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Homogeneous approximation for minimal realizations

of series of iterated integrals

In the paper, realizable series of iterated integrals with scalar coe�cients
are considered and an algebraic approach to the homogeneous approximati-
on problem for nonlinear control systems with output is developed. In the
�rst section we recall the concept of the homogeneous approximation of a
nonlinear control system which is linear w.r.t. the control and the concept
of the series of iterated integrals. In the second section the statement of the
realizability problem is given, a criterion for realizability and a method for
constructing a minimal realization of the series are recalled. Also we recall
some ideas of the algebraic approach to the description of the homogeneous
approximation: the free graded associative algebra, which is isomorphic to
the algebra of iterated integrals, the free Lie algebra, the Poincar�e-Birkho�-
Witt basis, the dual basis and its construction by use of the shu�e product,
the de�nition of the core Lie subalgebra, which de�nes the homogeneous
approximation of a control system. In the third section we show how to
�nd the core Lie subalgebra of the systems that is a realization of the one-
dimensional series of iterated integrals without �nding the system itself.
The result obtained is illustrated by the example, in which we demonstrate
two methods for �nding the core Lie subalgebra of the realizing system. In
the last section it is shown that for any graded Lie subalgebra of �nite codi-
mension there exists a one-dimensional homogeneous series such that this Lie
subalgebra is the core Lie subalgebra for its minimal realization. The proof is
constructive: we give a method of �nding such a series; we use the dual basis
to the Poincar�e-Birkho�-Witt basis of the free associative algebra, which is
built by the core Lie subalgebra, and the shu�e product in this algebra. As
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a consequence, we get a classi�cation of all possible homogeneous approxi-
mations of systems that are realizations of one-dimensional series of iterated
integrals.

Keywords: homogeneous approximation; series of iterated integrals;

minimal realization; core Lie subalgebra.

2010 Mathematics Subject Classi�cation: 93B15; 93B25; 93C10.

1. Introduction

The homogeneous approximation problem has attracted great attention of
experts in the control theory for several decades. We brie�y recall the de�nition.
In this paper we restrict ourselves to the class of control systems, which are linear
w.r.t. the control, of the form

ẋ =

m∑
i=1

Xi(x)ui, (1)

where X1(x), . . . , Xm(x) are real analytic vector �elds in a neighborhood of some
point x0. Under homogeneous system from this class we mean a system of the
polynomial form

ẋk =
m∑
i=1

∑
αikq1...qk−1

xq11 · · ·x
qk−1

k−1 ui, αikq1...qk−1
∈ R, k = 1, . . . , n, (2)

where the inner sum in the right hand side of (2) is taken over all integers
q1, . . . , qk−1 ≥ 0 such that

q1w1 + · · ·+ qk−1wk−1 + 1 = wk,

and 1 ≤ w1 ≤ · · · ≤ wn are some integers called weights of the coordinates

x1, . . . , xn. We note that a homogeneous system is feedforward, hence, if the
controls ui(t) are known, then the components of the trajectory xk(t) can be found
one by one by integrating known functions, without solving di�erential equations.
It is convenient to deal with a coordinate-free de�nition. So, we say that a system

is homogeneous if it takes the form (2) after some change of variables.

The concept of a homogeneous approximation can be introduced by di-
�erent ways. Using coordinates, we can explain the de�nition as follows. Let us
denote by x(t;u) and x̂(t;u) the trajectories of the systems (1) and (2) starti-
ng at x0 and at the origin respectively and corresponding to the same control
u(t) = (u1(t), . . . , um(t)). We denote

U(1) = {u(t) = (u1(t), . . . , um(t)) : |ui(t)| ≤ 1, i = 1, . . . ,m, t ∈ [0, 1]} .

Finally, for any u ∈ U(1), we denote by u1/θ(t) the function u1/θ(t) = u(t/θ),
t ∈ [0, θ] (i.e., u1/θ(t) is obtained from u(t) by �shrinking� its domain [0, 1] to
[0, θ]).
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We say that a system of the form (2) is a homogeneous approximation of the
system (1) if there exists a change of variables y = Q(x) such that Q(x0) = 0 and
for any u(t) ∈ U(1)

θ−wk
(

(Q(x(θ;u1/θ)))k − x̂k(θ;u1/θ)
)
→ 0 as θ → 0, k = 1, . . . , n.

Informally, this means that after some change of variables trajectories of the
initial system and of its approximation become equivalent at the origin for any
�xed control.

Many results concerning homogeneous approximation exploited di�erential-
geometric tools and language [3], [21], [1], [6], [2]; the results obtained within this
approach were summarized in [10]. As an example of usage for a local analysis of
a particular class of systems, we mention Goursat distributions [15].

Another fruitful way was initialized by M. Fliess [5]; it was based on interpreti-
ng control systems as formal series of noncommutative variables and used tools of
free algebras [11], [13], [17], [18]; an overview can be found in [12]. Namely, instead
of the system (1), one considers its trajectory as a series of iterated integrals

x(t;u) = x0 +
∑

c̃i1...ik

∫ t

0

∫ τ1

0
· · ·
∫ τk−1

0
ui1(τ1) · · ·uik(τk)dτk · · · dτ1,

where c̃i1...ik ∈ Rn are expressed via values of the vector �elds Xi(x) and their
derivatives at x0. Therefore, c̃i1...ik are constant vectors. Iterated integrals are
linearly independent functionals of ui and, therefore, can be interpreted as a basis
for a free associative algebra. We give more detailed explanations in the next
section.

In [7], [19] a complete classi�cation of homogeneous approximations was obtai-
ned. It turned out that a homogeneous approximation is de�ned by some Lie
subalgebra in the free Lie algebra with m generators called a core Lie subalgebra,
which is de�ned by the system. As an important bene�t of the algebraic way of
�nding homogeneous approximations, we mention its convenience for computer
realization [20].

In the present paper we study an algebraic description of homogeneous
approximations for nonlinear control systems with output. More speci�cally, we
consider series of iterated integrals with scalar coe�cients

y(t;u) = y0 +
∑

ci1...ik

∫ t

0

∫ τ1

0
· · ·
∫ τk−1

0
ui1(τ1) · · ·uik(τk)dτk · · · dτ1, (3)

where ci1...ik ∈ R. The series (3) is called realizable if these exists a system of
the form (1) and a function y = h(x) such that y(t;u) = h(x(t;u)) admits the
representation (3); it is known that the realization of the minimal possible di-
mension is unique up to a change of variables [9], [4], [8].

The main results of the paper can be outlined as follows. In Section 3 we show
that the core Lie subalgebra of the minimal realization can be found without
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�nding the realization itself, i.e. directly from the series (3). In Section 4 we
prove the following classi�cation theorem: any graded Lie subalgebra of �nite
nonzero codimension can serve as a core Lie subalgebra of a realizing system of a
(homogeneous) series of the form (3).

2. Background

2.1. Realizability problem. The realizability problem for systems with
output is well known. This problem deals with a description of the output behavi-
or for analytic nonlinear control systems. Systems are represented as di�erential
equations of the form (1) de�ned in some neighborhood of a point x0, i.e., the
vector �elds X1(x), . . . , Xm(x) are de�ned and are analytic in a neighborhood of
x0. Let us consider also a function y = h(x) that is de�ned in a neighborhood of
x0 and is analytic there.

We recall some basic concepts of the realizability theory. First we introduce
some notation.

Below we denote by M the set of multi-indices

M = {I = (i1, . . . , ik) : k ≥ 1, 1 ≤ i1, . . . , ik ≤ m} .

One of the most important concepts in this theory is the iterated integral,
which is de�ned as follows

ηI(θ, u) =

∫ θ

0

∫ τ1

0
· · ·
∫ τk−1

0
ui1(τ1) . . . uik(τk)dτk . . . dτ1.

It can be shown [5] that for any θ > 0 iterated integrals are linearly
independent as functionals on the set

U(θ) = {u(t) = (u1(t), . . . , um(t)) : |ui(t)| ≤ 1, i = 1, . . . ,m, t ∈ [0, θ]} .

We consider the set {ηI(θ, u) : I ∈M} for an arbitrary �xed θ > 0. Since the
functionals ηI(θ, u) are linearly independent, they form a basis of some linear
space. Then their linear span is a free associative algebra with the concatenation
operation

ηI1(θ, u) ηI2(θ, u) = ηI1I2(θ, u);

we denote this algebra by Fθ. Note that for all θ > 0 the algebras Fθ are
isomorphic to each other. Therefore, instead of the algebras Fθ, it is conveni-
ent to consider an abstract free algebra F isomorphic to all of them, which is
generated by abstract independent elements η1, . . . , ηm. Also let us consider the
free Lie algebra L generated by η1, . . . , ηm with the bracket operation de�ned by
[a, b] = ab− ba.

Below we use a unitary algebra Fe = F + R assuming that 1 is the unit in
Fe. In order to write elements from F and Fe in the same way, we complement
M by the �empty index�,

M0 = M ∪ {∅}
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and assume that η∅ = 1.
Now we can formulate the realizability problem from a formal point of view.

Consider an arbitrary linear map

c : Fe → R.

This map corresponds to a formal series S with scalar coe�cients cI = c(ηI)

S =
∑
I∈M0

cIηI . (4)

Below we assume that the map c is nontrivial, i.e., c(F) 6= {0}; then the series S
has at least one nonzero term except a constant.

De�nition 1. The series (4) is called realizable if there exist vector �elds

X1(x), . . . , Xm(x) and a function h(x), which are analytic in some neighborhood

of some point x0, such that the functional y(θ;u) = h(x(θ;u)) where x(θ;u) is a

solution of the Cauchy problem

ẋ =

m∑
i=1

Xi(x)ui(t), x(0) = x0,

satis�es the equality

y(θ;u) =
∑
I∈M0

cIηI(θ, u).

In this sense, (1) is a realizing system for (4).
To formulate a realizability criterion, we recall the following de�nition.

De�nition 2 ([4], [8]). Let B denote the linear space of formal series of the form

(4). Consider the map Fc : L → B of the form

Fc(`) =
∑
I∈M0

c(ηI`)ηI , ` ∈ L. (5)

The Lie rank of a series S is de�ned by the equality

ρL(c) = dim {Fc(`) : ` ∈ L} .

Now we are ready to recall the following criterion of realizability.

Theorem 1 ([4], [8]). Suppose that the series S =
∑
I∈M0

c(ηI)ηI satis�es the

following growth conditions,

|cI | ≤ C1|I|!C |I| (6)

with some C,C1 > 0, where by |I| we denote the length of the multi-index I.
The series S is realizable if and only if ρL(c) <∞. In this case n = ρL(c) is the

minimal dimension of a realizing system. Moreover, a minimal realization (i.e.,

a realization of the minimal dimension) is unique up to a change of variables.
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In the language of the associative algebra F , the realizability condition can
be formulated as follows.

Theorem 2. Consider the free associative algebra F and the corresponding Lie

algebra L. A formal series S satisfying the growth condition (6) is realizable if

and only if there exist a natural number n and elements `1, . . . , `n ∈ L satisfying

the following condition: for any element ` ∈ L there exist coe�cients α1, . . . , αn
such that

c(a(`−
n∑
i=1

αi`i)) = 0

for any element a ∈ Fe.

One of the ways to construct a minimal realizing system for a given series S is
as follows [8]. Since the Lie rank is n, there exist n linearly independent elements
`1, . . . , `n ∈ L for which the series Fc(`1), . . . , Fc(`n) are linearly independent.
Consider the coe�cients of all possible elements of the form ηI`j . As the series
Fc(`j) are linearly independent, there exist n multi-indices I1, . . . , In ∈ M0 for
which the matrix

{c(ηIi`j)}
n
i,j=1 (7)

is non-singular. We de�ne the linear map c̃ : Fe → Rn by the equality

c̃(ηI) =

c(ηI1ηI). . .
c(ηInηI)

 (8)

and consider the corresponding series

S̃ =
∑
I∈M0

c̃(ηI)ηI (9)

with n-dimensional coe�cients. The unique system constructed by this series is a
minimal realization of the series S.

2.2. Grading in the algebra F and homogeneous approximations of
control systems. The free associative algebra F is graded, namely, it admits the
following representation

F =

∞∑
k=1

Fk, Fk = Lin{ηI : I ∈M, |I| = k}.

This grading is justi�ed by the following observation, which concerns iterated
integrals: ∫ θ

0

∫ τ1

0
· · ·
∫ τk−1

0
ui1(τ1) · · ·uik(τk)dτk · · · dτ1 =

= θk
∫ 1

0

∫ τ1

0
· · ·
∫ τk−1

0
ui1(τ1θ) · · ·uik(τkθ)dτk · · · dτ1.
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Thus, ηI(θ, u
1/θ) = θ|I|ηI(1, u), where u1/θ(t) = u(t/θ), t ∈ [0, θ]. In this sense,

|I| denotes the order of ηI(θ, u1/θ) as a function of θ as θ → 0.
The Lie algebra L inherits this grading,

L =
∞∑
k=1

Lk, Lk = Fk ∩ L.

Below we say that a ∈ Fk is homogeneous and k is its order ; in this case we write
ord(a) = k.

Let us consider a series with vector coe�cients of the form

S̃ =
∑
I∈M0

c̃IηI , (10)

where c̃I ∈ Rn; it de�nes a linear map c̃ : Fe → Rn by c̃(ηI) = c̃I . Assume that
this map satis�es the Rashevsky-Chow condition

c̃(L) = Rn. (11)

Suppose also that the series S̃ is realizable, that is, there exists a system of the
form (1) such that its trajectory x(θ;u) is represented as x(θ;u) =

∑
I∈M0

c̃IηI(θ, u).

It can be shown that this system is unique, and the condition (11) means that
the realizing system is locally controllable, i.e., the initial point x0 belongs to the
interior of the set of all points that are reachable from x0 in a time θ > 0.

The following de�nition takes into account the grading introduced above.

De�nition 3 ([7],[19]). Suppose the series (10) corresponds to the system (1).

Let us de�ne the subspaces

P̃1 = {` ∈ L1 : c̃(`) = 0}, P̃k = {` ∈ Lk : c̃(`) ∈ c̃(L1 + · · ·+ Lk−1)}, k ≥ 2,

and

LX1,...,Xm =
∞∑
k=1

P̃k.

Then LX1,...,Xm is a graded Lie subalgebra; it is called a core Lie subalgebra of the

system (1).

It can be shown that the core Lie subalgebra is of codimension n (in L) and
that it is invariant w.r.t. changes of variables in the system.

It turns out that the core Lie subalgebra is responsible for the homogeneous
approximation of the system [7], [19]. Namely, two control systems of the form (1)
have the same homogeneous approximation if and only if their core Lie subalgebras
coincide. Moreover, any graded Lie subalgebra of codimension n is a core Lie
subalgebra for some locally controllable system of the form (1).

In Section 3 we describe the core Lie subalgebra for a realizing system of a
series of the form (4).
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2.3. Basis in the algebra F . Suppose {`i}∞i=1 is a (homogeneous) basis of
L. Then, due to the Poincar�e-Birkho�-Witt Theorem [16], the set

{`q1i1 · · · `
qk
ik

: k ≥ 1, 1 ≤ i1 < · · · < ik, q1, . . . , qk ≥ 1} (12)

is a (homogeneous) basis of F , where `q = ` · · · ` (q times).
Let us introduce the inner product in F assuming the basis {ηI : I ∈ M}

is orthonormed. Also, let us introduce the shu�e product in F by the recursive
formula

ηiø ηj = ηij + ηji,

ηi1I1 ø ηj = ηj ø ηi1I1 = ηi1(ηI1 ø ηj) + ηji1I1 ,

ηi1I1 ø ηi2I2 = ηi1(ηI1 ø ηi2I2) + ηi2(ηi1I1 ø ηI2)

for any I1, I2 ∈M . Denote by

{dq1...qki1...ik
: k ≥ 1, 1 ≤ i1 < · · · < ik, q1, . . . , qk ≥ 1} (13)

a dual basis for (12) in the sense of the inner product introduced above. It can be
shown [14] that

dq1...qki1...ik
=

1

q1! · · · qk!
døq1i1

ø · · · ø døqkik
,

where dø q = dø · · · ø d (q times); here the notation di = d1
i is used for brevity.

Therefore, we can rewrite the series S in the basis (13)

S = c(1) +
∑ 1

q1! · · · qk!
c(`q1i1 · · · `

qk
ik

)døq1i1
ø · · · ø døqkik

,

where the sum is taken over all k ≥ 1 and 1 ≤ i1 < · · · < ik, q1, . . . , qk ≥ 1. In
Section 4 we apply an analogous representation to the series Fc(`).

3. Description of the core Lie subalgebras of realizing systems

In this section we show that the core Lie subalgebra of a realizing system
(De�nition 3) can be found without �nding the realizing system itself.

Theorem 3. Let S be a realizable series of the form (4) and an n-dimensional
system (1) be its minimal realization. Then the core Lie subalgebra LX1,...,Xm of

this minimal realization can be found in the following way:

LX1,...,Xm =
∞∑
k=1

Pk,

where

P1 =
{
` ∈ L1 : c(a`) = 0 for any a ∈ Fe

}
,

Pk =
{
` ∈ Lk : there exists `′ ∈ L1 + · · ·+ Lk−1 such that

c(a(`− `′)) = 0 for any a ∈ Fe
}
, k ≥ 2.

(14)



ÂiñíèêÕÍÓ, Ñåð. ¾Ìàòåìàòèêà, ïðèêëàäíà ìàòåìàòèêà i ìåõàíiêà¿, òîì96 (2022) 31

Proof. Take an element ` from the subspace Pk. It su�ces to show that this
element also belongs to the subspace P̃k. Let ` ∈ Pk, then by formula (14) there
exists an element `′ belonging to the sum of subspaces L1 + · · ·+Lk−1 such that
the equality

c(a(`− `′)) = 0 (15)

holds for any element a from Fe. As an element a, we take those elements ηIi for
which the matrix (7) is nonsingular. Since equality (15) holds for any element a
then it is true that

c(ηIi(`− `′)) = 0, i = 1, . . . , n. (16)

Consider the n-dimensional mapping (8), then

c̃(`− `′) =

c(ηI1(`− `′))
. . .

c(ηIn(`− `′))

 .

Since the condition (16) holds for any row, then c̃(` − `′) = 0. This means that
the element ` belongs to the subspace P̃k.

Take an element ` from the subspace P̃k. It su�ces to show that this element
also belongs to the subspace Pk. By de�nition, c̃(`) ∈ c̃(L1+· · ·+Lk−1), therefore,
there exists an element `′ ∈ L1 + · · ·+ Lk−1 such that c̃(`− `′) = 0. This means
that c(ηIi(` − `′)) = 0 for i = 1, . . . , n. Since the series Fc(` − `′) is a linear
combination of the series Fc(`1), . . . , Fc(`n), there exist the numbers α1, . . . , αn
such that for any I ∈M0

c(ηI(`− `′)) =
n∑
j=1

αjc(ηI`j).

In particular, substituting I = Ii, for which the matrix (7) is nonsingular, we
obtain the following equalityc(ηI1(`− `′))

. . .
c(ηIn(`− `′))

 =

n∑
j=1

αj

c(ηI1`j). . .
c(ηIn`j)

 = 0.

Since the matrix (7) is non-singular, the vectors (c(ηI1`j), . . . , c(ηIn`j))
> are li-

nearly independent. Hence, all coe�cients αj are equal to zero. This means that

c(a(`− `′)) = 0

for any element a ∈ Fe, therefore, ` ∈ Pk. The theorem is proved.

Example. Let a one-dimensional series

S = η1 + η21 + η211
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be given. Let us show that the Lie rank of this series is equal to 2. To do this, we
write down all the nonzero series of the form (5):

Fc(η1) = 1 + η2 + η21,
Fc([η1, η2]) = −1,

Fc([η1, [η1, η2]]) = 1.

Since two of them are linearly independent, the Lie rank of S equals 2. We can
choose `1 = η1, `2 = [η1, η2] and I1 = (∅), I2 = (2), then the matrix (7) is
nonsingular. Then we get n-dimensional series of the form (9)

S̃ =

(
η1 + η21 + η211

η1 + η11

)
.

Using De�nition 3, let us �nd the core Lie subalgebra for a realization of the
n-dimensional series S̃. Consider the subspace

P̃1 =
{
` ∈ L1 : c̃(`) = 0

}
.

We have L1 = Lin{η1, η2}. For the elements η1, η2 we write down their coe�cients

c̃(η1) =

(
1
1

)
, c̃(η2) =

(
0
0

)
. (17)

Then, obviously, the space P̃1 is a linear span of only one element η2

P̃1 = Lin {η2} .

For k = 2 we get
P̃2 =

{
` ∈ L2 : c̃(`) ∈ c̃(L1)

}
and L2 = Lin{[η1, η2]}. For the element ` = [η1, η2] we �nd

c̃([η1, η2]) = c̃(η12 − η21) =

(
−1
0

)
.

Taking into account the form of the coe�cients (17), we see that c̃(`) /∈ c̃(L1).
That is, P̃2 = {0}.

Therefore, dim(c̃(L1 + L2)) = 2, which means that P̃k = Lk for all k ≥ 3.
Thus, we have found the core Lie subalgebra for the n-dimensional series S̃:

LX1,X2 = Lin {η2}+

∞∑
k=3

Lk. (18)

Now we show how to use Theorem 3 and �nd this core Lie subalgebra using
only the one-dimensional series S. We write down the non-zero coe�cients of this
series:

c(η1) = 1, c(η21) = 1, c(η211) = 1.
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Consider the subspaces (14). For k = 1 we have

P1 =
{
` ∈ L1 : c(a`) = 0 for any a ∈ Fe

}
.

First, as an element ` we take η1. In particular, for a = 1 we get c(aη1) = c(η1) = 1,
hence, η1 /∈ P1. Now we choose ` = η2, then c(aη2) = 0 for all a ∈ F . This means
that P1 = Lin {η2}. Now consider the subspace

P2 =
{
` ∈ L2 : there exists `′ ∈ L1 such that c(a(`− `′)) = 0 for any a ∈ Fe

}
.

As an element `, we take the bracket [η1, η2] = η12 − η21, and `
′ ∈ L1 is a linear

combination αη1 + βη2, where α, β are numbers. In the de�nition (14) for k = 2,
we �rst take a = 1. Then

c(a(`− `′)) = c(η12 − η21 − αη1 − βη2) = −1− α = 0,

which means that α = −1. Now we choose a = η2, which gives

c(a(`− `′)) = c(η212 − η221 − αη21 − βη22) = −α = 0,

hence, α = 0. We have got a contradiction, therefore, [η1, η2] /∈ P2. This means
that P2 = {0}. Finally, we consider the subspace

P3=
{
` ∈ L3 : there exists `′ ∈ L1+L2 such that c(a(`− `′)) = 0 for any a ∈ Fe

}
and take into account that L3 = Lin{[η1, [η1, η2]], [η2, [η1, η2]]}. First we take
` = [η1, [η1, η2]] = η112 − 2η121 + η211 and `′ = αη1 + β(η12 − η21). Then for
a = 1 we get

c(a(`− `′)) = c(η112 − 2η121 + η211 − αη1 − βη12 + βη21) = 1− α+ β = 0

while for a = η2 we get

c(a(`− `′)) = c(η2112 − 2η2121 + η2211 − αη21 − βη212 + βη221) = −α = 0.

This gives α = 0 and β = −1, that is, `′ = −η12 + η21. One easily checks that
c(a`) = c(a`′) for any a ∈ Fe, hence, [η1, [η1, η2]] ∈ P3. Using similar reasoning
for the element ` = [η2, [η1, η2]], we see that c(a`) = 0 for any a ∈ Fe. This means
that P3 = L3. Since c(Lk) = 0 for k ≥ 4, we get Pk = Lk. Thus, we have obtained
the core Lie subalgebra (18) using only the initial one-dimensional series S.

One can check that a realization of the series S in a neighborhood of the point
x0 = 0 can be chosen in the following form

ẋ1 = u1 + x2u2,
ẋ2 =

√
1 + 2x2u1,

y = x1,
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that is, X1(x) = (1,
√

1 + 2x2)>, X2(x) = (x2, 0)>, h(x) = x1. As a homogeneous
approximation for this system, we can choose a homogeneous system with the
same core Lie subalgebra

ẋ1 = u1,
ẋ2 = x1u2.

We observe that manipulating with the series for �nding the core Lie subalgebra
is more convenient than with vector �elds directly.

4. Description of all possible homogeneous approximations
of realizing systems

In this section we show that any graded Lie subalgebra of �nite nonzero codi-
mension is the core Lie subalgebra of a realizing system of some series (3). We
introduce such a series using the dual basis (13); the corresponding linear map
is de�ned by formula (19) below. The following lemma describes one property of
this map.

Lemma 1. Suppose {`i}∞i=1 is a homogeneous basis of the Lie algebra L. Let a
linear map c : F → R be de�ned on the elements of the corresponding Poincar�e-

Birkho�-Witt basis (12) as follows: for any k ≥ 1 and any 1 ≤ i1 ≤ · · · ≤ ik

c(`i1 · · · `ik) =

{
1 if k = n and (i1, . . . , in) = (1, . . . , n),

0 otherwise.
(19)

Consider any k-tuple (j1, . . . , jk) of natural numbers, where 1 ≤ k ≤ n. Then

c(`j1 · · · `jk) = 0 if 1 ≤ k ≤ n− 1, (20)

c(`j1 · · · `jn) =

{
1 if (j1, . . . , jn) is a permutation of {1, . . . , n},
0 otherwise.

(21)

Proof. Let us denote by inv(j1, . . . , jk) the number of inversions in the tuple
(j1, . . . , jk), i.e., the number of pairs (s′, s′′) such that s′ < s′′ and js′ > js′′ .
If inv(j1, . . . , jk) = r, then sorting the tuple in non-decreasing order requires r
adjacent transpositions. Below we use the notation

Nk,r = {(j1, . . . , jk) : inv(j1, . . . , jk) = r}, k ≥ 1, r ≥ 0.

For any k the maximal possible number of inversions is 1
2k(k − 1) (this number of

inversions is achieved when the numbers in the tuple strictly decrease). Therefore,
if r > 1

2k(k − 1), then Nk,r = ∅. Hence, the set of all tuples of natural numbers
can be represented as a union of the sets Nk,r where k ≥ 1, 0 ≤ r ≤ 1

2k(k − 1).
We are interested in k such that 1 ≤ k ≤ n.

We use induction on the set of pairs (k, r) such that k ≥ 1, 0 ≤ r ≤ 1
2k(k− 1)

ordered lexicographically. Namely, we assume

(k′, r′) < (k′′, r′′) if k′ < k′′ or k′ = k′′ and r′ < r′′.
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If k = 1, then the required equalities (20), (21) follow from (19).
If 2 ≤ k ≤ n and (j1, . . . , jk) ∈ Nk,0, then j1 ≤ · · · ≤ jk. Therefore, `j1 · · · `jk

belongs to the Poincar�e-Birkho�-Witt basis. Hence, equalities (20), (21) follow
from (19).

Let us consider any pair (k, r) such that 2 ≤ k ≤ n and 1 ≤ r ≤ 1
2k(k − 1)

and suppose that the equalities (20), (21) hold for any element `q1 · · · `qk′ where
(q1, . . . , qk′) ∈ Nk′,r′ and (k′, r′) < (k, r). This means that c(`q1 · · · `qk′ ) = 0
except the case when (k′, r′) = (n, r′) and {q1, . . . , qk′} = {1, . . . , n}; in this case
c(`q1 · · · `qk′ ) = 1.

Consider any (j1, . . . , jk) ∈ Nk,r. Since r ≥ 1, there exists 1 ≤ s ≤ k − 1 such
that js > js+1. Since

`js`js+1 = [`js , `js+1 ] + `js+1`js ,

we can express
`j1 · · · `jk = a1 + a2,

where
a1 = `j1 · · · `js−1 [`js , `js+1 ]`js+2 · · · `jk ,

a2 = `j1 · · · `js−1`js+1`js`js+2 · · · `jk .

First we consider a1. Since the element [`js , `js+1 ] belongs to the Lie algebra L, it
equals a linear combination of basis elements, [`js , `js+1 ] =

∑
αp`p, where αp ∈ R.

Then
a1 =

∑
αp`j1 · · · `js−1`p`js+2 · · · `jk ,

where (j1, . . . , js−1, jp, js+2, . . . , jk) ∈ Nk−1,r′ for some r
′. Since (k−1, r′) < (k, r),

we get c(a1) = 0 by the induction supposition (we take into account that k ≤ n).
Therefore, c(`j1 · · · `jk) = c(a2). Obviously, a2 ∈ Nk,r−1 and (k, r−1) < (k, r).

Hence, the equalities (20), (21) hold for the element `j1 · · · `jk since, due to the
induction supposition, they hold for a2. This completes the proof of Lemma 1.

The following theorem is the main result of this section.

Theorem 4. Let L′ be a graded Lie subalgebra of codimension n ≥ 1. Then there

exists a one-dimensional homogeneous series of Lie rank n such that L′ is a core

Lie subalgebra of its (minimal) realization.

Proof. Since L′ is a graded Lie subalgebra of codimension n, we can choose
homogeneous elements `1, . . . , `n ∈ L such that L′+Lin{`1, . . . , `n} = L. Without
loss of generality we assume ord(`i) ≤ ord(`j) if i < j. Then choose a homogeneous
basis {`i}∞i=n+1 of L′ and consider the corresponding Poincar�e-Birkho�-Witt basis
(12) and its dual basis (13). Introduce the series

S = d1ø · · · ø dn. (22)

We note that this series corresponds to a linear map c : Fe → R de�ned by (19)
and such that c(1) = 0.
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We show that the series (22) is of Lie rank n. In fact, its Lie rank is not greater
than n since the series has an n-dimensional realization, namely, the n-dimensional
system corresponding to the series

S̃ =

d1

. . .
dn


with the output y = h(x) = x1 · · ·xn. Such a system can be explicitly found as is
described in [19]. It satis�es the Rashevsky-Chow condition (11) since c̃(`i) = ei,
i = 1, . . . , n. Obviously, c̃(L′) = 0, hence, the core Lie subalgebra of this system
equals L′. Now we show that this realization is minimal.

To this end, we show that the Lie rank of the series (22) is not less than n. By
de�nition, the Lie rank equals the dimension of the set of series of the form (5).
It is convenient to re-expand the series w.r.t. the dual basis (13). Thus, the Lie
rank equals the dimension of the set of series of the form

Fc(`) = c(`) +
∑

j1<···<jk

1

q1! . . . qk!
c(`q1j1 · · · `

qk
jk
`)døq1j1

ø · · · ø døqkjk
.

Now we show that the series Fc(`1), . . . , Fc(`n) are linearly independent. For n = 1,
there is nothing to prove. Suppose n ≥ 2. Let us introduce the notation

d1 = d2ø · · · ø dn, dn = d1ø · · · ø dn−1,

dr = d1ø · · · ø dr−1ø dr+1 · · · ø dn, r = 2, . . . , n− 1.

In other words, dr is the shu�e product of all elements d1, . . . , dn except dr.
Analogously, de�ne

`1 = `2 · · · `n, `n = `1 · · · `n−1,

`r = `1 · · · `r−1`r+1 · · · `n, r = 2, . . . , n− 1.

Then the coe�cient of dr in the series Fc(`i) equals c(`r`i). Due to Lemma 1,

c(`r`i) =

{
1 if i = r,

0 otherwise.

This means that the matrix n×n formed by the coe�cients of elements d1, . . . , dn
in the series Fc(`1), . . . , Fc(`n) is identity. Hence, series Fc(`1), . . . , Fc(`n) are li-
nearly independent, and therefore, the Lie rank of the series (22) is not less than n.

Thus, the series (22) is of Lie rank n, therefore, its minimal realization is
of dimension n. As was mentioned before, this series has a realization with the
core Lie subalgebra L′. Since the minimal realization is unique up to a change of
variables, the mentioned realization is minimal. The theorem is proved.

Theorem 4 has the following classi�cation corollary close to [19].

Corollary 1. Any graded Lie subalgebra of a �nite (nonzero) codimension is a

core Lie subalgebra of the minimal realization of some one-dimensional (nontrivi-

al) series, and the dimension of this realization equals the codimension of the Lie

subalgebra.
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íåëiíiéíèõ êåðîâàíèõ ñèñòåì ç âèõîäîì. Ó ïåðøîìó ðîçäiëi ìè íàãàäó¹ìî ïîíÿò-
òÿ îäíîðiäíî¨ àïðîêñèìàöi¨ íåëiíiéíî¨ êåðîâàíî¨ ñèñòåìè, ëiíiéíî¨ çà êåðóâàííÿì,
òà ïîíÿòòÿ ðÿäó iòåðîâàíèõ iíòåãðàëiâ. Ó äðóãîìó ðîçäiëi íàâåäåíî ïîñòàíîâêó çà-
äà÷i ðåàëiçîâíîñòi, íàãàäàíî êðèòåðié ðåàëiçîâíîñòi ðÿäó iòåðîâàíèõ iíòåãðàëiâ òà
ñïîñiá ïîáóäîâè ìiíiìàëüíî¨ ðåàëiçàöi¨ ðÿäó. Òàêîæ ìè íàãàäó¹ìî äåÿêi iäå¨ àëãå-
áðà¨÷íîãî ïiäõîäó äî îïèñó îäíîðiäíî¨ àïðîêñèìàöi¨: âiëüíà ãðàäóéîâàíà àñîöiàòèâ-
íà àëãåáðà, ùî içîìîðôíà àëãåáði iòåðîâàíèõ iíòåãðàëiâ, âiëüíà àëãåáðà Ëi, áàçèñ
Ïóàíêàðå-Áiðêãîôà-Âiòòà, áiîðòîãîíàëüíèé áàçèñ i éîãî ïîáóäîâà çà äîïîìîãîþ òà-
ñóþ÷îãî äîáóòêó, îçíà÷åííÿ êîðåíåâî¨ ïiäàëãåáðè Ëi, ÿêà âèçíà÷à¹ îäíîðiäíó àïðî-
êñèìàöiþ êåðîâàíî¨ ñèñòåìè. Ó òðåòüîìó ðîçäiëi ìè ïîêàçó¹ìî, ÿê ìîæíà çíàéòè
êîðåíåâó ïiäàëãåáðó Ëi ñèñòåìè, ÿêà ¹ ðåàëiçàöi¹þ îäíîâèìiðíîãî ðÿäó iòåðîâàíèõ
iíòåãðàëiâ, íå çíàõîäÿ÷è ñàìî¨ ñèñòåìè. Îòðèìàíèé ðåçóëüòàò ïðîiëþñòðîâàíî ïðè-
êëàäîì, â ÿêîìó ïðîäåìîíñòðîâàíî äâà ñïîñîáè çíàõîäæåííÿ êîðåíåâî¨ ïiäàëãåáðè
Ëi ðåàëiçóþ÷î¨ ñèñòåìè. Â îñòàííüîìó ðîçäiëi ïîêàçàíî, ùî äëÿ áóäü-ÿêî¨ ãðàäóéî-
âàíî¨ ïiäàëãåáðè Ëi ñêií÷åííî¨ êîâèìiðíîñòi iñíó¹ òàêèé îäíîâèìiðíèé îäíîðiäíèé
ðÿä, ùî öÿ ïiäàëãåáðà Ëi ¹ êîðåíåâîþ ïiäàëãåáðîþ Ëi éîãî ìiíiìàëüíî¨ ðåàëiçàöi¨.
Äîâåäåííÿ ¹ êîíñòðóêòèâíèì: ìè íàâîäèìî ñïîñiá ïîáóäîâè òàêîãî ðÿäó, â ÿêîìó âè-
êîðèñòîâó¹òüñÿ áiîðòîãîíàëüíèé áàçèñ äî áàçèñó Ïóàíêàðå-Áiðêãîôà-Âiòòà âiëüíî¨
àñîöiàòèâíî¨ àëãåáðè, ïîáóäîâàíèé çà êîðåíåâîþ ïiäàëãåáðîþ Ëi, i òàñóþ÷èé äîáó-
òîê â öié àëãåáði. ßê íàñëiäîê, îòðèìó¹ìî êëàñèôiêàöiþ âñiõ ìîæëèâèõ îäíîðiäíèõ
àïðîêñèìàöié ñèñòåì, ÿêi ¹ ðåàëiçàöiÿìè îäíîâèìiðíèõ ðÿäiâ iòåðîâàíèõ iíòåãðàëiâ.
Êëþ÷îâi ñëîâà: îäíîðiäíà àïðîêñèìàöiÿ; ðÿä iòåðîâàíèõ iíòåãðàëiâ; ìiíi-

ìàëüíà ðåàëiçàöiÿ; êîðåíåâà ïiäàëãåáðà Ëi.
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