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On integration with respect to �lter

This article is devoted to the study of one generalization of the Riemann
integral. Namely, in the paper, it was observed that the classical de�nition
of the Riemann integral over a �nite segment as a limit of integral sums,
when the diameter of the division of the segment tends to zero, can be
replaced by a limit of integral sums over a �lter of sets, which can be descri-
bed in a certain "good way". This idea was continued, and in the work we
propose a new concept - the integral of a function over a �lter on the set of
all tagged partitions of a segment. Using of �lters is a very good method in
questions related to convergence or some of its analogues in general topologi-
cal vector spaces. Namely, if the space is non-metrizable, then the concept
of convergence is introduced precisely with the help of �lters. Also, using
�lters, you can formulate the concept of completeness and its analogues.
The completeness of spaces is one of the central concepts of the theory of
topological vector spaces, since Banach spaces are complete. That is, using
a generalization of the completeness of spaces constructed using �lters, we
can explore various generalizations of Banach spaces. We study standard
issues related to integration. For example, does the integrability of the �lter
function imply its boundedness? The answer to this question is a�rmati-
ve. Namely: the concept of �lter boundedness of a function is introduced,
and it is shown that if a function is integrable over �lter, then its integral
sums are bounded over the �lter, and this function itself is bounded in the
classical sense. Next, we showed that the �lter integral satis�es the linearity
property, namely, the integral over �lter of the sum of two functions is the
sum of the �lter integrals of these functions. We introduce the concept of
an exactly tagged �lter, and with the help of such �lters we study the �lter
integrability of unbounded functions on a segment. We give an example of
a speci�c unbounded function and a speci�c �lter under which this function
is integrable. Next, we prove a theorem that describes unbounded �lter-
integrable functions on a segment. The last section of the article is devoted
to the integration of functions relative to the �lter on a subsegment of this
segment.
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1. Introduction

Let us remind main concepts which we use in this paper. Throughout this
article Ω stand for a non-empty set. Non-empty family of subsets F ⊂ 2Ω is called
�lter on Ω, if F satis�es the following axioms:

1. ∅ /∈ F;

2. if A, B ∈ F then A ∩B ∈ F;

3. if A ∈ F and D ⊃ A then D ∈ F.

Also very useful for us is a concept of �lter base. Non-empty family of subsets
B ⊂ 2Ω is called �lter base on Ω, if ∅ /∈ B and for every A, B ∈ B there exists
C ∈ B such that C ⊂ A∩B. We say that �lter base generates �lter F if and only
if for each A ∈ F there is B ∈ B such that B ⊂ A.

Let f : R → R be a function. For t ∈ R denote O(t) the family of all nei-
ghbourhoods of t. Let F be a �lter on R, y ∈ R. Function f is said to be convergent
to y over �lter F (denote y = lim

F
f), if for each U ∈ O(y) there exists A ∈ F such

that for each t ∈ A the following holds true: f(t) ∈ U . We refers, for example, to
[1] for more information about �lter and related concepts.

The concept of �lter is a very powerful tool for studying di�erent properties of
general topological vector spaces. For example, in [3] author studies convergence
over ideal, generated by the modular function. Ideal is a concept dual to �lter. In
[2] we study completeness and its generalization using �lters.

In this article we refer our attention to classical Riemann integral. Let us
remind how we can construct this object. Let [a, b] ⊂ R, let f : [a, b] → R be a
continuous function. Denote Π = {a ≤ ξ1 ≤ ξ2 ≤ ... ≤ ξn = b} the partition of

[a, b], in other words,
n
∪

k=1
[ξk−1, ξk] = [a, b]. Consider also the set T = {t1, t2, ..., tn}

such that for each k = 1, 2, ..., n tk ∈ [ξk−1, ξk]. Let us call the pair (Π, T ) by the
tagged partition on the segment. Denote d(Π) the diameter of the Π � maximum
length of [ξk−1, ξk], where k = 1, 2, ..., n. Let us recall that function f is said to be

Riemann integrable if there exist the limit I = lim
d(Π)→0

n∑
k=1

f(tk) · |ξk−ξk−1|, and we

call this limit the Riemann integral of the function f , and write I =
b∫
a
f(t)dt. We

know many di�erent properties of this integral, for example linearity, integration
on subsegment of [a, b] etc.

If we look at the de�nition of Riemann integral more attentively, we realize
that, in fact we can use one special �lter and obtain desirable result. In next
section we are going to develop this idea.

2. Integration with respect to �lter

Just for simplicity we are going to consider functions, de�ned on [0, 1]. Let
f : [0, 1] → R be a function. As above, denote Π = {a ≤ ξ1 ≤ ξ2 ≤ ... ≤
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ξn = b} the partition of [0, 1], in other words,
n
∪

k=1
[ξk−1, ξk] = [0, 1]. Consider also

the set T = {t1, t2, ..., tn} such that for each k = 1, 2, ..., n tk ∈ [ξk−1, ξk]. For
k = 1, 2, ..., n denote ∆k := |ξk − ξk−1|. Denote also TP[0, 1] the set of all tagged
partition of [0, 1]. For a tagged partition (Π, T ) ∈ TP[0, 1] denote

S(f,Π, T ) =
n∑

k=1

f(tk)∆k.

Now we are going to introduce the central de�nition of this paper. It seems that
the this de�nition is new. At least, we didn't �nd it in the literature.

De�nition 1. Let f : [0, 1] → R be a function, F be a �lter on TP[0, 1].
We say that f is integrable over �lter F (F-integrable for short), if there exists
I ∈ R such that I = lim

F
S(f,Π, T ). The number I is called the F-integral of the

f (denote I =
1∫
0

fdF).

Remark 1. The fact that f is F-integrable we will write as follows:

f ∈ Int(F).

Remark 2. Using De�nition 1 we can construct the Riemann integral as
follows. Let δ > 0 be a real positive number. Denote

P<δ = {(Π, T ) ∈ TP[0, 1] : d(Π) < δ},

where d(Π) stands for diameter of Π. Consider now

B<δ = {P<δ : δ > 0}.

It is easy to check that B<δ is a �lter base. Denote F<δ �lter generate by B<δ.
Let f : [0, 1] → R be a function. Then f is integrable by Riemann if there exists
the limit lim

F<δ

S(f,Π, T ).

Bellow we study di�erent properties of �lter integration. Let us introduce one
more technical concept.

De�nition 2. Let X be a non-empty set, f : X → R be a function, and F be
a �lter on X. We say that f is bounded with respect to F (F-bounded for short), if
there is C > 0 such that there exists A ∈ F such that for every t ∈ A |f(t)| < C.

The following lemma is very simple, but for readers convenient we present its
proof.

Lemma 1. Let X be a non-empty set, f : X → R be a function, and F be a
�lter on X. Suppose that there exists I ∈ R, I = lim

F
f . Then f is F-bounded.

Proof. We know that I = lim
F

f . It means that for every ε > 0 there exists

A ∈ F such that for all t ∈ A |f(t)− I| < ε. Consider

|f(t)| − |I| ≤ |f(t)− I| < ε.
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In other words, |f(t)| ≤ |I|+ ε. Then just put C := |I|+ ε.
The next theorem generalizes well-know fact about Riemann integral: if functi-

on in integrable by Riemann then it's bounded.

Theorem 1. Let F be a �lter on TP[0, 1], f : [0, 1] → R be a function, and
f ∈ Int(F). Then S(f,Π, T ) is F-bounded.

Proof. Just use Lemma 1.
Let us formulate well-known fact about Riemann integral, using �lters.

Theorem 2. Let f : [0, 1] → R, there exists lim
F<δ

S(f,Π, T ). Then f is bounded,

in other words, there is C > 0 such that for all t ∈ [0, 1] |f(t)| ≤ C.
The next theorem is natural generalization of the Theorem 2.

Theorem 3. Let f : [0, 1] → R, let F be a �lter on TP [0, 1] such that for every
A ∈ F there exists B ∈ F<δ such that B ⊂ A and let there exists I ∈ R such that
I = lim

F
S(f,Π, T ). Then C > 0 such that for each t ∈ [0, 1] we have |f(t)| < C.

Proof. There exists I ∈ R such that I = lim
F

S(f,Π, T ) if and only if for all

ε > 0 there exists A ∈ F such that for all (Π, T ) ∈ A |S(f,Π, T ) − I| < ε. We
know that for A ∈ F there is B ∈ F<δ such that B ⊂ A, then, particularly, for
all ε > 0 there exists A ∈ F there is B ∈ F<δ such that B ⊂ A such that for all
(Π, T ) ∈ B |S(f,Π, T ) − I| < ε ⇒ for all ε > 0 there exists B ∈ F<δ such that
for all (Π, T ) ∈ B |S(f,Π, T ) − I| < ε. So using Theorem 2, there exists C > 0
such that for each t ∈ [0, 1] we have |f(t)| < C, in other words, f is bounded.

Now we are going to demonstrate that �lter integration has additive property.
To demonstrate this we proof next easy two lemmas. The following Lemmas 2
and 3 are well-known, but for readers comprehension we present their proofs.

Lemma 2. Let X be a non-empty set, f, g : X → R be a functions, and F be
a �lter on X. Let x = lim

F
f , y = lim

F
g. Then lim

F
(f + g) = x+ y.

Proof. We know that x = lim
F

f , so for each U ∈ O(x) there is A ∈ F such

that f(A) ⊂ U . Analogically, y = lim
F

f , it means that for each V ∈ O(x) there is

B ∈ F such that f(B) ⊂ V . We have to demonstrate that for each W ∈ O(x+ y)
there exists C ∈ F such that (f + g)(C) ⊂ W . Let �x W ∈ O(x + y). Then
there exist W1 ∈ O(x) and W2 ∈ O(y) such that W ⊃ W1 + W2. Then there
are C1, C2 ∈ F such that f(C1) ⊂ W1 and f(C2) ⊂ W2. Denote C := C1 ∩ C2.
Clearly that C ∈ F. So

(f + g)(C) = f(C) + g(C) ⊂ W1 +W2 ⊂ W.

Lemma 3. Let X be a non-empty set, f : X → R be a function, F be a �lter
on X, and α ∈ R. Let x = lim

F
f . Then lim

F
αf = αx.

Proof. x = lim
F

f , it means that for each U ∈ O(x) there is A ∈ F such that

f(A) ⊂ U . We have to demonstrate that for all V ∈ O(αx) there is B ∈ F such
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that (αf)(B) ⊂ V . Suppose that α ̸= 0. The case α = 0 is obvious. Remark that
if W ∈ O(x) then αW ∈ O(αx). So just put B := A. Then (αf)(B) = αf(B) ⊂
αU ∈ O(αx).

Theorem 4. Let F be a �lter on TP[0, 1], f, g : [0, 1] → R be a functions,
α, β ∈ R, f ∈ Int(F) and g ∈ Int(F). Then (αf + βg) ∈ Int(F)

Proof. Just use Lemmas 2 and 3.

3. Integration with respect to di�erent �lters

In the previous section we've studied arithmetic properties of integral over
�lter and problems deals with boundedness. This section is devoted to integration
over di�erent �lters and its relations.

Remark 3. Let us note that despite the fact that this section is devoted to
the integration with respect to di�erent �lters, here we describe some properties
of �lters deals with integration. Explicit examples of �lters di�erent from one,
described in Remark 2, appear in the following sections.

For (Π, T ) ∈ TP[0, 1] and t ∈ T we denote ∆(t) length of the element of
partition of Π which covers t.

Let (Π1, T1), (Π2, T2) be partitions of [0, 1]. Consider

ρ((Π1, T1), (Π2, T2)) =∑
t∈T1∩T2

|∆1(t)−∆2(t)|+
∑
T1\T2

∆1(t) +
∑
T2\T1

∆2(t).

For easy using of concept de�ned above consider F : [0, 1] → l1[0, 1], such that
F(t) = et, where

et(τ) =

{
1, if τ = t;

0, otherwise.

It is clearly then that

ρ((Π1, T1), (Π2, T2)) = ||S(F,Π1, T1)− S(F,Π2, T2)||.

Now we are going to demonstrate that the mapping ρ, de�ned above, is a
metric, or distance between two tagged partitions.

Proposition 1. Consider ρ : TP[0, 1]× TP[0, 1] → R, ρ((Π1, T1), (Π2, T2)) =
||S(F,Π1, T1)− S(F,Π2, T2)||. Then ρ satis�es all metric axioms.

Proof.

1. let (Π1, T1) = (Π2, T2).

It is clear that in this case ρ((Π1, T1), (Π2, T2)) = 0;

2. let ρ((Π1, T1), (Π2, T2)) = 0.

Then ρ((Π1, T1), (Π2, T2)) =
∑

t∈T1∩T2

|∆1(t)−∆2(t)|+
∑

T1\T2

∆1(t)+
∑

T2\T1

∆2(t) =

0. We have a sum of non-negative numbers equals to 0. This means that
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� ∀t ∈ T1 ∩ T2 |∆1(t)−∆2(t)| = 0 ⇒ ∀t ∈ T1 ∩ T2 ∆1(t) = ∆2(t);

� ∀t ∈ T1 \ T2 ∆1(t) = 0;

� ∀t ∈ T2 \ T1 ∆2(t) = 0;

⇒ (Π1, T1) = (Π2, T2).

3. consider (Π1, T1), (Π2, T2), (Π3, T3). Then

ρ((Π1, T1), (Π2, T2)) =

||S(F,Π1, T1)− S(F,Π2, T2) + S(F,Π3, T3)− S(F,Π3, T3)|| ≤
||S(F,Π1, T1)− S(F,Π3, T3)||+ ||S(F,Π3, T3)− S(F,Π2, T2)|| =

ρ((Π1, T1), (Π3, T3)) + ρ((Π3, T3), (Π2, T2))

Now we introduce very important concept.

De�nition 3. Let F1,F2 be �lters on TP [0, 1]. We say that F2 ρ-dominates �-
lter F1 (F2 ≻ρ F1), if for every ε < 0 and for eachA1 ∈ F1 there existsA2 ∈ F2 such
that for all (Π2, T2) ∈ A2 there is (Π1, T1) ∈ A1 such that ρ((Π1, T1), (Π2, T2)) < ε.

Proposition 2. Let F2 ⊃ F1. Then F2 ρ-dominates F1.

Proof. As F2 ⊃ F1 we obtain that if A ∈ F1 then A ∈ F2. Consider an
arbitrary ε > 0. Then for every A1 ∈ F1 there is A2 ∈ F2, A2 := A1 such that
for each (Π2, T2) ∈ A2 there exists (Π1, T1) ∈ A1, (Π1, T1) := (Π2, T2) such that
ρ ((Π1, T1), (Π2, T2)) = ρ ((Π2, T2), (Π2, T2)) = 0 < ε.

Previous proposition shows us that ρ-dominance generates some relation of
order on TP[0, 1] and is more general concept that relation of inclusion.

It is clear that if F1 ⊂ F2 and f ∈ Int(F1) then f ∈ Int(F2) � just use the
de�nition of function limit over �lter. So we can formulate next easy proposition.

Proposition 3. Let f : [0, 1] → R be a function, F1, F2 be �lters on TP[0, 1]
such that F1 ⊂ F2 and f ∈ Int(F1). Then f ∈ Int(F2).

Theorem 5. Let F1,F2 be �lters on [0, 1]. Let f : [0, 1] → R be a bounded
function. Let I = lim

F1

S(f,Π, T ) and F2 ≻ρ F1. Then I = lim
F2

S(f,Π, T ).

Proof. Denote C := sup
t∈[0,1]

|f(t)|.

We have to proof that for every ε > 0 there exists B ∈ F2 such that for each
(ΠB, TB) ∈ B we have |S(f,ΠB, TB)− I| < ε.

We know that for every ε > 0 there exists A ∈ F1 such that for each (Π1, T1) ∈
A we have |S(f,Π1, T1)− I| < ε.

Now for an arbitrary ε > 0 and A ∈ F1 found above one can �nd A2 ∈ F2 such
that for all (Π2, T2) ∈ A2 there is (Π1, T1) ∈ A1 such that ρ((Π1, T1), (Π2, T2)) < ε.
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Then put B := A2. Then for all (ΠB, TB) ∈ B we have (Π1, T1) ∈ A1 such that

|S(f,ΠB, TB)− I| =
|S(f,ΠB, TB)− S(f,Π1, T1) + S(f,Π1, T1)− I| ≤

|S(f,ΠB, TB)− S(f,Π1, T1)|+ |S(f,Π1, T1)− I| =∑
t∈TB∩T1

|f(t)| · |∆B(t)−∆1(t)|+
∑

t∈TB\T1

|f(t)| ·∆B(t)+∑
t∈T1\TB

|f(t)| ·∆1(t) + ε ≤ C · ρ((ΠB, TB), (Π1, T )) + ε ≤

Cε+ ε ≤ ε(1 + C).

4. Exactly tagged �lters

In this part of our paper we consider problems deals �lter integration of
unbounded functions.

De�nition 4. Let B be a �lter base on TP [0, 1]. We say that B is exactly
tagged if there exist A ⊂ [0, 1] � a strictly decreasing sequence of numbers such
that for each B ∈ B and for every (Π, T ) ∈ B we have that T ∩A = ∅.

De�nition 5.We say that �lter F on TP [0, 1] is exactly tagged if there exists
exactly tagged base B of F.

Theorem 6. If �lter F on TP [0, 1] is exactly tagged then there exists
unbounded function f : [0, 1] → R such that f ∈ Int(F).

Proof. Denote N−1 =

{
1

n

}
n∈N

and consider next �lter base B = (Bn)n∈N on

TP [0, 1]:
B1 =

{
(Π, T ) : T ∩ N−1 = ∅ and d(Π) < 1

}
;

B2 =

{
(Π, T ) : T ∩ N−1 = ∅ and d(Π) <

1

2

}
;

B3 =

{
(Π, T ) : T ∩ N−1 = ∅ and d(Π) <

1

3

}
;

...

Bm =

{
(Π, T ) : T ∩ N−1 = ∅ and d(Π) <

1

m

}
.

Consider now

f(t) =

n, if t =
1

n
, n ∈ N

0, otherwise
.

Then for each n ∈ N and for every (Π, T ) ∈ Bn we have that S(f,Π, T ) = 0,
so lim

B
S(f,Π, T ) = 0.

For a tagged partition (Π, T ) of [0, 1] and τ ∈ [0, 1] denote ℓ(Π, T, τ) the
number which is equal to the length of the segment ∆ ∈ Π, for which τ ∈ ∆, if
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τ ∈ T . If τ /∈ T , we put ℓ(Π, T, τ) = 0. In this notation

S(f,Π, T ) =
∑

t∈[0,1]

f(t)ℓ(Π, T, t).

Theorem 7. For a �lter F on TP [0, 1] the following assertions are equivalent:

1. There exists an unbounded function f : [0, 1] → [0,+∞) such that S(f,Π, T )
is F-bounded;

2. There exists a countable subset {tn}n∈N ⊂ [0, 1] such that there is A ∈ F
such that for every (Π, T ) ∈ A∑

n∈N
n · ℓ(Π, T, tn) < 1.

Proof. (1)⇒(2): Let f be a non-negative, unbounded function on [0, 1] such
that there is C > 0 and B ∈ F such that for each (Π, T ) ∈ B we have

∑
t∈[0,1]

f(t) ·

ℓ(Π, T, t) < C. As f is unbounded, there exists (αn) ⊂ [0, 1] such that for every
n ∈ N f(αn) ≥ Cn. Then there exists (αn) ⊂ [0, 1], C > 0, there is A ∈ F, A := B
such that for all (Π, T ) ∈ A we obtain:

∑
t∈[0,1]

n · ℓ(Π, T, αn) ≤
∑
n∈N

f(αn)

C
· ℓ(Π, T, αn) ≤

1

C

∑
t∈[0,1]

f(t) · ℓ(Π, T, t) < 1

C
· C = 1.

(2)⇒(1): Let there exists a countable subset {tn}n∈N ⊂ [0, 1] and C > 0 such
that there is A ∈ F such that for every (Π, T ) ∈ A

∑
n∈N

n·ℓ(Π, T, tn) < C. Consider

function

f(t) =

{
n, if t = αn, n ∈ N
0, if t ̸= αn

.

Obviously, f(t) is unbounded. Then there is C > 0 and there is B ∈ F, B := A
such that for every (Π, T ) ∈ A

∑
t∈[0,1]

f(t) · ℓ(Π, T, t) ≤
∑
n∈N

f(αn) · ℓ(Π, T, αn) ≤∑
n∈N

n · ℓ(Π, T, αn) < C

.
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5. Integration over �lter on a subsegment

Our next goal is as follows: if function f is integrable on [0, 1] over �lter F on
TP[0, 1] then for an arbitrary [α, β] ⊂ [0, 1] function f is is integrable on [α, β]
over �lter F.

To achieve this purpose we need to construct some restriction of �lter F on
subsegment [α, β] ⊂ [0, 1]. Now we present how we can construct such restriction.

Consider an arbitrary [α, β] ⊂ [0, 1]. We consider only T such that T ∩(α, β) ̸=
∅. Consider an arbitrary (Π, T ) ∈ TP [0, 1].

We have four cases:

1. min{T ∩ (α, β)} > min{Π ∩ (α, β)}
max{T ∩ (α, β)} < max{Π ∩ (α, β)};

2. min{T ∩ (α, β)} > max{Π ∩ (0, α)}
max{T ∩ (α, β)} < max{Π ∩ (α, β)};

3. min{T ∩ (α, β)} > min{Π ∩ (α, β)}
max{T ∩ (α, β)} < min{Π ∩ (β, 1)};

4. min{T ∩ (α, β)} > max{Π ∩ (0, α)
max{T ∩ (α, β)} < min{Π ∩ (β, 1)}.

We have to construct a restriction of (Π, T ) on [α, β]. In each of four described
cases we have such (Πk, Tk) ∈ TP [α, β], k = 1, 2, 3, 4:

1. Π1 =

(
Π\
(
(Π∩ [0, α))∪(Π∩(β, 1))∪min{Π∩(α, β)}∪max{Π∩(α, β)}

))
∪

{α, β}
T1 = T \

(
(T ∩ [0, α)) ∪ (T ∩ (β, 1])

)
;

2. Π2 =

(
Π \

(
(Π ∩ [0, α)) ∪max{Π ∩ (α, β)} ∪ (Π ∩ (β, 1))

))
∪ {α, β}

T2 = T1;

3. Π3 =

(
Π \

(
(Π ∩ [0, α)) ∪min{Π ∩ (α)} ∪ (Π ∩ [β, 1))

))
∪ {α, β}

T3 = T1;

4. Π4 =

(
Π \

(
(Π ∩ [0, α)) ∪ (Π ∩ [β, 1))

))
∪ {α, β}

T4 = T1.

Now if we have an arbitrary �lter F on TP [0, 1] we can construct �lter F[α,β]

on TP [α, β], induced with F in such way: consider an arbitrary A ∈ F and for each
(Π, T ) ∈ A we have to execute an algorithm, described above. For each A ∈ F

denote Aβ
α the restriction of A on [α, β], described above.
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De�nition 6. Let F be a �lter on TP [0, 1], [α, β] ⊂ [0, 1]. We call the �lter

F [α, β]-complemented if for each A ∈ F, for every (Π1, T1), (Π2, T2) ∈ Aβ
α there

exists (Π∗, T ∗) ∈ TP [0, α] and (Π∗∗, T ∗∗) ∈ TP [β, 1] such that

(Π∗, T ∗) ∪ (Π1, T1) ∪ (Π∗∗, T ∗∗) ∈ A,

(Π∗, T ∗) ∪ (Π2, T2) ∪ (Π∗∗, T ∗∗) ∈ A.

Here we present promised result about �lter integration on subsegment.

Theorem 8. Let f : [0, 1] → R, F be a �lter on TP [0, 1] such that for each
[α, β] ⊂ [0, 1] F is [α, β]-complemented. Let f be integrable of [0, 1] with respect to
F. Then for every [α, β] ⊂ [0, 1] f is integrable on [α, β] with respect to F

Proof. We know that for an arbitrary ε > 0 there exists A ∈ F such that for
all (Π1, T1), (Π2, T2) ∈ A we have: |S(f,Π1, T1)− S(f,Π2, T2)| < ε.

Let �x ε > 0 and consider an arbitrary [α, β] ⊂ [0, 1]. For A ∈ F consider

an arbitrary (Π1, T 1), (Π2, T 2) ∈ Aβ
α. As F is [α, β]-complemented we can �nd

(Π∗, T ∗) ∈ Aα
0 and (Π∗∗, T ∗∗) ∈ A1

β such that (Π11, T11) := (Π∗, T ∗) ∪ (Π1, T 1) ∪
(Π∗∗, T ∗∗) ∈ A and (Π22, T22) := (Π∗, T ∗) ∪ (Π2, T 2) ∪ (Π∗∗, T ∗∗) ∈ A. Then
ε > |S(f,Π11, T11)− S(f,Π22, T22)| = |S(f,Π1, T 1)− S(f,Π2, T 2)|.
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Ïðî iíòåãðóâàííÿ âiäíîñíî ôiëüòðà
Ä.Ä. Ñåëþòií

Õàðêiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Â. Í. Êàðàçiíà
ìàéäàí Ñâîáîäè 4, 61022, Õàðêiâ, Óêðà¨íà

Äàíó ñòàòòþ ïðèñâÿ÷åíî äîñëiäæåííþ îäíîãî óçàãàëüíåííÿ iíòåãðàëà Ðiìàíà. À
ñàìå, â ðîáîòi ïîìi÷åíî, ùî êëàñè÷íå îçíà÷åííÿ iíòåãðàëà Ðiìàíà ïî ñêií÷åííîìó
âiäðiçêó ÿê ãðàíèöi iíòåãðàëüíèõ ñóì, êîëè äiàìåòð ðîçáèòòÿ âiäðiçêà ïðÿìó¹ äî íó-
ëÿ, ìîæå áóòè çàìiíåíî íà ãðàíèöþ iíòåãðàëüíèõ ñóì ïî ôiëüòðó ìíîæèí, ÿêi ìîæíà
îïèñàòè ïåâíèì "õîðîøèì ÷èíîì". Öþ iäåþ ïðîäîâæåíî, i â ðîáîòi çàïðîïîíîâàíî
íîâå ïîíÿòòÿ � iíòåãðàëà ôóíêöi¨ ïî ôiëüòðó íà ìíîæèíi âñiõ âiäìi÷åíèõ ðîçáèòòiâ
âiäðiçêà. Âèêîðèñòàííÿ ôiëüòðiâ ¹ äóæå õîðîøèì ìåòîäîì â ïèòàííÿõ, ïîâ'ÿçàíèõ
çi çáiæíiñòþ àáî äåÿêèìè ¨¨ àíàëîãàìè â çàãàëüíèõ òîïîëîãi÷íèõ âåêòîðíèõ ïðîñòî-
ðàõ. À ñàìå, ÿêùî ïðîñòið íå ¹ ìåòðèçîâíèì, òî ïîíÿòòÿ çáiæíîñòi ââîäèòüñÿ ñàìå
çà äîïîìîãîþ ôiëüòðiâ. Òàêîæ, âèêîðèñòîâóþ÷è ôiëüòðè, ìîæíà ôîðìóëþâàòè ïî-
íÿòòÿ ïîâíîòè òà ¨¨ àíàëîãiâ. Ïîâíîòà ïðîñòîðiâ ¹ îäíèì iç öåíòðàëüíèõ ïîíÿòü òå-
îði¨ òîïîëîãi÷íèõ âåêòîðíèõ ïðîñòîðiâ, îñêiëüêè áàíàõîâi ïðîñòîðè ¹ ïîâíèìè. Òîá-
òî, âèêîðèñòîâóþ÷è óçàãàëüíåííÿ ïîâíîòè ïðîñòîðiâ, ïîáóäîâàíèõ ç âèêîðèñòàííÿì
ôiëüòðiâ, ìè ìîæåìî äîñëiäæóâàòè ðiçíi óçàãàëüíåííÿ áàíàõîâèõ ïðîñòîðiâ. Äàëi â
ñòàòòi äîñëiäæóþòüñÿ ñòàíäàðòíi ïèòàííÿ, ïîâ'ÿçàíi ç iíòåãðóâàííÿì. Íàïðèêëàä,
÷è âèòiêà¹ ç iíòåãðîâíîñòi ôóíêöi¨ ïî ôiëüòðó ¨¨ îáìåæåíiñòü? Íà öå ïèòàííÿ äàíî
ñòâåðäíó âiäïîâiäü. Äîêëàäíiøå: ââåäåíî ïîíÿòòÿ îáìåæåíîñòi ôóíêöi¨ çà ôiëüòðîì,
i ïîêàçàíî, ùî ÿêùî ôóíêöiÿ ¹ iíòåãðîâíîþ çà ôiëüòðîì, òî ¨¨ iíòåãðàëüíi ñóìè ¹
îáìåæåíèìè çà ôiëüòðîì, à ñàìà öÿ ôóíêöiÿ ¹ îáìåæåíîþ â êëàñè÷íîìó ðîçóìiííi.
Äàëi ìè ïîêàçàëè, ùî iíòåãðàë çà ôiëüòðîì çàäîâîëüíÿ¹ âëàñòèâiñòü ëiíiéíîñòi, à
ñàìå iíòåãðàë çà ôiëüòðîì âiä ñóìè äâîõ ôóíêöié ¹ ñóìîþ iíòåãðàëiâ çà ôiëüòðîì
öèõ äîäàíêiâ. Ìè ââîäèìî ïîíÿòòÿ òî÷íî âiäìi÷åíîãî ôiëüòðà, i çà äîïîìîãîþ òà-
êèõ ôiëüòðiâ âèâ÷à¹ìî iíòåãðîâíiñòü çà ôiëüòðîì íåîáìåæåíèõ íà âiäðiçêó ôóíêöié.
Ìè íàâîäèìî ïðèêëàä êîíêðåòíî¨ íåîáìåæåíî¨ ôóíêöi¨ òà êîíêðåòíîãî ôiëüòðà, çà
ÿêèì äàíà ôóíêöiÿ ¹ iíòåãðîâíîþ Äàëi ìè äîâîäèìî òåîðåìó, ÿêà îïèñó¹ íåîáìåæå-
íi, iíòåãðîâíi çà ôiëüòðîì, ôóíêöi¨ íà âiäðiçêó. Îñòàííié ðîçäië ñòàòòi ïðèñâÿ÷åíî
iíòåãðåãðóâàííÿ ôóíêöié âiäíîñíî ôiëüòðà ïî ïiäâiäðiçêó äàíîãî âiäðiçêà.
Êëþ÷îâi ñëîâà: iíòåãðàë; ôiëüòð; iäåàë; áàçà ôiëüòðà.
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