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On some hypergeometric Sobolev orthogonal

polynomials with several continuous parameters

In this paper we study the following hypergeometric polynomials:

Pn(x) = Pn(x;α, β, δ1, . . . , δρ, κ1, . . . , κρ) =

= ρ+2Fρ+1(−n, n+α+β+1, δ1+1, . . . , δρ+1;α+1, κ1+δ1+1, . . . , κρ+δρ+1;x),

and

Ln(x) = Ln(x;α, δ1, . . . , δρ, κ1, . . . , κρ) =

= ρ+1Fρ+1(−n, δ1+1, . . . , δρ+1;α+1, κ1+δ1+1, . . . , κρ+δρ+1;x), n ∈ Z+,

where α, β, δ1, . . . , δρ ∈ (−1,+∞), and κ1, . . . , κρ ∈ Z+, are some
parameters. The natural number ρ of the continuous parameters δ1, . . . , δρ
can be chosen arbitrarily large. It is seen that the special case κ1 = · · · =
κρ = 0 leads to Jacobi and Laguerre orthogonal polynomials. Of course,
such polynomials and more general ones appeared in the literature earlier.
Our aim here is to show that polynomials Pn(x) and Ln(x) are Sobolev
orthogonal polynomials on the real line with some explicit matrices of
measures.

The importance of the orthogonality property was our main reason to
concentrate our attention on polynomials Pn(x) and Ln(x). Here we shall
use some our tools developed earlier. In particular, it was shown recently
that Sobolev orthogonal polynomials are related by a di�erential equation
with orthogonal systems A of functions acting in the direct sums of usual
L2
µ spaces of square-summable (classes of the equivalence of) functions with

respect to a positive measure µ. The case of a unique L2
µ is of a special

interest, since it allows to use OPRL to obtain explicit systems of Sobolev
orthogonal polynomials. The main problem here is to choose a suitable li-
near di�erential operator in order to get explicit representations for Sobolev
orthogonal polynomials. The proof of the orthogonality relations is then a
veri�cation of such a choice and it goes in another direction: we start from
the already known polynomials to their properties.
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We also study brie�y such properties of the above polynomials: integral
representations, di�erential equations and location of zeros. A system of
such polynomials with a kind of the bispectrality property is constructed.

Keywords: orthogonal polynomials; Sobolev orthogonality; recurrence
relations.

2010 Mathematics Subject Classi�cation: 42C05.

1. Introduction

The theory of orthogonal polynomials on the real line (OPRL) is a classical
subject of analysis having a lot of applications [29],[9],[14]. The theory of Sobolev
orthogonal polynomials is less developed and recognized and it still remains to
be a terra incognita in some aspects [21]. As this theory may be viewed as a
generalization of the classical one, then one can expect that some properties and
objects from the classical theory will have their mirrors and extensions in the
theory of Sobolev orthogonal polynomials. For instance, the important property
for OPRL is that the multiplication by x operator in the corresponding L2

µ space is
symmetric. Under some general assumptions, a weaker property of symmetry with
respect to an inde�nite metric holds for Sobolev orthogonal polynomials [32]. We
intend to de�ne and study some generalizations of Jacobi and Laguerre orthogonal
polynomials. Namely, we shall study the following polynomials:

Pn(x) = Pn(x;α, β, δ1, . . . , δρ, κ1, . . . , κρ) =

= ρ+2Fρ+1(−n, n+α+β+1, δ1+1, . . . , δρ+1;α+1, κ1+δ1+1, . . . , κρ+δρ+1;x),
(1)

and

Ln(x) = Ln(x;α, δ1, . . . , δρ, κ1, . . . , κρ) =

= ρ+1Fρ+1(−n, δ1+1, . . . , δρ+1;α+1, κ1+δ1+1, . . . , κρ+δρ+1;x), n ∈ Z+, (2)

where α, β, δ1, . . . , δρ ∈ (−1,+∞), and κ1, . . . , κρ ∈ Z+, are some parameters.
Observe that the number ρ ∈ N of the continuous parameters δ1, . . . , δρ can
be arbitrarily large. It is clear that the special case κ1 = · · · = κρ = 0 leads
to the Jacobi and Laguerre orthogonal polynomials on the real line. There are
also some other special cases and related systems of hypergeometric polynomials
which were studied before, including Fasenmyer's polynomials, see [26]. In general,
polynomials Pn(x) and Ln(x) turns out to be Sobolev orthogonal polynomials on
the real line with some explicit matrix measures. This can be derived on a way
proposed in papers [30] and [31].

Notice that we can consider the following more general hypergeometric
polynomials:

Pn(x) = Pn(x; a, α1, . . . , αp;β1, . . . , βq) =

= p+2Fq(−n, n+ a, α1, . . . , αp;β1, . . . , βq;x), (3)
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and

Ln(x) = Ln(x;α1, . . . , αp;β1, . . . , βq) =

= p+1Fq(−n, α1, . . . , αp;β1, . . . , βq;x), n ∈ Z+, (4)

where a ∈ (−1,+∞); α1, . . . , αp;β1, . . . , βq ∈ (0,+∞), are some parameters. Here
p, q ∈ Z+, and the case p = 0 and/or q = 0 means that αks and/or βks are absent,
respectively.

Polynomials Pn(x), probably, appeared for the �rst time in a paper of
Chaundy [5] (see formula (26) therein). For the case a = 1 they appeared later
in formula (21) on page 266 in [10]. Polynomials Ln(x) also appeared for the �rst
time in the paper of Chaundy [5] (see formula (25) therein). Ten years later they
appeared in [10] (see formula (25) on page 267).

Observe that

Pn(x;α, β, δ1, . . . , δρ, κ1, . . . , κρ) =

= Pn(x;α+β+1, δ1+1, . . . , δρ+1;α+1, κ1+δ1+1, . . . , κρ+δρ+1), n ∈ Z+, (5)

and

Ln(x;α, δ1, . . . , δρ, κ1, . . . , κρ) =

= Ln(x; δ1 + 1, . . . , δρ + 1;α+ 1, κ1 + δ1 + 1, . . . , κρ + δρ + 1), n ∈ Z+, (6)

where α, β, δ1, . . . , δρ ∈ (−1,+∞), and κ1, . . . , κρ ∈ Z+, are arbitrary parameters;
ρ ∈ N.

The importance of the orthogonality property was our main reason to
concentrate our attention on polynomials Pn(x) and Ln(x). Sobolev orthogonali-
ty for the polynomials Pn(x) and Ln(x) will be obtained in Theorem 1. Here we
shall use tools developed earlier in [30] and [31]. In [31] it was shown that Sobolev
orthogonal polynomials are related by a di�erential equation with orthogonal
systems A of functions acting in the direct sums of usual L2

µ spaces of square-
summable (classes of the equivalence of) functions with respect to a positive
measure µ. The case of a unique L2

µ is of a special interest, since it allows to
use OPRL to obtain explicit systems of Sobolev orthogonal polynomials. The
main problem here is to choose a suitable linear di�erential operator in order
to get explicit representations for Sobolev orthogonal polynomials. The proof of
Theorem 1 is then a veri�cation of such a choice and it goes in another direction:
we start from the already known polynomials to their properties.

Di�erential equations for the polynomials Pn(x) and Ln(x) will be presented
in Proposition 2. Obtaining linear di�erential operators which have orthogonal
polynomials (OP) as eigenfunctions is an old and important subject. In this
paper we start with hypergeometric representations of polynomials and therefore
they are eigenfunctions of di�erential pencils quite directly. Then we move to the
orthogonality. However the mainstream of this subject is to move in the opposite
direction: one starts from an explicit orthogonality and then seeks for di�erential
operators. Of course, the �rst classical examples of OP being eigenfunctions of a
di�erential operator are Jacobi, Laguerre and Hermite polynomials.
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H.L. Krall in [20] initiated the study of di�erential operators of higher orders
for OPRL systems. Many years later, in 1980th, investigations of Krall were
continued by Littlejohn, J. Koekoek, R. Koekoek and later by other mathemati-
cians. In these investigations an important role was played by generalized Jacobi
and Laguerre weights. This generalization includes additions of Dirac masses at
endpoints of the orthogonality measure supports. For more details one can see the
books [19] and [18].

The above investigations were continued by using inner products which
involved derivatives (Sobolev OP), see [4],[17]. Observe that in [17] generali-
zed Laguerre polynomials Lα,M0,M1,...,MN

n (x) were related with ordinary Laguerre
polynomials by a linear di�erential operator with real coe�cients, not depending
on n (the index of a polynomial). This shows that this case �ts in the above new
scheme from [30],[31] (cf. Condition 1 in [30]). It is shown in [17] that polynomials
Lα,M0,M1,...,MN
n (x) are orthogonal with respect to the following inner product:

< f, g >=
1

Γ(α+ 1)

∫ ∞

0
xαe−xf(x)g(x)dx+

N∑
ν=0

Mνf
(ν)(0)g(ν)(0),

where α > −1, N ∈ N, and Mν ≥ 0. These polynomials were called Laguerre-
Sobolev orthogonal polynomials. An explicit hypergeometric representation of
type Ln(x) from (4) was obtained, with p = N + 1, q = N + 2. A (2N + 3)-
term recurrence relation for the Laguerre-Sobolev OP was derived in [17] as well.
The particular case N = 1 of Laguerre-Sobolev OP was studied in [16]. In this
case, when α is a nonnegative integer it is deduced in [15] that these polynomials
are eigenfunctions of a linear di�erential operator with polynomial coe�cients.
The di�erential operator has order 2α+4 if M0 > 0, M1 = 0; it has order 2α+8
if M0 = 0, M1 > 0; and it is of order 4α + 10 if M0,M1 > 0. In the above case,
but without the constraint concerning the parameter α, di�erential operators of
in�nite order, having the Laguerre-Sobolev type orthogonal polynomials as ei-
genfunctions, were obtained in [2].

Sobolev type Jacobi polynomials Pα,β,M1,M2
n (x, l1, l2) were studied by Bavinck

in [3]. They are orthogonal with respect to the inner product:

< p, q >=
Γ(α+ β + 2)

2α+β+1Γ(α+ 1)Γ(β + 1)

∫ 1

−1
p(x)q(x)(1− x)α(1 + x)βdx+

+M1p
(l1)(−1)q(l1)(−1) +M2p

(l2)(1)q(l2)(1),

where α, β > −1, l1, l2 ∈ N, M1,M2 ≥ 0. Pα,β,M1,M2
n (x, l1, l2) are shown to be

eigenfunctions of linear di�erential operators. Conditions which imply the �ni-
teness of the order of operators are presented. Observe that the particular case
of Gegenbauer-Sobolev OP was studied before in papers [4],[1], where similar
problems were adressed. A representation as 4F3 was given in [4].

The foregoing inner products were generalized by Dur�an and de la Iglesia
replacing Dirac addents at the endpoints cj by addents of the form

(p(cj), p
′(cj), ..., p

(N)(cj))M(q(cj), q
′(cj), ..., q

(N)(cj))
∗,
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whereM is a positive semi-de�nite matrix, see [7],[8]. By using Casoratti determi-
nants they obtained explicit representations of polynomials and showed that
polynomials are eigenfunctions of a �nite-order di�erential operators.

In [23] new representations for Jacobi Sobolev OP and Laguerre Sobolev OP
were given. It was also shown that the Laguerre-Sobolev OP can be obtained from
Jacobi-Sobolev OP by con�uence.

Notice that some polynomial matrix perturbations of classical measures were
studied in [27].

Known methods for generating functions (see, e.g., [10, Chapter XIX], [25])
can be used to obtain some additional properties of the polynomials Pn(x) and
Ln(x). We shall discuss the existence of recurrence relations for these polynomi-
als. In Theorem 2 we obtain a �ve-term recurrence relation for a special case of
polynomials Ln(x), with p = 2, q = 3. The latter provides a �ve-term recurrence
relation for Ln with ρ = 2, as a special case. In this case the polynomials Ln(x)
(ρ = 2) have three important properties:

(1) the Sobolev orthogonality;

(2) these polynomials are (generalized) eigenvalues of a pencil of di�erential
operators;

(3) these polynomials are eigenvalues of a pencil of di�erence operators.

Of course, each of these features is valuable and Ln (ρ = 2) possess all of them.
These properties make polynomials Ln(x) close to classical systems of polynomi-
als and their generalizations, see [29],[18]. Observe that properties (2) and (3)
are close to the bispectral problems studied for various orthogonal systems of
functions, see [6],[11],[28],[13],[8] and references therein.

Finally, some information on the location of zeros for Pn(x) and Ln(x) will be
given in Proposition 3.

Notations. As usual, we denote by R,C,N,Z,Z+, the sets of real numbers,
complex numbers, positive integers, integers and non-negative integers, respecti-
vely; Dr := {z ∈ C : |z| < r}, r > 0; D := D1. By Zk,l we mean all integers
j satisfying the following inequality: k ≤ j ≤ l; (k, l ∈ Z). By P we denote the
set of all polynomials with complex coe�cients. By Pr we mean the set of all
polynomials with real coe�cients. By MT we mean the transpose of a complex
matrix M . For a complex number c we denote (c)0 = 1, (c)k = c · · · (c + k − 1),
k ∈ N (the shifted factorial or Pochhammer's symbol). As usual, the generalized
hypergeometric function is denoted by

mFn(a1, . . . , am; b1, . . . , bn;x) = mFn

[
a1, . . . , am;
b1, . . . , bn;

x

]
=

=

∞∑
k=0

(a1)k...(am)k
(b1)k...(bn)k

xk

k!
,
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where aj , bj , x are complex numbers and bjs are not allowed to take negative
integer values.

2. Properties of some hypergeometric Sobolev orthogonal polynomials

Polynomials Pn and Ln admit some recursive integral representations. Let
α, β > −1. Consider the classical Jacobi and Laguerre polynomials:

Jn(x) = Jn(x;α, β) := 2F1(−n, n+ α+ β + 1;α+ 1;x), (7)

Ln(x) = Ln(x;α) := 1F1(−n;α+ 1;x), n ∈ Z+. (8)

Proposition 1. Let ρ ∈ N, and α, β, δ1, . . . , δρ ∈ (−1,+∞); κ1, . . . , κρ ∈ N, be
arbitrary parameters. If ρ ≥ 2, then

Pn(z;α, β, δ1, . . . , δρ, κ1, . . . , κρ) =

=
Γ(κρ + δρ + 1)

Γ(δρ + 1)Γ(κρ)

∫ 1

0
tδρ(1− t)κρ−1Pn(zt;α, β, δ1, . . . , δρ−1, κ1, . . . , κρ−1)dt,

z ∈ C : |z| < 1, n ∈ Z+. (9)

If ρ = 1, then

Pn(z;α, β, δ1, κ1) =
Γ(κ1 + δ1 + 1)

Γ(δ1 + 1)Γ(κ1)

∫ 1

0
tδ1(1− t)κ1−1Jn(zt;α, β)dt,

z ∈ C : |z| < 1, n ∈ Z+. (10)

If ρ ≥ 2, then
Ln(z;α, δ1, . . . , δρ, κ1, . . . , κρ) =

=
Γ(κρ + δρ + 1)

Γ(δρ + 1)Γ(κρ)

∫ 1

0
tδρ(1− t)κρ−1Ln(zt;α, δ1, . . . , δρ−1, κ1, . . . , κρ−1)dt,

z ∈ C, n ∈ Z+. (11)

If ρ = 1, then

Ln(z;α, δ1, κ1) =
Γ(κ1 + δ1 + 1)

Γ(δ1 + 1)Γ(κ1)

∫ 1

0
tδ1(1− t)κ1−1Ln(zt;α)dt,

z ∈ C, n ∈ Z+. (12)

Proof. Use hypergeometric representations of the corresponding polynomials and
Theorem 28 in [26, p. 85]. 2

Fix an arbitrary ρ ∈ N, and choose arbitrary parameters α, β, δ1, . . . , δρ ∈
(−1,+∞), and κ1, . . . , κρ ∈ N. Introduce the following linear di�erential operator
L = L(δ, k) with polynomial coe�cients, δ > −1, k ∈ N:

Ly(x) =
1

(δ + 1) . . . (δ + k)
x−δ

(
xk+δy(x)

)(k)
, y(x) ∈ P. (13)
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Denote

D̂ = D̂(δ1, . . . , δρ;κ1, . . . , κρ) = L(δ1, κ1)L(δ2, κ2) . . . L(δρ, κρ) =

=
κ∑

j=0

cj(x)
dj

dxj
, cj(x) = cj(x; δ1, . . . , δρ;κ1, . . . , κρ) ∈ P, (14)

where cκ(x) is not the null polynomial, κ := κ1 + · · ·+ κρ.
Now we shall show that the polynomials Pn(x) and Ln(x) are Sobolev

orthogonal polynomials on the real line.

Theorem 1. Let ρ ∈ N, and α, β, δ1, . . . , δρ ∈ (−1,+∞); κ1, . . . , κρ ∈ N be

arbitrary parameters. Let D̂ = D̂(δ1, . . . , δρ;κ1, . . . , κρ) be given by (14), and

M(x) := (c0(x), . . . , cκ(x))
T (c0(x), . . . , cκ(x)), x ∈ R.

For polynomials Pn(x) and Ln(x), de�ned as in (1),(2), the following relations
hold:

∫ 1

0
(Pn(x),P ′

n(x), . . . ,P(κ)
n (x))M(x)


Pm(x)
P ′
m(x)
...

P(κ)
m (x)

xα(1− x)βdx =

= Anδn,m, An > 0, n,m ∈ Z+; (15)

∫ ∞

0
(Ln(x),L′

n(x), . . . ,L(κ)
n (x))M(x)


Lm(x)
L′
m(x)
...

L(κ)
m (x)

xαe−xdx =

= Bnδn,m, Bn > 0, n,m ∈ Z+. (16)

Proof. A direct calculation shows that

L(δρ, κρ)Pn(x;α, β, δ1, . . . , δρ, κ1, . . . , κρ) =

=

{
Pn(x;α, β, δ1, . . . , δρ−1, κ1, . . . , κρ−1), if ρ ≥ 2

2F1(−n, n+ α+ β + 1;α+ 1;x), if ρ = 1
;

and
L(δρ, κρ)Ln(x;α, δ1, . . . , δρ, κ1, . . . , κρ) =

=

{
Ln(x;α, δ1, . . . , δρ−1, κ1, . . . , κρ−1), if ρ ≥ 2

1F1(−n;α+ 1;x), if ρ = 1
.

Therefore

D̂Pn(x;α, β, δ1, . . . , δρ, κ1, . . . , κρ) = 2F1(−n, n+α+β+1;α+1;x) = Jn(x;α, β),
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and
D̂Ln(x;α, δ1, . . . , δρ, κ1, . . . , κρ) = 1F1(−n;α+ 1;x) = Ln(x;α).

The latter expressions for Jacobi polynomials Jn and Laguerre polynomials Ln

can be inserted into their orthogonality relations to obtain relations (15),(16).
This �nishes the proof. 2

The hypergeometric nature of polynomials Pn and Ln provides di�erential
equations for them.

Proposition 2. Let ρ ∈ N, and α, β, δ1, . . . , δρ ∈ (−1,+∞); κ1, . . . , κρ ∈ Z+, be
arbitrary parameters. Let θ = z d

dz , and

K := θ(θ + α)

ρ∏
j=1

(θ + κj + δj), L :=

ρ∏
k=1

(θ + δk + 1), (17)

D0 := K − zθ(θ + α+ β + 1)L, D1 := zL, D2 := K − zθL. (18)

Then ∀n ∈ Z+,

D0Pn(z) = −n(n+ α+ β + 1)D1Pn(z), z ∈ D; (19)

D2Ln(z) = −nD1Ln(z), z ∈ C. (20)

Proof. Use hypergeometric representations of the corresponding polynomials and
the di�erential equation for pFq. 2

We shall use a known generating function for the polynomials Ln(x) from [10,
p. 267], formula (25). We only added the convergence fact.

Lemma 1. Let p, q ∈ Z+: p ≤ q+1, be �xed. Let α1, . . . , αp;β1, . . . , βq ∈ (0,+∞),
be arbitrary parameters. The following relation holds:

etpFq (α1, . . . , αp;β1, . . . , βq;−xt) =

∞∑
n=0

Ln(x;α1, . . . , αp;β1, . . . , βq)
tn

n!
, (21)

where t, x ∈ D. If p ≤ q then relation (21) holds for all t, x ∈ C.

Proof. Denote by g(t) = gx(t) the left-hand side of (21). Set

D :=

{
D, if p = q + 1,
C, if p ≤ q,

.

Fix an arbitrary x ∈ D. Then g(t) = gx(t) is an analytic function of t in the
domain D. Let us calculate Taylor's coe�cients for its expansion at t = 0. By the
Leibniz rule we may write:

g(n)(0) =

n∑
k=0

(
n

k

)
(pFq (α1, . . . , αp;β1, . . . , βq;−xt))(k)t

∣∣∣
t=0

(
et
)(n−k)

∣∣∣
t=0

=
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=
n∑

k=0

(
n

k

)  ∞∑
j=0

(α1)j . . . (αp)j
(β1)j . . . (βq)j

(−x)j

j!
tj

(k)

t

∣∣∣∣∣∣∣
t=0

=

=
n∑

k=0

(
n

k

)
(α1)k . . . (αp)k
(β1)k . . . (βq)k

(−x)k =
n∑

k=0

(−n)k
(α1)k . . . (αp)k
(β1)k . . . (βq)k

xk

k!
=

= Ln(x;α1, . . . , αp;β1, . . . , βq).

Thus, relation (21) coincides with Taylor's expansion of g(t) at t = 0. 2
Let ρ ∈ N, and α, δ1, . . . , δρ ∈ (−1,+∞); κ1, . . . , κρ ∈ Z+, be arbitrary

parameters. By Lemma 1, for all t, x ∈ C the following relation is valid:

etρFρ+1

[
δ1 + 1, . . . , δρ + 1;

α+ 1, κ1 + δ1 + 1, . . . , κρ + δρ + 1;
− xt

]
=

=

∞∑
n=0

Ln(x;α, δ1, . . . , δρ, κ1, . . . , κρ)
tn

n!
. (22)

Let us now turn to the question of the existence of some recurrence relations
for polynomials Pn and Ln. For big values of p and q the expressions for the
coe�cients of recurrence relations will be complicated and it is not clear that
they will be nontrivial. Thus, the non-triviality of the recurrence relations can
not be guaranteed.

We are not ready to treat e�ectively the case of general p and q. It looks
reasonable to investigate concrete systems of polynomials Pn or Ln, having some
�xed values of p and q. Even in this case expressions for the coe�cients can be
huge and probably of few use. We shall study the case p = 2, q = 3, for the
polynomials Ln:

Ln(x) = Ln(x;α1, α2;β1, β2, β3) = 3F3(−n, α1, α2;β1, β2, β3;x), n ∈ Z+, (23)

where α1, α2, β1, β2, β3 ∈ (0,+∞). By Lemma 1 we may write:

et2F3 (α1, α2;β1, β2, β3;−xt) =

∞∑
n=0

Ln(x)
tn

n!
, t, x ∈ C. (24)

Fix an arbitrary number x ∈ C\{0}. Introduce a new variable z:

z = −xt.

Relation (24) may be written in the following form:

2F3 (α1, α2;β1, β2, β3; z) = e
z
x

∞∑
n=0

Ln(x)
(−1)n

xn
zn

n!
, z ∈ C. (25)
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Denote the left-hand side of relation (25) by w(z). It satis�es the di�erential
equation for the hypergeometric function:

[θ(θ + β1 − 1)(θ + β2 − 1)(θ + β3 − 1)− z(θ + α1)(θ + α2)]w(z) = 0, (26)

where θ = z d
dz . Set

b1 := β1 − 1, b2 := β2 − 1, b3 := β3 − 1, (27)

c := b1 + b2 + b3 + 6, b̂ := 7 + 3(b1 + b2 + b3) + b1b2 + b1b3 + b2b3, (28)

d := 1 + b1 + b2 + b3 + b1b2 + b1b3 + b2b3 + b1b2b3, α̂ = 1 + α1 + α2. (29)

Assume that z ̸= 0. We can rewrite the di�erential operator [...] in (26) as a
sum of powers of θ, and divide the whole equality by z to obtain:[

d

dz
(θ3 + (b1 + b2 + b3)θ

2 + (b1b2 + b1b3 + b2b3)θ + b1b2b3)−

−θ2 − (α1 + α2)θ − α1α2

]
w(z) = 0, z ∈ C\{0}. (30)

In terms of usual derivatives this relation can be rewritten as

z3w(4) + cz2w′′′ + (̂b− z)zw′′ + (d− α̂z)w′ − α1α2w = 0, z ∈ C\{0}. (31)

Denote the left-hand side of (31) by l(z). Since w(z) is an entire function, then
l(z) is entire as well. By continuity we conclude that relation (31) holds for z = 0.
Set

φ(z) = φ(z;x) :=

∞∑
n=0

Ln(x)
(−1)n

xn
zn

n!
, z ∈ C. (32)

Then

w(z) = e
z
xφ(z), z ∈ C.

We can calculate the derivatives of w by the Leibniz rule and substitute the
resulting expressions into relation (31). If we cancel the term e

z
x , we shall get the

following relation:

z3φ(4) +
4

x
z3φ′′′ +

6

x2
z3φ′′ +

4

x3
z3φ′ +

1

x4
z3φ+

+cz2φ′′′ + c
3

x
z2φ′′ + c

3

x2
z2φ′ + c

1

x3
z2φ+

+(̂b− z)zφ′′ + (̂b− z)
2

x
zφ′ + (̂b− z)

1

x2
zφ+

+(d− α̂z)φ′ + (d− α̂z)
1

x
φ− α1α2φ = 0, z ∈ C. (33)
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Denote the left-hand side of (33) by l̂(z). Observe that

φ′(z) =
∞∑
n=0

(−1)n+1

n!

Ln+1(x)

xn+1
zn, φ′′(z) =

∞∑
n=0

(−1)n

n!

Ln+2(x)

xn+2
zn,

φ′′′(z) =
∞∑
n=0

(−1)n+1

n!

Ln+3(x)

xn+3
zn, φ(4)(z) =

∞∑
n=0

(−1)n

n!

Ln+4(x)

xn+4
zn.

We can substitute the latter expressions into relation (33) to get a series expansion
of l̂(z), which is equal to zero. Thus, every Taylor coe�cient l̂k is zero, and this
provides a recurrence relation for polynomials Ln.

Theorem 2. Let α1, α2, β1, β2, β3 ∈ (0,+∞). Consider polynomials

Ln(x) = Ln(x;α1, α2;β1, β2, β3) = 3F3(−n, α1, α2;β1, β2, β3;x), n ∈ Z+,

with L−1(x) = L−2(x) = L−3(x) ≡ 0. Let b1, b2, b3, c, b̂, d, α̂ be de�ned as in (27)-
(29). The following �ve-term recurrence relation holds:(

−k(k − 1)(k − 2)− k(k − 1)c− kb̂− d
)
Lk+1(x)+

+
(
4k(k − 1)(k − 2) + 3k(k − 1)c+ 2kb̂+ d

)
Lk(x)+

+
(
−6k(k − 1)(k − 2)− 3k(k − 1)c− kb̂

)
Lk−1(x)+

+ (4k(k − 1)(k − 2) + k(k − 1)c)Lk−2(x)− k(k − 1)(k − 2)Lk−3(x) =

= x [(k(k − 1) + kα̂+ α1α2)Lk(x)−

− (2k(k − 1) + kα̂)Lk−1(x) + k(k − 1)Lk−2(x)] , k ∈ Z+. (34)

Proof. Calculate the Taylor coe�cients l̂k of l̂(z), as it was explained before the
statement of the theorem. Then multiply l̂k by (−1)kk!xk+1 to get relation (34).
2

In conditions of Theorem 2 we additionally assume that

β1, β2, β3 ∈ [1,+∞). (35)

Then parameters b1, b2, b3; c, b̂, d are positive. This fact ensures that the coe�ci-
ent by Lk+1(x) in the recurrence relation (34) is non-zero for k ≥ 3. Since the
coe�cient by Lk−3(x) is also non-zero for k ≥ 3, the recurrence relation (34) is
non-trivial in this case.

Notice that by (6) we may write

Ln(x;α, δ1, δ2, κ1, κ2) =

= Ln(x; δ1 + 1, δ2 + 1;α+ 1, κ1 + δ1 + 1, κ2 + δ2 + 1), n ∈ Z+, (36)
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where α, δ1, δ2 ∈ (−1,+∞), and κ1, κ2 ∈ Z+, are arbitrary parameters. Therefore
one can write the above recurrence relation for Ln(x;α, δ1, δ2, κ1, κ2).

In general, we can conjecture that polynomials Ln(x) from (4), with p =
q − 1, satisfy a (q + 2)-term recurrence relation. This conjecture agrees with the
classical case of Laguerre polynomials, with R. Koekoek's result mentioned in the
Introduction, and with Theorem 2.

Let us now discuss the case of polynomials Pn(x) and their recurrence relati-
ons. We shall use a known generating function for the polynomials Pn(x) from [5],
formula (26). As in the case of Lemma 1 we only add the convergence fact.

Lemma 2. Let p, q ∈ Z+: p ≤ q − 1, and c: 0 < c < 1
2 , be �xed. Let

a;α1, . . . , αp;β1, . . . , βq ∈ (0,+∞), be arbitrary parameters. The following relation holds:

(1− t)−a
p+2Fq

(
a

2
,
a+ 1

2
, α1, . . . , αp;β1, . . . , βq;−

4xt

(1− t)2

)
=

=

∞∑
n=0

(a)n
n!

Pn(x; a, α1, . . . , αp;β1, . . . , βq)t
n, (37)

where

t, x ∈ C : |t| < c, |x| < 1

4c
− 1

2
. (38)

Proof. Notice that condition (38) provides that∣∣∣∣ 4xt

(1− t)2

∣∣∣∣ < 1. (39)

In fact, we may write:∣∣∣∣ 4xt

(1− t)2

∣∣∣∣ = 4|x||t|
|1− t|2

<
4
(

1
4c −

1
2

)
c

(1− c)2
=

1− 2c

(1− c)2
≤ 1− 2c+ c2

(1− c)2
= 1.

Therefore the left-hand side of (37) is well-de�ned for all t, x satisfying condition (38).
Denote by R1 the right-hand side of (37). At this point we do not know if the series
in R1 converges. Consider the following two iterated series which di�er by the order of
summation:

R2 :=

∞∑
n=0

∞∑
k=0

(a)n
tn

n!
(−n)k(n+ a)kuk

xk

k!
, (40)

R3 :=

∞∑
k=0

∞∑
n=0

(a)n
tn

n!
(−n)k(n+ a)kuk

xk

k!
, (41)

where for brevity we denoted

uj :=
(α1)j . . . (αp)j
(β1)j . . . (βq)j

, j ∈ Z+, (42)

and t, x are satisfying condition (38). We are going to prove that the series R3 converges
absolutely. Denote

R̂3 :=

∞∑
k=0

∞∑
n=0

∣∣∣∣(a)n tnn! (−n)k(n+ a)kuk
xk

k!

∣∣∣∣ =
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=

∞∑
k=0

uk
|x|k

k!

∞∑
n=k

(a)n(n+ a)k|(−n)k|
|t|n

n!
=

=

∞∑
k=0

uk
|x|k

k!

∞∑
n=k

(a)n(n+ a)k
|t|n

(n− k)!
, (43)

where we have removed the null terms. Denote the inner sum in the last row of (43) by
Sk. By the ratio test it converges for all t ∈ Dc. Changing the summation index j = n−k
we get

Sk =

∞∑
j=0

(a)j+k(j + k + a)k
|t|j+k

j!
= (a)2k|t|k

∞∑
j=0

(a+ 2k)j
|t|j

j!
=

= (a)2k|t|k(1− |t|)−a−2k, t ∈ Dc.

Then

R̂3 = (1− |t|)−a
∞∑
k=0

(a)2k
uk

k!

(
|xt|

(1− |t|)2

)k

=

= (1− |t|)−a
∞∑
k=0

(a
2

)
k

(
a+ 1

2

)
k

uk

k!

(
4|xt|

(1− |t|)2

)k

=

= (1− |t|)−a
p+2Fq

(
a

2
,
a+ 1

2
, α1, . . . , αp;β1, . . . , βq;

4|x||t|
(1− |t|)2

)
, (44)

where we have used the following relation (see Lemma 5 in [26, p. 22]):

(a)2k = 4k
(a
2

)
k

(
a+ 1

2

)
k

.

By virtue of (39) with parameters |x|, |t| instead of x, t, we obtain that 4|x||t|
(1−|t|)2 < 1, and

this proves the last line of (44). Thus, the series R3 converges absolutely. Let

R3 =

∞∑
k=0

∞∑
n=0

ak,n, ak,n = uk,n + ivk,n, uk,n, vk,n ∈ R.

By Theorem 2 in [12, p. 34] we conclude that

∞∑
j=0

|aj | < ∞,

where the series is composed of elements ak,j , placed in an arbitrary order. Let aj =
uj + ivj , uj , vj ∈ R. By the comparison test it follows that

∞∑
j=0

|uj | < ∞,

∞∑
j=0

|vj | < ∞.

By Theorem 1 in [12, p. 32] we obtain that

∞∑
k=0

∞∑
n=0

uk,n =

∞∑
n=0

∞∑
k=0

uk,n =

∞∑
j=0

uj ; (45)
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∞∑
k=0

∞∑
n=0

ivk,n =

∞∑
n=0

∞∑
k=0

ivk,n =

∞∑
j=0

ivj . (46)

Summing relations (45) and (46) we get

∞∑
k=0

∞∑
n=0

ak,n =

∞∑
n=0

∞∑
k=0

ak,n. (47)

Therefore R3 = R2. It remains to check that R3 coincides with the left-hand side of (37).
We may write:

R3 =

∞∑
k=0

uk
xk

k!

∞∑
n=k

(a)n(−n)k(n+ a)k
tn

n!
.

Denote

Tk :=

∞∑
n=k

(a)n(−n)k(n+ a)k
tn

n!
.

The series Tk converges absolutely by the ratio test. Proceeding in a similar manner as
for Sk, we change the summation index j = n− k:

Tk =

∞∑
j=0

(a)j+k(j + k + a)k(−1)k
tj+k

j!
= (a)2k(−t)k

∞∑
j=0

(a+ 2k)j
tj

j!
=

= (a)2k(−t)k(1− t)−a−2k, t ∈ Dc.

Therefore

R3 = (1− t)−a
∞∑
k=0

(a)2k
uk

k!

(
−xt

(1− t)2

)k

=

= (1− t)−a
∞∑
k=0

(a
2

)
k

(
a+ 1

2

)
k

uk

k!

(
− 4xt

(1− t)2

)k

=

= (1− t)−a
p+2Fq

(
a

2
,
a+ 1

2
, α1, . . . , αp;β1, . . . , βq;

−4xt

(1− t)2

)
, (48)

where we have used relation (39). Since R3 = R2 = R1, the proof is complete. 2
As an immediate consequence of Lemmas 1 and 2 we have the following result.

Corollary 1. Let ρ ∈ N, and δ1, . . . , δρ ∈ (−1,+∞), κ1, . . . , κρ ∈ Z+, be arbitrary
parameters. If α > −1 then

Ln(x;α, δ1, . . . , δρ, κ1, . . . , κρ) =

=
n!

2πi

∮
|ζ|=1

ζ−n−1eζρFρ+1

[
δ1 + 1, . . . , δρ + 1;

α+ 1, κ1 + δ1 + 1, . . . , κρ + δρ + 1;
− xζ

]
dζ,

x ∈ C, n ∈ Z+. (49)

If α, β ∈ (−1,+∞) : α+ β > −1, then

Pn(x;α, β, δ1, . . . , δρ, κ1, . . . , κρ) =

=
1

2πi

n!

(α+ β + 1)n

∮
|ζ|= 1

4

ζ−n−1(1− ζ)−α−β−1∗
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∗ρ+2Fρ+1

[
α+β+1

2 , α+β+2
2 , δ1 + 1, . . . , δρ + 1;

α+ 1, κ1 + δ1 + 1, . . . , κρ + δρ + 1;
− 4xζ

(1− ζ)2

]
dζ,

x ∈ C : |x| < 1

4
, n ∈ Z+. (50)

Proof. The proof follows by calculating the corresponding Taylor coe�cients in the above
Lemmas (with c = 1

3 ). 2
In formula (37) on the left we see p+2Fq with an argument − 4xt

(1−t)2 . If we proceed as

for the case of Ln we shall get huge expressions because of this composition of functions.
We also have (1− t)−a instead of e−x which also has e�ect on the complexi�cation.

Observe that 3F2 polynomials of type Pn were already studied in [30]. A recurrence
relation for them was obtained by Fasenmyer's method. This recurrence relation was
very large and, probably, of restricted use. It should be noticed that Fasenmyer's method
seems to be more preferable in the case of polynomials Pn.

Let us turn to the question about the location of zeros of polynomials Pn and Ln.
As usual, it is useful to use the Enestr�om�Kakeya Theorem ([22, p. 136]).

Proposition 3. Let p, q ∈ Z+: p ≥ q + 1, and

a ∈ (−1,+∞); α1, . . . , αp;β1, . . . , βq ∈ (0,+∞),

are some parameters. If

αj ≥ βj , j ∈ Z1,q; αk ≥ 1, k ∈ Zq+1,p, (51)

then all zeros of polynomials Pn(x) = Pn(x; a, α1, . . . , αp;β1, . . . , βq) and all zeros of
polynomials Ln(x) = Ln(x;α1, . . . , αp;β1, . . . , βq) lie in the unit disc D.

Proof. Fix an arbitrary n ∈ N. Since

Pn(x; a, α1, . . . , αp;β1, . . . , βq) = p+2Fq(−n, n+ a, α1, . . . , αp;β1, . . . , βq;x) =

=

n∑
k=0

(−n)k(n+ a)k
(α1)k . . . (αp)k
(β1)k . . . (βq)k

xk

k!
=

=

n∑
k=0

n!

(n− k)!
(n+ a)k

(α1)k . . . (αp)k
(β1)k . . . (βq)k

(−x)k

k!
=

n∑
k=0

dkz
k =: p(z),

where

dk :=
n!

(n− k)!
(n+ a)k

(α1)k . . . (αp)k
(β1)k . . . (βq)k

1

k!
> 0, z := −x.

Thus, the polynomial p(z) has degree n and positive coe�cients. The reversed polynomial:

p∗(z) := znp(1/z)

has degree n and positive coe�cients as well. Observe that

dk/dk+1 =
1

(n− k)

1

(n+ a+ k)

(β1 + k) . . . (βq + k)

(α1 + k) . . . (αp + k)
(k + 1) ≤ 1, k ∈ Z0,n−1,

where we used condition (51). We can apply the Enestr�om�Kakeya Theorem ([22, p.
136]) for the polynomial p∗(z) to obtain that all its zeros lie in the domain De := {z ∈
C : |z| > 1}. Therefore the zeros of Pn lie in D.
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We may proceed for polynomials Ln in a similar way:

Ln(x;α1, . . . , αp;β1, . . . , βq) = p+1Fq(−n, α1, . . . , αp;β1, . . . , βq;x) =

=

n∑
k=0

(−n)k
(α1)k . . . (αp)k
(β1)k . . . (βq)k

xk

k!
=

=

n∑
k=0

n!

(n− k)!

(α1)k . . . (αp)k
(β1)k . . . (βq)k

(−x)k

k!
=

n∑
k=0

d̂kz
k =: p̂(z),

where

d̂k :=
n!

(n− k)!

(α1)k . . . (αp)k
(β1)k . . . (βq)k

1

k!
> 0, z := −x.

Since
d̂k/d̂k+1 ≤ 1, k ∈ Z0,n−1,

by the Enestr�om�Kakeya Theorem we conclude that the reversed polynomial p̂∗ has its
zeros in De. Thus, the zeros of Ln lie in D as well. 2

Let us make an illustration on the last result. Consider the following three systems
of polynomials:

fn(x) = 3F1(−n, π, 5; 3;x), gn(x) = 4F1(−n, n+ 1, π, 5; 3;x),

and
hn(x) = 3F3(−n, π + 1, 2π + 1; 1, π + 8, 2π + 201;x), n ∈ Z+.

Figure 1. Zeros of f10(x).
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Figure 2. Zeros of g20(x).

Figure 3. Zeros of h30(x).
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Polynomials fn and gn �t into the conditions of Proposition 3, while polynomi-
als hn do not satisfy these conditions. Numerical calculations were performed by usi-
ng Mathematica, while by �nal formatting we used Paint.

In Figures 1 and 2 we see that all zeros of f10(x) and g20(x) are close to the origin and
they lie symmetrically (which is not surprising since polynomials have real coe�cients).
It seems that all zeros are located on certain algebraic curves.

Figure 3 shows that zeros of g20(x) can lie outside the unit disc. They are located on
an interesting curve as well. Of course, the nature of the above mentioned curves is not
yet clear. However this encourages some further investigations on the location of zeros of
hypergeometric polynomials Pn and Ln.
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Ïðî äåÿêi ãiïåðãåîìåòðè÷íi ñîáîëåâñüêi îðòîãîíàëüíi ìíîãî÷ëåíè
ç êiëüêîìà íåïåðåðâíèìè ïàðàìåòðàìè

Ñ. Ì. Çàãîðîäíþê
Õàðêiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Â. Í. Êàðàçiíà

ìàéäàí Ñâîáîäè, 4, Õàðêiâ, Óêðà¨íà, 61022
Â öié ñòàòòi ìè âèâ÷à¹ìî íàñòóïíi ãiïåðãåîìåòðè÷íi ìíîãî÷ëåíè:

Pn(x) = Pn(x;α, β, δ1, . . . , δρ, κ1, . . . , κρ) =

= ρ+2Fρ+1(−n, n+ α+ β + 1, δ1 + 1, . . . , δρ + 1;α+ 1, κ1 + δ1 + 1, . . . , κρ + δρ + 1;x),

òà
Ln(x) = Ln(x;α, δ1, . . . , δρ, κ1, . . . , κρ) =

= ρ+1Fρ+1(−n, δ1 + 1, . . . , δρ + 1;α+ 1, κ1 + δ1 + 1, . . . , κρ + δρ + 1;x), n ∈ Z+,

äå α, β, δ1, . . . , δρ ∈ (−1,+∞), òà κ1, . . . , κρ ∈ Z+, ¹ äåÿêèìè ïàðàìåòðàìè. Íàòóðàëü-
íå ÷èñëî ρ íåïåðåðâíèõ ïàðàìåòðiâ δ1, . . . , δρ ìîæå áóòè îáðàíèì äîâiëüíî âåëèêèì.
ßñíî, ùî ñïåöiàëüíèé âèïàäîê κ1 = · · · = κρ = 0 ïðèçâîäèòü äî ìíîãî÷ëåíiâ ßêîái
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òà Ëàãåððà. Çâè÷àéíî, ïîäiáíi òà áiëüø çàãàëüíi ïîëiíîìè âèíèêàëè â ëiòåðàòóði
ðàíiøå. Íàøà ìåòà òóò ïîëÿãà¹ â òîìó, ùîá ïîêàçàòè, ùî ïîëiíîìè Pn(x) òà Ln(x)
¹ ñîáîëåâñüêèìè îðòîãîíàëüíèìè ìíîãî÷ëåíàìè íà äiéñíié îñi ç äåÿêèìè ÿâíèìè
ìàòðè÷íèìè ìiðàìè.

Âàæëèâiñòü îðòîãîíàëüíîñòi áóëà íàøîþ ãîëîâíîþ ïðè÷èíîþ çîñåðåäèòè íàøó
óâàãó íà ïîëiíîìàõ Pn(x) òà Ln(x). Òóò ìè âèêîðèñòîâó¹ìî äåÿêi íàøi iíñòðóìåíòè,
îòðèìàíi ðàíiøå. Çîêðåìà, íåùîäàâíî áóëî ïîêàçàíî, ùî ñîáîëåâñüêi îðòîãîíàëüíi
ìíîãî÷ëåíè ïîâ'ÿçàíi ÷åðåç äèôåðåíöiàëüíå ðiâíÿííÿ ç îðòîãîíàëüíèìè ñèñòåìàìè
A ôóíêöié, ùî äiþòü ó ïðÿìèõ ñóìàõ çâè÷àéíèõ L2

µ ïðîñòîðiâ êâàäðàòè÷íî ñóìîâà-
íèõ (êëàñiâ åêâiâàëåíòíîñòi) ôóíêöié âiäíîñíî ïîçèòèâíî¨ ìiðè µ. Âèïàäîê îäíîãî L2

µ

ìà¹ äîäàòêîâó öiêàâiñòü, îñêiëüêè âií äîçâîëÿ¹ âèêîðèñòîâóâàòè OPRL äëÿ îòðèìà-
ííÿ ÿâíèõ ñèñòåì ñîáîëåâñüêèõ îðòîãîíàëüíèõ ìíîãî÷ëåíiâ. Îñíîâíà ïðîáëåìà òóò
ïîëÿãà¹ â âèáîði ïiäõîäÿùîãî ëiíiéíîãî äèôåðåíöiàëüíîãî îïåðàòîðà ç ìåòîþ îòðè-
ìàííÿ ÿâíèõ ïðåäñòàâëåíü ñîáîëåâñüêèõ îðòîãîíàëüíèõ ìíîãî÷ëåíiâ. Ïiñëÿ öüîãî
äîêàç ñïiââiäíîøåíü îðòîãîíàëüíîñòi ¹ ïåðåâiðêîþ òàêîãî âèáîðó i ïðîâîäèòüñÿ â
iíøîìó íàïðÿìêó: ìè ïî÷èíà¹ìî ç âæå âiäîìèõ ìíîãî÷ëåíiâ òà éäåìî äî ¨õ âëàñòè-
âîñòåé.

Ìè òàêîæ êîðîòêî âèâ÷à¹ìî òàêi âëàñòèâîñòi âèùåíàâåäåíèõ ïîëiíîìiâ: iíòå-
ãðàëüíi ïðåäñòàâëåííÿ, äèôåðåíöiàëüíi ðiâíÿííÿ òà ðîçòàøóâàííÿ íóëiâ. Ïîáóäîâà-
íî ñèñòåìó òàêèõ ïîëiíîìiâ ç áiñïåêòðàëüíiñòþ ïåâíîãî âèäó.
Êëþ÷îâi ñëîâà: îðòîãîíàëüíi ïîëiíîìè; ñîáîëåâñüêà îðòîãîíàëüíiñòü; ðåêó-
ðåíòíi ñïiââiäíîøåííÿ.
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