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On some hypergeometric Sobolev orthogonal
polynomials with several continuous parameters

In this paper we study the following hypergeometric polynomials:
Pr(z) = Po(x;a, B,01,...,0p,K1,...,Ky) =

= pr2Fpp1(—n, nta+P+1,01+1, ..., 0,+1;a+1, ki+61+1, ..., kpy+0,+1; ),

and
Ln(x) =Lyp(x;0,01,...,0p,K1,...,Kp) =

=1 Fpp1(—n,61+1, .. 04+ a+ 1 ki+01+1, . k0,415 1), ne€ Ly,

where «,f,01,...,0, € (—1,+00), and Ki,...,k, € Z4, are some
parameters. The natural number p of the continuous parameters di,...,d,
can be chosen arbitrarily large. It is seen that the special case kK1 = --- =
kp = 0 leads to Jacobi and Laguerre orthogonal polynomials. Of course,
such polynomials and more general ones appeared in the literature earlier.
Our aim here is to show that polynomials P, (x) and L,(x) are Sobolev
orthogonal polynomials on the real line with some explicit matrices of
measures.

The importance of the orthogonality property was our main reason to
concentrate our attention on polynomials P, (z) and £, (x). Here we shall
use some our tools developed earlier. In particular, it was shown recently
that Sobolev orthogonal polynomials are related by a differential equation
with orthogonal systems A of functions acting in the direct sums of usual
Lﬁ spaces of square-summable (classes of the equivalence of) functions with
respect to a positive measure . The case of a unique Li is of a special
interest, since it allows to use OPRL to obtain explicit systems of Sobolev
orthogonal polynomials. The main problem here is to choose a suitable li-
near differential operator in order to get explicit representations for Sobolev
orthogonal polynomials. The proof of the orthogonality relations is then a
verification of such a choice and it goes in another direction: we start from
the already known polynomials to their properties.
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We also study briefly such properties of the above polynomials: integral
representations, differential equations and location of zeros. A system of
such polynomials with a kind of the bispectrality property is constructed.

Keywords: orthogonal polynomials; Sobolev orthogonality; recurrence
relations.

2010 Mathematics Subject Classification: 42C05.

1. Introduction

The theory of orthogonal polynomials on the real line (OPRL) is a classical
subject of analysis having a lot of applications [29],[9],[14]. The theory of Sobolev
orthogonal polynomials is less developed and recognized and it still remains to
be a terra incognita in some aspects [21]. As this theory may be viewed as a
generalization of the classical one, then one can expect that some properties and
objects from the classical theory will have their mirrors and extensions in the
theory of Sobolev orthogonal polynomials. For instance, the important property
for OPRL is that the multiplication by x operator in the corresponding Li space is
symmetric. Under some general assumptions, a weaker property of symmetry with
respect to an indefinite metric holds for Sobolev orthogonal polynomials [32]. We
intend to define and study some generalizations of Jacobi and Laguerre orthogonal
polynomials. Namely, we shall study the following polynomials:

Pr(x) = Pru(z;0, 8,01, .., 0p, K1, ...y Kp) =

= p2Fpi(—n,n+a+p+1,6+1,...,0p+La+1, k1 +01+1,...,k,+0,+1;2),
(1)

and
Ln(z) =Ln(T;0,01,...,0p,K1,...,Kp) =

= pp1Fpri(—n, 0141, .. 0+ a1l ki +01+1, .. Kyt 1), nEZy, (2)

where a, 3,01,...,0, € (—1,+00), and k1,...,K, € Z4, are some parameters.
Observe that the number p € N of the continuous parameters d1,...,0, can
be arbitrarily large. It is clear that the special case k1 = -+ = Kk, = 0 leads

to the Jacobi and Laguerre orthogonal polynomials on the real line. There are
also some other special cases and related systems of hypergeometric polynomials
which were studied before, including Fasenmyer’s polynomials, see [26]. In general,
polynomials P, (z) and L, (z) turns out to be Sobolev orthogonal polynomials on
the real line with some explicit matrix measures. This can be derived on a way
proposed in papers [30] and [31].

Notice that we can consider the following more general hypergeometric
polynomials:

P,(z) =Pp(x;a,01,...,0p;51,...,0¢) =

=pr2fy(—n,nta a1, 081, ..., By ), (3)
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and
Ln(x) = Ln(xa ag, .. '7041);517 e aﬁq) =
:p+1Fq(—TL,O[1,...,O[p;ﬁh...,ﬁq;l’), nEZ-‘ra (4)
where a € (—1,400); a1,...,ap; B1,..., 04 € (0,400), are some parameters. Here

p,q € Z4, and the case p = 0 and/or ¢ = 0 means that ays and/or B;s are absent,
respectively.

Polynomials P, (z), probably, appeared for the first time in a paper of
Chaundy [5] (see formula (26) therein). For the case a = 1 they appeared later
in formula (21) on page 266 in [10|. Polynomials L, (z) also appeared for the first
time in the paper of Chaundy [5] (see formula (25) therein). Ten years later they
appeared in [10] (see formula (25) on page 267).

Observe that

Pr(z;0, 8,01, ..., 0p, K1y kp) =

=P,(z;a+p+1,01+1,...,0,+1;a+1, k1 +01+1,...,k,+0,+1), neZy, (5)

and
Ln(x;0,01,...,0p,K1,...,Kp) =

=Ly(z;01+1,...,0,+a+ 1,k +61+1,...,6,+6,+1), neZy, (6)

where «, 8,61,...,0, € (—1,+400), and K1, ..., k, € Z4, are arbitrary parameters;
p€N.

The importance of the orthogonality property was our main reason to
concentrate our attention on polynomials P, (x) and L, (x). Sobolev orthogonali-
ty for the polynomials P, (z) and L, (z) will be obtained in Theorem 1. Here we
shall use tools developed earlier in [30] and [31]. In [31] it was shown that Sobolev
orthogonal polynomials are related by a differential equation with orthogonal
systems A of functions acting in the direct sums of usual Li spaces of square-
summable (classes of the equivalence of) functions with respect to a positive
measure u. The case of a unique Li is of a special interest, since it allows to
use OPRL to obtain explicit systems of Sobolev orthogonal polynomials. The
main problem here is to choose a suitable linear differential operator in order
to get explicit representations for Sobolev orthogonal polynomials. The proof of
Theorem 1 is then a verification of such a choice and it goes in another direction:
we start from the already known polynomials to their properties.

Differential equations for the polynomials P,(x) and £, (x) will be presented
in Proposition 2. Obtaining linear differential operators which have orthogonal
polynomials (OP) as eigenfunctions is an old and important subject. In this
paper we start with hypergeometric representations of polynomials and therefore
they are eigenfunctions of differential pencils quite directly. Then we move to the
orthogonality. However the mainstream of this subject is to move in the opposite
direction: one starts from an explicit orthogonality and then seeks for differential
operators. Of course, the first classical examples of OP being eigenfunctions of a
differential operator are Jacobi, Laguerre and Hermite polynomials.
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H.L. Krall in [20] initiated the study of differential operators of higher orders
for OPRL systems. Many years later, in 1980th, investigations of Krall were
continued by Littlejohn, J. Koekoek, R. Koekoek and later by other mathemati-
cians. In these investigations an important role was played by generalized Jacobi
and Laguerre weights. This generalization includes additions of Dirac masses at
endpoints of the orthogonality measure supports. For more details one can see the
books [19] and [18].

The above investigations were continued by using inner products which
involved derivatives (Sobolev OP), see [4],[17]. Observe that in [17] generali-
zed Laguerre polynomials LoMoMie.., My (x) were related with ordinary Laguerre
polynomials by a linear differential operator with real coefficients, not depending
on n (the index of a polynomial). This shows that this case fits in the above new
scheme fromM[?)O] [31] (cf. Condition 1 in [30]). It is shown in [17] that polynomials
LMo, M1, (z) are orthogonal with respect to the followmg inner product:

—; = 04 _33 (V (v
< o=y e dx+ZMf )

where a > —1, N € N, and M, > 0. These polynomlals were called Laguerre-
Sobolev orthogonal polynomials. An explicit hypergeometric representation of
type Ly (z) from (4) was obtained, with p = N +1, ¢ = N + 2. A (2N + 3)-
term recurrence relation for the Laguerre-Sobolev OP was derived in [17] as well.
The particular case N = 1 of Laguerre-Sobolev OP was studied in [16]. In this
case, when « is a nonnegative integer it is deduced in [15] that these polynomials
are eigenfunctions of a linear differential operator with polynomial coefficients.
The differential operator has order 2ac + 4 if My > 0, M7 = 0; it has order 2a + 8
if Mg =0, My > 0; and it is of order 4o + 10 if My, M7 > 0. In the above case,
but without the constraint concerning the parameter «, differential operators of
infinite order, having the Laguerre-Sobolev type orthogonal polynomials as ei-
genfunctions, were obtained in [2].

Sobolev type Jacobi polynomials Py, 8, M1, Mz (z,11,12) were studied by Bavinck
in [3]|. They are orthogonal with respect to the inner product:

o 1
<pt>= g P [ ()1 - )1+ ) o

M (1)) (1) + M) (1) (1),

where o, 8 > —1, l1,lo € N, My, Ms > 0. P,f"’B’Ml’MQ(a:,ll,lg) are shown to be
eigenfunctions of linear differential operators. Conditions which imply the fini-
teness of the order of operators are presented. Observe that the particular case
of Gegenbauer-Sobolev OP was studied before in papers [4],[1], where similar
problems were adressed. A representation as 4F3 was given in [4].

The foregoing inner products were generalized by Durdn and de la Iglesia
replacing Dirac addents at the endpoints ¢; by addents of the form

(p(c;), P (¢5)s s PN (€)M (a(c5), ' (¢5), -y ) ()",
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where M is a positive semi-definite matrix, see |7],[8|. By using Casoratti determi-
nants they obtained explicit representations of polynomials and showed that
polynomials are eigenfunctions of a finite-order differential operators.

In [23] new representations for Jacobi Sobolev OP and Laguerre Sobolev OP
were given. It was also shown that the Laguerre-Sobolev OP can be obtained from
Jacobi-Sobolev OP by confluence.

Notice that some polynomial matrix perturbations of classical measures were
studied in [27].

Known methods for generating functions (see, e.g., [10, Chapter XIX], [25])
can be used to obtain some additional properties of the polynomials P, (z) and
L, (). We shall discuss the existence of recurrence relations for these polynomi-
als. In Theorem 2 we obtain a five-term recurrence relation for a special case of
polynomials L, (z), with p = 2, ¢ = 3. The latter provides a five-term recurrence
relation for £,, with p = 2, as a special case. In this case the polynomials £, (z)
(p = 2) have three important properties:

(1) the Sobolev orthogonality;

(2) these polynomials are (generalized) eigenvalues of a pencil of differential
operators;

(3) these polynomials are eigenvalues of a pencil of difference operators.

Of course, each of these features is valuable and £,, (p = 2) possess all of them.
These properties make polynomials £, (x) close to classical systems of polynomi-
als and their generalizations, see [29],[18]. Observe that properties (2) and (3)
are close to the bispectral problems studied for various orthogonal systems of
functions, see [6],[11],[28],[13],[8] and references therein.

Finally, some information on the location of zeros for P, (x) and L,,(z) will be

given in Proposition 3.
Notations. As usual, we denote by R,C,N,Z,Z,, the sets of real numbers,
complex numbers, positive integers, integers and non-negative integers, respecti-
vely; D, == {2z € C: |z] <r}, r > 0; D := Dy. By Z; we mean all integers
Jj satisfying the following inequality: & < j < I; (k,l € Z). By P we denote the
set of all polynomials with complex coefficients. By P, we mean the set of all
polynomials with real coefficients. By M7 we mean the transpose of a complex
matrix M. For a complex number ¢ we denote (¢)p =1, (¢)y = c¢---(c+k —1),
k € N (the shifted factorial or Pochhammer’s symbol). As usual, the generalized
hypergeometric function is denoted by

. A1y ...y,
an(aly'"7am;b1a"'7bn7x):an|: b b T =
1y+--50n;

. s (al)k(am)kﬁ
_Z (b1)g...(bp)i k!’

=0 k
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where a;, b;, v are complex numbers and b;s are not allowed to take negative
integer values.

2. Properties of some hypergeometric Sobolev orthogonal polynomials

Polynomials P, and £, admit some recursive integral representations. Let
a, B > —1. Consider the classical Jacobi and Laguerre polynomials:

Jn(z) = Jn(z;0,B) == 2Fi(—n,n+a+ B+ Lo+ 1Lz), (7)
L,(z) = Ly(z;) := 1F1(—n;a + 1; ), ne”Zs. (8)
Proposition 1. Let p € N, and o, 3,61,...,9, € (=1,400); K1,...,k, € N, be
arbitrary parameters. If p > 2, then
Pu(zi0,8,01,...,0p,K1,...,Kp) =

[(kp+0p+1) /15 .
= 0 1— K n ; y 5 gee ey —1, g ey — 5
T0, T D(ry) Jo © (L7 Palatian Bt dpmtom o ripe)t

z€C: |z] <1, neZy. (9)
If p =1, then
(k1 +01+1)
L'(61 + DT (k1)
ze€C: |z <1, neZy. (10)

1
Pn(z;a,B,01,Kk1) = / t51(1 — t)'“*lJn(zt; a, B)dt,
0

If p > 2, then
Ln(z50,01,...,0p,K1,...,kp) =
F(“p+5p+1)/15 —1
=—F "~ | (1 —=t)" " Lp(zt;0,01,...,0p—1,K1,...,Ky—1)dt,
L'(6p + DI(Kp) Jo g g
2€C, neZs. (11)

If p=1, then

. B I(k1 46 +1)
Ln(z;a,01,K1) = T(6; + 1) (k1)

z2€C, nelZs. (12)

1
/ 11 — )" L, (2t 0)dt,
0

Proof. Use hypergeometric representations of the corresponding polynomials and
Theorem 28 in [26, p. 85]. O

Fix an arbitrary p € N, and choose arbitrary parameters o, 3,61,...,0, €
(—1,+400), and k1, ..., K, € N. Introduce the following linear differential operator
L = L(4, k) with polynomial coefficients, § > —1, k € N:

St @) wwer a9

Ly@) = 5307
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Denote

D =D(81,...,8, k1, kp) = L(61, k1) L(0a, K2) . .. L(6p, ) =
cj(ac)@, cj(z) = c¢j(x;01,...,0pK1,...,Kp) €EP, (14)

where ¢, () is not the null polynomial, k := K1 + - -+ + K.
Now we shall show that the polynomials P,(z) and L,(z) are Sobolev
orthogonal polynomials on the real line.

Theorem 1. Let p € N, and o, f,601,...,6, € (—=1,400); K1,...,6, € N be
arbitrary parameters. Let D = D(01,...,0p;K1,...,kp) be given by (14), and

M(x) := (co(z), ..., (@) (co(2),..., culx)), zeR.

For polynomials Py (z) and L, (x), defined as in (1),(2), the following relations
hold:

= An(sn,rru Ay > 0, n,m € Z—i—; (15)

/0 oo(cn(x), L (x),..., L% (x)M(z) . 2% dx =

= Bnonm., B, >0, n,m¢€Zy. (16)
Proof. A direct calculation shows that
L(6y, kp)Pr(z50, 8,01, ...,0p,K1,...,Kp) =

. ’Pn(.%‘;()d,ﬁ,(sl,...,5p,1,/€1,...,/€p,1), lf,OZQ .
B oFi(—n,n+a+ B+ La+1;x), ifp=1"

and
L(0p,kp)Ln(x;00,01,...,0p,K1,...,Kp) =
_ { Ln(z;0,01,...,0p—1,K1,-..,Kp—-1), if p>2
a 1Fi(—n; o+ 1;2), ifp=1
Therefore

ﬁpn(x;a,ﬁ,él, e 0p K1y Kp) = o F1(—nynt a4+ 1 a4+ 15 2) = Ty (2 o, B),
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and
lA)ﬁn(x;a,(Sl, e 0p K1y Kp) = 1 F1(—nya+ 1) = Ly (2; o).

The latter expressions for Jacobi polynomials J, and Laguerre polynomials L,
can be inserted into their orthogonality relations to obtain relations (15),(16).
This finishes the proof. O

The hypergeometric nature of polynomials P,, and L, provides differential
equations for them.

Proposition 2. Let p € N, and o, 3,61,...,0, € (—1,400); K1,..., Ky € Z, be
arbitrary parameters. Let 6 = z%, and

P P
=0(0+a) H0+nj+5 =[]0 +6+1), (17)
7j=1 k=1

Dy:=K—-200+a+p+1)L, Dy:=zL, Dy:=K—z0L. (18)
Then Vn € Z,

DoPp(z) = —n(n+a+ B+ 1)D1P,(z), zeD; (19)

DyLy(2) = —nD1L,(2), ze€C. (20)

Proof. Use hypergeometric representations of the corresponding polynomials and
the differential equation for ,F,. O

We shall use a known generating function for the polynomials L, (x) from [10,
p. 267|, formula (25). We only added the convergence fact.

Lemma 1. Letp,q € Zy:p < q+1, be fized. Let oy, ..., 0p; 01, ..., 04 € (0,400),
be arbitrary parameters. The following relation holds:

[e.e]
tn
e pFy(ar,. . 0p; B, ..., By —at) = ZLn(x;al, oo B, ’ﬁQ)ﬁ’ (21)

where t,x € D. If p < q then relation (21) holds for all t,x € C.

Proof. Denote by g(t) = g»(t) the left-hand side of (21). Set
_ ) D ifp=qg+1,
D'_{ C, ifp<q

Fix an arbitrary = € D. Then ¢(t) = g»(¢) is an analytic function of ¢ in the
domain D. Let us calculate Taylor’s coeflicients for its expansion at ¢ = 0. By the
Leibniz rule we may write:

900 =3 (1) GF i o))

k=0

(et)(n*k)‘ _

t=0 t=0
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(k)
= () [ (1)) (o) (—2) _
‘M<k> 2 Gy By A )

— 1)j---
t =0
. - n (al)k...(ap)k —xk— " n (al)k...(ap)kik_
‘M<k> SRS Bl e

=Ly(z;00,...,0p;61,...,5q)-

Thus, relation (21) coincides with Taylor’s expansion of g(t) at ¢ = 0. O
Let p € N, and a,61,...,0, € (—1,+0); Ki,...,K, € Z4, be arbitrary
parameters. By Lemma 1, for all ¢,z € C the following relation is valid:

51+1,...,5p+1;

— ot =
a+ k4041 kp+0,+1

t
(& pr+1 |:

oo tn
= Zﬁn(w;a,dl,...,(5p,/-@1,...,/§p)—
n=0

. (22)

Let us now turn to the question of the existence of some recurrence relations
for polynomials P,, and L,. For big values of p and ¢ the expressions for the
coefficients of recurrence relations will be complicated and it is not clear that
they will be nontrivial. Thus, the non-triviality of the recurrence relations can
not be guaranteed.

We are not ready to treat effectively the case of general p and ¢. It looks
reasonable to investigate concrete systems of polynomials P,, or L,, having some
fixed values of p and ¢. Even in this case expressions for the coefficients can be
huge and probably of few use. We shall study the case p = 2, ¢ = 3, for the
polynomials L,,:

Ly (z) = Ly (z; a1, ag; B, B2, B3) = 3F3(—n, a1, a9; B1, B2, B3;), n € Zy, (23)
where aq, ag, B1, B2, B3 € (0,400). By Lemma 1 we may write:
n

o
t
et2F3 (061,062; 517 62753; _$t> - E Ln(x>ﬁ7 t7$ € C. (24)
n=0 ’

Fix an arbitrary number x € C\{0}. Introduce a new variable z:
z = —uxt.

Relation (24) may be written in the following form:

: — —1)" 2"
By (0,00 BBz = e Y La@ 2 ec (@)
n=0

n!’
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Denote the left-hand side of relation (25) by w(z). It satisfies the differential
equation for the hypergeometric function:

000+ 81— 1)(0+ B — 1)(0+ B3 — 1) — 20+ a1)(0 + ag) w(z) =0,  (26)
where 6 = z%. Set

by:=p1—1, by:=pf—1, b3:=f5-1, (27)

ci=bi +by+b3+6, b:=T+3(b1+by+b3)+biby+bibs +bobs,  (28)

d:=14 by + by + b + b1by + bibs + babs + bibabs, a =14+ a3 +as. (29)

Assume that z # 0. We can rewrite the differential operator [...] in (26) as a
sum of powers of #, and divide the whole equality by z to obtain:

d
%(93 + (b1 + by + b3)0% + (bybg + byb3 + bab3 )@ + bybobs)—

—0% — (a1 + a2)f — ajas] w(z) =0, z € C\{0}. (30)
In terms of usual derivatives this relation can be rewritten as

Puw® 4 cz?w” + (b — 2)zw” + (d — az)w’ — arasw =0, z € C\{0}. (31)
Denote the left-hand side of (31) by I(z). Since w(z) is an entire function, then
[(z) is entire as well. By continuity we conclude that relation (31) holds for z = 0.
Set

n

o(z) = @(z;2) = ZLn(az)(_;le', z e C. (32)
n=0

Then
w(z) = erp(z), zeC.

We can calculate the derivatives of w by the Leibniz rule and substitute the
resulting expressions into relation (31). If we cancel the term ez, we shall get the
following relation:

4 6 4 1
234)0(4) + 72390///_1_ 7223()0//_1_ 7323()0/_‘_ 742390_1_
T xT xT T

2 m 32//

‘ezt +e—z"¢ +c 2
x

3 ,, 1
X X

~ ~ ~

1
+(b—2)z¢" + (b— z);zgo’ +(b— z)ﬁch%—

1
+(d —az)¢ + (d— az)ggp — ajagp =0, z € C. (33)
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~

Denote the left-hand side of (33) by {(z). Observe that

oo 1 00 n
/ (=" Lyt (2) " (=1)" Ly yo(x)
#(2) = Z n! s &) = Z n! Wzn’
n=0 n=0
0 1 0o n
meoN (—=1)"*! Ly43(x) (4) B (=1)" Ly 44(z)
@ (z)—zo Rt S (z)_zo I A
n= n=

We can substitute the latter expressions into relation (33) to get a series expansion

of /l\(z), which is equal to zero. Thus, every Taylor coefficient I is zero, and this
provides a recurrence relation for polynomials L.

Theorem 2. Let oy, a9, 51, 52, 83 € (0,+00). Consider polynomials

L, (z) = Ly (z; o1, ag; 1, B2, B3) = 3F3(—n, a1, a9; b1, B2, B3; ), n € Zy,

with L_1(z) = L_s(x) = L_3(x) = 0. Let by, by, by, ¢, b, d, & be defined as in (27)-
(29). The following five-term recurrence relation holds:

(—k(k )k —2) — k(k —1)c—kb— d) Lys1(2)+

+ (4k:(k ~1)(k —2) + 3k(k — 1)e + 2kb + d) Ly, (x)+

+ (=6k (k= 1)k = 2) = 3k(k — 1)e = kD) Ly (2)+
+ (4k(k = 1)(k = 2) + k(k — 1)¢) L_a(x) — k(k — 1)(k — 2)Ly_s(x) =
— 2 [(k(k — 1) + k@ + a1a2) Ly ()
— (2k(k — 1) + k@)1 (@) + k(k — DLy o(@)],  keZy.  (34)

Proof. Calculate the Taylor coefficients lAkAof lA(z), as it was explained before the
statement of the theorem. Then multiply I, by (—1)FklzF*1 to get relation (34).
a

In conditions of Theorem 2 we additionally assume that

617ﬁ27ﬁ3 € [17+OO) (35)

Then parameters by, bo, bs; c,/b\, d are positive. This fact ensures that the coeffici-
ent by Lyyi(x) in the recurrence relation (34) is non-zero for k > 3. Since the
coefficient by Ly_3(z) is also non-zero for k > 3, the recurrence relation (34) is
non-trivial in this case.

Notice that by (6) we may write

Ln(w5 0, 61,00, K1, K2) =

=Lp(z;61 + 1,00+ La+ 1,k +01+1,ke+d+1), neZy, (36)
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where «, 1,02 € (—1,+00), and k1, k2 € Z4, are arbitrary parameters. Therefore
one can write the above recurrence relation for £, (z; o, 01, 02, K1, K2)-

In general, we can conjecture that polynomials L, (x) from (4), with p =
q — 1, satisfy a (¢ + 2)-term recurrence relation. This conjecture agrees with the
classical case of Laguerre polynomials, with R. Koekoek’s result mentioned in the
Introduction, and with Theorem 2.

Let us now discuss the case of polynomials P,,(z) and their recurrence relati-

ons. We shall use a known generating function for the polynomials P,,(x) from [5],
formula (26). As in the case of Lemma 1 we only add the convergence fact.

Lemma 2. Let p,q € Zi: p < q—1, and ¢: 0 < ¢ < %, be fized. Let

a;aq, ..., 0p;B1,. .., B¢ € (0,400), be arbitrary parameters. The following relation holds:
—a a a+1 4t
(1—t)" ok, (27 5 M Qs By Bys _(115)2) =
_ - (a)n . . n
_Z nl Pn(l‘,a,al,...,Oép,ﬁl,...,ﬁq)t ) (37)
n=0 ’
where 1 ]
t Dt ———.
,xeC: |t <, |x\<4c 5 (38)
Proof. Notice that condition (38) provides that
4at
—| <1 39
o 39

In fact, we may write:

_ Az||t] 4(4%—%)02 1-2¢ <1—2c+02:1
1 .

‘ 4zt -
S —tf? (1-c¢)? (I1—-¢? " (1-0¢)?

(1—1)?

Therefore the left-hand side of (37) is well-defined for all ¢,z satisfying condition (38).
Denote by R; the right-hand side of (37). At this point we do not know if the series
in R; converges. Consider the following two iterated series which differ by the order of
summation:

oo o0 n Z‘k

Ryi= 33 (@) (- nln + o) (40)
n=0 k=0 ) ’
x© n .Z‘k

Ry i= 32 S (@ (—n)i(n + @ (41)
k=0n=0 ) ’

where for brevity we denoted

uj = M’ jEeZy, (42)

(B1)j - (Ba);

and t, x are satisfying condition (38). We are going to prove that the series R3 converges
absolutely. Denote
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" _
nl

= Zu’“? (@)n(n+a)k|(=n)|

L 0 n
= Zuk% Z(a)n(” + a)k (n|ﬂ DIk (43)

k=0 " on=k

where we have removed the null terms. Denote the inner sum in the last row of (43) by
Si. By the ratio test it converges for all ¢ € D.. Changing the summation index j = n—k

we get
Sk:Z(a)ch( +k+a) | on|t|® Z + 2k) |7|_
3=0
= (@)alt|* (L = [t) 7", teD..
Then .
RBy= (1 1) (a2 (28 )
- k=0 U x-pnz)
o0 k
a+1\ ug 4|xt|
(1—[t)™ L LI -
W kz_o( ) ( 2 )k k! ((1—t|)2

a a+1 4|z|¢| > (44)

=(1—1|t F, —_— ; ;
( | |) p+2 (2 2 , 01, aapaﬁh 76q, (1*|t|)2

where we have used the following relation (see Lemma 5 in [26, p. 22]):

m=t(3),(55),
4lz||t]

By virtue of (39) with parameters |z|, |t| instead of x, ¢, we obtain that otz < 1, and
this proves the last line of (44). Thus, the series Rz converges absolutely. Let

oo o0

R3y = E g Akny, Ok = Uk + Wkn, Ukn, Vkn € R.
k=0n=0

By Theorem 2 in [12, p. 34] we conclude that

o0
> laj| < oo,
=0

where the series is composed of elements ay ;, placed in an arbitrary order. Let a; =
u; +1vj, u;j,v; € R. By the comparison test it follows that

oo o0
> lugl < 00, Y sl < oo
j=0 =0

By Theorem 1 in [12, p. 32] we obtain that

ZZ“’M = ZZum = Zw; (45)
j=0

k=0n=0 n=0 k=0
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SN vk =D vk = iv;. (46)
=0

k=0n=0 n=0 k=0

Summing relations (45) and (46) we get

Z Z Qk.n = Z Z QK n- (47)

k=0n=0 n=0 k=0

Therefore Rg = Ry. It remains to check that Rs coincides with the left-hand side of (37).
We may write:

Ry = Zukﬁ D (@n(=n)k(n+ a)s—.
k=0 " n=k s
Denote
> tn
Ty := Tg(a)n(—n)k(n +a)k—.

The series T} converges absolutely by the ratio test. Proceeding in a similar manner as
for Sk, we change the summation index j =n — k:

i j+k >0 j
7=0 7=0 ’

= (a)ar (=) (1 — )72k, t € D.

Therefore

[eS) k
Ra= (=07 @ () -

k=0
) k
_ a a+1 U 4xt
:(1—t) e = < > <— > =
%(2)1@ 2 ), K (1-1)2
—a a a+1 —4xt
:(1_t) p+2Fq (272aalv"'7ap;ﬂ17"'a/8q;(1_t)2>7 (48)

where we have used relation (39). Since R3 = Ry = Ry, the proof is complete. O
As an immediate consequence of Lemmas 1 and 2 we have the following result.

Corollary 1. Let p € N, and 61,...,0, € (—=1,400), Ki,...,k, € Z, be arbitrary
parameters. If a > —1 then

Lo(z;a,01,...,0p,K1,...,Kp) =
_n! “ne1C S 41,...,6,+1;
- 2mi |(|:1C epr+1[04+1,/€1+(51+1,...,/<p—|—(5p+1; — (] dc,

zxeC, nelZ;. (49)
Ifa,8€(—1,400): a+ 8> —1, then

Prl(x;0, 8,01, ..., 0p, K1, .., Kp) =

_ i n! —n—1 _ —a—B—l*
S 27mi (a4 B+ 1), qul ¢ (1=¢)

—4
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a+B+1 a+p+2 .
*pr2lpp1 il et SRR . SIS dg,
a+1l,k+6+1,...,k,+0,+1;  (1-)2
1
zeC: |z|< ne’Zy. (50)

4 )
Proof. The proof follows by calculating the corresponding Taylor coefficients in the above
Lemmas (with ¢ = ). O

In formula (37) on the left we see ,oF, with an argument 7(14_%)2. If we proceed as
for the case of L,, we shall get huge expressions because of this composition of functions.
We also have (1 —t)~“ instead of e~® which also has effect on the complexification.

Observe that 3F, polynomials of type P,, were already studied in [30]. A recurrence
relation for them was obtained by Fasenmyer’s method. This recurrence relation was
very large and, probably, of restricted use. It should be noticed that Fasenmyer’s method
seems to be more preferable in the case of polynomials P,,.

Let us turn to the question about the location of zeros of polynomials P, and L.
As usual, it is useful to use the Enestrom—Kakeya Theorem ([22, p. 136]).

Proposition 3. Letp,qg€Z:p>q+1, and
a€ (=1,400); ai,...,ap;P1,...,04 € (0,+00),
are some parameters. If
o > B, §E€Lg; ar =1, k€ ZLgyip, (51)

then all zeros of polynomials Py(x) = Pp(z;a,01,...,0p;51,...,04) and all zeros of
polynomials Ly, (z) = Ly, (z;a1,...,0p; 01, ..., B,) lie in the unit disc D.

Proof. Fix an arbitrary n € N. Since

Pn(x;avalw~'7ap;5la~"7ﬂq) :p+2Fq(_nan+a’aalv"'vap;ﬂl,"'aﬁq;x) =

- i(—n)k(n + a)kwﬁ -
Z . :

B LI G S C Y ) L
=0 (n - k‘)' (ﬁl)k .. (ﬁq)k k! =0 ’
where | (a1) ()i 1
L n! n a a1 )k - - O¢ k47 ———
di := (n— k)!( + Bk - - - (B)x k! >0,

Thus, the polynomial p(z) has degree n and positive coefficients. The reversed polynomial:

p'(2) := 2"p(1/z)
has degree n and positive coefficients as well. Observe that

1 1 (Br+k)...(By+ k)

i/ dier = (n—k)(n+a+k)(ar+k)... (ap+k)

(k + 1) S 1a k € ZO,7L—17

where we used condition (51). We can apply the Enestrom-Kakeya Theorem (][22, p.
136]) for the polynomial p*(z) to obtain that all its zeros lie in the domain D, := {z €
C: |z| > 1}. Therefore the zeros of P, lie in D.
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We may proceed for polynomials L,, in a similar way:

Ln(x;ala'"7O‘p;617"'76q) :p+1Fq(7n7a17'"aap;ﬂlv"'aﬂq;x) =

n! (). (ap)k (—2)*
( |

S dzt = (2,
k=0

k=0 (n =K (B)k---(Byx k!
where o 1
~ n! alk...apki o
dk'i(N—k)!(&)k--.(ﬁq)kk!>0’ z: z.
Since

di/diy1 <1, k€ Zon,

by the Enestrom—Kakeya Theorem we conclude that the reversed polynomial p* has its
zeros in D.. Thus, the zeros of L, lie in D as well. O

Let us make an illustration on the last result. Consider the following three systems
of polynomials:

fn(x) = 3F1(_77z,71',5;3;$), gn(x) = 4F1(_n7n+ 17”75;3;1.)7

and
hno(x) = 3F3(—n,m+ 1,2 + 1;1, 7 + 8,27 + 201; x), nez,.

o_o7%

o.0%

O_0z5

o_az 0o.0d 0.0 0.0& o_1 0.1z

“0_0zZ5 ¢

-0_05}
-0_075¢

Figure 1. Zeros of fip(x).
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. o.ong |

o_ool |

-0 00l [ o000l o.a0z

~o_onl | '

C o -p.oog |

Figure 2. Zeros of gao(x).

£} , -
1o}
0, 40 &0 &0 100 1E0 140
-10}
-z0 | ' -

Figure 3. Zeros of hso(x).
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Polynomials f,, and g, fit into the conditions of Proposition 3, while polynomi-
als h,, do not satisfy these conditions. Numerical calculations were performed by usi-
ng Mathematica, while by final formatting we used Paint.

In Figures 1 and 2 we see that all zeros of fi19(z) and go2g(x) are close to the origin and
they lie symmetrically (which is not surprising since polynomials have real coefficients).
It seems that all zeros are located on certain algebraic curves.

Figure 3 shows that zeros of goo(z) can lie outside the unit disc. They are located on
an interesting curve as well. Of course, the nature of the above mentioned curves is not
yet clear. However this encourages some further investigations on the location of zeros of
hypergeometric polynomials P,, and L,,.
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IIpo gesiki rinmepreoMerpudHi co00J/I€BChKI OPTOrOHAJIbHI MHOTOYJICHHU
3 KiIbKOMa HellepepBHUMU IapaMeTpamMu
C. M. Baropoauiok
Xapriscoruti naytonasvruti ynisepcumem imeni B. H. Kapasina
matidan Ceobodu, 4, Xapwie, Yepaina, 61022
B miit ctaTTi ME BUBYAEMO HACTYIHI TiepreoOMeTPUTIHI MHOTOYUICHHN:

Pro(x) = Pp(z; 06,01, .. .,0p,K1,...,Kp) =

= pp2Fppi(—n,n+a+p+1,00+1,....0,+La+ 1,k +d+1,...,6,+0,+1;2),
Ta
Ln(z) =Lop(x;0,01,...,0p,K1,...,kp) =
=1 Fpr1(—n, 01 +1,...,0, + Lo+ 1,k +61+1,...,6,+ 0, + 1;2), ne Ly,

e, f3,01,...,0, € (—1,400), 18 K1, ..., Ky € Z4, € geaxumu napamerpamu. Harypamns-
He YHCIIO p HETePEePBHUX TapaMeTpiB J1, . .., 0, MOXKe OyTH OOpaHUM JOBITHHO BEJIHKIM.
fcHo, Mo cHermiagpHU BUNANOK K1 = -+ - = K, = 0 IPU3BOAUTE J0 MHOro4IeHiB K00
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ta Jlareppa. 3Budaiino, nogiOHi Ta OLIbII 3arajbHi MOJIHOMEM BHHUKAJIU B JiTeparypi
panimme. Hamra Mera TyT nosisirae B Tomy, mo6 nokasaru, mo noginomu Py, (x) ta L, (z)
€ coDO0IeBCHKUMI OPTOTNOHAJIHLHUMH MHOTOUYJIEHAMHW Ha MiHCHINH OCi 3 JeIKUMHU SBHUMHI
MaTPUYHAME MipaMHU.

BaxksuBicTs opToroHasbHOCTI OysIa HAINIOIO TOJOBHOIO MPUYUHOIO 30CEPEIUTH HAITY
yBary Ha noainomax P, (x) ra L, (x). Tyr Mu BUKOpuCTOBYEMO /esiKi HaLIl IHCTPYMEHTH,
oTpuMaHi pasinre. 30KpeMa, HelomaBHO OyJI0 TOKa3aHo, IO COOOJIEBCHKI OPTOrOHABHI
MHOTOYJIEHU TIOB’si3aHi depe3 mudepeniriaibie piBHAHHSA 3 OPTOTOHAIBHUMEA CHCTEMAMHI
A dysKIiN, 010 AiI0TH y TPSAMUX CyMaX 3BUYANHUX Li MIPOCTOPIB KBAAPATUIHO CyMOBa-
Hux (Kjacis ekBiBasienTHOCTI) DyHKUi BigHOCHO 103uTHBHOI Mipu . Bunamok omuoro LIQL
Ma€ JIOJIATKOBY THKAaBiCTh, OCKIIbKY BiH /103Bosie BukopucroByBaru OPRL mis orpuma-
HHS $IBHUX CHCTEM CODOJIEBCBKUX OPTOrOHAJIbHUX MHOrodsiexis. QcHoBHa npobieMa TyT
TOJIATAE B 6UOOPT NI0T00AUL020 NHITH020 JUPEPEHUIAALHO20 ONEPATNOPG 3 MEMOI OMPU-
MAHHA ABHUT NPEICaAsAeHb CODOAEECHKUL OPMOZOHANHUL MHO20UAeHT6. 1licias 1boro
JI0Ka3 CIIBBiAHOIIEHh OPTOTOHATBLHOCTI € MEepeBIpKOI0 TAKOrO0 BHOOPY i MPOBOIUTHCSA B
IHITIOMY HAIPSMKY: MU TOYUHAEMO 3 BKe BIJIOMUX MHOTOYJIEHIB Ta HIEMO JIO 1X BJIACTHU-
BOCTEH.

Mwu TakoX KOPOTKO BWBYAEMO TaKi BIACTHUBOCTI BUINEHABEIEHUX TOJIHOMIB: iHTe-
rpasibHi npeacTaBieHHs, audepeHIia bHi pIBHIHHS Ta po3ranryBanus uHy/1is. [lobymoBa-
HO CHCTEMY TaKWX TOJIIHOMIB 3 OiCMEeKTPAIbHICTIO TIEBHOTO BHIY.

Kat04086i cr06a: OPTOTOHAJIBHI ITOJIHOMET; COB0JIEBChKA OPTOTOHAJIBHICTh; PEKY-
PE€HTHI CIIiBBiIHOIIIEHHS.

Ictopis crarTi: orpumana: 21 ceprmag 2023; ocranniit BapianT: 29 Bepecusa 2023
npuitHaTa: 2 xKoBTHA 2023.



