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The Jacobi operator

and the stability of vertical minimal surfaces

in the sub-Riemannian Lie group ˜SL(2,R)

We consider oriented immersed minimal surfaces in three-dimensional sub-
Riemannian manifolds which are vertical, i.e., perpendicular to the two-
dimensional horizontal distribution of the sub-Riemannian structure. We
showed earlier that a vertical surface is minimal in the sub-Riemannian
sense if and only if it is minimal in the Riemannian sense and that its
sub-Riemannian stability implies its Riemannian stability. We introduce the
sub-Riemannian version of the Jacobi operator for such surfaces and prove
a sufficient condition for the stability of vertical minimal surfaces similar
to a theorem of Fischer-Colbrie and Schoen: if a surface allows a positive
function with the vanishing Jacobi operator then it is stable.

Next, we use the Jacobi operator technique to investigate vertical mini-

mal surfaces in the Lie group ˜SL(2,R) that can be described as the uni-
versal covering of the unit tangent bundle of the hyperbolic plane wi-
th the standard left-invariant Sasaki metric (that corresponds to one of
the Thurston geometries) and with two different types of sub-Riemannian
structures. First, we consider a family of non-left-invariant structures defined
by some parameters, find the values of parameters for which vertical mini-
mal surfaces exist, and describe such complete connected surfaces. These
are Euclidean half-planes and cylinders, and they all are stable in the sub-
Riemannian sense and thus in the Riemannian sense. In particular, this
gives us examples of structures that do not allow vertical minimal surfaces.
Then, we describe complete connected vertical minimal surfaces for another
sub-Riemannian structure that is left-invariant. These are half-planes and
helicoidal surfaces that also appear to be stable in the sub-Riemannian sense
and thus in the Riemannian sense.
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1. Introduction

The Jacobi operator of a minimal submanifold in a Riemannian manifold (see,
e.g., [1]) is a very useful tool that allows one to determine whether this submanifold
is stable. In particular, a well-known theorem by Fischer-Colbrie and Schoen ([2])
states that a complete non-compact minimal hypersurface is stable if and only if
there exists a positive function for which the Jacobi operator vanishes. It also can
be of use in sub-Riemannian geometry. For example, in [6] the Jacobi operator
of a minimal surface in the three-dimensional sub-Riemannian Heisenberg group
plays a crucial role in the proof of a Bernstein-like theorem. Note that, contrary to
the Riemannian case, for submanifolds in sub-Riemannian manifolds the first and
second sub-Riemannian volume variation formulas are not universal: they depend
on a sub-Riemannian structure and can be quite complicated. See [6] and [4]

for the examples of the Heisenberg group and the universal covering ̃︂E(2) of the
group of orientation-preserving Euclidean plane isometries respectively. Hence,
the Jacobi operators also depend on such structure.

Taking this into account, in [4] we started to look into so-called vertical
minimal surfaces in three-dimensional sub-Riemannian manifolds, a relatively
simple, but interesting class of surfaces. In [5] we found the first and second
sub-Riemannian area variation formulas for such surfaces (Proposition 1 in the
next section) showing that they can be written down in a way independent of
a sub-Riemannian structure. That allowed us to consider various classes of sub-
Riemannian manifolds and establish the stability of vertical minimal surfaces in
them. Here we continue this work. First of all, we derive the Jacobi operator
for a vertical minimal surface in any three-dimensional sub-Riemannian manifold
(Proposition 2) and prove a sufficient condition for stability similar to the one
of Fischer-Colbrie and Schoen: if a surface allows a positive function with the
vanishing Jacobi operator then it is stable (Theorem 1). Then we apply it to the

study of vertical minimal surfaces in the Lie group ˜SL(2,R) with two different
classes of sub-Riemannian structures (Theorems 2 and 3) obtaining some new
classes of such stable surfaces (note that they are also minimal and stable in the
Riemannian sense) and finding examples of structures that do not allow vertical
minimal surfaces.

2. Preliminaries and the Jacobi operator

A sub-Riemannian manifold is a smooth manifold 𝑀 together with a
completely non-integrable smooth distribution ℋ on𝑀 (a horizontal distribution)
and a smooth field of Euclidean scalar products ⟨·, ·⟩ℋ on ℋ (a sub-Riemannian
metric). In particular, ⟨·, ·⟩ℋ can be the restriction of some Riemannian metric
⟨·, ·⟩ on 𝑀 to ℋ. Here we will assume that all sub-Riemannian structures are of
this form. We will call a sub-Riemannian structure on a Lie group𝑀 left-invariant
if both ℋ and ⟨·, ·⟩ are left-invariant.

Let Σ be an oriented immersed surface (without boundary) in a three-
dimensional sub-Riemannian manifold 𝑀 with a two-dimensional horizontal di-
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stribution. If 𝑁ℎ is the orthogonal projection of the Riemannian unit normal field
𝑁 of Σ ontoℋ and 𝑑Σ is the Riemannian area form of Σ, then the sub-Riemannian
area of a domain 𝐷 ⊂ Σ (see, e.g., [3]) is defined as

𝐴(𝐷) =

∫︁
𝐷

|𝑁ℎ| 𝑑Σ.

The normal variation of the surface Σ defined by a smooth function 𝑢 with
compact support is the map

𝜙 : Σ× 𝐼 →𝑀 : 𝜙𝑠(𝑝) = 𝑒𝑥𝑝𝑝(𝑠𝑢(𝑝)𝑁(𝑝)),

where 𝐼 is an open neighborhood of 0 in R and 𝑒𝑥𝑝𝑝 is the Riemannian exponenti-
al map at 𝑝. Therefore, we construct the variation by drawing the Riemannian
geodesic through each point 𝑝 ∈ Σ in the direction of 𝑢(𝑝)𝑁(𝑝). Denote

𝐴(𝑠) =

∫︁
Σ𝑠

|𝑁ℎ| 𝑑Σ𝑠,

where Σ𝑠 = 𝜙𝑠(Σ). Then 𝐴
′(0) is called the first (normal) sub-Riemannian area

variation defined by 𝜙, and 𝐴′′(0) is called the second one. A surface Σ is called
minimal if 𝐴′(0) = 0 for any normal variations with compact support in Σ ∖ Σ0,
where Σ0 = {𝑝 ∈ Σ | 𝑁ℎ(𝑝) = 0} is the singular set of Σ. A minimal surface
Σ is called stable if 𝐴′′(0) ⩾ 0 for any normal variations with compact support
in Σ ∖ Σ0.

We will call a surface Σ in a three-dimensional sub-Riemannian manifold verti-
cal if 𝑇𝑝Σ is perpendicular to ℋ𝑝 for each 𝑝 ∈ Σ, i.e., the normal vectors of these
planes are orthogonal. In particular, for such surfaces 𝑁ℎ = 𝑁 and Σ0 = ∅. In [5]
we proved the following.

Proposition 1. A vertical surface Σ in a three-dimensional sub-Riemannian
manifold is minimal in the sub-Riemannian sense if and only if it is minimal in
the Riemannian sense. In this case its second sub-Riemannian area variation is

𝐴′′(0) =

∫︁
Σ

− (𝑋(𝑢)− ⟨∇𝑁𝑋,𝑁⟩𝑢)2 + |∇Σ𝑢|2 −
(︀
Ric (𝑁,𝑁) + |𝐵|2

)︀
𝑢2 𝑑Σ,

where 𝑢 is a smooth function with compact support that defines the normal variati-
on, ∇ and Ric are the Riemannian connection and the Ricci tensor of 𝑀 respecti-
vely, 𝑋 is the unit normal vector field of ℋ (which is tangent to Σ because it is
vertical), ∇Σ and 𝐵 are the Riemannian gradient and the second fundamental
form of Σ respectively. It follows that if Σ is stable in the sub-Riemannian sense
then it is also stable in the Riemannian sense.
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Define the characteristic vector field 𝑍 on Σ as the right angle rotation of 𝑁
in ℋ (in the orientation defined by 𝑋). Then {𝑋,𝑍} is an orthonormal frame on
Σ, so |∇Σ𝑢|2 = 𝑋(𝑢)2 + 𝑍(𝑢)2 and the second variation formula takes the form

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 + 2⟨∇𝑁𝑋,𝑁⟩𝑢𝑋(𝑢)−

−
(︀
⟨∇𝑁𝑋,𝑁⟩2 +Ric (𝑁,𝑁) + |𝐵|2

)︀
𝑢2 𝑑Σ,

(1)

Note that the divergence of the field ⟨∇𝑁𝑋,𝑁⟩𝑢2𝑋 on Σ has the vanishing
integral by the Stokes’ theorem because 𝑢 is with compact support. On the other
hand, this divergence equals

divΣ
(︀
⟨∇𝑁𝑋,𝑁⟩𝑢2𝑋

)︀
= 2⟨∇𝑁𝑋,𝑁⟩𝑢𝑋(𝑢)+

+ (𝑋 (⟨∇𝑁𝑋,𝑁⟩) + ⟨∇𝑁𝑋,𝑁⟩ divΣ𝑋)𝑢2,

where divΣ𝑋 = ⟨∇𝑋𝑋,𝑋⟩ + ⟨∇𝑍𝑋,𝑍⟩ = ⟨∇𝑍𝑋,𝑍⟩ due to the orthonormality
of {𝑋,𝑍}. It means that (1) can be rewritten as

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 − 𝑓 𝑢2 𝑑Σ (2)

for some function 𝑓 .

Proposition 2. Let Σ be a minimal surface in a three-dimensional sub-
Riemannian manifold whose second variation is of the form (2). Then it also
has a form

𝐴′′(0) = −
∫︁
Σ

𝑢𝐿(𝑢) 𝑑Σ (3)

where 𝐿 is the Jacobi operator on the space of smooth functions on Σ:

𝐿(𝑢) = 𝑍(𝑍(𝑢)) + ⟨∇𝑋𝑍,𝑋⟩𝑍(𝑢) + 𝑓 𝑢. (4)

Proof. Note that, similarly to divΣ𝑋 above, divΣ𝑍 = ⟨∇𝑋𝑍,𝑋⟩+⟨∇𝑍𝑍,𝑍⟩ =
⟨∇𝑋𝑍,𝑋⟩, so in (4)

𝐿(𝑢) = 𝑍(𝑍(𝑢)) + 𝑍(𝑢) divΣ𝑍 + 𝑓 𝑢 = divΣ(𝑍(𝑢)𝑍) + 𝑓 𝑢.

From this, as 𝑢 has compact support,

0 =

∫︁
Σ

divΣ(𝑢𝑍(𝑢)𝑍) 𝑑Σ =

∫︁
Σ

𝑍(𝑢)2 + 𝑢divΣ(𝑍(𝑢)𝑍) 𝑑Σ =

=

∫︁
Σ

𝑍(𝑢)2 + 𝑢(𝐿(𝑢)− 𝑓 𝑢) 𝑑Σ,

and that implies (3).
In particular, this Jacobi operator indeed is a linear operator on 𝐶∞(𝑀) as in

the Riemannian case. Now we will show that an analogue of the sufficiency part
in the Fischer-Colbrie–Schoen theorem ([2]) is true for this operator.
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Theorem 1. Let Σ be a minimal surface in a three-dimensional sub-Riemannian
manifold with the second variation of the form (2) and the Jacobi operator 𝐿
from (4). If there exists a smooth function 𝑢 > 0 on Σ such that 𝐿(𝑢) = 0 then Σ
is stable.

Proof. As 𝑢 > 0, we can define 𝑣 = ln𝑢 on Σ with derivatives

𝑍(𝑣) =
𝑍(𝑢)

𝑢
, 𝑍(𝑍(𝑣)) =

𝑍(𝑍(𝑢))

𝑢
− 𝑍(𝑢)2

𝑢2
.

This, (4), and 𝐿(𝑢) = 0 imply that

divΣ(𝑍(𝑣)𝑍) = 𝑍(𝑍(𝑣)) + ⟨∇𝑋𝑍,𝑋⟩𝑍(𝑣) = −𝑍(𝑣)2 − 𝑓. (5)

For any smooth function 𝑤 on Σ with compact support

divΣ
(︀
𝑤2𝑍(𝑣)𝑍

)︀
= divΣ(𝑍(𝑣)𝑍)𝑤

2 + 2𝑍(𝑣)𝑍(𝑤)𝑤

The integral of this divergence on Σ vanishes, thus by (5) and the Cauchy–Schwarz
inequality we have∫︁

Σ

(︀
𝑓 + 𝑍(𝑣)2

)︀
𝑤2 𝑑Σ = −

∫︁
Σ

divΣ(𝑍(𝑣)𝑍)𝑤
2 𝑑Σ =

=

∫︁
Σ

2𝑍(𝑣)𝑍(𝑤)𝑤 𝑑Σ ⩽
∫︁
Σ

𝑍(𝑣)2𝑤2 + 𝑍(𝑤)2 𝑑Σ,

hence for the variation defined by 𝑤 the second variation (2) is non-negative:

𝐴′′(0) =

∫︁
Σ

𝑍(𝑤)2 − 𝑓 𝑤2 𝑑Σ ⩾ 0,

and this means the stability of Σ.
Note that the statement also stays true for 𝑢 > 0 with 𝐿(𝑢) ⩽ 0 with almost

the same proof. It is interesting whether the necessity (hard) part of the Fischer-
Colbrie–Schoen theorem is also true for complete non-compact Σ, that is, whether
the stability implies the existence of 𝑢 > 0 with 𝐿(𝑢) = 0. Here and in the next
session by the completeness of a surface we mean the Riemannian completeness.

3. Vertical minimal surfaces in ˜SL(2,R)

The three-dimensional Thurston geometry ˜𝑆𝐿(2,R) can be described (see [8])
as the universal covering of the unit tangent bundle of the hyperbolic plane H2

with the Sasaki metric, that is, the half-space {(𝑥, 𝑦, 𝑧) ∈ R3 | 𝑦 > 0} with the
following orthonormal frame of vector fields:

𝑋1 = 𝑦 cos 𝑧
𝜕

𝜕𝑥
+ 𝑦 sin 𝑧

𝜕

𝜕𝑦
− cos 𝑧

𝜕

𝜕𝑧
,

𝑋2 = −𝑦 sin 𝑧 𝜕
𝜕𝑥

+ 𝑦 cos 𝑧
𝜕

𝜕𝑦
+ sin 𝑧

𝜕

𝜕𝑧
,𝑋3 =

𝜕

𝜕𝑧
.

(6)
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This manifold also is a Lie group (the universal covering of the special linear
group SL(2,R)) and the fields {𝑋1, 𝑋2, 𝑋3} are left-invariant. The corresponding
left-invariant metric is 1

𝑦2

(︀
𝑑𝑥2 + 𝑑𝑦2 + (𝑑𝑥+ 𝑦 𝑑𝑧)2

)︀
, so we can consider a simpler

orthonormal frame of

𝑌1 = 𝑦
𝜕

𝜕𝑥
− 𝜕

𝜕𝑧
= cos 𝑧 𝑋1 − sin 𝑧 𝑋2,

𝑌2 = 𝑦
𝜕

𝜕𝑦
= sin 𝑧 𝑋1 + cos 𝑧 𝑋2, 𝑌3 =

𝜕

𝜕𝑧
= 𝑋3,

(7)

where the fields 𝑌1 and 𝑌2 are not left-invariant. The non-zero Lie brackets of
the fields (6) are

[𝑋1, 𝑋2] = −[𝑋2, 𝑋1] = −𝑋3, [𝑋2, 𝑋3] = −[𝑋3, 𝑋2] = 𝑋1,
[𝑋3, 𝑋1] = −[𝑋1, 𝑋3] = 𝑋2,

and the only non-zero Lie bracket of (7) is [𝑌1, 𝑌2] = −𝑌1 − 𝑌3. Using the Koszul
formula as in [7], we derive from this that the Riemannian connection ∇ of the
left-invariant metric is defined by

∇𝑋1𝑋2 = −∇𝑋2𝑋1 = −𝑋3

2
, ∇𝑋2𝑋3 = −𝑋1

2
, ∇𝑋3𝑋2 = −3𝑋1

2
,

∇𝑋3𝑋1 =
3𝑋2

2
, ∇𝑋1𝑋3 =

𝑋2

2
, ∇𝑋1𝑋1 = ∇𝑋2𝑋2 = ∇𝑋3𝑋3 = 0,

(8)

hence

∇𝑌1𝑌2 = −𝑌1 −
𝑌3
2
, ∇𝑌2𝑌1 =

𝑌3
2
, ∇𝑌2𝑌3 = ∇𝑌3𝑌2 = −𝑌1

2
,

∇𝑌3𝑌1 = ∇𝑌1𝑌3 =
𝑌2
2
, ∇𝑌1𝑌1 = 𝑌2, ∇𝑌2𝑌2 = ∇𝑌3𝑌3 = 0.

(9)

It also follows from [7] that the Ricci tensor of this metric is defined by

Ric(𝑋1, 𝑋1) = Ric(𝑋2, 𝑋2) = Ric(𝑌1, 𝑌1) = Ric(𝑌2, 𝑌2) = −3

2
,

Ric(𝑋3, 𝑋3) = Ric(𝑌3, 𝑌3) =
1

2
, Ric(𝑋𝑖, 𝑋𝑗) = Ric(𝑌𝑖, 𝑌𝑗) = 0, 𝑖 ̸= 𝑗.

(10)

It follows from the Lie brackets above that the left-invariant distribution
orthogonal to 𝑋3 = 𝑌3 is completely non-integrable and so defines a sub-
Riemannian structure such that this distribution is horizontal. For this structure
complete connected vertical surfaces are well-known: they are cylinders over
geodesics in H2 (see, e.g., [9]). We showed in [5] that these surfaces are stable
in the sub-Riemannian sense and thus in the Riemannian sense. Let us consider
here a more general situation.

Theorem 2. A two-dimensional horizontal distribution ℋ = 𝑋⊥, whose unit
normal field 𝑋 is a linear combination of the fields 𝑌1, 𝑌2, 𝑌3 with constant

coefficients, defines a sub-Riemannian structure on ˜SL(2,R) (i.e., is its horizontal
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distribution) if and only if 𝑋 is of the form 1√
𝜆2+𝜇2+1

(𝜆𝑌1 + 𝜇𝑌2 + 𝑌3), where

𝜆 ̸= −1. This sub-Riemannian structure allows vertical minimal surfaces only for
𝜆 = 0 and 𝜆 = 1.

If 𝜇 ̸= 0 then a complete connected vertical surface is minimal if and only if
it is a Euclidean half-plane 𝑥 = 𝑥0 for 𝜆 = 0 or a Euclidean half-plane 𝑧 = 𝑧0 for
𝜆 = 1.

If 𝜇 = 0 and 𝜆 = 1 then a complete connected vertical surface is minimal if
and only if it is either a Euclidean half-plane 𝑧 = 𝑧0 or a cylinder that can be
parameterized as

𝑟(𝑠, 𝑡) =
(︁
𝑠, 𝑦0 cos 𝑡, 𝑧0 +

√
2 𝑡
)︁
, 𝑠 ∈ R, 𝑡 ∈

(︁
−𝜋
2
+ 2𝜋𝑘,

𝜋

2
+ 2𝜋𝑘

)︁
, (11)

where 𝑘 ∈ Z.
If 𝜇 = 𝜆 = 0 then a complete connected vertical surface is minimal if and only

if is a cylinder over a geodesic in H2.
All these surfaces are stable in the sub-Riemannian sense and thus in the

Riemannian sense.

Proof. If𝑋 is of the form 𝜆𝑌1+𝜇𝑌2 then 𝑌3 belongs to its orthogonal distributi-
on. As [𝑌1, 𝑌3] = [𝑌2, 𝑌3] = 0, this distribution is integrable. So indeed it should
be 𝑋 = 1√

𝜆2+𝜇2+1
(𝜆𝑌1 + 𝜇𝑌2 + 𝑌3) for ℋ = 𝑋⊥ to define a sub-Riemannian

structure. In this case {𝑌1 − 𝜆𝑌3, 𝑌2 − 𝜇𝑌3} is a frame of ℋ. The Lie bracket
−𝑌1 −𝑌3 of these fields forms with them a linearly independent triple if and only
if 𝜆 ̸= −1. This is the condition for ℋ to be completely non-integrable, so we get
the desired form of 𝑋. Substituting (7) into it yields

𝑋 = 1√
𝜆2+𝜇2+1

(︁
𝜆𝑦 𝜕

𝜕𝑥 + 𝜇𝑦 𝜕
𝜕𝑦 + (−𝜆+ 1) 𝜕

𝜕𝑧

)︁
. (12)

In the case 𝜇 ̸= 0 integral curves of this field are transversal to Euclidean planes
𝑦 = 𝑦0 (recall that 𝑦 > 0), so we can build any complete connected vertical surface
Σ of the sub-Riemannian structure by drawing these integral curves through poi-
nts of a curve 𝑡 ↦→ (𝑥(𝑡) + 𝜆/𝜇, 1, 𝑧(𝑡)) and obtain the following parameterization
for Σ:

𝑟(𝑠, 𝑡) =

(︂
𝑥(𝑡) +

𝜆

𝜇
𝑒𝜇𝑠, 𝑒𝜇𝑠, 𝑧(𝑡) + (−𝜆+ 1)𝑠

)︂
. (13)

Taking derivatives, we get

𝑟𝑠 =
√︀
𝜆2 + 𝜇2 + 1𝑋, 𝑟𝑡 = (𝑥′, 0, 𝑧′) = 𝑥′𝑒−𝜇𝑠𝑌1 + (𝑥′𝑒−𝜇𝑠 + 𝑧′)𝑌3.

From this and (9), the covariant derivatives are

∇𝑟𝑠𝑟𝑠 = (𝜆+ 1)(−𝜇𝑌1 + 𝜆𝑌2),

∇𝑟𝑡𝑟𝑠 = −𝜇
2
(3𝑥′𝑒−𝜇𝑠 + 𝑧′)𝑌1 +

1

2
(3𝜆𝑥′𝑒−𝜇𝑠 + 𝜆𝑧′ + 𝑥′𝑒−𝜇𝑠)𝑌2 −

𝜇

2
𝑥′𝑒−𝜇𝑠𝑌3,

∇𝑟𝑡𝑟𝑡 = 𝑥′′𝑒−𝜇𝑠𝑌1 + (2(𝑥′)2𝑒−2𝜇𝑠 + 𝑥′𝑧′𝑒−𝜇𝑠)𝑌2 + (𝑥′′𝑒−𝜇𝑠 + 𝑧′′)𝑌3.
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The unit normal field of Σ is

𝑁 =
1

Δ

(︀
(𝜇𝑥′𝑒−𝜇𝑠 + 𝜇𝑧′)𝑌1 − (𝜆𝑥′𝑒−𝜇𝑠 + 𝜆𝑧′ − 𝑥′𝑒−𝜇𝑠)𝑌2 − 𝜇𝑥′𝑒−𝜇𝑠𝑌3

)︀
,

where Δ =
√︀
(𝜇𝑥′𝑒−𝜇𝑠 + 𝜇𝑧′)2 + (𝜆𝑥′𝑒−𝜇𝑠 + 𝜆𝑧′ − 𝑥′𝑒−𝜇𝑠)2 + (𝜇𝑥′𝑒−𝜇𝑠)2. So, the

coefficients of the second fundamental form of Σ are

𝑏11 = ⟨∇𝑟𝑠𝑟𝑠, 𝑁⟩ = 𝜆+ 1

Δ

(︀
−(𝜆2 + 𝜇2)(𝑥′𝑒−𝜇𝑠 + 𝑧′) + 𝜆𝑥′𝑒−𝜇𝑠

)︀
,

𝑏12 = ⟨∇𝑟𝑡𝑟𝑠, 𝑁⟩ = 1

2Δ

(︀
−(𝜆2 + 𝜇2)(3𝑥′𝑒−𝜇𝑠 + 𝑧′)(𝑥′𝑒−𝜇𝑠 + 𝑧′)+

+(1 + 2𝜆+ 𝜇2)(𝑥′)2𝑒−2𝜇𝑠
)︀
,

𝑏22 = ⟨∇𝑟𝑡𝑟𝑡, 𝑁⟩ = 1

Δ

(︀
−𝑥′(2𝑥′𝑒−𝜇𝑠 + 𝑧′)((𝜆− 1)𝑥′𝑒−𝜇𝑠 + 𝜆𝑧′)𝑒−𝜇𝑠+

+𝜇(𝑥′′𝑧′ − 𝑥′𝑧′′)𝑒−𝜇𝑠) .

Taking into account the coefficients of the first fundamental form of Σ

𝑔11 = 𝜆2 + 𝜇2 + 1, 𝑔12 = (𝜆+ 1)𝑥′𝑒−𝜇𝑠 + 𝑧′, 𝑔22 = (𝑥′)2𝑒−2𝜇𝑠 + (𝑥′𝑒−𝜇𝑠 + 𝑧′)2,

we can rewrite the minimality condition 𝐻 = 0, that is, 𝑏11𝑔22−2𝑏12𝑔12+𝑏22𝑔11 =
0, in the form

𝑓3(𝑡)𝑒
−3𝜇𝑠 + 𝑓2(𝑡)𝑒

−2𝜇𝑠 + 𝑓1(𝑡)𝑒
−𝜇𝑠 + 𝑓0(𝑡) = 0, (14)

where 𝑓3 = (𝑥′)3(𝜆− 1)((𝜆− 1)2 + 𝜇2), so it should be 𝑥 = 𝑥0 or 𝜆 = 1.
If 𝑥 = 𝑥0 then the regularity of Σ implies 𝑧′ ̸= 0, so we can put without loss

of generality 𝑧(𝑡) = 𝑡. Then in (14) we have 𝑓0 = 𝜆(𝜆2 + 𝜇2), so 𝜆 = 0. Thus,
Δ = |𝜇| and for 𝑁 = 𝑌1

𝑏11 = −𝜇, 𝑏12 = −𝜇
2
, 𝑏22 = 0, 𝑔11 = 𝜇2 + 1, 𝑔12 = 𝑔22 = 1,

that clearly implies 𝐻 = 0. In this case (13) takes the form

𝑟(𝑠, 𝑡) = (𝑥0, 𝑒
𝜇𝑠, 𝑡+ 𝑠) .

This is a parameterization of a half-plane 𝑥 = 𝑥0, 𝑦 > 0. The characteristic field
𝑍 should be such that the frame {𝑋,𝑍,𝑁} is orthonormal. Then

𝑍 =
1√︀
𝜇2 + 1

(−𝑌2 + 𝜇𝑌3) = − 1

𝜇
√︀
𝜇2 + 1

𝑟𝑠 +

√︀
𝜇2 + 1

𝜇
𝑟𝑡,

so

⟨𝐵(𝑍), 𝑋⟩ = − 1

𝜇(𝜇2 + 1)
𝑏11 +

1

𝜇
𝑏12 =

−𝜇2 + 1

2(𝜇2 + 1)

and, taking into account ⟨𝐵(𝑋), 𝑋⟩+ ⟨𝐵(𝑍), 𝑍⟩ = 2𝐻 = 0,

⟨𝐵(𝑍), 𝑍⟩ = −⟨𝐵(𝑋), 𝑋⟩ = − 1

𝜇2 + 1
𝑏11 =

𝜇

𝜇2 + 1
.
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Therefore,

|𝐵|2 = ⟨𝐵(𝑋), 𝑋⟩2 + 2 ⟨𝐵(𝑋), 𝑍⟩2 + ⟨𝐵(𝑍), 𝑍⟩2 = 1

2
.

From (10) we have Ric(𝑁,𝑁) = −3
2 , and

∇𝑁𝑋 =
1√︀
𝜇2 + 1

(︂
−𝜇𝑌1 +

1

2
𝑌2 −

𝜇

2
𝑌3

)︂
from (9), so ⟨∇𝑁𝑋,𝑁⟩ = − 𝜇√

𝜇2+1
. Hence, the second variation formula (1) takes

the form

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 − 2𝜇√︀
𝜇2 + 1

𝑢𝑋(𝑢) +
1

𝜇2 + 1
𝑢2 𝑑Σ.

Let us rewrite this expression using the divergence, as was explained in a remark

after (1). From (9), ∇𝑍𝑋 = −𝜇2+1
2(𝜇2+1)

𝑌1, thus divΣ𝑋 = ⟨∇𝑍𝑋,𝑍⟩ = 0 and so

divΣ
(︀
𝑢2𝑋

)︀
= 2𝑢𝑋(𝑢). For a function 𝑢 with compact support the integral of this

divergence over Σ vanishes, which finally implies

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 +
1

𝜇2 + 1
𝑢2 𝑑Σ ⩾ 0,

which means that Σ is stable. Note that its Riemannian stability follows also
from the results of [5], but here we have shown its stability with respect to sub-
Riemannian structures different from the one considered in that paper.

In the case when 𝜆 = 1 it appears that 𝑓0 = (𝑧′)3(𝜇2 + 1) in (14), thus,
similarly to the previous case, 𝑧 = 𝑧0, 𝑥(𝑡) = 𝑡, and (13) becomes

𝑟(𝑠, 𝑡) =

(︂
𝑡+

1

𝜇
𝑒𝜇𝑠, 𝑒𝜇𝑠, 𝑧0

)︂
.

It means that Σ is a half-plane 𝑧 = 𝑧0, 𝑦 > 0. Here we have Δ =
√
2|𝜇|𝑒−𝜇𝑠 and

𝑏11 = −
√
2𝜇, 𝑏12 = −𝜇𝑒

−𝜇𝑠

√
2
, 𝑏22 = 0, 𝑔11 = 𝜇2 + 2, 𝑔12 = 2𝑒−𝜇𝑠, 𝑔22 = 2𝑒−2𝜇𝑠.

for𝑁 = 1√
2
(𝑌1−𝑌3). Again we clearly have the minimality of Σ. The characteristic

field is

𝑍 =
1

√
2
√︀
𝜇2 + 2

(𝜇𝑌1 − 2𝑌2 + 𝜇𝑌3) = −
√
2

𝜇
√︀
𝜇2 + 2

𝑟𝑠 +
𝑒𝜇𝑠
√︀
𝜇2 + 2√
2𝜇

𝑟𝑡.

From this we get

⟨𝐵(𝑍), 𝑋⟩ = −
√
2

𝜇(𝜇2 + 2)
𝑏11 +

𝑒𝜇𝑠√
2𝜇

𝑏12 =
−𝜇2 + 2

2(𝜇2 + 2)
,

⟨𝐵(𝑍), 𝑍⟩ = −⟨𝐵(𝑋), 𝑋⟩ = − 1

𝜇2 + 2
𝑏11 =

√
2𝜇

𝜇2 + 2
,
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thus

|𝐵|2 = 2 ⟨𝐵(𝑋), 𝑋⟩2 + 2 ⟨𝐵(𝑋), 𝑍⟩2 = 1

2
.

According to (9),

∇𝑁𝑋 =
1

√
2
√︀
𝜇2 + 2

(︁
−𝜇
2
𝑌1 + 𝑌2 −

𝜇

2
𝑌3

)︁
,

which implies ⟨∇𝑁𝑋,𝑁⟩ = 0. As Ric(𝑁,𝑁) = −1
2 from (10), (1) now takes the

form

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 𝑑Σ ⩾ 0,

and the stability of Σ follows.
If 𝜇 = 𝜆 = 0 then, as was mentioned earlier, Σ is minimal if and only if

is a cylinder over a geodesic in H2, and all such cylinders are stable in the sub-
Riemannian sense by known results. So we will assume 𝜆 ̸= 0 from now on. In this
case integral trajectories of 𝑋 are transversal to 𝑥 = 𝑥0 (see (12)), so we can draw
them through points of a curve 𝑡 ↦→ (0, 𝑦(𝑡), 𝑧(𝑡)) to get the parameterization

𝑟(𝑠, 𝑡) = (𝜆𝑦(𝑡)𝑠, 𝑦(𝑡), 𝑧(𝑡) + (−𝜆+ 1)𝑠) (15)

of a vertical complete connected surface Σ. Now we have

𝑟𝑠 =
√︀
𝜆2 + 1𝑋 = 𝜆𝑌1 + 𝑌3, 𝑟𝑡 = (𝜆𝑦′𝑠, 𝑦′, 𝑧′) =

𝜆𝑦′𝑠𝑌1 + 𝑦′𝑌2 + (𝜆𝑦′𝑠+ 𝑦𝑧′)𝑌3
𝑦

,

𝑔11 = 𝜆2 + 1, 𝑔12 =
𝜆(𝜆+ 1)𝑦′𝑠+ 𝑦𝑧′

𝑦
, 𝑔22 =

(𝑦′)2(2𝜆2𝑠2 + 1) + 2𝜆𝑦𝑦′𝑧′𝑠+ 𝑦2(𝑧′)2

𝑦2
,

𝑁 =
1

Δ

(︀
−𝑦′𝑌1 − 𝜆((𝜆− 1)𝑦′𝑠+ 𝑦𝑧′)𝑌2 + 𝜆𝑦′𝑌3

)︀
,

where Δ =
√︀
(𝑦′)2 + 𝜆2((𝜆− 1)𝑦′𝑠+ 𝑦𝑧′)2 + 𝜆2(𝑦′)2. From (9),

∇𝑟𝑠𝑟𝑠 = 𝜆(𝜆+ 1)𝑌2,

∇𝑟𝑡𝑟𝑠 =
1

2𝑦

(︀
−𝑦′𝑌1 + 𝜆((3𝜆+ 1)𝑦′𝑠+ 𝑦𝑧′)𝑌2 + 𝜆𝑦′𝑌3

)︀
,

∇𝑟𝑡𝑟𝑡 =
1

𝑦2
(︀
(𝜆(𝑦𝑦′′ − 3(𝑦′)2)𝑠− 𝑦𝑦′𝑧′)𝑌1 + (𝑦𝑦′′ − (𝑦′)2 + 𝜆𝑦′(2𝜆𝑦′𝑠+ 𝑦𝑧′)𝑠)𝑌2+

+(𝜆(𝑦𝑦′′ − (𝑦′)2)𝑠+ 𝑦2𝑧′′)𝑌3
)︀
,

and so

𝑏11 = −𝜆
2(𝜆+ 1)

Δ
((𝜆− 1)𝑦′𝑠+ 𝑦𝑧′),

𝑏12 =
1

2Δ𝑦

(︀
(𝜆2 + 1)(𝑦′)2 − 𝜆2((3𝜆+ 1)𝑦′𝑠+ 𝑦𝑧′)((𝜆− 1)𝑦′𝑠+ 𝑦𝑧′)

)︀
,

𝑏22 =
1

Δ𝑦2
(︀
−𝑦′(𝜆(𝑦𝑦′′ − 3(𝑦′)2)𝑠− 𝑦𝑦′𝑧′)− 𝜆(𝑦𝑦′′ − (𝑦′)2 + 𝜆𝑦′(2𝜆𝑦′𝑠+ 𝑦𝑧′)𝑠)·

·((𝜆− 1)𝑦′𝑠+ 𝑦𝑧′) + 𝜆𝑦′(𝜆(𝑦𝑦′′ − (𝑦′)2)𝑠+ 𝑦2𝑧′′)
)︀
.
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In this case the minimality condition 𝑏11𝑔22 − 2𝑏12𝑔12 + 𝑏22𝑔11 = 0 can be written
down as

ℎ3(𝑡)𝑠
3 + ℎ2(𝑡)𝑠

2 + ℎ1(𝑡)𝑠+ ℎ0(𝑡) = 0, (16)

where ℎ3 = (𝑦′𝜆(𝜆− 1))3, so for a minimal Σ it should be 𝑦 = 𝑦0 or 𝜆 = 1. But
for the first of these cases (putting 𝑧(𝑡) = 𝑡 and 𝑁 = −𝑌2)

𝑏11 = −𝜆(𝜆+ 1), 𝑏12 = −𝜆
2
, 𝑏22 = 0, 𝑔11 = 𝜆2 + 1, 𝑔12 = 𝑔22 = 1,

and from 𝐻 = 0 we get 𝜆 = 0, a contradiction. Therefore, 𝜆 = 1. Then, checking
that in this case ℎ1 = ℎ2 = 0 and calculating ℎ0 in (16), we obtain the minimality
condition for Σ:

2(𝑦′𝑧′′ − 𝑦′′𝑧′) = 𝑦(𝑧′)3.

We already know that half-planes 𝑧 = 𝑧0 are minimal, and the proof of their
stability above stays correct for 𝜇 = 0: |𝐵2| + Ric(𝑁,𝑁) = 0 independently of
a sub-Riemannian structure, and ⟨∇𝑁𝑋,𝑁⟩ = 0 (where 𝑁 = 1√

2
(𝑌1 − 𝑌3)) is

true for 𝜆 = 1 and any 𝜇, so the second variation stays the same. Therefore, in
the rest of this proof we can assume 𝑧′ ̸= 0 and rewrite the previous equation
as 𝑦′′ = −𝑦

2 for 𝑦 = 𝑦(𝑧). Hence, 𝑦 = 𝑦0 cos
𝑧−𝑧0√

2
. It means that we can put

𝑦 = 𝑦0 cos 𝑡 and 𝑧 = 𝑧0 +
√
2 𝑡 into (15), where 𝑦0 > 0 and 𝑧0 denote the values

of the corresponding functions at 0 and 𝑡 is such that 𝑦 > 0. Note that Σ is a
cylinder, whose parameterization can be rewritten as (11) by changing 𝑠, but here
we will continue using (15):

𝑟(𝑠, 𝑡) =
(︁
𝑠𝑦0 cos 𝑡, 𝑦0 cos 𝑡, 𝑧 = 𝑧0 +

√
2 𝑡
)︁
.

We now have Δ =
√
2 𝑦0, and, from the previous formulas,

𝑁 =
1√
2

(︁
sin 𝑡 𝑌1 −

√
2 cos 𝑡 𝑌2 − sin 𝑡 𝑌3

)︁
,

𝑏11 = −2 cos 𝑡, 𝑏12 =

√
2 𝑠 sin 2𝑡− cos 2𝑡√

2 cos 𝑡
,

𝑍 =
1√
2

(︁
− cos 𝑡 𝑌1 −

√
2 sin 𝑡𝑌2 + cos 𝑡 𝑌3

)︁
=

√
2 𝑠 sin 𝑡− cos 𝑡√

2
𝑟𝑠 + cos 𝑡 𝑟𝑡,

⟨𝐵(𝑍), 𝑋⟩ =
√
2 𝑠 sin 𝑡− cos 𝑡

2
𝑏11 +

cos 𝑡√
2
𝑏12 =

1

2
,

⟨𝐵(𝑍), 𝑍⟩ = −⟨𝐵(𝑋), 𝑋⟩ = −1

2
𝑏11 = cos 𝑡,

so we get |𝐵|2 = 1+4 cos2 𝑡
2 and Ric(𝑁,𝑁) = −1+2 cos2 𝑡

2 by (10). Finally, from (9),

∇𝑁𝑋 =
1

2
√
2

(︁
cos 𝑡 𝑌1 +

√
2 sin 𝑡 𝑌2 − cos 𝑡 𝑌3

)︁
,
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thus ⟨∇𝑁𝑋,𝑁⟩ = 0. Therefore, here we have the second variation

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 − cos2 𝑡 𝑢2 𝑑Σ.

Let us use here the sub-Riemannian Jacobi operator of Σ. By (9),

∇𝑋𝑍 =
1

2
√
2

(︁
3 sin 𝑡 𝑌1 −

√
2 cos 𝑡 𝑌2 + sin 𝑡 𝑌3

)︁
,

thus ⟨∇𝑋𝑍,𝑋⟩ = sin 𝑡. From Proposition 2, the Jacobi operator can then be
written down as

𝐿(𝑢) = 𝑍(𝑍(𝑢)) + sin 𝑡 𝑍(𝑢) + cos2 𝑡 𝑢 =
(
√
2 𝑠 sin 𝑡− cos 𝑡)2

2
𝑢𝑠𝑠 + cos2 𝑡 𝑢𝑡𝑡+

+
2 cos 𝑡(

√
2 𝑠 sin 𝑡− cos 𝑡)√

2
𝑢𝑠𝑡 +

√
2 𝑠(1 + sin2 𝑡)− sin 𝑡 cos 𝑡√

2
𝑢𝑠 + cos2 𝑡 𝑢.

In particular, we have for functions 𝑢 = 𝑢(𝑡) that are independent of 𝑠

𝐿(𝑢) = cos2 𝑡(𝑢𝑡𝑡 + 𝑢),

so among solutions 𝑢(𝑡) = 𝐶1 cos 𝑡 + 𝐶2 sin 𝑡 of the equation 𝐿(𝑢) = 0 there is
𝑢(𝑡) = cos 𝑡 > 0. Therefore, Σ is stable by Theorem 1, and this concludes the
proof.

In particular, this theorem gives examples of sub-Riemannian structures that
do not admit vertical minimal surfaces.

Note that sub-Riemannian structures from the previous theorem are not left-
invariant except for the case 𝜇 = 𝜆 = 0. On the other hand, as [𝑋2, 𝑋3] = 𝑋1, the
horizontal distribution ℋ = 𝑋⊥

1 defines a left-invariant sub-Riemannian structure

on ˜𝑆𝐿(2,R). For its vertical minimal surfaces we have the following (in fact, a
similar description up to an isometry will take place for any sub-Riemannian
structure of the form ℋ = (𝜆𝑋1 + 𝜇𝑋2)

⊥).

Theorem 3. A complete connected vertical surface in ˜SL(2,R) with the left-
invariant sub-Riemannian structure defined by the horizontal distribution ℋ = 𝑋⊥

1

is minimal if and only if it is either a half-plane 𝑧 = 𝜋
2 +𝜋𝑘, 𝑘 ∈ Z or a helicoidal

surface with one of the following parameterizations:

𝑟(𝑠, 𝑡) = (𝑥0 − 𝑡 sin 𝑠, 𝑡 cos 𝑠, 𝑠), 𝑡 ∈ (0,+∞),
𝑟(𝑠, 𝑡) = (𝑥0 ± 𝑡− 𝑡 sin 𝑠, 𝑡 cos 𝑠, 𝑠), 𝑡 ∈ (0,+∞),
𝑟(𝑠, 𝑡) = (𝑥0 + 𝑦0 sinh 𝑡− 𝑦0 cosh 𝑡 sin 𝑠, 𝑦0 cosh 𝑡 cos 𝑠, 𝑠), 𝑡 ∈ R,
𝑟(𝑠, 𝑡) = (𝑥0 ± 𝑦0 cosh 𝑡− 𝑦0 sinh 𝑡 sin 𝑠, 𝑦0 sinh 𝑡 cos 𝑠, 𝑠), 𝑡 ∈ (0,+∞),

𝑠 ∈
(︁
−𝜋
2
+ 2𝜋𝑘,

𝜋

2
+ 2𝜋𝑘

)︁
, 𝑘 ∈ Z.

(17)

All these surfaces are stable in the sub-Riemannian sense and thus in the Ri-
emannian sense.
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Proof. A vertical surface Σ for this structure is formed by integral curves of

𝑋 = 𝑋1 = 𝑦 cos 𝑧
𝜕

𝜕𝑥
+ 𝑦 sin 𝑧

𝜕

𝜕𝑦
− cos 𝑧

𝜕

𝜕𝑧
. (18)

Integrating this field, we get for the third coordinate 𝑧′ = − cos 𝑧, that is, either
𝑧 = 𝜋

2 + 𝜋𝑘, 𝑘 ∈ Z or 𝑧(𝜎) = 𝜋
2 − 2 arctan𝐶𝑒𝜎 + 2𝜋𝑘 for 𝐶 > 0 and 𝑘 ∈ Z

that monotonically decreases from 𝜋
2 + 2𝜋𝑘 to −𝜋

2 + 2𝜋𝑘, where 𝜎 is a natural
parameter. That means that in the latter case we can use 𝑧 as the parameter 𝑧 =
𝑠 ∈

(︀
−𝜋

2 + 2𝜋𝑘, 𝜋2 + 2𝜋𝑘
)︀
of this curve. In the former case Σ is a half-plane 𝑧 = 𝑧0

that was already considered in the previous theorem. In particular, we have shown
that these half-planes are indeed minimal and that for them |𝐵2|+Ric(𝑁,𝑁) = 0,
where the unit normal field is

𝑁 =
1√
2
(𝑌1 − 𝑌3) =

1√
2
(cos 𝑧 𝑋1 − sin 𝑧 𝑋2 −𝑋3) =

1√
2
(±𝑋2 −𝑋3)

due to (7) and 𝑧 = 𝜋
2 +𝜋𝑘. It then follows from (8) that ∇𝑁𝑋 = 1

2
√
2
(−3𝑋2±𝑋3),

hence ⟨∇𝑁𝑋,𝑁⟩ = ∓1, and (1) becomes

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 ∓ 2𝑢𝑋(𝑢)− 𝑢2 𝑑Σ.

Note that the field 𝑋 = 𝑋1 has zero divergence in ˜SL(2,R) by (8). On the
other hand, we can calculate this divergence at points of Σ using the orthonormal
frame {𝑋,𝑍,𝑁} and taking into account that ⟨∇𝑋𝑋,𝑋⟩ = 0 because |𝑋| = 1:
0 = ⟨∇𝑍𝑋,𝑍⟩+ ⟨∇𝑁𝑋,𝑁⟩. Therefore, divΣ𝑋 = ⟨∇𝑍𝑋,𝑍⟩ = −⟨∇𝑁𝑋,𝑁⟩ = ±1.
From this we get that divΣ

(︀
𝑢2𝑋

)︀
= 2𝑢𝑋(𝑢)± 𝑢2, and the integral of it vanishes

for functions 𝑢 with compact supports, which implies

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 𝑑Σ ⩾ 0,

so Σ is stable.
Thus, from now on we can consider surfaces Σ built from integral curves of (18)

with 𝑧 = 𝑠 as a parameter. In particular, these curves are transversal to 𝑧 = 𝑧0,
so we can draw them through points of a curve 𝑡 ↦→ (𝑥(𝑡), 𝑦(𝑡), 0), where 𝑦(𝑡) > 0.
Integrating (18), we can get a parameterization

𝑟(𝑠, 𝑡) = (𝑥(𝑡)− 𝑦(𝑡) sin 𝑠, 𝑦(𝑡) cos 𝑠, 𝑠) (19)

of Σ (note that 𝑦 in (18) corresponds to 𝑦(𝑡) cos 𝑠 here). Then, according to (6),

𝑟𝑠 = (−𝑦 cos 𝑠, −𝑦 sin 𝑠, 1) = − 1

cos 𝑠
𝑋1 = − 1

cos 𝑠
𝑋,

𝑟𝑡 = (𝑥′ − 𝑦′ sin 𝑠, 𝑦′ cos 𝑠, 0) =
𝑥′ cos 𝑠𝑋1 + (𝑦′ − 𝑥′ sin 𝑠)𝑋2 + (𝑥′ − 𝑦′ sin 𝑠)𝑋3

𝑦 cos 𝑠
,

𝑁 =
1

Δ

(︀
−(𝑥′ − 𝑦′ sin 𝑠)𝑋2 + (𝑦′ − 𝑥′ sin 𝑠)𝑋3

)︀
,



ВiсникХНУ, Сер. «Математика, прикладна математика i механiка», том102 (2025)43

where Δ =
√︀
(𝑥′ − 𝑦′ sin 𝑠)2 + (𝑦′ − 𝑥′ sin 𝑠)2. From (8) we get the covariant deri-

vatives

∇𝑟𝑠𝑟𝑠 = − sin 𝑠

cos2 𝑠
𝑋1,

∇𝑟𝑡𝑟𝑠 = − 1

2𝑦 cos2 𝑠

(︀
3(𝑥′ − 𝑦′ sin 𝑠)𝑋2 + (𝑦′ − 𝑥′ sin 𝑠)𝑋3

)︀
,

∇𝑟𝑡𝑟𝑡 =
1

𝑦2 cos2 𝑠

(︀
((𝑥′′𝑦 − 𝑥′𝑦′) cos2 𝑠− 2(𝑦′ − 𝑥′ sin 𝑠)(𝑥′ − 𝑦′ sin 𝑠))𝑋1

((𝑦′′ − 𝑥′′ sin 𝑠)𝑦 − (𝑦′ − 𝑥′ sin 𝑠)𝑦′ + 2𝑥′(𝑥′ − 𝑦′ sin 𝑠)) cos 𝑠𝑋2

((𝑥′′ − 𝑦′′ sin 𝑠)𝑦 − (𝑥′ − 𝑦′ sin 𝑠)𝑦′) cos 𝑠𝑋3

)︀
,

and thus the coefficients of the second fundamental form

𝑏11 = 0, 𝑏12 =
1

2Δ𝑦 cos2 𝑠

(︀
3(𝑥′ − 𝑦′ sin 𝑠)2 − (𝑦′ − 𝑥′ sin 𝑠)2

)︀
,

𝑏22 =
1

Δ𝑦2 cos 𝑠

(︀
(𝑥′′𝑦′ − 𝑥′𝑦′′)𝑦 cos2 𝑠− 2𝑥′(𝑥′ − 𝑦′ sin 𝑠)2

)︀
.

In particular, for minimal surfaces ⟨𝐵(𝑍), 𝑍⟩ = −⟨𝐵(𝑋), 𝑋⟩ = 0, hence |𝐵|2 =
2 ⟨𝐵(𝑍), 𝑋⟩2. As the coefficients of the first fundamental form are

𝑔11 =
1

cos2 𝑠
, 𝑔12 = − 𝑥′

𝑦 cos 𝑠
,

𝑔22 =
1

𝑦2 cos2 𝑠

(︀
(𝑥′)2 cos2 𝑠+ (𝑦′ − 𝑥′ sin 𝑠)2 + (𝑥′ − 𝑦′ sin 𝑠)2

)︀
,

the minimality condition 𝑏11𝑔22 − 2𝑏12𝑔12 + 𝑏22𝑔11 = 0 is equivalent to(︀
𝑥′′𝑦′ − 𝑥′𝑦′′

)︀
𝑦 + 𝑥′

(︀
(𝑥′)2 − (𝑦′)2

)︀
= 0. (20)

First, let us consider the solution 𝑥 = 𝑥0. Then we can put 𝑦(𝑡) = 𝑡 for
𝑡 > 0 and get from (19) the first parameterization in (17). In this case 𝑁 =
1
Δ (sin 𝑠𝑋2 +𝑋3), where Δ =

√︀
1 + sin2 𝑠, and

𝑏11 = 𝑏22 = 0, 𝑏12 =
3 sin2 𝑠− 1

2Δ𝑡 cos2 𝑠
, 𝑍 =

1

Δ
(𝑋2 − sin 𝑠𝑋3) =

𝑡 cos 𝑠

Δ
𝑟𝑡,

|𝐵|2 = 2 ⟨𝐵(𝑍), 𝑋⟩2 = 2𝑡2 cos4 𝑠

Δ2
𝑏212 =

(3 sin2 𝑠− 1)2

2Δ4
.

We also have Ric(𝑁,𝑁) = −3 sin2 𝑠+1
2Δ2 by (10) and ∇𝑁𝑋 = 1

2Δ (3𝑋2 + sin 𝑠𝑋3)

from (8), hence ⟨∇𝑁𝑋,𝑁⟩ = 2 sin 𝑠
Δ2 . Therefore, the second variation is

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 +
4 sin 𝑠

1 + sin2 𝑠
𝑢𝑋(𝑢)− 3 sin4 𝑠+ 1

(1 + sin2 𝑠)2
𝑢2 𝑑Σ.

by (1). Again, divΣ𝑋 = ⟨∇𝑍𝑋,𝑍⟩ = −⟨∇𝑁𝑋,𝑁⟩ = −2 sin 𝑠
Δ2 . Thus,

divΣ

(︂
sin 𝑠

1 + sin2 𝑠
𝑢2𝑋

)︂
=

(︂
𝑋

(︂
sin 𝑠

1 + sin2 𝑠

)︂
+

sin 𝑠

1 + sin2 𝑠
divΣ𝑋

)︂
𝑢2+

+
2 sin 𝑠

1 + sin2 𝑠
𝑢𝑋(𝑢) = − sin4 𝑠+ 1

(1 + sin2 𝑠)2
𝑢2 +

2 sin 𝑠

1 + sin2 𝑠
𝑢𝑋(𝑢).
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As the integral of this expression vanishes for 𝑢 with compact support,

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 +
cos2 𝑠

1 + sin2 𝑠
𝑢2 𝑑Σ ⩾ 0,

and Σ is stable.
For 𝑥′ ̸= 0 let us rewrite (20) for the function 𝑦 = 𝑦(𝑥) and get 𝑦𝑦′′+(𝑦′)2 = 1,

that is, (𝑦2)′′ = 2, so 𝑦2 = (𝑥 − 𝑥0)
2 + 𝐶. For 𝐶 = 0 we can put 𝑥(𝑡) = 𝑥0 ± 𝑡

and 𝑦(𝑡) = 𝑡 > 0, thus getting the second parameterization in (17) from (19). For
𝐶 > 0 we obtain the third parameterization in (17) with 𝑥(𝑡) = 𝑥0 + 𝑦0 sinh 𝑡
and 𝑦(𝑡) = 𝑦0 cosh 𝑡, where 𝑦0 > 0, and so 𝐶 = 𝑦20 > 0. Finally, the fourth
parameterization corresponds to 𝑥(𝑡) = 𝑥0 ± 𝑦0 cosh 𝑡 and 𝑦(𝑡) = 𝑦0 sinh 𝑡 for
𝑡 > 0, thus 𝐶 = −𝑦20 < 0. Therefore, in these last two cases the curves (𝑥, 𝑦) are
hyperbolas in the half-plane 𝑦 > 0.

For 𝑥(𝑡) = 𝑥0 ± 𝑡 and 𝑦(𝑡) = 𝑡 from the general formulas we obtain Δ =√
2(1∓ sin 𝑠), 𝑁 = 1√

2
(∓𝑋2 +𝑋3), and

𝑏11 = 0, 𝑏12 =
1∓ sin 𝑠√
2 𝑡 cos2 𝑠

, 𝑏22 =
∓2(1∓ sin 𝑠)√

2 𝑡2 cos 𝑠
,

𝑍 =
1√
2
(𝑋2 ±𝑋3) =

cos 𝑠 (cos 𝑠 𝑟𝑠 + 𝑡 𝑟𝑡)√
2(1∓ sin 𝑠)

,

|𝐵|2 = 2 ⟨𝐵(𝑍), 𝑋⟩2 = cos4 𝑠 (cos 𝑠 𝑏11 + 𝑡 𝑏12)
2

(1∓ sin 𝑠)2
=

1

2
.

As 𝑁 is (up to a sign) the same as in the case 𝑧 = 𝜋
2 + 𝜋𝑘 above, here also

Ric(𝑁,𝑁) = −1
2 and ⟨∇𝑁𝑋,𝑁⟩ = ∓1. The rest of the stability proof for Σ is

also literally the same as in that case.
For the third parameterization in (17) we have 𝑥(𝑡) = 𝑥0 + 𝑦0 sinh 𝑡, 𝑦(𝑡) =

𝑦0 cosh 𝑡, and for the fourth one we have 𝑥(𝑡) = 𝑥0 ± 𝑦0 cosh 𝑡, 𝑦(𝑡) = 𝑦0 sinh 𝑡.
Let us denote 𝛼 = 𝑥′ − 𝑦′ sin 𝑠, 𝛽 = 𝑦′ − 𝑥′ sin 𝑠 for all these cases. Then

𝑟𝑡 =
𝑥′ cos 𝑠𝑋1 + 𝛽𝑋2 + 𝛼𝑋3

𝑦 cos 𝑠
, 𝑁 =

1

Δ
(−𝛼𝑋2 + 𝛽𝑋3) ,

whereΔ =
√︀
𝛼2 + 𝛽2. Note that 𝛼2−𝛽2 = 𝑦20 cos

2 𝑠 for the third parameterization
in (17) and 𝛼2 − 𝛽2 = −𝑦20 cos2 𝑠 for the fourth one. From the general formulas
above,

𝑏11 = 0, 𝑏12 =
3𝛼2 − 𝛽2

2𝑦Δcos2 𝑠
, 𝑏22 = −3𝛼2 − 𝛽2

𝑦Δcos 𝑠
.

Recall that 𝑟𝑠 = − 1
cos 𝑠𝑋1 = − 1

cos 𝑠𝑋, so

𝑍 =
1

Δ
(𝛽𝑋2 + 𝛼𝑋3) =

cos 𝑠 (𝑥′ cos 𝑠 𝑟𝑠 + 𝑦 𝑟𝑡)

Δ
,

|𝐵|2 = 2 ⟨𝐵(𝑍), 𝑋⟩2 = cos4 𝑠 (𝑥′ cos 𝑠 𝑏11 + 𝑦𝑏12)
2

Δ2
=

(︀
3𝛼2 − 𝛽2

)︀2
2Δ4

.
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As Ric(𝑁,𝑁) = −3𝛼2+𝛽2

2Δ2 from (10) and ∇𝑁𝑋 = 1
Δ (3𝛽𝑋2 − 𝛼𝑋3) from (8), which

implies ⟨∇𝑁𝑋,𝑁⟩ = −2𝛼𝛽
Δ2 , the second variation (1) takes the form

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 − 4𝛼𝛽

Δ2
𝑢𝑋(𝑢)−

(︀
3𝛼2 − 𝛽2

)︀ (︀
𝛼2 − 𝛽2

)︀
+ 4𝛼2𝛽2

Δ4
𝑢2 𝑑Σ.

Once again, divΣ𝑋 = ⟨∇𝑍𝑋,𝑍⟩ = −⟨∇𝑁𝑋,𝑁⟩ = 2𝛼𝛽
Δ2 . By direct computation

we get 𝑋
(︁

𝛼𝛽
Δ2

)︁
=

𝑦40 cos4 𝑠
Δ4 = (𝛼2−𝛽2)2

Δ4 , hence

divΣ

(︂
𝛼𝛽

Δ2
𝑢2𝑋

)︂
=

(𝛼2 − 𝛽2)2 + 2𝛼2𝛽2

Δ4
𝑢2 +

2𝛼𝛽

Δ2
𝑢𝑋(𝑢),

and the integral of this expression vanishes for 𝑢 with compact support, so finally

𝐴′′(0) =

∫︁
Σ

𝑍(𝑢)2 − 𝛼2 − 𝛽2

Δ2
𝑢2 𝑑Σ.

For the fourth case in (17) the expression under this integral is always non-
negative, thus we already have the stability of Σ. For the third one we again will
use the sub-Riemannian Jacobi operator. As ∇𝑋𝑍 = 1

2Δ (𝛼𝑋2 − 𝛽𝑋3) from (8),
⟨∇𝑋𝑍,𝑋⟩ = 0. By Proposition 2, the Jacobi operator of Σ then is

𝐿(𝑢) = 𝑍(𝑍(𝑢)) +
𝑦20 cos

2 𝑠

Δ2
𝑢 =

=
𝑦0 cosh 𝑡 cos 𝑠

Δ

(︂
cos 𝑠

𝜕

𝜕𝑠
+
𝜕

𝜕𝑡

)︂(︂
𝑦0 cosh 𝑡 cos 𝑠

Δ
(cos 𝑠 𝑢𝑠 + 𝑢𝑡)

)︂
+
𝑦20 cos

2 𝑠

Δ2
𝑢 =

=
𝑦20 cos

2 𝑠

Δ2

(︀
cosh2 𝑡 cos2 𝑠 𝑢𝑠𝑠 + 2 cosh2 𝑡 cos 𝑠 𝑢𝑠𝑡 + cosh2 𝑡 𝑢𝑡𝑡+

+cos 𝑠 cosh 𝑡(sinh 𝑡− sin 𝑠 cosh 𝑡)𝑢𝑠 + cosh 𝑡 sinh 𝑡 𝑢𝑡 + 𝑢)

Again, let us restrict 𝐿 to functions of the form 𝑢 = 𝑢(𝑡). For them 𝐿(𝑢) = 0 if and
only if cosh2 𝑡 𝑢𝑡𝑡+sinh 𝑡 cosh 𝑡 𝑢𝑡+𝑢 = 0. Among solutions 𝑢(𝑡) = 𝐶1

cosh 𝑡+𝐶2 tanh 𝑡
of this Sturm–Liouville equation there is 𝑢(𝑡) = 1

cosh 𝑡 > 0. By Theorem 1, this
implies that Σ is stable, thus concluding the proof.
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Харкiвський нацiональний унiверситет iменi В. Н. Каразiна
майдан Свободи, 4, Харкiв, Україна, 61022

Ми розглядаємо орiєнтованi зануренi мiнiмальнi поверхнi у тривимiрних субрi-
манових многовидах, якi є вертикальними, тобто перпендикулярними до двовимiр-
ного горизонтального розподiлу субрiманової структури. Ранiше ми показали, що
вертикальна поверхня є мiнiмальною в субрiмановому сенсi тодi й тiльки тодi, ко-
ли вона мiнiмальна в рiмановому сенсi, i що з її субрiманової стiйкостi випливає
її рiманова стiйкiсть. Ми вводимо субрiманову версiю оператора Якобi для таких
поверхонь i доводимо достатню умову стiйкостi вертикальних мiнiмальних повер-
хонь, що аналогiчна до теореми Фiшер-Колбрi та Шоена: якщо поверхня допускає
додатну функцiю з нульовим оператором Якобi, то вона є стiйкою.

Далi ми використовуємо технiку операторiв Якобi для дослiдження вертикаль-

них мiнiмальних поверхонь у групi Лi ˜SL(2,R), яку можна описати як унiверсаль-
не накриття розшарування одиничних дотичних векторiв гiперболiчної площини зi
стандартною лiвоiнварiантною метрикою Сасакi (що вiдповiдає однiй з геометрiй
Терстона) та з двома рiзними типами субрiманових структур. Спочатку ми розгля-
даємо сiм’ю нелiвоiнварiантних структур, визначених деякими параметрами, знахо-
димо значення параметрiв, для яких iснують вертикальнi мiнiмальнi поверхнi, та
описуємо такi повнi зв’язнi поверхнi. Це евклiдовi напiвплощини та цилiндри, й усi
вони є стiйкими в субрiмановому сенсi, а отже i в рiмановому сенсi. Зокрема, це дає
нам приклади структур, що не допускають вертикальних мiнiмальних поверхонь.
Потiм ми описуємо повнi зв’язнi вертикальнi мiнiмальнi поверхнi для iншої субрiма-
нової структури, що є лiвоiнварiантною. Це напiвплощини та гелiкоїдальнi поверхнi,
якi також виявляються стiйкими в субрiмановому сенсi, а отже й у рiмановому сенсi.
Ключовi слова: субрiмановий многовид; лiвоiнварiантна метрика; мiнiмаль-

на поверхня; оператор Якобi; стiйкiсть.
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