/4

[(ue, NgL2)| < Jlueleg [ NG L2 L1272l
< elluelt, + et L2208 + Cepeall2II?,

for any €,e; > 0. Then, by appropriately choosing € and €1 we obtain from (70)
and (71) that

J1zv2par < cB@) + B20) + < P

0 0

+2/||th2dt+01H0T(z)+C’2(R,5)/Hz||2dt (72)
0 0

for any € > 0.
After multiplication (26) by u and integration between 0 and T’

T T
[ 14v2a? < c(ByT) + E0) + / 1B 2u,|%dt + QT ()

T T
T
+/(3'“2(u d+/ (R10,u dtJrK;/ (Ng Lz, u)dt. (73)
0
0 0
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Multiplying equation (27) by (—A)~'6 and integrating between 0 and 7" we obtain

T T
/||9|2 < C(Eg(T)+E3(0))+03/||ut\|2dt (74)
0 0

Combining (73) and (74) we arrive at

/VW%Wﬁ+/WWﬁSC@&ﬂ+E%D+%GU+%w»

Loy /uveu dt+/|]m|l dt) + QF (u) + C(R /||z||2dt

/||u|y2dt (75)

Collecting (72) and (75) we get

T T
/Eo(t)dt < C(B(T) + E°(0)) + C1 /(HZtH2 + uell* + [[VO|*)dt + C2Hg (2)
0 0

T
+ QT () + Cu(R /nuﬂww| dt, (76)
0

where HI'(z) and Q¥ (u) are defined in (57) and (59). It follows from energy
relation (63) that

EY0) = ENT) + G (2) + RN (u /||V0||2dt
T

T
+ [ (F1(2), z)dt + ), ue)dt  (77)
[ [t
T

T T T T
TEYT) < / EO(t)dt — / / (Fi(2), 2)dr — / / (Folw), u)dr  (78)
0 0 t 0 t

therefore, combining (77) and (78) with (76) we arrive at (55) .
To prove the existence of a compact global attractor of the dynamical system
(H,St) we need to show that it is asymptotically smooth. We recall [11] that a

and
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dynamical system (H, S;) is called asymptotically smooth iff for any bounded set
B in H such that S;B C B for t > 0 there exists a compact set K in the closure
B of B, such that
lim supdistx{Siy, K} =0
=400 yeB
In order to establish this property we apply the compactness criterion due to [14].
This result is recorded below in the abstract formulation given and used in [8].

Proposition 2 Let (H,S;) be a dynamical system on a complete metric space H
endowed with a metric d. Assume that for any bounded positively invariant set ‘B
in H and for any € > 0 there exists T = T (¢, B) such that

d(Sty1, Stye) < €+ Ve r(y1,y2), v € B,
where Ve g 7(y1,y2) is a nonnegative function defined on B x B such that

liminf liminf W, g 7(Yn, Ym) = 0 (79)

m—0o0 n—oo
for every sequence {y,} in B. Then the dynamical system (H, Sy) is asymptotically

smooth.

Lemma 4 Let Assumptions 1-8 hold. Then, for any € > 0 and T > 1 there exist
constants Ce(R) and C(R,T) such that

E(T)<e+ %[CG(R) + Up(z,u)] + C(R,T)lot(z,u), (80)

where
lot(z,u) = SHI}[HZ(t)IIQ + [u(®)]ro]

)

Proof. To establish (80) we return to inequality (55) and proceed with the
estimate of its right hand side. Preliminary we recall inequalities which hold under
Assumptions 1 and 3 only (see, e.g. [3]). There exists a constant Cyp > 0 and such
that

(G(C+2) = G(Q), h)] < Col(G(Q), Q) + (G(¢ +2), ¢+ 2)| 2| + Collh|| - (81)
for any ¢, z, h € D(L'/?) and

(B(w +u) = Bw), 1) < Col(B(w),w) + (B(w + u),w +u)] [ A21]| + Collé\l )
82

for any w,u,l € D(A/?).
It follows readily from (81), (82) that

H{ () < Cr + CTlot(z,u) (83)
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and
QL (2) < Cr+ CTlot(z,u). (84)
Next, using Assumption 2 we get
T
/(IIZtII?z + [luelf, + IVOIF,) < €T + Co(R) (85)
0

for every € > 0. On the other hand, taking ¢ = 0 in (63) and using the fact that
E(0) < Cg, we get

T
GOT(z)+R0T(u)+/\V9H?dt§
0

T T
Cr +| / (F1(2), z0)dr]| + | / (F1(u), us)dr|  (6)
0 0

therefore, (80) follows from Lemma 2 and estimates (83)-(86).

Theorem 2 Let Assumptions 1-3 hold. Then the dynamical system (H,St)
generated by problem (25)-(28) is asymptotically smooth.

Proof. It follows from Lemma 4 that given € > 0 there exists 7' = T'(¢) > 1 such
that for initial data y1,y2 € B we have

1S7y1 — Styaller = [|(2(T), 2:(T), u(T), us(T), 0(T)) || r <
C|E(T)"? < e+ Venr(yr,y2), (87)

where
U nr(y1,92) = Cepr{Ur(z,u) + lot(z,u)} /2

where Wr(z,u) is given by (60) and satisfies (79) (see e.g. [3]). Then, by
Proposition 1 (87) implies the statement of the theorem.
Our first main result provides the existence of a global attractor for problem.

Theorem 3 Under Assumptions 1-3 the dynamical system (H,St) generated by
problem (25)-(28) possesses a compact global attractor A which coincides with the
unstable manifold M"“(N) emanating from the set N of stationary points for Sy.

The proof is similar to that given in [3].

Stabilizability estimate. In this section we derive a stabilizability estimate
which will play a crucial role in the proofs of both finite-dimensionality and
regularity of attractors.

The following lemma can be found in [3].
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Lemma 5 Under Assumption 4 the following estimate holds true for some § > 0

T
F dr| < C 2
| [ 1), dr| < Crrmax 212

)

t

T
e / |LY22]%dr + C-(R / 1)1 + 16O ILY 22 2dr
0

for all t € [0,T], where € > 0 can be taken arbitrarily small. Here, F1 is given by

(61).

Now we state the analogue of Lemma 4 for the plate component which follows
immediately from Assumption 1.

Lemma 6 Under Assumptions 1 and 4 the following estimate holds true for all
te 0,7

T T
| / Faw.udr] < Cmaxlul® + < / A2l + fue?)dr, (88)
0

t
where € > 0 can be taken arbitrarily small. Here, Fo is given by (61).
Now we are in position to estimate W7 (z,u) defined in (60).

Lemma 7 For any € > 0 the following estimate holds true

T
U2 u) < € / EO(1)dt + C(T, R)Sp (2, )
0

with X7 (z,u) given by
Yr(z,u) = C%é%(llﬂ!ﬁ_a +1lzl7_s) + /Gd,c(T)HLl/QZ\QdT
T
+/BW )AY2u|?dr, (89)
0

here Gq is given by

Gac =m ™ [(G(d(t)), d(t))a + (G(C(1), (1)e] (90)
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Proof. Tt follows by the lower bound in (17) that ms? < sg(s), where i = 1,2 and
thus
lde®)1& + GO < Gag,  Nwe@IF, + [1e®)IF, < Buo-

Therefore, using Lemma 5 and Lemma 6 and the elementary inequality ||€|| <
+ (4€)7Y|€]|2, valid for arbitrary small € > 0, we obtain the statement of the
lemma.
To proceed we need the following assertion

Lemma 8 For any T > Ty > 0 the following estimate holds true:

T
TEY(T) + / E%(t)dt < C[GE(2) + RE (u)
0

T
+/||V9||2d7]+C'2(T,R)ET(z,u), (91)
0

where Yp(z,u) is the same as in (89).

Proof. Tt follows from Assumption 4 [7] that for every e > 0 there exists C. > 0
such that

|G(< + Z) - G(()al‘ < CE(G(C + Z) - G(C),Z)
+e(14 (G0, Q) + (G(C+2), ¢+ 2IE” (92)

for any ¢, 2,1 € D(L'?) and

|B(w+ u) — B(w),l| < Ce(B(w+u) — B(w),u)
+e(l+ (Bw),w) + (B(w +u),w +u) [AV21*(93)

for any ¢, z,1 € D(A/?).
Owing to estimates (92) and (93) it is immediately seen that

T T
HI(2) < C.GE(2) —l—e/EO(t)dt—i—em/Gd7C(T)HL1/2zHQdT
0 0

and
T

T
QT(2) < C.RT(2) + ¢ / EO(t)dt + em / Bu ()| AY2u|2dr,
0 0

where

By, = min{mi,m} " [(B(w(t)),w(t)r, + (Br(1)),v(1)r,]. (94)
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Consequently,

T
Hg (2) + QG (2) < e / E°(t)dt + Ce[RG (2) + Gi (2) + Zr(z, )] (95)
0

Notice that by the lower bounds in (17), (18), (20) we have

T T
1 1
2 T 2 T
dt < — dt < —— .
[ alPat < 6@, [ i< R, (06)
0 0

Now we apply estimates (95), (96) and Lemma 7 to the basic inequality in Lemma
2. Choosing ¢ sufficiently small we obtain the statement of the lemma.

Now we are in position to prove the stabilizability inequality for the dynamical
system (H, Sy).

Theorem 4 Lel Assumptions 1-4 hold. Then there exist positive constants C1,Co
and w depending on R such that for any y1,y2 € Wg the following estimate holds
true for any 6 <1 and independent of k, B, p:

1Sey1 = Seyllfy < Cre'llys — wollf + Co r[%%]X(IIZ(T)H?_(s + lu(n)li-5) (97)

Above we have used the notation

Styl = (d(t)a dt(t)7 w(t)v wt(t)7 w(t>)7 Styl = (C(t)v <t(t)7 V(t)v Vt(t)v ¢(t>)
Proof. Using inequality (63) and Lemma 8 we obtain that

T T
GT(2)+RT (2)+ / IV0|2dr < E°(0)— E°(T)+e / EY(r)dr+C(T, R)Sr (2, )
0 0

for any € > 0. Combining this estimate with (91) we get that there exists 7" > 1
such that

ET) < qE°(0) + Crr¥r(z,u), 0<q=q(T,R) < 1. (98)

Applying the procedure described in [4] we get from (98) that there exists w > 0
such that

E%(t) < Cre “*E%(0)
t
+ CQ[/ e w(t=T) [Dp (1) + Bow (1) + ||V9H2]E0(7')d7' + loty(z,u)]
0



24 T. B. Fastovska

for all ¢ > 0. Therefore, by the Gronwall’s lemma we get

t
[ e DDy, (1) +Bo . (7)+[|V6|)dr
E°(t) < [Cre 'E°(0) + Chloty(z, u)]ed .

< C1e ' E%(0) + Chloty (2, u).
The above estimate and (62) yield estimate (97).

Properties of attractor. In this Subsection we establish the properties of the
attractor to problem (25)-(28), namely, the finite dimensionality, boundedness in
the higher-order spaces and upper-semicontinuity with respect to the parameters

K, 57 K.

Theorem 5 Let Assumptions 1-4 hold. Then the attractor U has a finite fractal
dimension.

The proof is similar to that given in [3].
Theorem 6 The attractor 2 is a bounded set in the space

H, = Wg,(Q) x D(L'/?) x D(A) x D(A'/?) x D(=A)
for 3 <p <5 and in the space

H,, = H*(Q) x D(LY?) x D(A) x D(A?) x D(-A)

i the other cases. Moreover,

2 2 2
<
sup{21fy3, o)+l oy + llP} < € (99)
igg{H%tHZ + lweel + vl foa e + 1607} < €, (100)
sup [[wrllZ ) < C. (101)
teR 0
sup [0 g2n 1 ) < C, (102)
teR
sup [[w|| g2n i) < C, (103)
teR
1
sup ||[v + Vuw|| < —C 104
Sup | | 7 (104)
1
sup ||vy + V|| < —C, 105
Sup [[ve ¢l N (105)

where C' does not depend on K, u, and (.

Proof. Estimate (104) follows readily from the uniform, with respect to x and g,
boundedness of the attractor in H. Let {y(t) = (2(t), z¢(t), u(t), u(t),0(t))} € H
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be a full trajectory from the attractor 2. Let |o| < 1. Applying Theorem 4 with
y1 = y(s + o), y2 = y(s) for the interval [s,t] in place of [0,¢] we obtain

ly(t + o) = y(@)lIF < Cre™ |y (s + ) — y(s) 17
+ G Trrelg>§](|\2(7 +0) = 2|15 + lulr + o) = u(r) 1)

for any t,s € R such that s <t and |o| < 1. Letting s — —oo gives

ly(t + o) =yl < Oy Jdnax (12(7 + o) = 2(7) |15
+lu(r + o) —u(7)l[f_5) (106)
By interpolation we get
l2(7 + o) = 2(7) [} —5 + l[u(r + o) —u(n)|[i_s < elly(t + o) —y(®)|%
+Ce(llz(r +0) = 2(0)|? + [Ju(r + o) —u(r)[?) (107)

for every € > 0. Therefore we obtain from (106) and (107)

max ly(t + o) =yl < CTI[naX (l(r + o) = z(7)]”

TE[—00

+u(r+0) —u(n)]?) (108)

for any t € R and |o] < 1. On the attractor we have
1 g
et +o) -2l <2 [Jatr+oldr <, ter

and

1 1 [
St +0) @l < 2 [ Jutr+olldr <€, teR

which gives with (108)

y(r+0) —y(n)||”

max < C forlo| < 1.
TER o H
This implies
lzeel|? + 122222 + faael* + | A" e | + 161 < © (109)

and (105).
It follows readily from (5) that

1A0(@)|| < Cllull ) + 10:]) < €
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and from (4) that
[Aw]| < C( + [l rg)) < €,

which implies (102) and (103). From (3) and (4) we conclude
Al < C (). (110)
In case 1 < p < 3 we have for the wave component
lg(z)ll < CA+ llzellZ,, ) < CQ+ [l21)

Therefore z(t) solves the problem

(A 4+ X)z = hy(t) in 9, % = ho(t) onT, (111)

where hi(t) € Loo(R, L2(Q2)) and ha(t) € Loo(R, H*(2)) for any s < 3/2. By the
elliptic regularity theory we conclude that z(¢) is a bounded function with values
in H2(Q).

In case 3 < p < 5 we have that g(z) is bounded in Lg/,(€2) and therefore,
z solves (111) with hyi(t) € Loo(R, Lg/,(£2)). The elliptic regularity theory gives
that z(t) is a bounded function with values in WGQ/p(Q), which implies together
with (109) estimate (99).

Estimate (110) gives the boundedness of the component v in H' N H}(T'y) on
the attractor for every p > 1, but not uniformly.

The following result is a corollary of Theorems 3, 5, 6.

Theorem 7 Let f and g satisfy the conditions in Assumptions 1 and 2. Then the
dynamical system (Hy,S}) generated by the problem

2t + g(Zt) — Az + f(Z) =0 in QX (07T)

92 =0 on I x (0,7) (112)

possesses a compact global attractor Ay = M™(N1), where N1 is the set of equilibria
for (112). If f and g satisfy Assumption 4, then the attractor 2y has a finite
fractal dimension and 1 is a bounded set in the space W62/ (Q) x D(LY?) in case

3 < p <5, and in the space D(L) x D(L'/?) in other cases.
Arguing as in [10] one can obtain the following result on the existence of attractor.

Theorem 8 Let b;, i = 1,2, h, and hy satisfy the conditions in Assumptions 1 -
3 and Hy = H3(To) x H}(Dy). Then the dynamical system (Ha, S?) generated by
the problem

(1 — A)wyy + divb(—Vwy) + bo(wy) + A2w — div[h(|]Vw|?)Vw] + ho(w) = 0,
w(z,t) =0, Vw(x,t)=0 xedly, t>0
(113)
possesses a compact global attractor Ao = M™(N2), where Ny is the set of equilibria
for (113). If f, h, ho, b, i = 1,2 satisfy additionally Assumption 4, then the
attractor s has o finite fractal dimension.
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Our last main result consists in the upper-semicontinuity of the family of
attractors of problem (25)-(28) with respect to the parameters u, k, .

Theorem 9 Let Assumptions 1-4 hold. Denote by Sf’“’ﬁ the evolution operator
of problem (25)-(28) in the space

H, = H = (LY?) x L*(Q) x D(AY?) x L*(Ty) x HY(T).

Let A58 be a global attractor for the system (Sf’n’ﬂ, H,). Then the family of the
attractors AP is upper semi-continuous on A = [1,00) x [0,1] x [0, 1]. Namely,
we have that

lim sup {dist s, (y, A1 x A2 x 0)} =0, 114
s ci00y , S0 {distyn s (y, % x Uz X 0)} (114)

where
HO0%2 = (L2701 x L2(Q) x [[H'%(Tg)]* x H'(Ty)] x L*(T) x L*(Ty).
Here o > 0, 61 > 0 in case p < 5 and 01 > 0 in case p = 1.

Proof. We base the proof on the idea presented in [12]|. Assume that the statement
of the theorem is not true. Then there exists a sequence {(u", k", 5"} — (00,0)
such that pu" > peo, k" < Ko, 0" < [y and for any n € N and a sequence
y" € Ayn on gn such that

dist sy, (Y, A1 x Ay x 0) >e, n=12,.. (115)

for some € > 0. Let y"™(t) = {2"(t), z*(t), u™(t), up(t),6"(t)} be a full trajectory
in An on gn passing through y" (y"(0) = ™). The functions y" satisfy equations
(25)-(28). It follows from (100), (101), (103) that the sequence {2"(t), w"(¢t), 0" (t)}
is uniformly with respect to n bounded in the space

&1 = (Cona (B W2, (©)) 1 Chog(R: D(L'/2)) 1 O L2())
X (Cona(R; (H* N Hy)(To)) N Chog(R; Hy (To)) N Cig(R; L*(T))) x
(Cona(R; H? N H(2)) N Cppg(R; L*(92))).

Hence, by Aubin’s compactness theorem [25] {z"(¢), w™(t), 6™ ()} is a compact
sequence in the space

Wi = (C(=T.T); (£Y272) N CY (=T, T); L*($2)))
% (C(-T,T); By (Do) N CY (=T, T]; LA(Ty)))
x C([=T, T]; H'(To))
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for every T' > 0. Estimate (100) yields that the sequence {v"} is uniformly with
respect to n bounded in the space

€2 = (Cona(R; [Hy (D) N Cpra (R; [Hg (2)]7) N Cpa (R; [L(Q)]).

Thus, we deduce that there exists a function {z(t), w(t),O(t)} € €; such that
Jim max {1275 () = 2O /25y + 1287 (1) — 2e(D)I7 20
+ ™ (#) = w7 rg) + 0™ (8) = W) Z2r)
0 (8) 0|2y 0y = 0 (116)
for any 1 > 0 in case p < 5 and 0; > 0. Analogously, the sequence {v"} is

compact in the space C([-T, T]; [Hé_‘SZ(Q)]Q) NCY([-T,T); [L*(To)]?). Moreover,
by (104), (105) we get that

2 + vak + VWtH[L2(Fo)]2} =0 (117)

. -
lim max}{H'u —i—VWH[HéfaQ(FO

k—oo [T,

for every T' > 0. By the trace theorem we infer from (117) that
Jm o™ 4+ Vw22 apg) = 0,
therefore,
Vw|or, = 0.

We can choose functions ¢, ¢ and x in (48)-(50) of the following form: ¥ (t) =
(=0, 1, =01, 1) -p(t) and x(t) = x-p(t), where ¢ € (L'/?),1 € H3(Q), x € H} ()
and p(t) is a scalar continuously differentiable function such that p(7') = 0. It is
easy to see that

(Au™ 1) = [—v(dive™, Al) — (1 — V)g{[axlv?’“ 02 1+ Opyvy* - 021 118)
+(8Ilv;lk —"_ 8$2/U?k)81’1172 l]d‘,r]p(t)
Therefore, passing to the limit £ — oo we get

T T
lim [ (Au"™ ¢)dt = /(Aw,Al)p(t)dt.

k—o0

0 0

By Assumptions 1, 2, 3 we pass to the limit in the nonlinear terms. Observing
(116) and (118) we get

T T T T
- / (20, &' (£))dit + / (LM?5, LV2g)dt + / (9(ze), @)dt + / (f(2). 6)dt
0 0 0 0

= (21,0 (0)) (119)
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T T T
/Wt, /th,Vl dt—i—/Kw Kh)p (t)dt
0 0 0

T

+/ (divb(Vwy) + bo(wy), D)p (t)dt
0

T
+ /(div[l(!Vw]Q)Vw],l)p (t)dt = (w1,1)p (0) + (Vwi, VI)p (0), (120)
0

T T
—/(@,7') dt+/ (VO,Vr)p = (6o, 7)p (0), (121)
0 0

where K : H2(T'g) — L?*(Ty) such that K2 = A2 : H*N H3(Ty) — L*(To).
One can deduce from (119)-(121) that z(t), w(t) are weak solutions to
problems (112) and (113) possessing the properties

sup {20 ) + 120} < €

igﬂg{"w(t)”?pm{&(ro) + ”Wt(t)”%{g(ro) + ”Q(t)H%Q(FO)} <C

and
Vwlar, = 0.

Consequently, {z(t),z:(t)} and {w(t),w(t)} are full trajectories to (112) and
(113) which belong to the attractor ' and 2A2. The function O(t) is a full
trajectory to the problem

0, +AO =0, z€Ty, t>0
© =0, ze€dly,

which is exponentially stable. Consequently, ©® = 0. Thus, it follows from (116)
and (117) that

Jim (10 (0) + TW (O sy oo+ [07(0) = w(O)

o (0) + VWi (O)] e, )2+ 0y (0) = wi(O) 22z,
6™ )30y} = 0

and

T (127(0) + 2(O) 2y -y + 10 (0) = 20320} = O

and we obtain a contradiction to (115). Consequently, (114) holds true.
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System with non-conservative forces (v # 0).
Consider now system (1)-(7) with 7 # 0. This case corresponds to the non-
conservative nonlinearity and non-monotone energy.
Note that Assumption 1 with A*hf > 2+2 guarantees that there exist a positive
constant Cy such that

T S

H(T)ZCo+§/h(€)d£20, reRy, Ho(s)=00+;/h0(§)d§zo, seR.
0 0

Moreover, there exist positive constants C, C7 and Cy such that

yrs+ H(r)+ Ho(s) +C >0, reRy, seR. (122)

and
yrs < Ci(o? + H(r)) + Cy, r€Ry, s€R. (123)

The additional assumption for the non-conservative case is the following:

Statement 5 e There exist positive constants c1 and ca such that
—rh(r) < —ciH(r) + ¢, reRy (124)
and
—rho(r) < —c1Ho(r) + ca, s€R (125)

e For any € > 0 there exists a positive constant Cs such that
—yrs <e[H(r)+ Ho(s)|+C., reR4,s€R (126)

and
yro <elo?+ H(r)]+C., 7€R,, 0 €R. (127)

o There exist positive constants ¢y and co such that
—rf(r) < —call(r)+c, reR (128)

The assumptions (124)-(127) were made to guarantee the existence of the global
attractor for the Mindlin plate system in [4]. Now we are in position to give the
abstract formulation of system (1)-(7). Denote

* i
F (U) = (0707 §|U|2)7

Fy(u) = (vifyw + h(jof*)], valyw + h([v[*)], ho(w)). (129)

and

0y (u) = ;/Q o 2dz.
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Let
€o(t) = EV(z, 2¢) + E2(u, uy) + E9(6) + TI(2) + Mo (u), (130)

where EY, E0, EO I, IIy are given by (37)-(39) and (29), (32) respectively. We
define the total energy in the following way:

E(t) = Ep(t) + Iy (u). (131)
It is easy to see from (122) and (123) that
1

—5Thy(u) — Oy < Iy(u) < C /[w|2 + H(|v[?))dz + Cs (132)
Q

Applying the same arguments as in case 7 = 0 we obtain the following theorem.
Theorem 10 Under Assumptions 1 with h*hj; > 2%, 3 for any initial conditions
yo = (2%, 2,4, 0°) € H

there exists a unique generalized solution y(t) = (z(t), z¢(t), u(t), us(t), 0(t)) to the
PDE system (25)-(28) with Fy defined by (129), which depends continuously on
wnitial data. This solution satisfies the energy inequality

t

£t) + / (G(z1), 21)adr + / (B(uy), u)ry dr

S

¢ ¢
+ / HV@”%OdT < &(s)+ /(F*(u),ut)dr, 0<s<t,

with the total energy E(t) given by (131). Moreover, if initial data are such that
2020 e (LY?), v e D(A), u' e DAY?), 6° e D(-A)

and

L[z° — kNogu'] + G(2Y) € Ly(Q)
then there exists a unique strong solution y(t) satisfying the energy identity:

t

&) + / (G(z1), 2)adr + / (B(ws), we)ry dr

¢ ¢
+ / V0|2, dr = E(s) + /(F*(u),ut)dr, 0<s<t (133)
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In contrast to the conservative case, the non-conservative system is not gradient
and the energy is not monotone, i.e. one cannot guarantee the existence of a
bounded absorbing set without additional arguments. To prove the dissipativity
of system (25)-(28) in case v # 0 we resort to the Lapunov’s method combined
with the barriers method.

Theorem 11 Let Assumptions 1-3, 5 hold. Then the dynamical system (H,St)
generated by problem (25)-(28) possesses an absorbing ball B(R) of the radius R
mdependent of B, k, and p.

Proof. Consider the functional
V(2 20, u,ug, 0) = E(1) + 6[(21, 2) + (ug, w),

where 6 > 0 will be chosen later. It follows from (132) that there exist positive
constants C;, i = 1,4 such that

ClEO(zy Zt, U, Ut, 0) - CQ S V(Za 2ty U, Ug, 9) S C3E0(z7 Zt, U, Ut, 0) + 04‘
After differentiating the Lyapunov function by t we obtain

%V:m@mmﬂmwmw%WmeMWW+MW

—(G(z1): 2) = [ILY22]]* = K(LNour, 2) = (Fi(2), 2) = [ AY2u]|* = (R, 2)
— (B(w),u) — (Fa(u),u) — £(Ng Lzg, u)].
Taking under consideration (24), (124)-(126), 128 we get

%V < —(G(z), 2) = (Blug), ue) — (F* (), ue) = | VOI* + [l |* + [Jue®

1 1
—(G(=),2) = §HL1/2Z||2 - §||f11/2UH2 +ve|?
= (B(ue),u) + Clllze + lluell®] = e1/2[o(w) +11(2)] + C]. (134)
It follows from (127) that for any € > 0

(F* (u), ug) = ;/ vPuwdz < s/uwF + H(jv|)]dz + Cs
Q Ty
< ef||w||* 4 Ip(uw)] + C.  (135)

Consider now the term (B(u:),u). Let Ty = {z € T : |us(z)| > 1} and '3 =
I'o \ I'§. We obviously have that

|wwmo</wwmm</wmmmwc/wm
Lo r} Iz
< (1 Iotuo)] e ol 42l + )

1
l—‘O

< C(B(u), us) E°(z,u, 0) + Cllul|? < C(B(ug), ws)[V + 112 + Cllul®. (136)
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Analogously, B
(G(20), 2)| < C(G(z0), 2)[V +1]'? + C|z|%. (137)

Consequently, collecting Assumption 2, (134)-(137) and choosing § = 4e(1/2 +
C'max{\;, \y}), where A, and ), are the first eigenvalues of L and A respectively,
we get

LV(t) +eV(t) < di(e +C)

dt
+do(e[1 + V()2 = d)[(G(20), 2¢) + (B(ug), ug)].  (138)

Applying to (138) the barriers method described in [7, Th. 3.15] we obtain the
statement of the theorem.
Applying the same arguments as in Section 2 we get the following theorem

Theorem 12 Let Assumptions 1-5 hold. Denote by Sf’”’ﬁ the evolution operator
of problem (25)-(28) in the space

H, = H = D(LY?) x L*(Q) x D(AY?) x L}(Ty) x HY(Ty).
Let A58 e a global attractor for the system (Sf’”’ﬂ, H,). Then the family of the

attractors AP is upper semi-continuous on A = [1,00) x [0,1] x [0, 1]. Namely,
we have that

lim sup {distys, s, (y,2A1 X A3 x 0)} =0,
(1s#,8)—(00,0,0) yeQUhm@{ Ho162 (Y )}

where
Hov2 = (L2700 5 L2(Q) x [[H'792(D)])? x H'(Ty)] x L*(To) x L*(T).
and s is the attractor of the system

(1 — A)wyy + divb(—Vwy) + bo(wy) + A?w — div[h(|Vw|?) Vw]
+ho(w) —7/2A[w?] =0,
w(z,t) =0, Vw(z,t)=0 xedly, t>0
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