ISSN 2221-5646(Print) 2523-4641(Online)

Visnyk of V.N.Karazin Kharkiv National University
Ser. “Mathematics, Applied Mathematics

and Mechanics”

2022, Vol. 96, p. 23-39
DOI: 10.26565/2221-5646-2022-96-02
VIIK 532.59

D. M. Andreieva

PhD student

Department of Applied Mathematics

V. N. Karazin Kharkiv National University
Svobody sqr., 4, Kharkiv, Ukraine, 61022

Bicumk XapKiBCHKOTO HAIIOHAJIBLHOTO
yuiBepcurery imeni B.H. Kapasina
Cepist "MaTemaTnka, IPUKIATIHA
MaTeMaTHKa i Mexanika'

2022, Toum 96, c. 23-39

andrejeva_darja@ukr.net http://orcid.org/0000-0002-1767-5392

S. Yu. Ignatovich

DSc math, prof.

Department of Applied Mathematics

V. N. Karazin Kharkiv National University
Svobody sqr., 4, Kharkiv, Ukraine, 61022

ignatovich@ukr.net http://orcid.org/0000-0003-2272-8644

Homogeneous approximation for minimal realizations

of series of iterated integrals

In the paper, realizable series of iterated integrals with scalar coefficients
are considered and an algebraic approach to the homogeneous approximati-
on problem for nonlinear control systems with output is developed. In the
first section we recall the concept of the homogeneous approximation of a
nonlinear control system which is linear w.r.t. the control and the concept
of the series of iterated integrals. In the second section the statement of the
realizability problem is given, a criterion for realizability and a method for
constructing a minimal realization of the series are recalled. Also we recall
some ideas of the algebraic approach to the description of the homogeneous
approximation: the free graded associative algebra, which is isomorphic to
the algebra of iterated integrals, the free Lie algebra, the Poincaré-Birkhoff-
Witt basis, the dual basis and its construction by use of the shuffle product,
the definition of the core Lie subalgebra, which defines the homogeneous
approximation of a control system. In the third section we show how to
find the core Lie subalgebra of the systems that is a realization of the one-
dimensional series of iterated integrals without finding the system itself.
The result obtained is illustrated by the example, in which we demonstrate
two methods for finding the core Lie subalgebra of the realizing system. In
the last section it is shown that for any graded Lie subalgebra of finite codi-
mension there exists a one-dimensional homogeneous series such that this Lie
subalgebra is the core Lie subalgebra for its minimal realization. The proof is
constructive: we give a method of finding such a series; we use the dual basis
to the Poincaré-Birkhoff-Witt basis of the free associative algebra, which is
built by the core Lie subalgebra, and the shuffle product in this algebra. As
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a consequence, we get a classification of all possible homogeneous approxi-
mations of systems that are realizations of one-dimensional series of iterated
integrals.

Keywords: homogeneous approximation; series of iterated integrals;
minimal realization; core Lie subalgebra.

2010 Mathematics Subject Classification: 93B15; 93B25; 93C10.

1. Introduction

The homogeneous approximation problem has attracted great attention of
experts in the control theory for several decades. We briefly recall the definition.
In this paper we restrict ourselves to the class of control systems, which are linear
w.r.t. the control, of the form

m
&= Xi(x)u;, (1)
i=1
where X1 (z), ..., X;n(z) are real analytic vector fields in a neighborhood of some

point z°. Under homogeneous system from this class we mean a system of the
polynomial form

m

. ik a . 9k-1,, ik _

Ty = E Zaql_"qk_lxl T Uiy Qg g ER, k=100, (2)
i=1

where the inner sum in the right hand side of (2) is taken over all integers
qis-..,qk—1 > 0 such that

quwi + -+ gp_1wi—1 + 1 = wy,

and 1 < wy; < --- < w, are some integers called weights of the coordinates
Z1,...,Tn. We note that a homogeneous system is feedforward, hence, if the
controls u;(t) are known, then the components of the trajectory zj(t) can be found
one by one by integrating known functions, without solving differential equations.
It is convenient to deal with a coordinate-free definition. So, we say that a system
is homogeneous if it takes the form (2) after some change of variables.

The concept of a homogeneous approximation can be introduced by di-
fferent ways. Using coordinates, we can explain the definition as follows. Let us
denote by x(t;u) and Z(t;u) the trajectories of the systems (1) and (2) starti-
ng at z° and at the origin respectively and corresponding to the same control
u(t) = (u1(t), ..., um(t)). We denote

U1) = {ut) = (ui(t), ..., um(®) : lwi(@®)| <1, i=1,....m, t €[0,1]}.

Finally, for any u € U(1), we denote by u'/?(t) the function u'/?(t) = u(t/6),
t € [0,6] (i.e., ut/?(t) is obtained from wu(t) by “shrinking” its domain [0,1] to
[0,6]).
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We say that a system of the form (2) is a homogeneous approzimation of the
system (1) if there exists a change of variables y = Q(z) such that Q(2°) = 0 and
for any u(t) € U(1)

0= ((QUa(B:u*))k — F(O:0/%)) 0 as 650, k=1,

Informally, this means that after some change of variables trajectories of the
initial system and of its approximation become equivalent at the origin for any
fixed control.

Many results concerning homogeneous approximation exploited differential-
geometric tools and language [3], [21], [1], [6], [2]; the results obtained within this
approach were summarized in [10]. As an example of usage for a local analysis of
a particular class of systems, we mention Goursat distributions [15].

Another fruitful way was initialized by M. Fliess [5]; it was based on interpreti-
ng control systems as formal series of noncommutative variables and used tools of
free algebras [11], [13], [17], [18]; an overview can be found in [12]. Namely, instead
of the system (1), one considers its trajectory as a series of iterated integrals

t rm Tk—1
x(t;u) = xo—l—zal___ik / / / wiy (1) -+ - w4y, (Tg)dTR - - - dT
0 JO 0

where ¢;, ;, € R"™ are expressed via values of the vector fields X;(x) and their
derivatives at z°. Therefore, Ci,..i, are constant vectors. Iterated integrals are
linearly independent functionals of u; and, therefore, can be interpreted as a basis
for a free associative algebra. We give more detailed explanations in the next
section.

In [7], [19] a complete classification of homogeneous approximations was obtai-
ned. It turned out that a homogeneous approximation is defined by some Lie
subalgebra in the free Lie algebra with m generators called a core Lie subalgebra,
which is defined by the system. As an important benefit of the algebraic way of
finding homogeneous approximations, we mention its convenience for computer
realization [20].

In the present paper we study an algebraic description of homogeneous
approximations for nonlinear control systems with output. More specifically, we
consider series of iterated integrals with scalar coefficients

t T1 Thk—1
y(tu) =y° + E Ci1...ik/ / / wiy (1) -+ - g, () dT) - - - (3)
o Jo 0

where ¢;;.;, € R. The series (3) is called realizable if these exists a system of
the form (1) and a function y = h(z) such that y(t;u) = h(z(t;u)) admits the
representation (3); it is known that the realization of the minimal possible di-
mension is unique up to a change of variables [9], [4], 8]

The main results of the paper can be outlined as follows. In Section 3 we show
that the core Lie subalgebra of the minimal realization can be found without
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finding the realization itself, i.e. directly from the series (3). In Section 4 we
prove the following classification theorem: any graded Lie subalgebra of finite
nonzero codimension can serve as a core Lie subalgebra of a realizing system of a
(homogeneous) series of the form (3).

2. Background

2.1. Realizability problem. The realizability problem for systems with
output is well known. This problem deals with a description of the output behavi-
or for analytic nonlinear control systems. Systems are represented as differential
equations of the form (1) defined in some neighborhood of a point zV, i.e., the
vector fields Xi(x),..., X (x) are defined and are analytic in a neighborhood of
2°. Let us consider also a function y = h(z) that is defined in a neighborhood of
20 and is analytic there.

We recall some basic concepts of the realizability theory. First we introduce
some notation.

Below we denote by M the set of multi-indices

M:{I:(zl,,zk)kZI, 1§21,,’Lk§m}

One of the most important concepts in this theory is the iterated integral,
which is defined as follows

0 rm Th—1
nr(0,u) = / / . / Wiy (11) « o, (T)dTge - .. dmy.
o Jo 0

It can be shown [5] that for any 6 > 0 iterated integrals are linearly
independent as functionals on the set

U0) = {u(t) = (ur(t), ..., um(®) : lui(t)| <1, i=1,...,m, t €[0,6]}.

We consider the set {n7(0,u) : I € M} for an arbitrary fixed 6 > 0. Since the
functionals n7(0,u) are linearly independent, they form a basis of some linear
space. Then their linear span is a free associative algebra with the concatenation
operation

N1, (9’ u) N1, (9’ u) =Nl (07 U);

we denote this algebra by Fy. Note that for all # > 0 the algebras Fy are
isomorphic to each other. Therefore, instead of the algebras Fy, it is conveni-
ent to consider an abstract free algebra F isomorphic to all of them, which is
generated by abstract independent elements 71, ..., 7m,. Also let us consider the
free Lie algebra £ generated by 71, ..., 7, with the bracket operation defined by
[a,b] = ab — ba.

Below we use a unitary algebra F¢ = F + R assuming that 1 is the unit in
F¢. In order to write elements from F and F€ in the same way, we complement
M by the “empty index”,

My=MU {@}
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and assume that g = 1.
Now we can formulate the realizability problem from a formal point of view.
Consider an arbitrary linear map

c: F¢—=R.
This map corresponds to a formal series S with scalar coefficients ¢; = ¢(nr)
S= Y cmr (4)
IeMy

Below we assume that the map c is nontrivial, i.e., ¢(F) # {0}; then the series S
has at least one nonzero term except a constant.

Definition 1. The series (4) is called realizable if there exist vector fields
Xi1(x), ..., Xm(x) and a function h(x), which are analytic in some neighborhood
of some point x°, such that the functional y(0;u) = h(x(0;u)) where z(0;u) is a
solution of the Cauchy problem

satisfies the equality

y(0;u) = Z crni (8, ).

IeMy

In this sense, (1) is a realizing system for (4).
To formulate a realizability criterion, we recall the following definition.

Definition 2 ([4], [8]). Let B denote the linear space of formal series of the form
(4). Consider the map F.: L — B of the form

Fo(t) =Y clulyn, L€L. (5)
IeMy

The Lie rank of a series S is defined by the equality
pr(c) =dim{F.(¢): L € L}.
Now we are ready to recall the following criterion of realizability.

Theorem 1 ([4], [8]). Suppose that the series S = > c(nr)nr satisfies the
IeMy
following growth conditions,

les| < Cy|I1CH! (6)

with some C,Cy > 0, where by |I| we denote the length of the multi-index I.
The series S is realizable if and only if pr(c) < oo. In this case n = pr(c) is the
minimal dimension of a realizing system. Moreover, a minimal realization (i.e.,
a realization of the minimal dimension) is unique up to a change of variables.
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In the language of the associative algebra F, the realizability condition can
be formulated as follows.

Theorem 2. Consider the free associative algebra F and the corresponding Lie
algebra L. A formal series S satisfying the growth condition (6) is realizable if

and only if there exist a natural number n and elements {1, ..., 0, € L satisfying
the following condition: for any element { € L there exist coefficients aq,...,ay
such that

cla(l — Z a;l;) =0
i=1
for any element a € F°.

One of the ways to construct a minimal realizing system for a given series S is
as follows [8]. Since the Lie rank is n, there exist n linearly independent elements
l1,..., 0, € L for which the series F.(¢1),...,F.(¢,) are linearly independent.
Consider the coefficients of all possible elements of the form n7¢;. As the series
F.(¢;) are linearly independent, there exist n multi-indices Ir,...,I, € My for
which the matrix

{C(Tlligj)}zj:l (M)
is non-singular. We define the linear map ¢ : F¢ — R" by the equality
N c(nrnr)
cnr) = . (8)
c(n1,,7m1)

and consider the corresponding series
S=> cnm (9)
IeMy

with n-dimensional coefficients. The unique system constructed by this series is a
minimal realization of the series S.

2.2. Grading in the algebra F and homogeneous approximations of
control systems. The free associative algebra F is graded, namely, it admits the
following representation

]-":Z]:k, F*=Lin{n; : I € M, |I| = k}.
k=1

This grading is justified by the following observation, which concerns iterated

integrals:
0 r7i Th—1
0 Jo 0

1 rn Th—1
:ek/o/o /0 wiy (110) - - ug, (11,0)dTy; - - - dy.
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Thus, 77(0,u"?) = 0Wnr(1,u), where u'/?(t) = u(t/6), t € [0,6]. In this sense,
|I| denotes the order of nr(#,u'/?) as a function of 6 as § — 0.
The Lie algebra £ inherits this grading,

L=>rr cF=rnc.
k=1

Below we say that a € F* is homogeneous and k is its order; in this case we write
ord(a) = k.
Let us consider a series with vector coefficients of the form

S=>emn, (10)

IeMy

where ¢; € R™; it defines a linear map ¢ : ¢ — R™ by ¢(n7) = ¢7. Assume that
this map satisfies the Rashevsky-Chow condition

(L) =R". (11)

Suppose also that the series S is realizable, that is, there exists a system of the

form (1) such that its trajectory z(0; ) is represented as z(0;u) = > ¢mr(0,u).
IeMy
It can be shown that this system is unique, and the condition (11) means that

the realizing system is locally controllable, i.e., the initial point z° belongs to the
interior of the set of all points that are reachable from z in a time 6 > 0.
The following definition takes into account the grading introduced above.

Definition 3 ([7],[19]). Suppose the series (10) corresponds to the system (1).
Let us define the subspaces

Pl={tec' :c)=0}, P={tecr.cq0)ect + -+, k>2

and

o0

§ :~k
£X17---7X7n = 7) °

k=1

Then Lx, ... x,, 15 a graded Lie subalgebra; it is called a core Lie subalgebra of the
system (1).

It can be shown that the core Lie subalgebra is of codimension n (in £) and
that it is invariant w.r.t. changes of variables in the system.

It turns out that the core Lie subalgebra is responsible for the homogeneous
approximation of the system [7], [19]. Namely, two control systems of the form (1)
have the same homogeneous approximation if and only if their core Lie subalgebras
coincide. Moreover, any graded Lie subalgebra of codimension n is a core Lie
subalgebra for some locally controllable system of the form (1).

In Section 3 we describe the core Lie subalgebra for a realizing system of a
series of the form (4).
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2.3. Basis in the algebra F. Suppose {/;}°, is a (homogeneous) basis of
L. Then, due to the Poincaré-Birkhoff-Witt Theorem [16], the set

{ggllgg:kZL 1<y <-ve < g, ql,...,quI} (12)

is a (homogeneous) basis of F, where £ = £--- ¢ (q times).

Let us introduce the inner product in F assuming the basis {n; : I € M}
is orthonormed. Also, let us introduce the shuffle product in F by the recursive
formula

7 WNj = Nij + Nji
Miydy W05 = 1 Wiy 1, = My (M1, Wn5) + Njiy 1y
Nix Iy Wis Ty = Miy (N1, Wi 1y) + Niy (Miy 1, WNI,)
for any I, Is € M. Denote by

{dql'"gk:kZL1§i1<"'<ik, 1y qr > 1} (13)

21...%%

a dual basis for (12) in the sense of the inner product introduced above. It can be
shown [14] that

dc‘n-u% — ;d}lﬂh T Lud"-u%
21...7% Q1'q1<;' 71 (23
where dW9 = dw --- wd (q times); here the notation d; = d} is used for brevity.

Therefore, we can rewrite the series S in the basis (13)

1
S =c(1) + Z mc(ggll I GET y dit:qk’

i /1
where the sum is taken over all k > 1and 1 < i3 < -+ < ik, q1,...,q > 1. In
Section 4 we apply an analogous representation to the series Fi.(¢).

3. Description of the core Lie subalgebras of realizing systems

In this section we show that the core Lie subalgebra of a realizing system
(Definition 3) can be found without finding the realizing system itself.

Theorem 3. Let S be a realizable series of the form (4) and an n-dimensional
system (1) be its minimal realization. Then the core Lie subalgebra Lx, . x,, of
this minimal realization can be found in the following way:

[o@)

k

Lx,,. . Xm= 273 ;
k=1

where
731:{EEEI:c(aE)zOforanyae]:e},
Pk = {E e LF: there exists 0 € LY+ -+ + LF1 such that

cla( =) =0 for anya € F¢}, k>2. (14)
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Proof. Take an element ¢ from the subspace Pk It suffices to show that this
element also belongs to the subspace P*. Let £ € P¥, then by formula (14) there
exists an element ¢ belonging to the sum of subspaces £' +--- + £¥~! such that
the equality

cla(l—10))=0 (15)

holds for any element a from F°. As an element a, we take those elements 7y, for
which the matrix (7) is nonsingular. Since equality (15) holds for any element a
then it is true that

cn,(t—20))=0, i=1,...,n. (16)

Consider the n-dimensional mapping (8), then
c(nn, (€= 1))

(g, (€ — )

Since the condition (16) holds for any row, then ¢(¢ — ¢') = 0. This means that
the element ¢ belongs to the subspace Pk,

Take an element ¢ from the subspace Pk Tt suffices to show that this element
also belongs to the subspace P¥. By definition, ¢(¢) € ¢(L 4 - -+ L), therefore,
there exists an element £/ € £! + --- + £F~1 such that ¢(¢ — ¢) = 0. This means
that c(nr,(¢ —¢')) = 0 for ¢ = 1,...,n. Since the series F.(¢ — ¢') is a linear
combination of the series F.(¢1),...,F.(¢,), there exist the numbers a;,...,ay,
such that for any I € M

A1) =

c(nr(t—1) Za] (nr4;).

In particular, substituting I = I;, for which the matrix (7) is nonsingular, we
obtain the following equality

c(nr, (€= 1)) n c(nn )

:ZO(]‘ :0

o -)) = \elmby)

Since the matrix (7) is non-singular, the vectors (c(n,¢;),...,c(n,¢;))" are li-
nearly independent. Hence, all coefficients «; are equal to zero. This means that

c(a(t =) =

for any element a € F¢, therefore, ¢ € P*. The theorem is proved.
Example. Let a one-dimensional series

S =m +n21 + 211



32 D. M. Andreieva, S. Yu. Ignatovich

be given. Let us show that the Lie rank of this series is equal to 2. To do this, we
write down all the nonzero series of the form (5):

F.(m) = 1+mn2+mn2,
Fo(Im,ne]) = -1,
Fe([m, [m,me]]) = 1

Since two of them are linearly independent, the Lie rank of S equals 2. We can
choose ¢4 = m, o = [m,n2] and I) = (@), Ix = (2), then the matrix (7) is
nonsingular. Then we get n-dimensional series of the form (9)

S (771 + 121 + 77211)
m + N

Using Definition 3, let us find the core Lie subalgebra for a realization of the
n-dimensional series S. Consider the subspace

Pl={ter' :t)=0}.

We have £! = Lin{ny, n2}. For the elements 7y, 72 we write down their coefficients

= (1) 2w = (g)- 17)

Then, obviously, the space Pl is a linear span of only one element 7y
P = Lin {1} .
For k = 2 we get B
P2 ={teL?:) ec(Lh}
and £2? = Lin{[ny, n2]}. For the element ¢ = [n1, n2] we find

c[m,m2]) = clma — n21) = <_01) :

Taking into account the form of the coefficients (17), we see that ¢(¢) ¢ ¢(L1).
That is, P2 = {0}.

Therefore, dim(Z(£! + £2)) = 2, which means that P* = £F for all k > 3.
Thus, we have found the core Lie subalgebra for the n-dimensional series S:

£Xl,X2 = Lin {772} + Z £k' (18)
k=3

Now we show how to use Theorem 3 and find this core Lie subalgebra using
only the one-dimensional series S. We write down the non-zero coefficients of this
series:

cm) =1, c(n1) =1, c¢(na11) = 1.
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Consider the subspaces (14). For k = 1 we have
PIZ{EGEI:c(af)zOforanyaG]:e}.

First, as an element £ we take 1. In particular, for a = 1 we get c(an;) = ¢(n1) = 1,
hence, 71 ¢ P'. Now we choose £ = 1, then c(ang) = 0 for all @ € F. This means
that P! = Lin {ne}. Now consider the subspace

P? = {te L% : there exists ¢ € £ such that c(a(¢ — ¢)) = 0 for any a € Fe}.

As an element £, we take the bracket [n1,n2] = 72 — 121, and ¢/ € L! is a linear
combination an; + fna, where «, § are numbers. In the definition (14) for k = 2,
we first take a = 1. Then

cla(t—0) =c(ma —no1 —am — Be) = -1 —a =0,
which means that « = —1. Now we choose a = 1, which gives
c(a(l — g’)) = c(n212 — N221 — a1 — Biae) = —a =0,

hence, o = 0. We have got a contradiction, therefore, [1,12] ¢ P2. This means
that P? = {0}. Finally, we consider the subspace

Pi= {te L3 : there exists £/ € L1 ++£? such that c(a(f — ¢')) = 0 for any a € Fe}

and take into account that £3 = Lin{[ny, [n1,m2]], [n2, [n1,m2]]}. First we take

= [ni, [, n2]] = Mz — 2mo1 + ne11 and £ = amy + B(m2 — n21). Then for
a =1 we get

c(a(l—0) = c(miz — 2ma21 +no11 —am — P2+ Bna1) =1—a+ =0
while for a = 1y we get

c(a(l —0') = c(n2112 — 2m2121 + M2211 — an21 — Bra12 + Pra21) = —a = 0.

This gives « = 0 and § = —1, that is, / = —n12 + 191. One easily checks that
c(al) = c(al’) for any a € F¢, hence, [n1, [m1,m2]] € P3. Using similar reasoning
for the element ¢ = [n2, [n1, 72]], we see that c¢(af) = 0 for any a € F¢. This means
that P3 = £3. Since ¢(LF) = 0 for k > 4, we get P¥ = L£*. Thus, we have obtained
the core Lie subalgebra (18) using only the initial one-dimensional series S.

One can check that a realization of the series S in a neighborhood of the point
2% = 0 can be chosen in the following form

T1 = U1 + ToUg,
To = +/1+ 2xouy,

Yy =T,
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that is, X1(z) = (1,v/T + 222) ", Xa2(2) = (22,0)", h(x) = z1. As a homogeneous
approximation for this system, we can choose a homogeneous system with the
same core Lie subalgebra

i:l = U1,

(ig = T1U2.

We observe that manipulating with the series for finding the core Lie subalgebra
is more convenient than with vector fields directly.

4. Description of all possible homogeneous approximations
of realizing systems

In this section we show that any graded Lie subalgebra of finite nonzero codi-
mension is the core Lie subalgebra of a realizing system of some series (3). We
introduce such a series using the dual basis (13); the corresponding linear map
is defined by formula (19) below. The following lemma describes one property of
this map.

Lemma 1. Suppose {{;}32, is a homogeneous basis of the Lie algebra L. Let a
linear map c : F — R be defined on the elements of the corresponding Poincaré-
Birkhoff- Witt basis (12) as follows: for any k > 1 and any 1 <iy < --- < iy

1 if k=n and (i1,...,1,) =(1,...,n),
clbiy - by) = ()
0 otherwise.
Consider any k-tuple (j1,...,jk) of natural numbers, where 1 < k <n. Then
c(éjl--~€jk):0 iflgkﬁn—l, (20)
1 if (J1,-.-,Jn) 18 a permutation of {1,...,n},
(b, -+ 4y,) = . (21)
0 otherwise.
Proof. Let us denote by inv(ji, ..., jx) the number of inversions in the tuple
(J15- -+, Jk), i.e., the number of pairs (s',s”) such that s < s’ and jg > jg.
If inv(j1,...,Jx) = r, then sorting the tuple in non-decreasing order requires r

adjacent transpositions. Below we use the notation

Nir ={01,-- -, Jk) 1inv(je, ..., jx) =7}, k>1, r>0.

For any k the maximal possible number of inversions is %k(k — 1) (this number of
inversions is achieved when the numbers in the tuple strictly decrease). Therefore,
if 7> %k(kz — 1), then N, = @. Hence, the set of all tuples of natural numbers
can be represented as a union of the sets N, where k> 1, 0 <r < %k(l{; —1).
We are interested in k£ such that 1 < k <n.

We use induction on the set of pairs (k,r) such that k> 1,0 <r < 2k(k—1)
ordered lexicographically. Namely, we assume

(K r"y < (K", r") it K <Kk'or k' =K"and r' <+".
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If k =1, then the required equalities (20), (21) follow from (19).

If 2 <k <nand (ji,...,Jk) € Nio, then j; <--- < ji. Therefore, ¢;, ---¢;,
belongs to the Poincaré-Birkhoff-Witt basis. Hence, equalities (20), (21) follow
from (19).

Let us consider any pair (k,r) such that 2 < k < nand 1 <r < %k(k - 1)
and suppose that the equalities (20), (21) hold for any element /g, --- £, , where
(q1,---,ax) € Ny and (K',7") < (k,r). This means that c(lg, ---£g,,) = 0
except the case when (K',r') = (n,r’) and {q1,...,qw} = {1,...,n}; in this case
c(lyy - Lg,) = 1.

Consider any (j1,...,jk) € Ng,. Since r > 1, there exists 1 < s < k — 1 such
that js > jsy1. Since

Ej Ejs+1 = [gjs7£js+l] + fjs+1€jsv
we can express
by - by = a1 + az,
where
ay =Ly, -4,y [gj Ejs+l]£js+2 Ly
Ciljorn Ly
First we consider a;. Since the element [(;,_,¢; . ] belongs to the Lie algebra L, it

equals a linear combination of basis elements, [¢;,,¢;,,,] = > a,fp, where o, € R.
Then

s

az = Ejl T ejsflgjsjq

ay = Z apgh e '£j3—1€p£js+2 o 'Ejk’

where (ji1, ..., Js—1, Jps Js+2, - - -» Jk) € Ng—1, for some r’. Since (k—1,7") < (k,7),

we get c¢(a1) = 0 by the induction supposition (we take into account that k < n).
Therefore, c(¢;, - - - ¢;,) = c(ag). Obviously, as € Ny ,_; and (k,r—1) < (k,7).

Hence, the equalities (20), (21) hold for the element ¢;, ---¢;, since, due to the

induction supposition, they hold for as. This completes the proof of Lemma 1.
The following theorem is the main result of this section.

Theorem 4. Let L' be a graded Lie subalgebra of codimension n > 1. Then there
erists a one-dimensional homogeneous series of Lie rank n such that L' is a core
Lie subalgebra of its (minimal) realization.

Proof. Since L' is a graded Lie subalgebra of codimension n, we can choose
homogeneous elements (1, ..., ¢, € L such that £’ +Lin{¢y,...,¢,} = L. Without
loss of generality we assume ord(¢;) < ord(¢;) if i < j. Then choose a homogeneous
basis {£;}52,,,; of £ and consider the corresponding Poincaré-Birkhoff-Witt basis
(12) and its dual basis (13). Introduce the series

S:dlLIJ'--LIJdn. (22)

We note that this series corresponds to a linear map ¢ : F¢ — R defined by (19)
and such that ¢(1) = 0.
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We show that the series (22) is of Lie rank n. In fact, its Lie rank is not greater
than n since the series has an n-dimensional realization, namely, the n-dimensional
system corresponding to the series

dq
S=1...
dn
with the output y = h(z) = x1 - - - x,. Such a system can be explicitly found as is
described in [19]. It satisfies the Rashevsky-Chow condition (11) since ¢(¢;) = ey,
i=1,...,n. Obviously, ¢(L£’) = 0, hence, the core Lie subalgebra of this system
equals £'. Now we show that this realization is minimal.

To this end, we show that the Lie rank of the series (22) is not less than n. By
definition, the Lie rank equals the dimension of the set of series of the form (5).
It is convenient to re-expand the series w.r.t. the dual basis (13). Thus, the Lie
rank equals the dimension of the set of series of the form

F()=c)+ > p !

| J1
J1<<Jk ! G

qr .. pdk wqy o g
'c(ﬁj1 CrO)d M w e wd
Now we show that the series F.(¢1),. .., F.(¢,) are linearly independent. For n = 1,
there is nothing to prove. Suppose n > 2. Let us introduce the notation

di=dyw - wdy, dp=diw - wdy,

dr=dyw - wd,_ywd,y1---wd,, r=2,...,n—1.

In other words, d, is the shuffle product of all elements di,...,d, except d,.
Analogously, define

U=ty by, 1

n :gl"'gn—lp
67‘ = 61 "’Er—lgr—‘rl c gn
o

r=2,...,n—1.

Then the coefficient of d,. in the series F.(¢;) equals c(¢.4;). Due to Lemma 1,

_ 1 if 7=
c(&n&):{ if ¢=m,

0 otherwise.

This means that the matrix n x n formed by the coefficients of elements dy, . . ., d,

in the series Fo({1),..., Fe(f,) is identity. Hence, series F.(¢1),..., Fc(¢y,) are li-

nearly independent, and therefore, the Lie rank of the series (22) is not less than n.
Thus, the series (22) is of Lie rank n, therefore, its minimal realization is

of dimension n. As was mentioned before, this series has a realization with the

core Lie subalgebra £'. Since the minimal realization is unique up to a change of

variables, the mentioned realization is minimal. The theorem is proved.
Theorem 4 has the following classification corollary close to [19].

Corollary 1. Any graded Lie subalgebra of a finite (nonzero) codimension is a
core Lie subalgebra of the minimal realization of some one-dimensional (nontrivi-
al) series, and the dimension of this realization equals the codimension of the Lie
subalgebra.
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Y cTaTTi pO3TIAIaIOTHCA PEATi30BHI PAIN iITEPOBAHNX IHTETPAJIIB 31 CKATAPHUMHI KO-
edimienTaMn i PO3BUBAETHCS aJAreOpaATIHUI MAXIA 0 331291 OTHOPIAHOT aITpOKCHMAIIIT
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HeJIHINHUX KePOBAHUX CUCTEM 3 BHUXOJOM. Y IEPHIOMY PO3JALIl MU HAray€MO IIOHST-
TS OTHOPITHOT ampoKcUMallii HeJTiHiiHOT KepoBaHOI CHCTEeMH, JIHIWHOI 33 KepyBaHHIM,
Ta MOHATTS PAMY iT€POBAHUX iHTErpaiB. Y APYroMy PO3/Iijli HaBEJEHO TTOCTAHOBKY 3a-
Jadi peasi30BHOCTI, HAaraJaHO KPUTEPiil peasi30BHOCTI pAmy iTepOBaHWX IHTErpaJiB Ta
croci6 mobymoBu MiHIMAIBHOI peasizartii psay. Takok Mu HAraayeMo AesKi imei anre-
OpaivHOro MiAXOMy /0 OMKMCY OJHOPITHOI AIIPOKCHMAIil: BiTbHA rpaayfioBaHa acoIiaTUB-
Ha, anrebpa, 1o i3omopdHa anrebpi irepoBaHnx iHTerpasis, BiIhbHA anredpa JIi, Gasuc
[Tyankape-Bipkroda-Birra, 6ioproronaasuuii 6a3uc i #toro mobymoBa 3a TOMOMOTOK Ta-
CYI090ro M00yTKYy, O3HAUYEHHs KOpeHeBol miganarebpu Jli, ska BU3HAYAE OTHOPIIHY ampo-
KCHUMAIII0 KEPOBAHOI cucreMu. Y TPETHOMY PO3/iI MH MMOKA3y€EMO, sk MOXKHA 3HANTH
KopeneBy mimanredpy JIi cucremm, sika € peasizaimi€io OJHOBHMIPHOIO Psiy iTePOBAHUX
inrerpais, He 3naxoigun camoi cucremu. OTpuMaHuil Pe3yabTAT IPOLTIOCTPOBAHO MIPU-
KJIAJOM, B SKOMY TTPOJIEMOHCTPOBAHO [IBA CIOCOOW 3HAXOMKEHHsT KOPEHEBOI Tigaarebpu
JIi peasizyro4oi cucremu. B ocraHHROMY pO3/Iijii MOKA3aHO, IO It OyIb-KOI IpaLyito-
Bauoi miganrebpu JIi ckindeHHOT KOBUMIPHOCTI iCHY€ Takwil OJHOBUMIDHUN OXHOPIIHUN
psan, mo g migaiaredpa JIi € kopeneBoro mimanre6poro JIi itoro minimMaspHOI peastizari.
JloBeenns € KOHCTPYKTHBHUM: MU HABOJIUMO CIIOCIO 1100y/10BU TAKOI'O Ps/LY, B SKOMY BU-
KOPUCTOBYEThCsI OGioproronapHuit 6asuc no 6asucy Ilyamkape-Bipkroda-Bitra BisibHO
acoriaTuBHOI ajarebpu, mOOyIOBaHMIT 38 KOPEHEBOW miganrebporo Jli, i Tacyrounii 100y-
TOK B Miit asredpi. Kk HACTIIOK, OTpUMy€eMO KitacuiKaIliio BCiX MOXKIIUBUX OTHOPITHUX
aNpOKCUMAIIiil cucTeM, sIKi € peai3allisiMi OJIHOBUMIPDHUX PSIJIiB iTePOBAHUX IHTErPAJIiB.
Karwuosi crosa: omHOpigHA alpoOKCHMAallis; Psd IT€POBAHMX IHTErpajiB; MiHi-
MaJibHa peaJiizallig; KopeHeBa mimajreopa Jli.

Icropis crarTi: orpumana: 24 ceprasa 2022; ocranniit BapianT: 29 cepmaga 2022
npuitaara: 24 rpymgaa 2022.



