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On linear stabilization of a class of nonlinear systems

in a critical case

In this paper, we address the stabilization problem for nonlinear systems in
a critical case. Namely, we study the class of canonical nonlinear systems.
Canonical nonlinear systems or chain of power integrators is an important
subject of research. Studying such systems is complicated by the fact that
they cannot be mapped onto linear systems. Moreover, they have the
uncontrollable first approximation. Previous results on smooth stabilization
of such systems were obtained under the assumption that the powers in the
right-hand side are strictly decreasing. In this work, we consider a case of
non-increasing powers in the right-hand side for a three-dimensional system.
A popular approach for studying such systems is the backstepping method,
which is a method of step-wise stabilization. This method requires a sequen-
tial investigation of lower-dimensional subsystems. Backstepping enables the
study of a wide range of nonlinear triangular systems but requires technically
complex and cumbersome computations. Therefore, a natural question arises
about constructing stabilizing controls of a simple form. Polynomial controls
can serve as an example of such controls. In the paper, we demonstrate
that linear controls can be considered as stabilizing controls. We derive
sufficient conditions for the coefficients of the linear control that ensure
the asymptotic stability of the zero equilibrium point of the corresponding
closed-loop system. The asymptotic stability is proven using the Lyapunov
function method, which is found as the sum of squares. The negative defini-
teness of the Lyapunov function derivative in a neighborhood of the origin
guarantees asymptotic stability. In contrast to the case of strictly decreasing
powers, additional conditions on the control coefficients, apart from their
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negativity, emerge. The obtained result extends to a broader class of nonlin-
ear systems through stabilization by nonlinear approximation. This allows
the consideration of systems with higher-order terms in the right-hand si-
de. The effectiveness of the applied approach is illustrated by several model
examples. The method used in this work to investigate the case of non-
increasing powers can be applied to systems of higher dimensions.

Keywords: stabilization; nonlinear systems; Lyapunov function
method; critical case; linear stabilization; linear control.

2010 Mathematics Subject Classification: 93D15; 93D30; 93C10; 34HO05.

1. Introduction

The stabilization problem for nonlinear systems in a critical case is an
important problem of nonlinear control theory [1, 2, 3, 4, 5, 6, 7, 8, 9]. Signi-
ficant attention has been drawn by high-order nonlinear systems that cannot be
mapped to linear systems [1, 2, 3, 4, 5, 6, 7, 8, 9]. These systems exemplify a
critical case. Since we are dealing with critical case, we cannot use the first (lin-
ear) approximation to find stabilizing controls for the original nonlinear system.
It is natural to attempt to construct simple classes of stabilizing controls, such
as linear controls. The problem of finding such stabilizing controls is called the
linear stabilization problem.

In recent decades, a wide range of interest has been sparked by the systems
of the following form

{ii:xfil+fi(x1,x2,...,zn), i=1,...,n—1, 1)

Ty = uPr,

where p; > 1 are ratios of positive odd integers, fi(z1,...,%,) are continuous
real-valued functions with f;(0,...,0) =0 (i=1,...,n—1).

The stabilization problem for system (1) was studied in many works, see, for
instance, [1, 2, 3,4, 5,7, 8, 9]. Works [5, 7, 8, 9] rely on the backstepping approach,
which is based on recursive Lyapunov function design and leads to stabilizing
controls of rather complicated structure. In [1] simple stabilizing controls of the
form

U= a1%1 + -+ Apln + Ap1 @y + -+ a2,

were constructed using a quadratic Lyapunov function (for p, = 1). Work [3]
shows that it is possible to linearly stabilize system (1).

The above-mentioned results from [3] were achieved under assumption that
the powers p; are strictly decreasing, that is, p;1 > p2 > ...p, > 1. In this work
we weaken the condition of powers p; being strictly decreasing and prove that it is
possible to consider non-increasing values of p; and still be able to achieve linear
stabilization.
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Namely, we study the stabilizability of the system

. Pl
1 =Ty,
. P2
T2 = I3, (2)
:'B3:up3

with p;1 > 1, po = p3 = 1. We find conditions on the coefficients under which a
linear control stabilizes system (2). These results are generalized using nonlinear
approximation.

2. Problem formulation and linear control construction

Consider the nonlinear system

Ct‘l = SEgl,
To = x3, (3)
$'3 = u,

where v € R is a control, p; > 1 is a ratio of two positive odd integers.

The stabilization problem for system (3) is to find a continuous control u(x)
such that the equilibrium point = 0 of system (3) with v = u(z) is locally
asymptotically stable.

Consider the linear control

u(w) = —k:lxl — k‘gl‘z — k3x3, (4)

where k; € R are positive numbers.

Now we find conditions on the coefficients ki, ko, k3 for the local asymptotic
stability of the zero solution of system (3). To this end, we consider the following
Lyapunov function

1 (k' 2 K5 2, 1 2
V(z) =5 (k1z1)” + == (k121 + koz2)” + — (k121 + kaxo + ksxs)
2\ kp ko ks

It is obvious that V' (z) is positive definite for k; > 0, ko > 0, k3 > 0.
Applying the linear change of variables

el = kix1, ez = k1w + kawo, e3 = ki1 + koxa + k3xs,
we get
I
Vie) =3 Z; Lie?, (5)

where [; = kfj_lk;l, 1=1,2, 13 = kgl. The inverse change of variables is

T :kl_lel, .1‘2:k2_1(62—€1), x3:k‘3_1(€3—62).
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Using (3), we compute é1, é2, é3 as follows:

) . k1
el = klxl = kla: = k‘pl (62 — 61)
by = ks + ko = kit + kaws — P
€2 = K1T1 + Koy = K1Xy + Koz = 1751(62 —e1)Pt + —=(e3 — e2)
k
é3 = k1&1 + kodo + k3xg = kgll (62 — el)pl + *3(63 — 62)
ks(—k k kys) = oy R k
+ k3(—kix1 — koxo — k3x3) = ??(62 —e)Pt + ?3(63 —e3) + ksu

Thus, applying the feedback u = — (k121 + kawa + ksz3) = —es, system (3)
takes the form

él kpl (62 1)1717
éy = km (e2 — 61)""1 + 12 (e3 — ) (6)
é3 = —kses + km (e2 —e1)Pt + 12 7 (e3 —e2).

Now we calculate the derivative of V' (e), given by (5), along the trajectories
of the closed-loop system (6)

. ov k v [k k
Vie) = — (e — €)' + — <kpll(eg —e)" + k—z(eg - 62)>
2

Oey k3! Oes
+ g}; <—k3€3 + klfgll(eg — )P + 2(63 _ 62)> .
Let us calculate each term separately
((;;/1]{]%}1(62 —e)Pt = ;5: 2e1 :;1 (e3 — e1)P' = eq(eg — e1)P,
g}; <:§11(€2 R 2(63 - 62)) N 2k132262 (:511 (2 — e1)”"
+:§(63 — 62)) = e <k];2011]f’1(€2 —e1)PL + (e3 — 62)> ,
o <—/€363 + 711(62 —e1)P' + —(eg — 62)) - L263< — kses
Oes Ky 3 2k
+ 232.}1(@ —e)” + —3(e3 - e2)) - 63< st kf/;gl (2 1)
+ :g(eri - 62))

Then we have
. k1ks
Vie) =ei(ea —er)P* +

p1+1
k2

ea(ea —e1)Pt +ea(es —ea) — eg

k
+ es(ez — 1) + Ses(es — e2).

k3 kpl k2
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Rewrite V(e) in the form

. kik
V(e) = —ei(e1 — e2)P' — eaea —e3) — €3 + #62(62 —e)”
2 (7)

ko
s kpl e3(ea —ep)Pt +?§€3(63 —e2).

+
To estimate the derivative V(e) we use the following lemmas.

Lemma 1. [10] For any p > 1 and any numbers x; € R,i = 1,...,n, the following
inequality holds

|x1+;p2+---+xn|pSnp*1(|x1\p+\xg]p+“'+‘$n\p)'

Lemma 2. [10] Suppose that p > 1 is a ratio of positive odd integers. Then the
following inequality holds

z(z 4+ a)? > 27 PPt 4 gaP Y, a € R.

Lemma 3. [6] Suppose that m > 0, n > 0 are constants. Then, given any number
v > 0, the following inequality holds

|x|m+n +

|z |y[™ < N [y Ve, y € R

m+n
First, using Lemma 1 and Lemma 2, we obtain the following inequalities:

—eq(eg —eg)Pt < 2171 le—He e,

—62(62 — 63) < —62 + ’62”63‘,

kik3 kiks pi—1 pie1 | Kiks -1
k:p1+162(e2 —e)” < /€101+12p1 &+ kp1+12p1 et [leal,
2k 2k 2 (8)
1 1 1 1
k‘gk‘pl 63(62 _el)pl S k‘ kj’l 2p1 ‘6 H€3’ + ]{7 kpl 2p1 ‘6 ||€3‘7
2
k2 k2 02 k2
?63(63 —eg) < kQ e3 + k2|€3\|€2|
3 3
Now, by applying Lemma 3, we deduce
P1 p1(p1+1)
b1 +1 C p1+1
elel——eg CMey| < ————— e + ——— )
' et R e A
1 1Cp1(p1+1) 1
1 __|P1,|P1 p1+1 p1+1
e lea] = [C5 el ] I R +( 1 Cp?(plﬂ)e? ’
2 p1+ ) 2
P1 p1(p1+1)
p1 +1, G5 pi+1 9
e les ‘62 Clleg| < —— il 23 c;tl (9)
‘ 2 H ’ Cg ’ 3 ‘ ( 1+1)Cp1+1 p1+1 3
(p1+1)
pCY pitl 1 pi+1
e les| = [Ctea|Pt | —5es| < —————el'" + 5 et
P1 (pl + 1) (pl + 1)051(P1+1)
1 cz,
leales| = ‘62 |Cses| < 20262 + 5,
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where C1, Cq, C3, C4, C5 are sufficiently small positive numbers.

Note that (9) is true for any positive C;, @ = 1,...,5. In order to prove
asymptotic stability, we will find additional conditions on C; to guaranty that
V (e) is negative in some small deleted neighborhood of the origin.

Using estimates (8) and (9) sequentially, we have

) ) 41 n " Cfl(Pl‘i'l) " )
Vie)< —2' Pt 4~ 1T 4 L M ¢
() < ! (py + 1)CP 2 pr+1 ! 2
1 o, C3y 5 kb3 oy pi
+ —5e5+ —e3 —e5 + oP1—Lcbt
20272 T 2 TS T T
1
klkg 2p171plc§1(p1+ ) €1+1 k1k3 2p1*1 1 612)1+1
1 1 2
K2 pLt1 k! (p1 + 1)Cpr Y X
p1(p1+1) ( O)
+ ki gp1—1 b1 1 p1+1 + ki pl—lcS ep1+1
k3kb: pr+1cptt? keskb? p+1l 3
+1
ks kbt +1 1 ksk pi(p1+1) 3
3Ry D1 3K9 (p +1)C 1
ko ky o koCE 5
+k7?2)€3+2k?2)052€2+ 2]{?2) €3.

Rearranging the terms from the right-hand side of (10) we obtain the estimate
for V(e) in the form

Cfl(plﬂ) k1ks 2p171p10§1(p1+1)

st

p1+1 k:ng p1+1
kl B plcpl(P1+1) 1 k2
op1-—1 4 2 14— 4 = (11)
kD nrl )T\ e e

C? k koC2

2 5 2 PASS

14 I8 4 2= T
63< 2 k:g 2]€§ > 9( )7

where the function g(x) is composed of higher order terms. The function g(z) is
given by

_ p1 p1+1 kiks p1—1 _p1+1
Tepep gt e
n kiks op 1 1 ot ki pi-1 D1 L it
b (p1+1)05?(P1+1) 2 kskh' p+1optt 2
(p1+1)
+ klp p1—1C§1 i e§1+1+ klp 2171—1 1 . §1+1
1 1
k3k2 p1+1 k3k2 (pl + 1)051(P1+1)

According to the Lyapunov function method, it is sufficient for V(e) to be
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negative definite to guarantee asymptotic stability. Therefore we find conditions
for coefficients of ezl’lﬂ, e2, €2 to be negative.
We start with the coefficient of e3:
1 ko

—22 <0,

S T
T30z T amzes

k2 < 1 L
2k2C?2 2C2’
ko _ 202 -1
2k2C?2 202 7

k
2 <202 1,
k3

ke < k3(2C% — 1). (12)
Let us move on to the coefficient of e%:

C2  ky koC2

14 5 2y R2ES
Pttt <O
ky  koC?2 C?
u <1- =,
T 2
ka(2 4 C2 C2
2( +2 5) <1-— 75,
2k2 2
2 2 s
k2(2 + 05) < 2k3(1 — 7),
2k3 — k3C2
kg < 23355 (13)
(2+C3)
Finally, consider the coefficient of 2™
Cpl(p1+1) kv k- CPl(P1+1) k Cpl(p1+1)
ol 4 LT3 op1 1112 4L _gm-1 D1t <0. (14)
pr+1 k;§1+1 p1+1 k:gk'gl p1+1

It is clear that for any ki, ko, ks, there exist sufficiently small Cy, Cs, C4 such
that the coefficient of e’flﬂ will be negative. Indeed, we define the function

r(Cy,Cs, Cy) as follows:

1 1 1
r(C1,Cs, Cy) = PO | Faks G kO
T p+1l gt p1+1 ksky' p1+1
It is obvious that r(Cj,C2,C4) is a continuous function and r(0) = 0.

Therefore, by choosing sufficiently small C1,Cs,Cy it is possible to make
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7(C1,Ca,Cy)| smaller than any given number ¢ : ¢ € (0,2'7P1). Then, for such
€ > 0, there exists 0 > 0 such that

r(C1,Ca,Cy)| < e forall ||C] <9,
where C' = (C1, Cy, C4). Thus,
21771 — (Cy,Cy,Cy) > 0

when ||C|| < 6, and the inequality (14) holds. Assume that C, Cy, and Cy are
positive and chosen small enough to satisfy the inequality (14).

So, from the conditions on the coefficients k1, ko and k3, given by (12) and (13),
we obtain the following constraints:

ko < k§(2052 - 1),
2k2 k202
ki, ko, ks > 0.

Using inequality (12), we deduce

k3 + ko
2k2

c2>

From (13) we obtain

2k% — 2k
2 < T8 22
Combining the last two equations, we derive the constraint for Cg:

k% —+ kQ 2 2]{% — 2k2
o2 < B2
k2 S Ttk

(16)

To ensure the existence of Cs > 0, it is necessary for the following inequality to

hold
k3 + ko _ 2k3 — 2ko

22 ko + k2

(17)

from which follows: ) )
2k§ ko + k§
—3k3 + 6k3ke + k3
2k:§(k2 + k‘%)

It is clear that k%(ks + k3) > 0, which yields

< 0.

—3k3 + 6k3ke + k3 < 0.
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First we find the roots of the equations
—3k3 + 6k3ko + k3 = 0.

We put z = k%, then
—322 + 62ky 4+ k3 =0,

and
ka(3 £ 2V/3)

Recall that z = kg, is positive number, then z = M Therefore, we
conclude that inequality (17) holds for
ka(3 4+ 2v/3
k2> M (18)
3
Thus, condition (16) is non-contradictory and determines Cs so that system (15)
is consistent.

Now suppose that C5 is chosen to satisfy condition (16), C3 is any positive
number. Recall that C1, Cg, Cy satisfy (14). This implies that by choosing ki, k2,
and ks satisfying condition (18), we render V'(e) negative definite in a neighbor-
hood of the origin. Indeed, the function g(z) is composed of higher order terms,
since p1 > 1. So, if the coefficients of ey, es, and e3 are negative, then in some
sufficiently small neighborhood of the origin U(0) € R™ we have

V(e) <0 forall eeU(0)\{0}.

This, by the Lyapunov function method, means that the zero equilibrium point
e = 0 of the system (6) is asymptotically stable. Therefore, since the change of
variables 1 = k:flel, T9 = k:;l(eg —e1), T3 = k;l(eg — e9) is continuous, = 0
is a locally asymptotically stable equilibrium point of system (3) with v = u(x)
given by (4). So, we have proved the following theorem.

Theorem 1. Let k1 > 0. Suppose that ky > 0 and ks satisfy the inequality
k2 (3 + 2v/3)
- 3

Then the linear control uw = —kix1 — koxo — ksxsg solves the stabilization problem
for system (3).

k2 = (2.154700538 .. .)ks. (19)

Condition (19) distinguishes our case from the case of strictly decreasing
powers, in which there is no additional requirements for ko and k3 except that
they should be positive.

Example 1. Consider the stabilization problem for the nonlinear system:
dcl = :Eg,
i’g = I3, (20)

T3 = u.
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In this case p1 =5, po = p3 = 1.

Let us choose arbitrary k1 > 0. Choose kg, k3 by the condition (19). For
example, we put k; = 5, ko = 2, ks = 10. Then, by Theorem 1, the linear
stabilizing control (4) has the form u = u(x), where

u(x) = =bx1 — 2x9 — 10x3.

Let us substitute the control u(x) into system (20). By Theorem 1 the closed-
loop system has asymptotically stable equilibrium point. We will illustrate the
behavior of the closed-loop system trajectory, for example, for initial conditions

Fig. 1. The trajectory of system (20) with u = u(z).

3. Stabilization by nonlinear approximation

The results obtained in Section 2 can be generalized by considering the fol-
lowing nonlinear system:

jfl - 1,1271 + <P1($1,1'27x3)7
Ty = 3 + p2(r1, T2, T3), (21)
T3 = u,

where ¢; (1, z2,z3) are continuous functions, i = 1,2, 3.
To stabilize system (21), we use the same control u = u(x) as in the case of
system (3):
u(a:) = —klxl — kzl'Q — k‘3.%'3.
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So, suppose k; satisfy Theorem 1, therefore; u(z) stabilizes system (3). Assume
that the functions p;(x1, x2, x3) satisfy the following inequalities:

lp1(21, 22, 23)| < p1(21, T2, 23) (|22 P01 + |2g [P T0),

[p2(x1, w2, 73)| < pa(a, w2, w3) (s F02)

in a neighborhood of the origin, where p;(x1,z2,23) > 0 are some continuous
functions (i = 1,2), ;1 > 0 and Jo > 0 are some real numbers.

The control u = u(x) stabilizes system (21), since the functions ¢;(x1, 2, x3)
has higher order then xfil, i=1,2 (p1 > 1, p2 = 1). Indeed, we can use the same
change of variables and Lyapunov function as for system (3). Note that higher-
order terms generated by the functions ¢;(z1,...,zy,) should be attributed to
the function g(z). These terms will not affect the sign of the derivative of the
Lyapunov function V in a sufficiently small neighborhood of zero. Therefore, the
control u(x) stabilizes not only system (3) but also system (21). Thus, such an
approach is similar to the stabilization by first-order approximation. It should be
noted that system (3) is used as a nonlinear approximation of system (21).

We will illustrate this approach with the following example.

Example 2. We find a stabilizing control for the following nonlinear system

i = 25 + 2§ sin(x1 + 29),
io = x3 + 23 cos(z1), (22)

T3 = u.

We use system (20) as a nonlinear approximation of system (22). Therefore,
system (22) can be stabilized by the same control as system (20).
So, consider the control u = u(z) of the form

u(x) = —bx1 — 2x9 — 10x3.

We recall that k; = 5,k = 2,k3 = 10,p; = 5, then condition (19) is satisfied.
Put p1(x1, 29, x3) = 1, po(x1, 2, x3) = 1,51 = 1,02 = 1. Then, it is clear that for
the functions @1 (21,72, 73) = x5 sin(z1 + z2) and @ (71, 22, v3) = x% cos(zy) the
following estimates hold:

lo1(z1, 2, 23)| < p1(x1, 22, x3) (!$2|p1+61 + !$3|p1+61> = 2§ + 2§,

|902($1,172,£C3)| < p2($1,$2,$3)‘$3|1+62 = w%

in the entire space R3.

Based on the results of the work, it can be concluded that the zero equilibrium
point of system (22) under the linear control law u = u(z) is asymptotically stable.
Specifically, as shown above, since the control u = u(x) stabilizes the system of the
nonlinear approximation (20), it also stabilizes the original nonlinear system (22)
with higher-order terms in the right-hand side.
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To demonstrate the behavior of solutions of the closed-loop system (22) under
the chosen linear control u(z), we construct the trajectory, for example, using the
following initial conditions:

1‘1(0) = O.S,xg(O) = 0.7, 173(0) =1.

Fig. 2. The trajectory of system (22) with u = u(x).

Conclusion

This work presents a constructive method for stabilizing a class of high-order
nonlinear systems in a critical case. Namely, the class of three-dimensional canoni-
cal nonlinear systems is considered. Compared to previous results, the condition
of decreasing powers was relaxed to a condition of non-increasing powers. It has
been shown that for such systems, a linear control can be chosen to ensure that
the equilibrium point x = 0 is locally asymptotically stable.

Furthermore, an additional condition on the coefficients ki, ko, and k3 was
found, compared to the case of strictly decreasing powers, to achieve local
asymptotic stability of the zero equilibrium point. Moreover, the class of systems
was extended by using stabilization through nonlinear approximation.
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IIpo niniliny crabinizaniro ogHoro kJjacy HeJiiHiliHUX cucrem y
KPUATUYIHOMY BUTAIKY

M. O. Bebiga, B. A. Maiicrpyx
Xapriscoruti nauytonasvruli ynisepcumem imens B. H. Kapasina

matidarn Ceobodu 4, 61022, Xapxie, Vrpaina

B crarTi po3risiiaerbes 3a1a4ua crabinizanii HesiHIftHUX cHCTeM y KPUTHYIHOMY BH-
magky. A camve, BUBYAETHCS KJIAC KAHOHIYHMX HEMHIAHUX cucreM. Kiac KaHOHIYHMX HeJti-
HIHIX cHCTeM abo JIAHIIOT CTEIeHEBUX iHTErpaTopiB € BaXKJIUBUM 00 €KTOM TOCIIiI2KEH-
Hsi. BUBYEHHST TAKMX CHCTEM YCKJIQIHIOETHCS THM (DAaKTOM, IO TX He MOXKHA BigoOpasuTn
Ha, JiiHidHL cucTtemu. KpiM TOTO, BOHW € HEKEpOBAHUMU 33 MEPIUM HAOJMKeHHsM. Bi-
JIOMi pe3yJabTaTh IMOAO0 MVIAAKOI cTabiii3arii Takmx cucTteM OyJI0 OTPUMAHO MPHU YMOBI
CTPOTOrO CHAJaHHSA CTENEHIB MPABOl YacTUHU. ¥ Miif pOOOTI PO3IIISHYTO ONWH 3 BUMAIKIB
HECTPOTOrO CIIATaHHs CTEIeHiB y mpaBiit gacTuHi aia TpuBuMipHOl cucremu. Ilomymsap-
HHAM IIiIXOIOM 10 JOCJIPKEHHSI TAKHX CHCTEM € METO]I IMOKPOKOBOI moOya0oBH cTabiri-
3yI04unX KepyBaHb - backstepping. Bin morpebye mocsiqoBHOrO TOCTIIXKEHHST i ICUCTEM
MeHII01 po3miprocTi. et MeTon mae MOXKIIUBICTD TOCTIIZKYBATH MUPOKL KJIACH HEJIiHiH-
HUAX TPUKYTHHUX CUCTEM, aJie MOTPeOy€e TEeXHIYHO CKJIAIHIX, TPOMI3aKuX 00uucseHsb. Tomy
BUHUKAE MMPUPOJHE MUTAHHS PO MOOYI0BY CTabLIi3yl0unX KEPYyBaHb IMPOCTOrO BUTJISLY.
[Ipuknagom Takmx KepyBaHb MOXKYTh CJIy?KUTH IOJIHOMiaJIbHI KEPYBaHHA. ¥ CTATTI IO-
Kaz3amo, M0 MOYKHA PO3TJISAATH JMiHiHHI KepyBaHHS B AKocTi crabimizyounx. Orpuma-
HO yMOBU Ha KOeMIIieHTH JIHITHOrO KepyBaHHS, IKi € JOCTATHIMHU IJIsT ACUMITOTHIHOL
CTIKOCT1 Hy/ThOBOI TOYKH CITOKOIO BIATIOBi/THOI 3aMKHYTOI cucTemu. /11 moBeieHHs acuM-
OTOTUYHOI CTIHKOCTI BUKOPHUCTAHO MeTOn (DYHKINI JIAmyHOBa, Ky BIAETHCS 3HANTH K
cymy kBazparis. Bix'emna Busnadenicrs moximuoi dyukimii JIsamyHoBa B Okoui Hyss ra-
paHTye acuMnTOTHYHYy crifikicts. Ha Biaminy Bizx BuIIaIKy CTPOroro CrajaHHs CTEIEHIB,
BUHUKAIOTH JOJATKOBI yMOBU Ha KOeMIIIEHTH KepyBaHHs OKpiM 1X Bix’ emuocTi. OTpuma-
HUW PE3YJIbTAT PO3MUPIOETHCA HA OLIBIN MIUPOKWH KJIAC HETIHIHHUX CHCTEM 3a PAXyHOK
crabimizarii mo HemiHiftHoMy Hab MXKeHHIO. [le mae 3Mory po3rssaaTi CUCTEMH 3 JTOMAH-
KaMmu Oi7bII BECOKOrO MOPAAKY Y TpaBiit gactui. EdeKTuBHiCcTh 3aCTOCOBAHOTO MMi X0y
MIPOLTIOCTPOBAHO Ha KLIHBKOX MOJIENbHUX IpHUKJagax. Bukopucranuit B poboTi MeTosm, 10-
CJIIPKeHHS BUMAIKY HECTPOTOrO CIAIAHHS CTEMEeHIB MOXKe Oy TH 3aCTOCOBAHO IS CHCTEM
OL/IBITT BUCOKOI PO3MIiPHOCTI.
Karwuoei caosa: crablmizaiisi; HediiHiliai cuctemn; meron dyuknii JIsimyHoBaj
KPUTUYHUI BUIIAO0K; JIiHIIHA cTablaizamisa; JiiHIliHI KepyBaHHS.
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