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The Jacobi operator
and the stability of vertical minimal surfaces

in the sub-Riemannian Lie group SL(2,R)

We consider oriented immersed minimal surfaces in three-dimensional sub-
Riemannian manifolds which are vertical, i.e., perpendicular to the two-
dimensional horizontal distribution of the sub-Riemannian structure. We
showed earlier that a vertical surface is minimal in the sub-Riemannian
sense if and only if it is minimal in the Riemannian sense and that its
sub-Riemannian stability implies its Riemannian stability. We introduce the
sub-Riemannian version of the Jacobi operator for such surfaces and prove
a sufficient condition for the stability of vertical minimal surfaces similar
to a theorem of Fischer-Colbrie and Schoen: if a surface allows a positive
function with the vanishing Jacobi operator then it is stable.

Next, we use the Jacobi operator technique to investigate vertical mini-

mal surfaces in the Lie group SL(2,R) that can be described as the uni-
versal covering of the unit tangent bundle of the hyperbolic plane wi-
th the standard left-invariant Sasaki metric (that corresponds to one of
the Thurston geometries) and with two different types of sub-Riemannian
structures. First, we consider a family of non-left-invariant structures defined
by some parameters, find the values of parameters for which vertical mini-
mal surfaces exist, and describe such complete connected surfaces. These
are FEuclidean half-planes and cylinders, and they all are stable in the sub-
Riemannian sense and thus in the Riemannian sense. In particular, this
gives us examples of structures that do not allow vertical minimal surfaces.
Then, we describe complete connected vertical minimal surfaces for another
sub-Riemannian structure that is left-invariant. These are half-planes and
helicoidal surfaces that also appear to be stable in the sub-Riemannian sense
and thus in the Riemannian sense.
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1. Introduction

The Jacobi operator of a minimal submanifold in a Riemannian manifold (see,
e.g., [1]) is a very useful tool that allows one to determine whether this submanifold
is stable. In particular, a well-known theorem by Fischer-Colbrie and Schoen ([2])
states that a complete non-compact minimal hypersurface is stable if and only if
there exists a positive function for which the Jacobi operator vanishes. It also can
be of use in sub-Riemannian geometry. For example, in [6] the Jacobi operator
of a minimal surface in the three-dimensional sub-Riemannian Heisenberg group
plays a crucial role in the proof of a Bernstein-like theorem. Note that, contrary to
the Riemannian case, for submanifolds in sub-Riemannian manifolds the first and
second sub-Riemannian volume variation formulas are not universal: they depend
on a sub-Riemannian structure and can be quite complicated. See [6] and [4]

for the examples of the Heisenberg group and the universal covering E(2) of the
group of orientation-preserving Euclidean plane isometries respectively. Hence,
the Jacobi operators also depend on such structure.

Taking this into account, in [4] we started to look into so-called vertical
minimal surfaces in three-dimensional sub-Riemannian manifolds, a relatively
simple, but interesting class of surfaces. In [5] we found the first and second
sub-Riemannian area variation formulas for such surfaces (Proposition 1 in the
next section) showing that they can be written down in a way independent of
a sub-Riemannian structure. That allowed us to consider various classes of sub-
Riemannian manifolds and establish the stability of vertical minimal surfaces in
them. Here we continue this work. First of all, we derive the Jacobi operator
for a vertical minimal surface in any three-dimensional sub-Riemannian manifold
(Proposition 2) and prove a sufficient condition for stability similar to the one
of Fischer-Colbrie and Schoen: if a surface allows a positive function with the
vanishing Jacobi operator then it is stable (Theorem 1). Then we apply it to the

e

study of vertical minimal surfaces in the Lie group SL(2,R) with two different
classes of sub-Riemannian structures (Theorems 2 and 3) obtaining some new
classes of such stable surfaces (note that they are also minimal and stable in the
Riemannian sense) and finding examples of structures that do not allow vertical
minimal surfaces.

2. Preliminaries and the Jacobi operator

A sub-Riemannian manifold is a smooth manifold M together with a
completely non-integrable smooth distribution H on M (a horizontal distribution)
and a smooth field of Euclidean scalar products (-, ) on H (a sub-Riemannian
metric). In particular, (-,-) can be the restriction of some Riemannian metric
(,-) on M to H. Here we will assume that all sub-Riemannian structures are of
this form. We will call a sub-Riemannian structure on a Lie group M left-invariant
if both H and (-, -) are left-invariant.

Let ¥ be an oriented immersed surface (without boundary) in a three-
dimensional sub-Riemannian manifold M with a two-dimensional horizontal di-
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stribution. If NV}, is the orthogonal projection of the Riemannian unit normal field
N of ¥ onto ‘H and dX is the Riemannian area form of 3, then the sub-Riemannian
area of a domain D C X (see, e.g., [3]) is defined as

AD) = [ |Ny| d.
/

The normal variation of the surface ¥ defined by a smooth function uw with
compact support is the map

p: X xI—=M:psp)=exp,(su(p)N(p)),

where I is an open neighborhood of 0 in R and exp, is the Riemannian exponenti-
al map at p. Therefore, we construct the variation by drawing the Riemannian
geodesic through each point p € ¥ in the direction of u(p)N(p). Denote

A(s) = / INy| d5s,
s

where X5 = ¢4(X). Then A’(0) is called the first (normal) sub-Riemannian area
variation defined by ¢, and A”(0) is called the second one. A surface X is called
minimal if A’(0) = 0 for any normal variations with compact support in 3\ X,
where g = {p € ¥ | Np(p) = 0} is the singular set of ¥. A minimal surface
Y is called stable if A”(0) > 0 for any normal variations with compact support
in X \ 20.

We will call a surface ¥ in a three-dimensional sub-Riemannian manifold verti-
cal if T,,¥ is perpendicular to H, for each p € ¥, i.e., the normal vectors of these
planes are orthogonal. In particular, for such surfaces N = N and ¥y = @. In |5]
we proved the following.

Proposition 1. A wvertical surface ¥ in a three-dimensional sub-Riemannian
manifold is minimal in the sub-Riemannian sense if and only if it is minimal in
the Riemannian sense. In this case ils second sub-Riemannian area variation s

A(0) = /— (X(u) — (VaX, Nyu)? + [Vsul® - (Ric (N, N) + [B) u? d<,
by

where u 1s a smooth function with compact support that defines the normal variati-
on, V and Ric are the Riemannian connection and the Ricci tensor of M respecti-
vely, X is the unit normal vector field of H (which is tangent to ¥ because it is
vertical), Vy, and B are the Riemannian gradient and the second fundamental
form of ¥ respectively. It follows that if ¥ is stable in the sub-Riemannian sense
then it is also stable in the Riemannian sense.
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Define the characteristic vector field Z on ¥ as the right angle rotation of N
in H (in the orientation defined by X). Then {X, Z} is an orthonormal frame on
3, so |Vsul? = X (u)? + Z(u)? and the second variation formula takes the form

A'(0) = / Z()? + 2(Vy X, N)uX (u)—
(1)
by
— ((VNX,N)? + Ric (N, N) + |BJ?) v* d%,

Note that the divergence of the field (VyX, N)u?X on X has the vanishing
integral by the Stokes’ theorem because u is with compact support. On the other
hand, this divergence equals

divy (VN X, N)u?X) = 2(VNX, N)uX (u)+
+(X (VN X, N)) + (VN X, N) diveX) v,
where divy X = (Vx X, X) + (VzX,Z) = (VzX, Z) due to the orthonormality
of {X,Z}. It means that (1) can be rewritten as

A”(0) = / Z(u)? — fu?dx (2)
%
for some function f.
Proposition 2. Let ¥ be a minimal surface in a three-dimensional sub-

Riemannian manifold whose second variation is of the form (2). Then it also
has a form

A'(0) = — / WL () d5) )

%
where L s the Jacobi operator on the space of smooth functions on 3:
Lu)=2Z(Z(u)+(VxZ,X) Z(u) + f u. (4)

Proof. Note that, similarly to divy X above, divyZ = (VxZ, X)+(VzZ,7Z) =
(VxZ,X),s0in (4)

L(u)=2Z(Z(u)) + Z(u)diveZ + fu =dive(Z(u)Z) + fu.

From this, as u has compact support,

0= /divz(uZ(u)Z) dy = /Z(u)2 +udivs(Z(u)Z) d¥ =
b b
- [ 2@+ k) - fu as,
b
and that implies (3).
In particular, this Jacobi operator indeed is a linear operator on C*°(M) as in

the Riemannian case. Now we will show that an analogue of the sufficiency part
in the Fischer-Colbrie-Schoen theorem (|2]) is true for this operator.
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Theorem 1. Let X be a minimal surface in a three-dimensional sub-Riemannian
manifold with the second variation of the form (2) and the Jacobi operator L
from (4). If there exists a smooth function v > 0 on X such that L(u) = 0 then X
1s stable.

Proof. As u > 0, we can define v = Inu on ¥ with derivatives

This, (4), and L(u) = 0 imply that
divs(Z(0)2) = Z(Z(v)) + (Vx 2, X) Z(v) = —Z(v)* — f. (5)
For any smooth function w on ¥ with compact support
divy (ZUQZ(U)Z) =divs(Z(v)Z) w? + 2Z(v) Z(w)w

The integral of this divergence on X vanishes, thus by (5) and the Cauchy-Schwarz
inequality we have

/ (f+Z(v)?)w? dE = — /divE(Z(v)Z) w? dY =

b2 >

= / 2Z(v)Z(w)w d¥ < / Z(v)*w? + Z(w)? d%,
z by

hence for the variation defined by w the second variation (2) is non-negative:

A"(0) = /Z(w)2 — fw?de >0,
¥

and this means the stability of X.

Note that the statement also stays true for v > 0 with L(u) < 0 with almost
the same proof. It is interesting whether the necessity (hard) part of the Fischer-
Colbrie-Schoen theorem is also true for complete non-compact X, that is, whether
the stability implies the existence of v > 0 with L(u) = 0. Here and in the next
session by the completeness of a surface we mean the Riemannian completeness.

—_—

3. Vertical minimal surfaces in SL(2,R)

The three-dimensional Thurston geometry SL(2,R) can be described (see [8])
as the universal covering of the unit tangent bundle of the hyperbolic plane H?
with the Sasaki metric, that is, the half-space {(x,y,2) € R? | y > 0} with the
following orthonormal frame of vector fields:

X1 :yCOSZ%-ﬁ-ysinza—y —cosza7 "
9 0
Xo = —ysinz% —I—ycosza—y —|—sinz$7)(3 - 5
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This manifold also is a Lie group (the universal covering of the special linear
group SL(2,R)) and the fields { X7, X2, X3} are left-invariant. The corresponding
left-invariant metric is y% (d:lc2 +dy? + (dz +y dz)Q), so we can consider a simpler
orthonormal frame of

Y = yg — g = cos z X1 — sin z Xo,
Yo =y— =sinz X; +cosz Xg, Y3 = — = X3,
y 0z

where the fields Y7 and Y5 are not left-invariant. The non-zero Lie brackets of

the fields (6) are

(X1, Xo] = —[X2, X1] = — X3, [X2, X3] = —[X3, Xo] = Xi,
(X3, X1] = —[X1, X3] = Xo,

and the only non-zero Lie bracket of (7) is [Y1, Y] = —Y1 — Y3. Using the Koszul
formula as in [7], we derive from this that the Riemannian connection V of the
left-invariant metric is defined by
X X 3X
Vi Xo = -V, X1 = =, VX5 = — 50, Vx, Xp = — =7, .
3X X
Vx, X1 = 72, Vix, X3 = 72, Vx, X1 =Vx, X2 =Vx, X3 =0,

hence
Y- Y- Y
Vy, Yo = —Y] — 33 Vy, V1 = 53 Vy,V3 = Vy,Ys = —71, o)
Y-
Vy, Y1 = Vy, Y3 = 32 Vy, Y1 = Ya, Vy,Ys = Vy, Y3 = 0.

It also follows from [7] that the Ricci tensor of this metric is defined by

RiC(Xl,Xl) = RiC(XQ,XQ) = RiC(}/l,Yl) = RiC(YQ,YVQ) = —§

2 (10
1
RiC(Xg,X3) = RiC(Y}g,Yg) = 5, RiC(XZ',Xj) = RIC(YZ,Y}) = 0, 1 75 ]

It follows from the Lie brackets above that the left-invariant distribution
orthogonal to X3 = Y3 is completely non-integrable and so defines a sub-
Riemannian structure such that this distribution is horizontal. For this structure
complete connected vertical surfaces are well-known: they are cylinders over
geodesics in H? (see, e.g., [9]). We showed in [5] that these surfaces are stable
in the sub-Riemannian sense and thus in the Riemannian sense. Let us consider
here a more general situation.

Theorem 2. A two-dimensional horizontal distribution H = X, whose unit
normal field X is a linear combination of the fields Y1, Yo, Y3 with constant

coefficients, defines a sub-Riemannian structure on SL(2,R) (i.e., is its horizontal
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distribution) if and only if X is of the form ﬁ()\iﬁ + pYs + Y3), where
m

A # —1. This sub-Riemannian structure allows vertical minimal surfaces only for
A=0and A=1.

If i # 0 then a complete connected vertical surface is minimal if and only if
it is o Fuclidean half-plane x = xqg for A =0 or o Fuclidean half-plane z = 2y for
A=1.

If £ =0 and A = 1 then a complete connected vertical surface is minimal if
and only if it is either a Fuclidean half-plane z = zy or a cylinder that can be
parameterized as

r(s,t) = (s,yo cost, zg + \@t) , SER, te (—g + 2mk, g + 27Tl<:> , (11)
where k € 7.
If u = X =0 then a complete connected vertical surface is minimal if and only
if is a cylinder over a geodesic in H?.
All these surfaces are stable in the sub-Riemannian sense and thus in the
Riemannian sense.

Proof. If X is of the form \Y;+1Ys then Y3 belongs to its orthogonal distributi-
on. As [Y7,Y3] = [Y2,Y3] = 0, this distribution is integrable. So indeed it should
be X = ﬁ(ﬂﬁ + puYs + Ys) for H = X+ to define a sub-Riemannian
structure. In this case {Y1 — AY3,Ys — pY3} is a frame of H. The Lie bracket
—Y7 — Y3 of these fields forms with them a linearly independent triple if and only
if A # —1. This is the condition for H to be completely non-integrable, so we get

the desired form of X. Substituting (7) into it yields

— 1 0 0 0
X= o (W +py +(-A+ 1)L ). (12)

In the case p # 0 integral curves of this field are transversal to Euclidean planes
y = yo (recall that y > 0), so we can build any complete connected vertical surface
Y. of the sub-Riemannian structure by drawing these integral curves through poi-
nts of a curve ¢t — (x(t) + \/u, 1, 2(t)) and obtain the following parameterization
for X:

r(s,t) = (a:(t) +

Taking derivatives, we get

rs =N+ p2+1X, rp= (2,0, 2) =2"e Y] + (/e ™ + ') V3.

From this and (9), the covariant derivatives are

A s S . s
;e“,e”,z(t)%—( /\+1)>. (13)

VTSTS = ()\ + 1)(—/,LY1 + )\Yg),
1
Vo, rs = —ﬁ(?)a:'e_“s + 2+ 5(3)\1’,6_“8 + X + e Y, — %x'e_“s}/;57
vrtrt — xlle—usyl 4 (2(.7}/)26_2MS + [L‘,Zle_us)}/é + (xlle—us + Z”)ng.
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The unit normal field of ¥ is

1
N = x ((pa'e™™ 4+ pz") Y1 — (Aa'e ™ + X2 — 2'e )Yy — pa'e #Y3)

where A = \/(ua’e=#s + p2')2 + (Ar'e=+s + X2/ — 2'e=15)2 + (uz'e—#)2. So, the
coeflicients of the second fundamental form of ¥ are

1
b = (Vy,rs,N) = % (=W + p?) (@' e+ 2') + Male ™)
1
bio = (Vy,rs, N) = oA (—()\2 + 1) (32 e + 2 ) (a'e T + )+
+(1 L2\ MZ)(x/)Qe—Q/LS) ,
1
bo = (Vi1 N) = % (=2 (2'e™ 4+ 2') (A = 1)ae ™ + Al)e ™+
+u(x’2 — a2 e ).

Taking into account the coefficients of the first fundamental form of 3
g1 = X b2+ 1, gis = (A 1) 2, gap = (a!)2e7 0 4 (ale T 4 2P,

we can rewrite the minimality condition H = 0, that is, b11g22 — 2b12g12 +b22g911 =
0, in the form

f3(t)e™3H5 4 fo(t)e ™ 2HS 4 f1(t)e ™ + fo(t) =0, (14)

where f3 = (2/)3(A — 1)((A — 1) + p?), so it should be z = zg or A = 1.

If = x¢ then the regularity of ¥ implies 2’ # 0, so we can put without loss
of generality z(t) = t. Then in (14) we have fo = A(A\%2 + u?), so A = 0. Thus,
A =|u| and for N =Y

bi1 = —u, bz = —g, by =0, g11 =p°+1, gia =g =1,

that clearly implies H = 0. In this case (13) takes the form
r(s,t) = (zg, ", t+s).

This is a parameterization of a half-plane z = xg, y > 0. The characteristic field
Z should be such that the frame {X, Z, N} is orthonormal. Then

1 1 Vi +1
Z=———(~Ya+u¥s) = — rot+ T,
Vi +1 pn/ 2 41 1%
SO 9
1 1 —+1
B(Z),X)=———— b+ —bp=-——"—
\B(2). X) p(p2+1) T T 202+ 1)
and, taking into account (B(X),X) + (B(Z),Z) =2H =0,
1 %
<B(Z)7Z>:_<B(X)7X>: b1 =

RS pr+1
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Therefore,
2 2 2 2 1
|BI” = (B(X), X)" +2(B(X), 2)" +(B(2),2)" = 3.
From (10) we have Ric(N,N) = —2, and
1 1
VX = ——— (—u¥i+ Y2 - LYy
V2 +1 2 2
- u fotd
from (9), so (VNX,N) = T Hence, the second variation formula (1) takes
the form
A(0) = /Z(u)2 A X))+ —— 2 dy
J Viz+1 p? 41
Let us rewrite this expression using the divergence, as was explained in a remark
2
after (1). From (9), VzX = %Yh thus divy X = (VzX,Z) = 0 and so

divs ('LL2X> = 2uX (u). For a function u with compact support the integral of this
divergence over ¥ vanishes, which finally implies

A0) = [ 2 + 5

2
s > 0,
RS

b

which means that X is stable. Note that its Riemannian stability follows also
from the results of [5], but here we have shown its stability with respect to sub-
Riemannian structures different from the one considered in that paper.

In the case when A\ = 1 it appears that fy = (2/)3(u? + 1) in (14), thus,
similarly to the previous case, z = zg, z(t) = t, and (13) becomes

1
r(s,t) = (t + —ets, ets, zo> .
1

It means that ¥ is a half-plane z = zg, y > 0. Here we have A = v/2|ule ™ and
s

e
bii = —V2p, bz = —%

for N = %(Yl —Y3). Again we clearly have the minimality of ¥. The characteristic
field is

7 1 V2 erS\/ 2 + 2

, bae =0, gi1 = > +2, gia = 2715, gog = 2e7 25,

—=5—= (1 =22+ pY3) = ————=rs + Tt.
V212 +2 w2’ V2u
From this we get
V2 ets —p?+2
B(Z),X) = b1 + b ,
GO = M g T e 1)
1 2u
B(Z),Z) =—(B(X),X b1 = —5——=
< ( )7 > < ( )7 > 2+2 11 ,U2+2’
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thus )
B> =2(B(X), X)* +2(B(X),2)" = 5.
According to (9),

1 2 Iz
VyX = W (—§Y1+Y2—§Y:i)a
which implies (Vy X, N) = 0. As Ric(N,N) = —3 from (10), (1) now takes the
form
A"(0) = / Z(u)? d% > 0,
b
and the stability of X follows.

If 4w = XA = 0 then, as was mentioned earlier, > is minimal if and only if
is a cylinder over a geodesic in H?, and all such cylinders are stable in the sub-
Riemannian sense by known results. So we will assume A # 0 from now on. In this
case integral trajectories of X are transversal to z = x¢ (see (12)), so we can draw
them through points of a curve t — (0, y(¢), 2(f)) to get the parameterization

r(s,t) = (Ay(t)s, y(t), 2(t) + (A + 1)s) (15)
of a vertical complete connected surface . Now we have

Ny sY1+y' Yo + (Ny's + y2')Y3

I

ry = \/)\274_1)( =A\Y1+Ys, = (Ayls, v, Z,)

y
AA+1)y's +y2' NZ(2X262 + 1) + 201/ 2's + 42(2/)2
g = N1 gy = )yy v W )y2 yy y()?
1
N== (Y1 = M= 1)y's+yz')Ya+ NyY3),

where A = /(y)2 + A2((A — 1)y/'s + y2)2 + A2(y')2. From (9),

Vs = A(A+1)Yo,

1
Virs = 5 (S0 H B+ 1Y + 52V + ')

1
Vi = 7 ((Awy" = 3)%)s —yy/'2" WY1 + (wy" — (¥)* + M (2\'s + y2')s) Yo+
+(Ayy" — ()?)s +y22")Ys)

and so
AA+1
b = —(AH((A —1)y's +y2'),
1
b2 = 75 (W + D)) = X (BA+1)y's +y2) (A —1)y's +y2)),

1
bz = 75 (/A" = 3(/)%)s —vy/'s) = Muy” = ()" + X/ (20/s +y2)s):
(A =1y's +y2') + X' (Ayy" — ()%)s +y22")) .
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In this case the minimality condition b1;gos — 2b12g12 4+ ba2g11 = 0 can be written
down as

ha(t)s® + ha(t)s” + hu(t)s + ho(t) = 0, (16)

where hg = (y’A\(A — 1))3, so for a minimal ¥ it should be y = yo or A = 1. But
for the first of these cases (putting z(t) =t and N = —Y3)

A
bir = =AA+1), b2 = —5 boo =0, g11 = A\ + 1, gia = g2o = 1,
and from H = 0 we get A = 0, a contradiction. Therefore, A = 1. Then, checking
that in this case hy = hy = 0 and calculating hg in (16), we obtain the minimality

condition for X:
I/ "3

2(y'2" —y'2) = y(2')".
We already know that half-planes z = zy are minimal, and the proof of their
stability above stays correct for u = 0: |B?| + Ric(N, N) = 0 independently of
a sub-Riemannian structure, and (Vy X, N) = 0 (where N = %(Yl —Y3)) is
true for A = 1 and any p, so the second variation stays the same. Therefore, in
the rest of this proof we can assume 2’ # 0 and rewrite the previous equation

as y" = —% for y = y(2). Hence, y = yocos % It means that we can put

y =yocost and z = zg + V2t into (15), where yo > 0 and 2y denote the values
of the corresponding functions at 0 and ¢ is such that y > 0. Note that X is a
cylinder, whose parameterization can be rewritten as (11) by changing s, but here
we will continue using (15):

r(s,t) = (syo cost,ygcost,z = zg + \/575) .
We now have A = /21y, and, from the previous formulas,

1
N=— (sintY —V2costY: —sintY),
NG 1 2 3
V2 ssin 2t — cos 2t

b1 = —2cost, big =
11 12 Vo cost
1 2ssint — t
J = — (— costY] — \@sinth +costY},> = V2ssin cos rs + costry,
2 /3 V2
2ssint — cost cost 1
(B(Z),X) = b1 + b2 = -,

2 N5 2
(B(2),Z) = — (B(X), X) = f% by = cost,

s0 we get |B|? = 14t and Ric(N, N) = —1#2¢5°¢ by (10). Finally, from (9),

1
\Y% Xz—(costY +\@sintY—costYr),
N WG 1 2 3
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thus (Vy X, N) = 0. Therefore, here we have the second variation

A"(0) = /Z(u)2 —cos? tu? dX.
)

Let us use here the sub-Riemannian Jacobi operator of X. By (9),

1 . .
VxZ = W) (3sth1 —V2costYs —i—sthg) ,

thus (VxZ, X) = sint. From Proposition 2, the Jacobi operator can then be
written down as

(V2ssint — cost)?

L(u) = Z(Z(u)) +sint Z(u) + cos® tu = 5 Uss + COS? t U+
+2cost(\/§ssint—cost) n V2 5(1 +sin?t) — sint cost
u
V2 * V2

In particular, we have for functions u = u(t) that are independent of s

Ug + cos® tu.

L(u) = cos® t(ug + u),

so among solutions u(t) = Cjcost + Cysint of the equation L(u) = 0 there is
u(t) = cost > 0. Therefore, ¥ is stable by Theorem 1, and this concludes the
proof.

In particular, this theorem gives examples of sub-Riemannian structures that
do not admit vertical minimal surfaces.

Note that sub-Riemannian structures from the previous theorem are not left-
invariant except for the case p = A = 0. On the other hand, as [ X9, X3] = X7, the
horizontal distribution H = X f defines a left-invariant sub-Riemannian structure

—_—

on SL(2,R). For its vertical minimal surfaces we have the following (in fact, a
similar description up to an isometry will take place for any sub-Riemannian
structure of the form H = (AX1 + uX2)*).

—_—~—

Theorem 3. A complete connected vertical surface in SL(2,R) with the left-
invariant sub-Riemannian structure defined by the horizontal distribution H = XlL
is minimal if and only if it is either a half-plane z = 5+ 7k, k € Z or a helicoidal
surface with one of the following parameterizations:

r(s,t) = (xg — tsin s, tcos s, s), t € (0,+00),
r(s,t) = (xo £t —tsins,tcoss,s), t € (0,+00),
r(s,t) = (zo + yosinht — yp cosh tsin s, yg coshtcos s, s), t € R, (17)
r(s,t) = (xo = yo cosht — yg sinh ¢sin s, yg sinh tcos s, s), ¢ € (0, +00),

se (—g+27rk,g+27rk>, ke

All these surfaces are stable in the sub-Riemannian sense and thus in the Ri-
emannian sense.



42 I. O. Havrylenko

Proof. A vertical surface X for this structure is formed by integral curves of

X:X1:ycoszc,inLysinz(%—coszi. (18)
Integrating this field, we get for the third coordinate 2’ = — cos z, that is, either
z =745 +mk, k € Zor 2(0c) = § — 2arctanCe? 4 27k for C' > 0 and k € Z
that monotonically decreases from 5 + 27k to —F + 27k, where o is a natural
parameter. That means that in the latter case we can use z as the parameter z =
s € (—g + 27k, 5 + 27rk‘) of this curve. In the former case ¥ is a half-plane z = zg
that was already considered in the previous theorem. In particular, we have shown
that these half-planes are indeed minimal and that for them |B?|+Ric(N, N) = 0,
where the unit normal field is

1 1 1
— (Y1 —Y3) = —=(cosz X1 —sinz Xy — X3) = —
\/5( 1—Y3) \/5( 1 2 — X3) 7
due to (7) and z = § +nk. It then follows from (8) that Vy X = ﬁ(—3X2iX3),
hence (Vy X, N) = F1, and (1) becomes

A(0) = / Z(w)? T 2uX (u) — v dX.
b

Note that the field X = X; has zero divergence in SL(2,R) by (8). On the
other hand, we can calculate this divergence at points of ¥ using the orthonormal
frame {X, Z, N} and taking into account that (VxX, X) = 0 because | X| = 1:
0=(VzX,Z)+(VnX,N). Therefore, divy X = (VzX,Z) = —(VyX,N) = £1.
From this we get that divy (uQX) = 2uX (u) + u?, and the integral of it vanishes
for functions u with compact supports, which implies

A"(0) = [ Z(u)* d >0,
/

so X is stable.

Thus, from now on we can consider surfaces ¥ built from integral curves of (18)
with z = s as a parameter. In particular, these curves are transversal to z = zg,
so we can draw them through points of a curve t — (z(t),y(¢),0), where y(¢t) > 0.
Integrating (18), we can get a parameterization

r(s,t) = (x(t) — y(t)sins, y(t) cos s, s) (19)
of ¥ (note that y in (18) corresponds to y(t) cos s here). Then, according to (6),

1 1
rs = (—ycoss, —ysins, 1) = ———X; = ——X,

x' coss Xy + (cps_sx/ sin s))%osf (' — ¢/ sins) X,
re = (2’ —y'sins, y coss, 0) = 1T 2 Y 3
’ . ' 1 COS § ’

N =5 (—(@' ¢ sins)Xo + (¢ —o'sins)X3).
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where A = /(2’ — y'sins)2 + (y/ — 2/ sin 5)2. From (8) we get the covariant deri-
vatives

sin s
Vi, rs = —
. sTs cos? s
Vit = 5o (86— sing)Xo + (1 ' sin )Xy)
Vit = ooy (@7 = @'y cos®s = 2(y/ = a'sins)(a’ = o/ sins) X,

((y" — 2" sins)y — (v — 2’ sins)y’ + 22'(2' — 3y sin s)) cos s X
((2" — y"sins)y — (¢ — y'sin s)y’) cos s X3) ,

and thus the coefficients of the second fundamental form

1
bi1 =0, bip = YAy s (3(x’ —y'sins)? — (y — 2’ sin 3)2) ,
byy = Afcoss ((="y" — 2"y )y cos® s — 22/ (2 — ¢/ sin 8)2)

In particular, for minimal surfaces (B(Z),Z) = — (B(X), X) = 0, hence |BJ? =
2(B(Z), X)%. As the coefficients of the first fundamental form are

1 x!
g1 = 5 912 = — )
1 COS“ s Y CcoS s
"2 2 / /s 2 / ! 2
= — X COS™ S — X Sln s xr — Sin s 5
922 ygcosgs(( ) +(y )7+ ( y ))

the minimality condition b11g20 — 2b12g12 + b22g11 = 0 is equivalent to

(m”y/ _ //) Y+ (( )2 - (y/)2) —0. (20)

First, let us consider the solution x = zp. Then we can put y(t) = ¢t for
t > 0 and get from (19) the first parameterization in (17). In this case N =

% (sins X5 + X3), where A = /1 +sin? s, and

3sin?s — 1 1 ) tcos s
bi1 = by =0, b1z = Ateols L= A (X2 —sins X3) = Tt
2At cos 2 ) 4A (3 ) 1)2
t* cos™ s sin“ s —
2 _ 2 _
We also have Ric(N, N) % by (10) and VyX = ok (3X +sins X3)

from (8), hence (VNX,N) = Qsms . Therefore, the second variation is

. . 4
A(0) = /Z(u)2 b ASImS Ny - SIS L 2 e

1 +sin?s (1 + sin? 5)2
b)
by (1). Again, divy X = (VzX,Z) = —(VyX,N) = — 2585 Thus,
sin s sin s sin s
divg ( ———5—u’X ) = (X + dive X | u’+
VE<1+sin2s > < <1+sin2s> 1 +sin’s e )
2sins sints+1 2sins

X(u) =—

— U u® + uX(u).
1+ sin?s (1 + sin? 5)2 1 +sin?s ()
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As the integral of this expression vanishes for v with compact support,

COS2 S

e u? d > 0,
S~ s

A"(0) = / Z(u)? +

X

and X is stable.

For 2/ # 0 let us rewrite (20) for the function y = y(x) and get yy" +(v')? = 1,
that is, (y2)” = 2, s0 y> = (x — 20)?> + C. For C = 0 we can put z(t) = zg £ ¢
and y(t) =t > 0, thus getting the second parameterization in (17) from (19). For
C > 0 we obtain the third parameterization in (17) with z(t) = x¢ + yosinht
and y(t) = yocosht, where yo > 0, and so C = y2 > 0. Finally, the fourth
parameterization corresponds to z(t) = o £ ypcosht and y(t) = ypsinht for
t >0, thus C' = —y(Q) < 0. Therefore, in these last two cases the curves (z,y) are
hyperbolas in the half-plane y > 0.

For z(t) = z9 £t and y(t) = ¢ from the general formulas we obtain A =
V2(1 Fsins), N = % (FX2 + X3), and

bt = 0. bro — 1Fsins _ F2(1 Fsins)
= 127\/§tcos2s’ 2 V2t2coss
Z:i(ng:Xg): cos s (cossrs +try)

V2 V2(1 F sin s)
BP = 2(B(2), x)? = © s (cossbu +1h)” 1
’ (1 F sin s)? 2

As N is (up to a sign) the same as in the case z = § + mk above, here also
Ric(N,N) = —1 and (VnX,N) = F1. The rest of the stability proof for ¥ is
also literally the same as in that case.

For the third parameterization in (17) we have x(t) = z¢ + yosinht, y(t) =
yo cosht, and for the fourth one we have z(t) = xg & yg cosht, y(t) = ypsinht.
Let us denote o = 2’ — ¢/ sins, § =1y — 2/ sin s for all these cases. Then

2 cos s X1 + Xo + aX 1
re = L+ A X 3N = = (—aXy + X3),
1 COS § A
where A = y/a? + 32. Note that a?— 32 = y2 cos? s for the third parameterization
in (17) and o? — % = —y? cos? s for the fourth one. From the general formulas
above,
b — 0. b _30&2—,32 B 3a? — 32
=5 2= o Acos?s’ 22 yAcoss
1 1
Recall that rs = — = X1 = — X, so

1 cos s (z' cossrs +yry)

45 (@ cossby +ybia)? (30— B7)°
BQZQBZXQZCOS s (2’ cos s byy 12)°
BP =2(B(2).X) > -
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As Ric(N,N) = 73;‘2;“82 from (10) and VN X = % (38X2 — aX3) from (8), which

implies (VyX,N) = —228 the second variation (1) takes the form

T A2 (
2 2 2 2 2 92
A”(O):/Z(uﬁ—‘ffu)((u)— (B 5)(0‘& F) + 408 2 gy,

3

Once again, divy X = (VzX,Z) = —(VNyX,N) = 2&”—?. By direct computation

4 4 2 2\2
we get X <%§) = yozof s_ o ;46 ) , hence

) af (@ - 12 +2a282 ,  2ap
divy (AQ’U, X) = A u +F“X<“)’

and the integral of this expression vanishes for v with compact support, so finally

A"(0) = / Z(u)? — O‘tfz u? ds.
b

For the fourth case in (17) the expression under this integral is always non-
negative, thus we already have the stability of 3. For the third one we again will

use the sub-Riemannian Jacobi operator. As VxZ = 7k (aXs — 8X3) from (8),
(VxZ,X) =0. By Proposition 2, the Jacobi operator of ¥ then is

L(w) = Z(Z(u)) + 3’32"5‘25 w=

cosht coss 0 0 cosht coss 2 cos? s
_ YoCOSUT CORS A (coss D5 + 875) <yo A (cossus + ut)> 4 o2 2 AT U=
2 .2
cos
= % (cosh2 t cos® sugs + 2cosh?t cos s ug + cosh? t uy+

+ cos s cosh t(sinh ¢ — sin s cosh t)ug + cosh ¢ sinh ¢ u; + u)

Again, let us restrict L to functions of the form v = u(t). For them L(u) = 0 if and
only if cosh? t uy +sinh ¢ cosh ¢ u;+u = 0. Among solutions u(t) = —Si— +Cj tanh ¢

cosht

of this Sturm-Liouville equation there is u(t) = ﬁ > (0. By Theorem 1, this

implies that X is stable, thus concluding the proof.
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Xapriscoruti noutonasvrull ynisepcumem imens B. H. Kapasina
matidarn Ceobodu, 4, Xapxie, Yxpaina, 61022

Mu po3rasggaeMo Opi€HTOBaHI 3aHypeHi MiHIMAIbHI MMOBEPXHI Y TPUBUMIPHUX CyOpi-
MaHOBHX MHOTOBH/IAX, sIKi € BEPTUKAJIbHUME, TOOTO MEPIEHINKYIAPHUMUA 10 JTBOBAMID-
HOI'O TMOPHU30HTAJBHOTO PO3IOIiIY cyOpiManoBol cTpykrypu. Panime mMu mokasanu, 1o
BEPTUKAJIbHA TTOBEPXHS € MiHIMAJIBHOIO B CYOPIMAHOBOMY CEHCI TOMAL ¥ TIJIBKYM TOIi, KO-
JIM BOHA MiHIMAJIbHA, B PIMaHOBOMY CeHCi, i 1m0 3 ii cyOpiMaHOBOI CTIHiKOCTI BUILIMBAE
ii pimaHoBa cTifikicTb. Mu BBOZUMO cyOpiMaHOBY Bepcito omeparopa IKobi a1 Takux
IIOBEPXOHb 1 JIOBOJIMMO JOCTATHIO YMOBY CTiMKOCTI BEPTHKAJIbHUX MIHIMAJIBHUX IOBEP-
XOHB, O anagoridyna no Teopemu @imep-Konbpi ta [Mloena: Ko moBepXHS TOIMYCKAE
JonaTtHy (GYHKINO 3 HYJIBOBUM OmepaTopoM 71kobi, TO BOHA € CTIHKOIO.

Jlayri MU BUKOPHCTOBYEMO TEXHIKY onep/aI%)iB 2IK00I 1711 MOCITiIPKEHHST BEP THKAJIb-

HuX MinimMasibHux nosepxonb y rpymi JIi SL(2,R), siky moxkHa onucaru gk yHiBepcasib-
HE HAKPUTTS PO3IIAPYBAHHA OJUHUYHHUX JOTHIHUX BEKTOPIB rimepOo/ivHOl miomuan 3i
CTaHIAPTHOIO JiiBoiHBapianTHOI Merpukoio Cacaki (1o Bimmosimae ommiit 3 reomerpiit
Tepcrona) Ta 3 nBOMa pi3HUMHU TUnaMu CyOpiMaHOBUX CTpyKTyp. Crodarky mMu po3riid-
JAEMO CiM 10 HE/TIBOIHBApPIAaHTHUX CTPYKTYP, BU3HAUECHUX IETKUMA TapaMeTpaMu, 3HAXO-
JUMO 3HA4YEHHS IapaMerpiB, /Ui SKUX ICHYIOTb BEPTUKAJIbHI MiHIMaJIbHI MOBEPXHi, Ta
OnuCyeMO Taki moBHi 3B ’a3Hi noBepxHi. Ile eBK/Ii 0Bl HamiBILIONUAN Ta MUIHAPH, i yci
BOHU € CTifiIKUMU B CyOpiMaHOBOMY CEHCi, & OTKe i B piMaHOBOMY CeHCi. 30Kpema, IIe Ja€
HaM TPHUKJAJW CTPYKTYpP, IO HE JOMYyCKAIOTh BEPTUKATBHUX MiHIMATbHUX TTOBEPXOHb.
[ToTtim Mu onucyeMo MOBHI 3B’s13Hi BepTUKAJIbHI MiHIMAJIbHI TIOBEPXHI 715 iHIIOI CyOpima-
HOBOI CTPYKTYPH, IO € JiBoiHBapianTHO. e HamiBILIOMMAN Ta reTiKola IbHI MOBEPXHI,
SKi TAKOK BUSBJIAIOTHCA CTIfiIKuMu B CyOpIMAHOBOMY CEHCi, & OTKe f y piMaHOBOMY CEHCI.
Karwuosi caosa: cybpiMaHOBHMIT MHOTOBU/I; JIIBOIHBapiaHTHA MeTPUKa; MiHIMAJIb-
Ha MoBepxHd; onepatrop Akobi; cTifikicTb.
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