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Homogeneous approximations of nonlinear control
systems with output and weak algebraic equivalence

In the paper, we consider nonlinear control systems that are linear with
respect to controls with output; vector fields defining the system and the
output are supposed to be real analytic. Following the algebraic approach,
we consider series S of iterated integrals corresponding to such systems.
Tterated integrals form a free associative algebra, and all our constructions
use its properties. First, we consider the set of all (formal) functions of such
series f(S) and define the set Ng of terms of minimal order for all such
functions. We introduce the definition of the maximal graded Lie generated
left ideal J&'** which is orthogonal to the set Ng. We describe the relati-
on between this maximal left ideal and the left ideal [Js generated by the
core Lie subalgebra of the system which realizes the series. Namely, we show
that Js C Jg'**. In particular, this implies that the graded Lie subalgebra
that generates the left ideal J&** has a finite codimension. Also, we give
the algorithm which reduces the series S to the triangular form and propose
the definition of the homogeneous approximation for the series S. Namely,
homogeneous approximation is a homogeneous series with components that
are terms of minimal order in each component of this triangular form. We
prove that the set Ng coincides with the set of all shuffle polynomials of
components of a homogeneous approximation. Unlike the case when the
output is identical, the homogeneous approximation is not completely defi-
ned by the ideal J§'**. In order to describe this property, we introduce two
different concepts of equivalence of series: algebraic equivalence (when two
series have the same homogeneous approximation) and weak algebraic equi-
valence (when two series have the same maximal left ideal and therefore
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have the same minimal realizing system). We prove that if two series are
algebraically equivalent, then they are weakly algebraically equivalent. The
examples show that in general the converse is not true.

Keywords: homogeneous approximation; nonlinear control system;
series of iterated integrals; core Lie subalgebra; maximal left ideal.
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1. Introduction

In the paper, we consider nonlinear control systems with output of the form

&= in(fU)Uia z(0) =0, y=h(z), (1)
i=1
where X (x),..., X,,(x) are real analytic vector fields in a neighborhood of the

origin in R™ and h(z) is a real analytic nonzero map from a neighborhood of the
origin in R™ to R? such that h(0) = 0.

Various problems for such systems including controllability, observability,
stability, optimal control were deeply studied during many decades [6]. In parti-
cular, differential geometric methods were intensively developed which allowed
applying the deep theory related to Lie algebras of vector fields [7]. Another
approach based on algebraic and combinatorial tools was proposed by M. Fliess [4]
and turned out to be perspective [8]. As the first step, instead of the system (1),
the series of iterated integrals is considered. In particular, the algebraic approach
was successfully used for studying the problem of homogeneous approximation of
nonlinear control systems (1) in the case of identity output h(z) = z [12]. One
of the advantages is that the obtained algorithms can be efficiently implemented
as computer programs [11]. We recall the main ideas in Section 2. Later, the
approach was developed to study homogeneous approximations of systems (1) in
the case of one-dimensional output, i.e., when p =1 [1], [2].

In the present paper we consider the general case, when the output can be
of arbitrary dimension. The main results are given in Section 3. We propose
the definition of a homogeneous approximation of a series of iterated integrals
corresponding to the system (1) (Definition 4) and describe the method to
construct it (Lemma 2). Further, we introduce two definitions of equivalence for
series, namely, algebraic equivalence and weak algebraic equivalence (Definitions 5
and 6), and study their properties (Theorem 1 and Corollary 1). In the case of
identity output h(z) = x these two kinds of equivalence coincide.

2. Background

Series of iterated integrals. Let us consider the system (1). The form of
the right hand side of the system, namely, linearity in u;, allows us to express
explicitly the output y via controls

yT) =Y D> i (Tow), (2)

k=11<i,....ig<m
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where

T rm1 Thk—1
oy iy (T ) = / / / iy (71 )ty (72) - 1, (1) - - dradrs (3)
0 0 0

are iterated integrals and c¢;,. ; € RP are constant coefficients that can be found
via values of vector fields X;(x) and the map h(x) and their derivatives at the
origin,

Here X; act as differential operators of the first order, X;o(z) = ¢'(z)X;(z).

Suppose we consider admissible controls from a sufficiently wide class, for example,
from the unit ball of the space Lo ([0, T]; R™)

BT = {u(t) = (u1(t), ..., um(t)) € Loo([0, T; R™) s ud(t) + - -+ u2,(t) < 1 a. e(.}).
5

Then one can show [4] that iterated integrals are linearly independent functionals.
Hence, they form a basis of the linear space over R

./—"T = Lin{mlmik(T, u) ck Z 1, 1 S il, e ,ik S m}
The form of these basis functionals suggest introducing a concatenation operation,

Niq...i (T7 u) \ Nj1...3q (Tv u) = Mi1..igj1---Jq (T7 u)?

which turns Fr into a free associative algebra. This interpretation allows applying
algebraic and combinatorial tools for control systems (1). We briefly recall several
results used in this paper below.

Abstract free associative algebra. First, let us notice that all algebras Frp
for T" > 0 are isomorphic. Hence, we can consider the unique abstract algebra
F isomorphic to all Fpr, and then interpret the series in the right hand side of
(2) as a series of elements from F. More specifically, let us introduce m abstract
independent elements denoted by 71,...7nm,, and consider all finite sequences of
these elements

Miv.ige = iy """ Mg, -

Then the linear span of n;, ;, (over R)
F=Lin{n; i, :k>1, 1<idy,...,ip <m}. (6)
with the concatenation operation

Miy.igMjr...gqg = Mir.ingi...Jg

is a free associative algebra isomorphic to any Fr, T > 0.
For convenience, we use the notation for the set of multi-indices

]\4:LJ]\4']€7 Mk:{I:(zl,,zk)lgzl,,zkgm}
k>1
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Then, instead of the series of iterated integrals, we consider the formal series

S = Z crnr (7)

IeM

with coefficients (4). Let us introduce the linear map ¢ : F — RP defined on basis
elements by
6(77[) =cr, I € M.

Free Lie algebra and realizability conditions. Let us consider the free
Lie algebra L generated by the same elements 7,...7, as F and by the Lie
bracket operation [¢1,fs] = €10y — lal1, £1,02 € L. There exists a close relation
between the Lie algebra £ and the Lie algebra of vector fields L generated by
Xi1(z),..., Xm(z). More specifically, let us consider the anti-homomorphism of
Lie algebras ¢ : £ — L defined by ¢(n;) = X;(x) and such that ¢([¢1,l2]) =
[©(l2), (¢1)]. Then for any (i1,...,i;) and any £ € L

C(ﬁil...ikf) = @(E)Xlk T Xllh(o)

This property explains why a series of the form (7) defined by system (1) satisfies
some additional conditions that require relations between coefficients. We recall
the result [6]. The series (7) is called realizable if there exist real analytic vector
fields X7,..., X,, and a real analytic map h such that equalities (4) are satisfied
for any I = (i1,...,i;) € M. Obviously, a realizable series should satisfy the
following growth condition: there exist C,Cy > 0 such that

ler|l < ChlItet! for any T € M (8)

where |I| denotes the length of the multi-index I. For any ¢ € L, let us denote by
F.(¢) the series
F.()= Y cmlm

IeMU{o}

assuming 7y = 1 and introduce the Lie rank of the series S as
pr(c) =dim{F.(¢): L € L}.

The following realizability theorem [6] holds: the series (7) satisfying the growth
condition (8) is realizable if and only if its Lie rank is finite, pr(c) < oco. In this
case, n = pr(c) is the minimal dimension of the system that realizes the series;
we call such a system a minimal realization of the series.

Iterated integrals and grading in abstract algebras. Let us turn to
iterated integrals (3). If the control belongs to the set (5), then obviously
n(T,u)| < LT*, where k = |I|. Hence, locally, when T is small, the main
role is played by terms of the series S containing integrals of minimal length.
Algebraically, we express this property introducing the grading in the algebra F

F=> FF FF=Lin{n :|I| =k},
k=1
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and the corresponding grading in the Lie algebra £
L= rk r=cnrt
k=1

If a € F*, we say that a is homogeneous and has the order k and write ord(a) = k.

In [5], [11], [12], [13], [14], the particular case of systems (1) was considered
where h(x) = x was an identity output. In this case, the output coincides with the
trajectory of the system. For such systems, the concept of homogeneous approxi-
mation was studied by use of algebraic approach. We recall the main constructions.

Core Lie subalgebra of the system and its graded left ideal. Suppose
the series (7) with n-dimensional coefficients satisfies the growth condition (8),
the Rashevsky-Chow condition

(L) =R", (9)
and the realizability condition of the following form:
if ¢(¢) =0 forsome ¢ € L, then c(al) =0 for any a € F. (10)

Then it is realizable and the minimal realizing system (1) such that hA(z) = x has
the dimension n. Let us introduce the subspaces

Pr={telr.cl)ec(L+-- -+ LYY, k>0,
and the Lie subalgebra [5]

o0

k

LXy, Xy = ZP ,
k=1

which is called the core Lie subalgebra of the system (1). One can show that its
codimension in £ equals n.
Now, we choose any homogeneous elements ¢y, ..., ¢, € L such that

£X1,...7Xm + Lin{£17 e 7£n} = £,

for convenience we assume that ord(¢;) < ord(¢;) if i < j. Besides, we choose any
homogeneous basis of Lx, . x, and denote it by {£;}72, ;. Thus, {{;}32, is a
homogeneous basis of the Lie algebra L.

This allows us to use the Poincaré-Birkhoff-Witt Theorem [10] which says that
a basis of the associative algebra F can be obtained by use of the basis of the Lie
algebra L. Namely, the set

{f?fﬁg]’:kZl, 1< <00 <y, ql,...,qk21} (11)

is a homogeneous basis of F, where we denote ¢7 = ¢---{ (q times). Having in
mind the realizability condition (10), we introduce the graded left ideal generated
by the core Lie subalgebra,

\.7X1,...,Xm - Lln{a‘g - a e ‘F + Rﬂe e £X17---7Xm}'
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It can be shown that if a € Jx, _ x,, NF¥, then c(a) € ¢(F' + --- + Fk1),
Roughly speaking, this means that elements from the left ideal Jx, ... x,, cannot
be leading terms in the series (7) corresponding to the system with respect to the
grading in F.

Dual basis and homogeneous approximation of the system. It turns
out that the left ideal Jx,.... x,, can be described in another way. Let us introduce
the inner product in F assuming that the basis consisting of elements 7 is
orthonormal. Also, introduce the shuffle product in F by the recursive rule

N W = 15 + Nji,
M Wy g = Mjreegie W = il + M (06 W oy ), K > 2,
Miy..is WGy g = Ty (niz---is w 77j1---jk) + N5, (77i1---is w 77j2---jk>7 s,k > 2.

This operation is justified by the following relation with multiplication of iterated
integrals,

Miy...is (Tv u) Mj1...gx (Ta u) = (77z'1...is L le...jk)(T> u)>

where in the left hand side there is the (usual) product of two functionals and in
the right hand side we find the shuffle product in F and then substitute iterated
integrals instead of the corresponding elements of F.

Then, the dual (with respect to the inner product) basis for the basis (11) has
the form [9]

q1---9k _ #d‘wa T Lud‘l-qu
11 (Zl' e Qk:' 21 1k
where dW9 = dw --- wd (q times); for brevity we use the notation d; = d}. More

specifically, d; are orthogonal to all elements of the basis (11) except ¢; and the
inner product of d; and ¢; equals 1. Moreover, due to the special choice of the
basis {/;}72,, the set

{dlmqlm"'LUdTI;uqn:q1+"'+Qn21}

forms a basis of the orthogonal complement ‘7)%1,...,Xm to the left ideal Jx, ... x,,
[12].
Finally, one can prove that there exists a change of variables z = F'(z) in the
system (1) which reduces its series to the form
dy + p1
F(S) = . 7
dp + pn

where p; contain terms of order greater than ord(d;). Taking into account the
sense of grading, we can consider the series

S=1-..
dn,
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as a homogeneous approximation of the series S. Moreover, it can be shown that
there exists a system with the series S ; this system is naturally considered as
a homogeneous approximation of the system (1). We emphasize that the series
S , the system corresponding to this series, and the change of variables can be
explicitly found and the algebraic framework allows efficient use of numerical
computation [11], [13].

3. Main result

Let us consider a series S of the form (7). We assume that it is realizable and
pr(S) = n. Without loss of generality we assume that each component S; of the
series S is nonzero.

Definition 1. Denote by r; the minimal order of terms included to the component
S; of the series (7),

rj = min{k : (cr); # 0 for some I € My}, j=1,...,p.
Define the minimal part of the series S as

(Sl)min
Smin = to y

(Sp)min
where

(S§)min = Z (er)jnr, 7=1,...,p.

[|=r;

Remark. In the paper [2] we considered one-dimensional series, i.e., the case
p = 1, where we used the notation S instead of Sni, and called it “a homogeneous
approximation” of the series S. However, for p > 1, such a definition of a
homogeneous approximation is not natural, which is shown by the following
example.

Example. Consider the series

S:( n )
m + 121 + 211

In this case Smin = (11,71) . However, the transformation F(x) = (1,29 — 1)
reduces S to the form F(S) = (1,121 +n211) ", and (F(S))min = (1,721) " has
more reasons to be considered as a homogeneous approximation of the series S.
Actually, in this case S is realized by the system

T

j:1:u1

. 12
To = U] + Tru2 + %x%UQ (12)

with the output y = h(z) = x while (F(S))min is realized by the homogeneous
approximation [12] of the system (12)

x'l = Ul

.ZIUQ = T1U2
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with the output y = h(z) = =.

Below, by a formal r-dimensional mapping we mean any formal series of the
form

w uiq
flai,...,ap) = Z farqp@r Hw e way
Qt-tgp2>1

where fy,..4, € R". In particular, if r = 1, we call f a formal function.

If f is a formal function, then f(S) is a series of elements of F with one-
dimensional coefficients. Then (f(S))min is the sum of elements of the minimal
order from this series.

We adopt the following notation. Given a realizable series (7), we denote by
Lg the core Lie subalgebra of a system which is the minimal realization of the
series S; by Jg we denote the graded left ideal generated by Lg.

Lemma 1. Let S be a realizable series of the form (7). Then for any formal
function f(ai,...,ap)

\.75' C (f(S))Jn:un

Proof. Let codim(Lg) = pr(c) = n. Let us consider a realization of S and
its (n-dimensional) series S. Then, without loss of generality, we can choose the
series S in the form

ngdk-{-Rk, k=1,...,n,

where dj are elements of the dual basis constructed as described in the previous

section, Ry contains terms of order greater than ord(dy), and S = h(S), where
h is a formal p-dimensional mapping. It is clear that (f(S))min = (f(h(S)))min
equals a shuffle polynomial of di. Hence, as was shown in [12], (f(S))min € T35,

which proves the lemma.

Now, following the idea of the paper [2], we introduce the maximal left ideal
which is orthogonal to any element (f(.S))min. First, recall the following definition.

Definition 2. [2] We say that a linear subspace J' C F is a graded Lie generated
left ideal if there exists a graded Lie subalgebra L' C L such thal

J' =Lin{al:aec F+R, (L'}

If this is the case, we say that J' is generated by L. We denote the set of all
graded Lie generated left ideals by D.

In particular, Jg € D; it is generated by Lg.
Now we introduce the following subset of graded Lie generated left ideals:

Ds={J € D:J C (f(S))L, for any formal function f}.
Lemma 1 implies that Jg € Dg, therefore, Dg # &.

Obviously, there exists the unique maximal (in the sense of inclusion) left ideal
in the set Dg. We denote it by J§"®* and denote the Lie subalgebra that generates
JG by LI Let r = codim(ﬁg‘ax). Since Lg C L™, we have r < n.
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Now we apply the construction of a dual basis described in the previous section
to the Lie subalgebra £3%*. Namely, we choose homogeneous elements /1, ..., ¢, €

~ ~

L such that ord(¢;) < ord(¢;) if i < j and
L2 4 Lin{ly, ..., 0.} = L.

Also, we choose a homogeneous basis {E};’ir 41 of L3*. Finally, we apply the
Poincaré-Birkhoff-Witt Theorem and construct a dual basis

1 Tw Tw
d. qIUJ-“LIJdi fIk’
k

TGk
1.0 Qg

where the notation c/l\Z = c/l\zl

set

is used. Analogously to [12] it can be shown that the

(A" w e wd™ g+ g > 1)
forms a basis of (J2*)L. Since (f(9))min C (JE*)L, then (f(S))min is a shuffle

~

polynomial of dy, ..., d, for any formal function f.

Definition 3. For a given set A C F, we define a shuffle span of the set A as
Ash = Lin{al””1 TR Luakm’“ ck>1a1,...,a5 € A, i1,...,9 > 0}.
Let us consider the subspace

Ng ={(f(S5))min : [ is a formal function}. (13)

As is shown above, any element of Ng is a shuffle polynomial of c/l\l7 e ,c@, that
is,

Ng C {6/1\1, R ,c/l\,.}Sh.

Thus, any element of Ng is a shuffle polynomial of r elements, where r < n =
pr(c). However, elements c@ may not belong to the set Ng. We show how one
can find a “shuffle basis” of the set Ng, that is, elements of Ng that generate
the set Ng by using shuffles. Below we say that several elements are polynomially
mndependent if any of them does not equal a shuffle polynomial of the others.

Lemma 2. There exist ¢ < p homogeneous polynomially independent elements
ai,...,aq € Ng such that
Ng = {ay,...,a,}*". (14)

Proof. We describe the algorithm for finding such elements a;. It is a generali-
zation of the algorithm [3], [14] for finding a homogeneous approximation of a
series of Lie rank n satisfying the Rashevsky-Chow condition (9).

Step 1. Assume that the components of .S are nonzero. Find the minimal order
of all components,

a1 = min{ord((S;)min) : 4 =1,...,p}.
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Find a linear nonsingular mapping F' such that the elements ((£(5)):)min €
F fori=1,...,nq are linearly independent and (F(S)); contain only elements
of order greater than oy, i =n1 +1,...,p. Denote S* = F(S).

Step k > 2. If ng_1 = p, then stop. If not, suppose that after the (k — 1)-th

step we obtain the series S¥~! for which the elements (S¥™1) i, ..., (SE1 Ymin
of order no greater than ag_1 are polynomially independent and Sfﬁl equal zero
or contain only elements of order greater than ag_1 for i =ng_1 +1,...,p. Here
o) < --- < ag_qand ny < --- < ng_1. On the current step we find the mapping

that does not change the components Sf_l, cee Sﬁ;_ll.

Consider components Sf_l, i =mng_1+1,...,p. If all of them are zero, then
stop. Otherwise, find the minimal order of all nonzero components,

ap = min{ord((Sf‘l)min) i=ng_1+1,...,p, Sf_l #0} > aj_1.

Without loss of generality assume that (S’f_l)min € F%, i =np_1+1,...,n,
and Sffl contain only elements of order greater than oy or Sffl =0 for i > nj.
(This can be achieved by swapping components of the series.)

Now consider the components Sf_l successively, for i = ng_; +1,...,n).

Case 1. If (Sf_l)min belongs to the shuffle span of (Sf_l)min, e (Sf__ll)min,
then there exists a polynomial Fj(x) = z; + p;(1,...,2;_1) such that F;(S¥1)
equals zero or contains only elements of order greater than ay. Then replace the
i-th component of the series by F;(S*~1) leaving the other components unchanged
and pass to the next 7.

Case 2. If (Sffl)min is polynomially independent of (Sffl)min, e (Sf:ll)min,
then pass to the next i.

If for all 4 only Case 1 occurs, we obtain a mapping F such that (F(S*~1));
for all i = np_1 +1,...,n) equals zero or contains only elements of order greater
than ag. Then repeat the k-th step with the series F/(S¥~1).

If not, then we obtain the series S*¥ = F(S*~1) such that SF = S¥=! for
i=1,...,n5_1, and (Sf)min, e (Sﬁk)min have the order no greater than oy and
are polynomially independent, ng > ni_1 + 1, and Sf equal zero or contain only
elements of order greater than ay for ¢ = ni + 1,...,p. In this case, pass to the
(k + 1)-th step.

We emphasize that the case when the algorithm needs an infinite number of
steps is not excluded. In this case, after an infinite number of steps one or several
components of the series become zero.

As a result, we obtain the series

(15)
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where a1, ..., @, are polynomially independent, that is, any of them does not equal
a shuffle polynomial of the others, and R; contain elements of order greater than
ord(a;). We notice that the mapping F' constructed by this algorithm is invertible.
Hence, for any formal function f we obtain that (f(S))min = (f(F"YH(F(S))))min
is a shuffle polynomial of @,...,a,. Moreover, the elements @; and any shuffle
polynomial of them can be obtained as (f(S))min by some formal function f,
which proves the lemma.

As follows from the proof, elements a; are defined uniquely up to shuffle
polynomials. Moreover, all elements a; belong to Ng and are polynomially
independent. Taking into account the equality (14), we say that the set
{@1,...,a4} given by the algorithm is a shuffle basis of the set Ng.

Remark. We notice that the number ¢ can be less than, equal, or greater than
r. For example, for the one-dimensional series S = 121, we have Sy, = 5, that
is, ¢ = p = 1. In this case, r = n = 2, and the dual basis can be chosen as
dy = c/l\l =m, do = c/i\g = 191. However, for the series

m m
S = M2 + N21 = 71 W72 (16)
Ni22 + M212 + N221 71 W72 W2

with ¢ = p = 3, we obviously get r =n = 2.
Ezample. For the following series, the algorithm described above requires infi-
nite number of steps:

<771+21!771UJ2+"'+1<1!771M+“'>

Actually, the map F(z) = (21,29 — ") reduces S to the form F(S) = (11,0)".
Finally, we notice that elements @;, which are polynomially independent, can
satisfy shuffle-polynomial equalities. For example, for the series (16), we can
choose a; = S; and we have a; was = o W as.
Taking into account Lemma 2, we propose the following definition of a
homogeneous approximation of a series of the form (7).

Definition 4. We say that the series

~

ai
S—1... 7
aq
where a; are homogeneous polynomially independent elements, is a homogeneous
approzimation of the series (7) if there exists an invertible formal mapping F such
that the series F'(S) has the form (15).

Remark. If a series is such that p = pr(c) = n and satisfies the Rashevsky-
Chow condition (9), then this definition coincides with the usual definition of
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homogeneous approximation [12], |3]; in this case ¢ = p = n and @; can be chosen
asa; =d;,i=1,...,n. On the other hand, if p = 1, then this definition coincides
with the definition of homogeneous approximation proposed in |2]; in this case a;
can be chosen as a; = S = Smin-

Definition 5. We say that two series are algebraically equivalent if they have the
same homogeneous approximation.

Lemma 2 implies the following result.

Theorem 1. Two series S' and S? are algebraically equivalent if and only if
Ngi1 = Ng2, where the sets Ngi are defined for series S° as in (13), i.c.,

Ngi = {(f(S))min : f is a formal function}, i=1,2.

As elements a; of a homogeneous approzimation, any shuffle basis of the set Ngi
can be chosen.

We emphasize that two algebraically equivalent series can have unequal di-
mensions.

Definition 5 generalizes the definition of A-equivalence for series with p =
pr(c) = n satisfying the Rashevsky-Chow condition [5]. However, this definition
is not so natural for general series (7). For example, the series (16) and the series

Sl — <771>
2

are very similar since they can be reconstructed from the same two-dimensional
system though they are not algebraically equivalent: obviously, Ng # Ngs. This is
because in the general case the set Ng is not completely defined by the maximal
left ideal. In order to formulate this property, we propose the following definition.

Definition 6. We say that two series S* and S? are weakly algebraically equivalent

if their mazimal left ideals coincide, v.e., TH™ = TH™.

Obviously, if Ng1 = Ng2, then J5** = J5**. Therefore, we get the following
corollary.

Corollary 1. If two series S* and S? are algebraically equivalent, then they are
weakly algebraically equivalent.

Ezample. Let us consider two one-dimensional series
Sl =m and SQ = M1-

Recall that n; = %m w1, therefore, both series have the same maximal left
ideal; their one-dimensional realization is #; = u;. Hence, S and S? are weakly
algebraically equivalent. However, the sets Ng1 and Ng2 do not coincide since
m € Ng1 but m1 ¢ Ng2. Thus, S! and S? are not algebraically equivalent.
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Example. Consider the series

S — ( 2 + 21 )
M2 +m221)
Applying the algorithm described in the proof of Lemma 2, we use the mapping
F(z) = (z1,—22 + 323) . Since

—122 — M221 + 5(N2 + ma1) w (2 + 121) = —M21 + Mo w ey + R = noo1 + n212 + R,
where ord(R) = 4, we obtain

F(S):< 2 1 >

221 + 212 + R

Hence, as a homogeneous approximation of the series S we can take (F(S))mins

i.e.,
()= ()
a2 7221 + 1212

Therefore, Ng = {n2,m221 + 77212}Sh. Hence, L£g* cannot contain 7 and
[m2, 2, m]] since these elements are not orthogonal to the elements a;, as
respectively and cannot contain 7; since 72971 is not orthogonal to as. Actually,
L35 = Lin{[n1, n2), [, [n1, 2]} +> 5, £F and therefore the minimal realization
of S can be chosen as .

T1 =up

To = ug

T3 = Tr1T2U2
with the dual basis elements di = 11, do = 12, ds = 1221 + M212. Obviously,
Ng C {d1,da,d3}*". Let us consider the series

Sl — < 771 )
7221 + 1212

Obviously, it is weakly algebraically equivalent but not algebraically equivalent
to S.
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OaHopiaHi anpokcumariii HeJIHINHUX KEePOBAaHUX CHUCTEM 3 BUXOJI0OM
i csabka anrebpaiuHa ekBiBaJIEBHTHICTH
JI. M. Aunpeesa, C. FO. Irnarosuu
Kagpedpa npursadnoi mamemamuru,
Xapriscokutl navyionasvruti ywigepcumem imens B.H. Kapasina
matidarn Ceobodu, 4, m. Xapxis, 61022, Yrpaina

Y poboTi MU pO3T/ISIAEMO HEJiHIWHI KepOBaHI CHCTEMU, siKi € JIIHIHHUMY 32 KEPYBa-
HHSM, 3 BUXO/JOM; BEKTODHI TOJIS, 10 BU3HAYAIOTH CUCTEMY, i BUXi/l BBAZKAIOTHCS JiHCHO
anamitwaanMu. Craigyodn anrebpaidaHOMy MiIX0My, MU PO3DIISIAEMO psiau S iTepOBaHUX
iHTerpaJiB, IO BiAMOBIAAIOTH TAKUM cHCTeMaM. [TepoBaHi iHTerpann yTBOPIOIOTH BiIbHY
aconiaTuBHy ajirebpy, i Bl Hall KOHCTPYKIIiT BUKOPUCTOBYIOTH i1 Bitactusocti. Criogarky
MW PO3TJISIIAEMO MHOXKHUHY BCiX (dopmanbuux) dyHKIH Takux psaais f(.S) 1 BusHauae-
MO MHOXKUHY Ng aeHiB MiHIMaJIBHOTO MOPSIAKY A5t BCiX Takux dyHKINH. Mu BBOIMMO
O3HaYeHHsI MAaKCUMaJIbHOro rpajyiiosanoro Jli-moposzkenoro Jjisoro inearty Jg'™*, axuit
€ oproronasbHuM 10 MHOKUHEA Ng. Mu onucyemo 3B’S3Ku MiXK UM MaKCAMAJIbHUAM Jii-
BHUM ifeasioM 1 jiiBuM imeanaom Jg, M0 MOPOIKEHUI KOpeHeBoIo miganredporo JIi cucremn,
AKa peajisye paa. A came, Mm mokasyemo, mo Jg C J&**. 3okpeMa, 3 IHOTO BUTIN-
Bae, Mo rpaayiosana mganarebpa JIi, ska mopomxkye nisuit izean J&'**, mae cKindeHHY
KOBUMIpHICTh. TakOK MU JAEMO aJITOPUTM, SKUH MPUBOAUTDH s S 10 TPUKYTHOI (op-
MU, 1 MPOMOHYEMO O3HAYEHHS OJHOPIMHOI ampokcuMmariil psay S. A came, omHOpIIHOO
AIMPOKCUMAIIIEIO € OJIHOPIIHUI P/, KOMIIOHEHTH SKOI'O — JIOJAHKUA MiHIMAJIbHOIO HOPS/I-
Ky B KOXKHilf KOMITOHEHT] 1€l TpukyTHOI dopmu. Mu moBomumo, 1mo Ng 30iraerncsa 3
MHOYKMHOIO TACYIOUNX MOJIIHOMIB KOMTIOHEHTIB O/THOPiTHOI anpokcnmarii. Ha Biaminy Bin
BUMAJKY, KOJU BUXiJ € TOTOXKHWUM, OJTHOPI/THA ampPOKCHMAIlisd He BU3HAYAETHCH TMOBHI-
crio ineamom Jg'**. Il Toro, mob ONUCATH IO BAACTHBICTH, MU BBOAWMO JBa PI3HUX
O3HAYEHHS €KBIBAJIEHTHOCTI PsA/IiB: airedpaiyHy eKBiBaJIeHTHICTD (KOJIM IBA DA MAKOTh
OJiHy i Ty caMy OAHOpPiAHY anpokcuMalio) i caabky ajarebpaiudy ekpiBajeHTHICTD (KOJIU
JBa PAJW MAOTh OJWH i TON caMWil MaKCMMaJILHWUI JiBWiA imeas i, oTKe, MalOTh OIHY
it Ty camy MiHIMa/bHY peasi3yrouy cucreMmy). Mu JoBOAMMO, IO SAKINO JBA PAIU € ajl-
reOpalvyHO eKBiBaJIEHTHUMHU, TO BOHU € CJA0KO ajredpaidno ekpiBasenTHuME. [Ipukiaam
MMOKA3YIOTh, 0 OOepHEHE TBEP/XKEHHS HE € IPABUIbHUM.
Karowosi crosa: OnHOpiAHA anpoKcUMAIllisi; HeJiHIlHA KepoBaHa CUCTeMa; P
iTepoBaHUX iHTerpaJiB; KopeHeBa mnigasnaredopa JIi; MmakcumaabHMM JIiBUil imealt.
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