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Construction of controllability function as the time of

motion

This article is devoted to the controllability function method in admissible
synthesis problems for linear canonical systems. The work considers methods
of constructing such control so that the controllability function is time of
motion of an arbitrary point to the origin. A canonical controlled system
of linear equations ẋi = xi+1, i = 1, n− 1, ẋn = u with control constraints
|u| ≤ d is considered. The controllability function Θ can be found as the
only positive solution of the implicit equation 2a0Θ = (D(Θ)FD(Θ)x, x),

where D(Θ) = diag(Θ−−2n−2i+1
2 )ni=1. Matrix F = {fij}ni,j=1 is positive de�-

nite and a0 > 0 is chosen so that the control constraints are satis�ed. The
controllability function is motion time if Θ̇ = −1. From this condition, an
equation is obtained, the solution of which is considered in this work. Unlike
previous works on this topic, no additional restrictions are imposed on the
appearance of matrix F . The task of this article is to �nd the parameters
set of the matrix F and the column vector a, which satisfy the obtained
equation and for which the controllability function is the time of movement
from the point x to the origin. In this way, we get a family of controls
depending on this parameters such that the trajectory of system steers the
origin in �nite time. In general case, di�culties may arise when �nding the
solution of Cauchy problem of the corresponding system. Canonical system
can be reduced to Euler's equation, for which a characteristic equation can
be found, and therefore a trajectory in an explicit form. Two-dimensional,
three-dimensional and four-dimensional canonical systems are considered. In
each case, the matrix equation is solved and sets of parameters for which the
controllability functions value will be the time of movement of an arbitrary
point to the origin are found. Conditions on parameters are obtained from
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positive de�niteness of the matrix F . Some parameters and an arbitrary ini-
tial point are chosen and the solution of Cauchy problem in analytical form
is found.

Keywords: controllability; controllability function; controllability

function as the time of movement.

2010 Mathematics Subject Classi�cation: 76A11; 76B11; 76M11.

1. Introduction

To solve the problem of admissible synthesis in 1979, Korobov V.I. the
controllability function method was proposed in the article [1] and developed
in the monograph [2]. In works [3, 4], the controllability function was obtained as
time of motion from an arbitrary initial point to the origin. A family of controls
solving synthesis problem was found. An extended control set was proposed for a
two-dimensional canonical system in [5].

Let us consider the canonical system

ẋ1 = x2,

ẋ2 = x3,

...

ẋn−1 = xn,

ẋn = u

(1)

with the constraint |u| ≤ d.
To solve the control synthesis problem for the system ẋ = f(x, u) is to

construct a control u = u(x) which satis�es a given constraint |u| ≤ d. And
for which the trajectory of the closed-loop system ẋ = f(x, u(x)) starts at an
arbitrary point x0 and reaches the origin in a �nite time.

In the Korobov's method Θ(x) is a controllability function and the control
u(x) is constructed on base of Θ(x)

u(x) =

n∑
i=1

aixi
Θn−i+1(x)

. (2)

Let us denote a = (a1, a2, ..., an)
∗, ai < 0.

The function Θ(x) needs further de�nition.
If the following inequality holds

Θ̇ =

n∑
i=1

∂Θ(x)

∂xi
fi(x, u(x)) ≤ −βΘ1− 1

α (x), (3)

then the time of motion is �nite.
A particular case of inequality (3) is the equation (4) for α = β = 1

Θ̇ =
n∑

i=1

∂Θ(x)

∂xi
fi(x, u(x)) = −1. (4)
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In this case, the controllability function is the time of motion from an arbitrary
point x0 to the origin. This problem was considered in works [3, 4]. There was
highlighted a special case when the matrix F−1 has the form F−1 = DnCDn.
Where C is a Hankel matrix C = (ci+j)

n−1
i,j=0 and Dn = diag((−1)i−1/(i−1)!)ni=1.

Our work though considers the whole class of controllability functions without
constraints on matrix F−1. Let us move on to the construction of a controllability
function.

Let us consider the canonical system with the constraint |u| ≤ d. We will
choose a control according to the formula (2).

And the controllability function is de�ned as the only positive solution of the
equation

2a0Θ = (D(Θ)FD(Θ)x, x),

where x ̸= 0 and Θ(0) = 0, if x = 0. Here D(Θ) = diag
(
Θ−−2n−2i+1

2

)n
i=1

.Matrix

F = {fij}ni,j=1 is a positive de�nite matrix and a0 > 0 is such a number that the
constraints on a control are satis�ed. The value of a0 found [2] 2a0 = 1

(F−1a,a)
.

Let us denote y(Θ, x) = D(Θ)x. Then the control function satis�es the equati-
on

2a0Θ(x) = (Fy(Θ(x), x), y(Θ(x), x)). (5)

Derivative Θ̇(x) of the controllability function Θ(x) has the following form

Θ̇(x) =
((F (A0 + b0a

∗) + (A0 + b0a
∗)∗F )y(Θ(x), x), y(Θ(x), x))

((F −HF − FH)y(Θ(x), x), y(Θ(x), x)))
, (6)

where b0 =


0
0
...
0
1

, A0 =


0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1
0 0 0 ... 0

 and H = diag(−−2n−2i+1
2 )ni=1.

We equate the derivative of Θ(x) (6) to -1 and get

F

(
A0 + b0a

∗ +
1

2
I −H

)
+

(
A0 + b0a

∗ +
1

2
I −H

)∗
F = 0. (7)

Denote A =
(
A0 + b0a

∗ + 1
2I −H

)
. It has the following form

n 1 0 ... 0 0
0 n− 1 1 ... 0 0
... ... ... ... ... ...
0 0 0 ... 2 1
a1 a2 a3 ... an−1 1 + an

 . (8)

We obtain
FA+A∗F = 0. (9)
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Our task is to �nd parameters of the matrix F and the column vector a so
that the equation (9) is ful�lled. Then the controllability function Θ(x) is time of
motion from an arbitrary point x0 to the origin.

Let us move on to the construction of the controllability function. From the
lemma [2, p. 79] we get an = −n(n+1)

2 . Consider det(A−λE). Matrix A is similar

to the skew-symmetric matrix F
1
2AF− 1

2 , therefore real parts of eigenvalues are
equal to zero. All coe�cients of λn−k are zero where k is odd and k ≤ n. In this
way we obtain equations for parameters ai. We substitute these parameters into
the matrix A and solve the equation (9). It should be noted, that the matrix FA
is skew-symmetric, therefore all main-diagonal elements are zeros. We obtain the
matrix F , which is positive de�nite as was said earlier. We use Sylvester's cri-
terion and �nd conditions for parameters of the matrix F and ai. In this way we
describe the whole class of controllability functions Θ(x) and controls u(x), which
transfer some initial point to the origin of coordinates. Moreover, the controllabi-
lity function is the time of motion.

Next, we �nd a trajectory of the canonical system (1), which reduces to an

Euler equation (Θ0 − t)nx
(n)
1 − (Θ0 − t)n−1anx

(n−1)
1 − ...− a1x1 = 0.

Looking for a solution in the form x1(t) = (Θ0 − t)λ we get the characteristic
equation. After solving we get an analytical solution.

2. Construction of the controllability function
in the two-dimensional case

Consider a solution of the synthesis problem. We �nd the controllability functi-
on Θ(x). On base of Θ(x), we construct the control u(x), which transfers an
arbitrary given point to the origin.

System has the following form{
ẋ1 = x2,

ẋ2 = u.
(10)

Theorem 1. Let

a1 < −9

2
, f22 > 0. (11)

The controllability function Θ = Θ(x) is de�ned as the only positive root of the

equation

− 4 + a1
a1(3 + a1)

Θ4 = −a1x
2
1 + 4x1x2Θ+ x22Θ

2, (12)

at x = 0, we put Θ(0) = 0.

Then control

u(x) =
a1x1
Θ2(x)

− 3x2
Θ(x)

. (13)

transfers an arbitrary initial point x0 ∈ R2 to the origin in time Θ(x0).
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Indeed, in this case

F =

(
f11 f12
f12 f22

)
, A =

(
2 1
a1 a2 + 1

)
Recall that the real parts of the eigenvalues are equal to zero, hence the coe�-

cients near odd powers of λ are equal to zero. We have

det(A− λE) = 2− a1 + 2a2 − (a2 + 3)λ+ λ2,

then a2 = −3.
Equation (9) has the form

2f11 + a1f12 = 0,

f12 + (a2 + 1)f22 = 0,

f11 + (a2 + 3)f12 + a1f22 = 0.

It follows that

F =

(
−a1f22 2f22
2f22 f22

)
, A =

(
2 1
a1 −2

)
, F 1 =

(
−4a1f22 6f22
6f22 2f22

)
. (14)

We use Sylvester criterion and get (11).
Therefore, form (5) where y(Θ(x), x) = (x1Θ

−3/2, x2Θ
−1/2) and 2a0 =

1
(F−1a,a)

we get (12). The solution is any control (13), where a1 < −9
2 . It should

be noted that we choose only parameters a1 and f22. The other ones we calculate
from (14) according to the formulas: f11 = −a1f22, f12 = 2f22 and inequalities (11)
must be ful�lled.

For example, let us choose a1 = −6, f22 = 1, then f11 = 6, f12 = 2, conditi-
ons (11) ful�lled. We have a0 =

1
18 . We obtain the equation relating Θ

1

9
Θ4 = 6x21 + 4x1x2Θ+ x22Θ

2

The system has the form (10), where

u = − 6x1(t)

Θ2(x1, x2)
− 3x2(t)

Θ(x1, x2)
.

So, a control is found that satis�es the constraints and translates any given
initial point to the origin in a �nite time. Let {1, 1} be the initial point. Let's �nd
the trajectory of the system. Equation (12) takes the form

1

9
Θ4 = 6 + 4Θ +Θ2

It has a unique positive solution Θ0 ≈ 4.4512.
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As was mentioned earlier, the system (10) reduces to Euler equation

(Θ0 − t)2ẍ1 + 3(Θ0 − t)ẋ1 + 6x1 = 0.

Looking for a solution in the form x1(t) = (Θ0 − t)λ we get a characteristic
equation

λ2 − 4λ+ 6 = 0.

We �nd roots λ1,2 = 2± i
√
2 and obtain

x1(t) = (θ0 − t)2
(
c1 cos(

√
2 ln(θ0 − t)) + c2 sin(

√
2 ln(θ0 − t))

)
.

From the initial conditions x1(0) = 1, x2(0) = 1 we �nd c1 = 0.17, c2 = 0.16.
Let us denote τ(t) =

√
2 ln(Θ0 − t). Finally, we have the solution in analytical

form
x1(t) = (Θ0 − t)2(0.17 cos(τ(t)) + 0.16 sin(τ(t))),
x2(t) = −2(Θ0 − t)(0.29 cos(τ(t)) + 0.04 sin(τ(t))).

The trajectory is shown in Fig. 1 and time of motion Θ0 ≈ 4.4512.

Fig. 1. The trajectory (x1(t), x2(t)) of the point {1, 1, 1} which reaches the origin
in time Θ0 ≈ 4.4512.

3. Construction of the controllability function
in the three-dimensional case

Similarly to the previous case, we will consider a solution of the synthesis
problem.

The system has the following form
ẋ1 = x2,

ẋ2 = x3,

ẋ3 = u.

(15)
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Theorem 2. Let

a1 < −75

2
, f23 > 0,

15f23
8

< f13 < −a1f23
20

. (16)

The controllability function Θ = Θ(x) at x ̸= 0 is de�ned as the only positive

root of the equation (5), at x = 0 we put Θ(0) = 0.

Then view control

u =
a1x1(t)

Θ3(x)
+

(a1 − 30)x2(t)

3Θ2(x)
− 6x3(t)

Θ(x)
. (17)

translates an arbitrary point x0 ∈ R3 to the origin in time Θ(x0).

Here

F =

f11 f12 f13
f12 f22 f23
f13 f23 f33

 , A =

 3 1 0
0 2 1
a1 a2 1 + a3

 .

Recall that the real parts of the eigenvalues are equal to zero, therefore the
coe�cients for even powers of λ are equal to zero. Then a3 = −6, a2 =

1
3a1 − 10.

We solve an equation (9) and get

F =

 −1
3a1f13 2f13 − 1

5a1f23 f13
2f13 − 1

5a1f23 −f13 + (5− 1
15a1)f23 f23

f13 f23
1
5f23

 , (18)

A =

 3 1 0
0 2 1
a1

1
3a1 − 10 −5

 , (19)

F 1 =

 −2a1f13 10f13 − a1f23 4f13
10f13 − a1f23 −4f13 + 4(5− 1

15a1)f23 3f23
4f13 3f23

2
5f23

 .

We use Sylvester's criterion for F and F 1 and obtain (16).

Therefore, from the equation (5), where y(Θ(x), x) = (x1Θ
− 5

2 , x2Θ
− 3

2 , x3Θ
− 1

2 )
we get (12). And control (17) is a solution of the synthesis problem. Note that
we choose only the parameters a1, f13 and f23, and we calculate the others from
(18),(19) according to the formulas: a2 = 1

3a1 − 10, f11 = −1
3a1f13, f12 = 2f13 −

1
5a1f23, f22 = −f13+(5− 1

15a1)f23, f33 =
1
5f23. Inequalities (16) must be satis�ed.

For example, let's choose a1 = −57, f13 = 2, f23 = 19
20 , then a2 =

−29, f11 = 38, f12 = 1483
100 , f22 = 159

25 , f33 = 19
100 , conditions (16) ful�lled. We

have a0 =
667

259000 . Equation (5) for chosen parameters

667

1295
Θ6 = 3800x21 + 2966x1x2Θ+ (636x22 + 400x1x2)Θ

2 + 190x2x3Θ
3 + 19x23Θ

4.
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And control solving synthesis problem

u = − 57x1(t)

(Θ0 − t)3
− 29x2(t)

(Θ0 − t)2
− 6x3(t)

Θ0 − t
.

Let {1, 1, 1} be an initial point. We get

667

1295
Θ6 = 3800 + 2966Θ + 1036Θ2 + 190Θ3 + 19Θ4

We have a unique positive solution Θ0 ≈ 10.0131.
The system (15) reduces to an Euler equation

(Θ0 − t)3
...
x 1 + 6(Θ0 − t)2ẍ1 + (10− 1

3
a1)(Θ0 − t)ẋ1 − a1x1 = 0.

As earlier, we �nd the characteristic equation

−λ3 + 9λ2 − 37λ+ 57 = 0.

We get roots λ1 = 3, λ2,3 = 3± i
√
10 and obtain an expression for x1.

From the initial conditions we �nd c1 = 0.017, c2 = −0.005, c3 = −0.016. Let
us denote τ(t) =

√
10 ln(Θ0 − t). Finally, we have an analytical solution

x1(t) = (Θ0 − t)3(0.017− 0.005 cos τ(t)− 0.016 sin τ(t)),
x2(t) = −3(Θ0 − t)2(0.017− 0.021 cos τ(t)− 0.01 sin τ(t)),
x3(t) = 6(Θ0 − t)(0.017− 0.038 cos τ(t) + 0.024 sin τ(t)).

The trajectory is shown in Fig. 2 and time of motion Θ0 ≈ 10.0131.

Fig. 2. The trajectory(x1(t), x2(t), x3(t)) of the point {1, 1, 1} which reaches
the origin in time Θ0 ≈ 10.0131.

Note that in order to use the methods described [3, 4] in three-dimensional
space, matrix F−1 must have a representation F−1 = D3CD3. For this, the matrix
D−1

3 F−1D−1
3 must be Hankel. This holds only if f13 = 2f23. In our example, we

selected such parameters for which it was not ful�lled.
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4. Construction of the controllability function
in four-dimensional case

Let us consider a solution of the synthesis problem. We have a system
ẋ1 = x2,

ẋ2 = x3,

ẋ3 = x4,

ẋ4 = u.

(20)

Theorem 3. Let

a1 < − 3675
8 , 1

16a1 − 39 < a3 < −23− 2
√
−a1,

23+a3+
√

4a1+(23+a3)2

8a1
f14 < f44 <

23+a3−
√

4a1+(23+a3)2

8a1
f14, f14 > 0,

(30 + a3)(3a1 − 49(30 + a3))f
2
14 + 6a1(−2a1 + 49(30 + a3))f14f44 − 441a21f

2
44 > 0,

1
2 (−a1(155 + 6a3) + 2(30 + a3)(1770 + 49a3))f

3
14 + 2(6a21 + 98(30 + a3)

2(33 + a3)−
−a1(8175 + a3(415 + 6a3)))f

2
14f44 + a1(−98(30 + a3)(636 + 17a3)+

+3a1(945 + 34a3))f14f
2
44 − 72a21(3a1 − 49(39 + a3))f

3
44 > 0,

1
4 (f

2
14 + 4(21 + a3)f14f44 − 18a1f

2
44)((5125− 8a1 + 130a3)f

2
14 + 4(−a1(107 + 6a3)+

+49(1425 + a3(115 + 2a3)))f14f44 + 2a1(48a1 − 49(633 + 16a3))f
2
44) > 0.

(21)

The controllability function Θ = Θ(x) at x ̸= 0 is de�ned as the only positive

root of the equation (5), at x = 0 we put Θ(0) = 0.

Control

u =
a1x1(t)

Θ4(x)
+

7(30 + a3)x2(t)

Θ3(x)
+

a3x3(t)

Θ2(x)
− 10x3(t)

Θ(x)
. (22)

translates an arbitrary point x0 ∈ R3 to the origin in time Θ(x0).

In this case

F =


f11 f12 f13 f14
f12 f22 f23 f24
f13 f23 f33 f34
f14 f24 f34 f44

 , A =


4 1 0 0
0 3 1 0
0 0 2 1
a1 a2 a3 1 + a4

 .

As earlier we obtain a4 = −10, a2 = 7(30 + a3).
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We solve the equation (9) and getF = {fij}4i,j=1

f11 = −a1
4 f14,

f12 = −(30 + a3)f14 − 3a1f44,
f13 = 5f14 − a1f44,
f22 = −1

4(30 + a3)f14 + (a1 − 49(30 + a3))f44,
f23 =

1
2f14 − 7(12 + a3)f44,

f24 =
1
4f14 + 21f44,

f33 = −1
4f14 − (a3 − 42)f44,

f34 = 9f44,

(23)

A =


4 1 0 0
0 3 1 0
0 0 2 1
a1 7(30 + a3) a3 −9

 .

From Sylvester criterion we get (21).

From (5), where y(Θ(x), x) = (x1Θ
− 7

2 , x2Θ
− 5

2 , x3Θ
− 3

2 , x4Θ
− 1

2 ) we get an
equation relative to Θ(x) . Note that we choose only parameters a1, a3, f14 and
f44 so that inequalities (21) are ful�lled, and we calculate the others according to
the formulas a2 = 7(30 + a3), a4 = −10 and (23).

For example, let's choose parameters a1 = −550, a3 = −73 and f14 = 75, f44 =
1, conditions (21) are ful�lled. Then we have a2 = −301, f11 = 20625

2 , f12 =
4875, f13 = 925, f22 =

9453
4 , f23 =

929
2 , f24 =

159
4 , f33 =

385
4 , f34 = 9 and a0 =

23
6536 .

Equation is relative to Θ

23
3268Θ

8 = 20625
2 x21 + 9750x1x2Θ+ (94534 x22 + 1850x1x3)Θ

2 + (929x2x3+
+150x1x4)Θ

3 + (3854 x23 +
159
2 x2x4)Θ

4 + 18x3x4Θ
5 + x24Θ

6.
(24)

We obtain control

u = −550x1(t)

Θ4(x)
− 301x2(t)

Θ3(x)
− 73x3(t)

Θ2(x)
− 10x3(t)

Θ(x)
.

Let {1, 1, 1, 1} be the initial point. From (24) we get

23
1634Θ

8 = 20625
2 + 9750Θ + 16853

4 Θ2 + 1079Θ3 + 703
4 Θ4 + 18Θ5 +Θ6.

Here the solution is Θ0 ≈ 19.2179.
We have Euler equation

(Θ0 − t)4
....
x 1 − a4(Θ0 − t)3

...
x 1 − a3(Θ0 − t)2ẍ1 − a2(Θ0 − t)ẋ1 − a1x1 = 0,

We �nd characteristic equation and get the roots λ1,2 = 4 ± 1.31129i, λ3,4 =
4± 0.964628i.
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We use the initial conditions to �nd constants c1 = 0.0083, c2 = 0.0015, c3 =

0.00005, c4 = 0.0011. Let us denote τ(t) = ln(Θ0 − t), β1 =
√
9− 5

√
3, β2 =√

9 + 5
√
3. Finally, we have a solution in analytical form

x1(t) = (Θ0 − t)4(0.0083 cosβ1τ(t) + 0.0015 sinβ1τ(t)+
0.00005 cosβ2τ(t) + 0.0011 sinβ2τ(t))

x2(t) = −4(Θ0 − t)3(0.0085 cosβ1τ(t)− 0.0003 sinβ1τ(t)+
+0.0011 cosβ2τ(t)− 0.0012 sinβ2τ(t))

x3(t) = 12(Θ0 − t)2(0.0086 cosβ1τ(t)− 0.0014 sinβ1τ(t)+
+0.0028 cosβ2τ(t)− 0.0004 sinβ2τ(t))

x4(t) = −24(Θ0 − t)(0.0082 cosβ1τ(t)− 0.0039 sinβ1τ(t)+
+0.0020 cosβ2τ(t)− 0.0064 sinβ2τ(t)).

The trajectory is shown in Fig. 3 and time of motion Θ0 ≈ 19.2179.

Fig. 3. The trajectory(x1(t), x2(t), x3(t), x4(t)) of the point {1, 1, 1, 1} which
reaches the origin in time Θ0 ≈ 19.2179
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Ïîáóäîâà ôóíêöi¨ êåðîâàíîñòi ÿê ÷àñó ðóõó
Â. I. Êîðîáîâ, Ò. Â. Àíäði¹íêî

Õàðêiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Â. Í. Êàðàçiíà

ìàéäàí Ñâîáîäè, Õàðêiâ, 61022, Óêðà¨íà

Äàíà ñòàòòÿ ïðèñâÿ÷åíà ìåòîäó ôóíêöi¨ êåðîâàíîñòi â çàäà÷àõ äîïóñòèìîãî ñèí-
òåçó äëÿ ëiíiéíèõ êàíîíi÷íèõ ñèñòåì. Â ðîáîòi ðîçãëÿíóòî ñïîñîá ïîáóäîâè òàêîãî
êåðóâàííÿ, ùîá ôóíêöiÿ êåðîâàíîñòi áóëà ÷àñîì ðóõó äîâiëüíî¨ òî÷êè â ïî÷àòîê êî-
îðäèíàò. Ðîçãëÿäà¹òüñÿ êàíîíi÷íà êåðîâàíà ñèñòåìà ëiíiéíèõ ðiâíÿíü ẋi = xi+1, i =
1, n− 1, ẋn = u ç îáìåæåííÿìè íà óïðàâëiííÿ |u| ≤ d. Ôóíêöiÿ êåðîâàíîñòi Θ çíàõî-
äèòüñÿ ÿê ¹äèíèé äîäàòíié ðîçâ'ÿçîê íåÿâíîãî ðiâíÿííÿ 2a0Θ = (D(Θ)FD(Θ)x, x),

äå D(Θ) = diag(Θ−−2n−2i+1
2 )ni=1. Ìàòðèöÿ F = {fij}ni,j=1 äîäàòíî âèçíà÷åíà, à a0 > 0

îáèðà¹òüñÿ òàê, ùîá âèêîíóâàëèñü îáìåæåííÿ íà êåðóâàííÿ. Ôóíêöiÿ êåðîâàíîñòi
¹ ÷àñîì ðóõó, ÿêùî Θ̇ = −1. Ç öi¹¨ óìîâè îòðèìàíî ðiâíÿííÿ, ðîçâ'ÿçàííÿ ÿêîãî
ðîçãëÿäà¹òüñÿ ó äàíié ðîáîòi. Íà âiäìiíó âiä ïîïåðåäíiõ ðîáiò ç öi¹¨ òåìè, íà âèãëÿä
ìàòðèöi F íå íàêëàäåíî äîäàòêîâi îáìåæåííÿ. Â öié ñòàòòi çíàéäåíî ìíîæèíó ïà-
ðàìåòðiâ ìàòðèöi F òà âåêòîð-ñòîâïöÿ a, ÿêi çàäîâiëüíÿþòü îòðèìàíîìó ðiâíÿííþ
òà äëÿ ÿêèõ ôóíêöiÿ êåðîâàíîñòi ÷àñ ðóõó iç òî÷êè x ó ïî÷àòîê êîîðäèíàò. Òàêèì
÷èíîì îïèñó¹òüñÿ âåñü êëàñ ôóíêöié êåðîâàíîñòi, ÿêi ¹ ÷àñîì ðóõó. Ó çàãàëüíîìó
âèïàäêó ïðè çíàõîäæåííÿ ðîçâ'ÿçêó çàäà÷i Êîøi âiäïîâiäíî¨ ñèñòåìè ìîæóòü âè-
íèêàòè òðóäíîùi. Ñèñòåìà, ÿêà ðîçãëÿäàëàñü ó äàíié ðîáîòi çâîäèòüñÿ äî ðiâíÿííÿ
Åéëåðà, äëÿ ÿêîãî ìîæíà çíàéòè õàðàêòåðèñòè÷íå ðiâíÿííÿ, à îòæå i òðà¹êòîðiþ
ó ÿâíîìó âèãëÿäi. Ðîçãëÿíóòî äâîâèìiðíó, òðèâèìiðíó òà ÷îòèðèâèìiðíó êàíîíi÷íi
ñèñòåìè. Ó êîæíîìó âèïàäêó ðîçâ'ÿçàíî ìàòðè÷íå ðiâíÿííÿ òà çíàéäåíî ìíîæè-
íè ïàðàìåòðiâ, ïðè ÿêèõ çíà÷åííÿ ôóíêöi¨ êåðîâàíîñòi áóäå ÷àñîì ðóõó äîâiëüíî¨
òî÷êè â ïî÷àòîê êîîðäèíàò. Òàêîæ îáðàíî äåÿêèé äîâiëüíèé íàáið ïàðàìåòðiâ, ÿêi
çàäîâiëüíÿþòü óìîâàì äîäàòíî¨ âèçíà÷åíîñòi ìàòðèöi F òà ïîáóäîâàíî òðà¹êòîði¨ ç
îáðàíèõ ïî÷àòêîâèõ òî÷îê â ïî÷àòîê êîîðäèíàò.
Êëþ÷îâi ñëîâà: êåðîâàíiñòü; ôóíêöiÿ êåðîâàíîñòi; ôóíêöiÿ êåðîâàíîñòi ÿê

÷àñ ðóõó.
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