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The explicit form of the switching surface in admissible

synthesis problem

In this article we consider the problem related to positional synthesis and
controllability function method and more precisely to admissible maxi-
mum principle. Unlike the more common approach the admissible maximum
principle method gives discontinuous solutions to the positional synthesis
problem. Let us consider the canonical system of linear equations ẋi =
xi+1, i = 1, n− 1, ẋn = u with constraints |u| ≤ d. The problem for an
arbitrary linear system ẋ = Ax + bu can be simpli�ed to this problem
for the canonical system. A controllability function Θ(x) is given as a
unique positive solution of some equation Φ(x,Θ) = 0. The control is
chosen to minimize derivative of the function Θ(x) and can be written as
u(x) = −d sign(s(x,Θ(x))). The set of points s(x,Θ(x)) = 0 is called the
switching surface, and it determines the points where control changes its sign.
Normally it contains the variable Θ which is given implicitly as the solution
of equation Φ(x,Θ) = 0. Our aim in this paper is to �nd a representation
of the switching surface that does not depend on the function Θ(x). We call
this representation the explicit form. In our case the expressions Φ(x,Θ) and
s(x,Θ) are both polynomials with respect to Θ, so this problem is related
to the problem of �nding conditions when two polynomials have a common
positive root. Earlier the solution for the 2-dimensional case was known. But
during the exploration it was found out that for systems of higher dimensi-
ons there exist certain di�culties. In this article the switching surface for the
three dimensional case is presented and researched. It is shown that this swi-
tching surface is a sliding surface (according to Filippov's de�nition). Also

40

https://doi.org/10.26565/2221-5646-2022-96-03
https://orcid.org/0000-0001-8421-1718
https://orcid.org/0000-0001-9729-0742


ÂiñíèêÕÍÓ, Ñåð. ¾Ìàòåìàòèêà, ïðèêëàäíà ìàòåìàòèêà i ìåõàíiêà¿, òîì96 (2022) 41

the other ways of constructing the switching surface using the interpolati-
on and approximation are proposed and used for �nding the trajectories of
concrete points.

Keywords: controllability; controllability function method; admissi-

ble maximum principle; switching surface.

2010 Mathematics Subject Classi�cation: 93C05; 93B05; 93B40.

1. Introduction

Let us consider the system of di�erential equations

ẋ = f(x, u), x ∈ Rn, u ∈ Ω ⊂ Rr, (1)

and let Q be a neighbourhood of the origin. Our aim is to construct a control
u = u(x), u ∈ Ω, such that the trajectory of the system

ẋ = f(x, u(x)), (2)

starting at an arbitrary point x0 ∈ Q, transfers into the origin in a some �nite time
T = T (x0). This problem is called the admissible positional synthesis problem.

One of the ways to solve it is the admissible maximum principle [6]. We consi-
der constraints |u| ≤ d and the linear canonical system

ẋ1 = x2,

ẋ2 = x3,

...

ẋn−1 = xn,

ẋn = u.

(3)

In this case, the obtained control is discontinuous and takes only values
u = ± d, with trajectories of points sliding along the switching surface. The soluti-
on to this problem is known, but it is interesting to consider a problem of �nding
explicit form of the switching surface. It was earlier solved for the two-dimensional
system[7], and in this work we extend it to the three-dimensional case.

The conditions for reaching the equilibrium point are important problems of
mechanics and di�erential equations. Important results in this area were obtained
by O. M. Lyapunov, and subsequently they became a part of the foundation of
the mathematical theory of control.

The contributions to the development of the control theory were made
by L. S. Pontryagin, V. G. Boltayanskii, R. V. Gamkrelidze, E. F. Mishchenko,
R. Kalman, R. Bellman and many others. In particular, R. Bellman obtained the
equation that must be satis�ed by the solution of the optimal synthesis problem
(�nding the control that transfers an arbitrary point to the origin in the shortest
time):

min
u∈Ω

(
n∑
i=1

∂T (t, x)

∂xi
fi(x, u)

)
= −1, (4)
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where T (t, x) is a cost function and also a time needed to reach the origin.
In many cases, �nding a control that is a solution to this equation is quite

di�cult. This is one of the reasons why V. I. Korobov introduced the problem of
admissible positional synthesis. Admissibility means that the chosen control does
not necessarily provide the given or the shortest time, but ensures its �niteness.

The solution of the admissible positional synthesis problem, called the
controllability function method, was proposed by V. I. Korobov in [4] and later
developed in many other works. This method is based on the construction of the
control u(x), such that for the system (2) there exists a function Θ(x) which is
an analogue of the Lyapunov function in the stability theory, but also satis�-
es a condition which ensures �niteness of the time. More precisely the following
theorem holds.

Theorem 1 ([4]). Suppose that in the system (1) at any set of points

K1(ρ1, ρ2) = {(x, u) : 0 < ρ1 ≤ ||x|| ≤ ρ2, u ∈ Ω} the vector function f(x, u) sati-
s�es the Lipschitz continuity condition:

‖f(x′, u′)− f(x′′, u′′)‖ ≤ L1(ρ1, ρ2)(‖x′′ − x′‖+ ‖u′′ − u′‖),

for any (x′, u′), (x′′, u′′) ∈ K1(ρ1, ρ2).
And suppose that there exists a function Θ(x), such that the following condi-

tions hold:

1. Θ(x) ≥ 0 if x 6= 0 and Θ(0) = 0;

2. Θ(x) is continuous everywhere and continuously di�erentiable at any point

except, perhaps, the point x = 0;

3. there exists a number c > 0 such that the set Q = {x : Θ(x) ≤ c} is bounded
and there exists R > 0 such that Q ⊂ {x : ‖x‖ < R};

4. there exists a function u(x) : Q→ Ω, that satis�es the inequality

Θ̇ =

n∑
i=1

∂Θ(x)

∂xi
fi(x, u(x)) ≤ −βΘ1− 1

α (x)

for some α > 0, β > 0. And u(x) is Lipschitz continuous at any point of the
set K(ρ1, ρ2) = {x ∈ Q : 0 < ρ1 ≤ ‖x‖ ≤ ρ2}, that is

‖u(x′′)− u(x′)‖ ≤ L2(ρ1, ρ2)‖x′′ − x′‖,

for any x′, x′′ ∈ K(ρ1, ρ2).

Then the trajectory x(t) of the system ẋ = f(x, u(x)), which starts at an

arbitrary point x ∈ Q, ends at the point x1 = 0 at a certain �nite moment of time

(which depends on x0) T (x0) ≤ (α/β)Θ
1
α (x0). Moreover if α =∞, then x(t)→ 0

as t→∞.
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The function Θ(x) is called the controllability function. The conditions 1-3
of this theorem coincide with the conditions of Lyapunov theorem on asymptotic
stability, and the condition 4 ensures the �niteness of the time for an arbitrary
point to reach the origin. In the case where α =∞ the function Θ(x) is a Lyapunov
function for the obtained system.

Also in the case when α = β = 1, and instead of inequality, equality is ful�lled,
i.e.

n∑
i=1

∂Θ(x)

∂xi
fi(x, u(x)) = −1, (5)

the controllability function is also a motion time from an arbitrary point to the
origin. If, in addition, the Bellman equation is satis�ed:

min
u∈Ω

(
n∑
i=1

∂Θ(x)

∂xi
fi(x, u)

)
=

(
n∑
i=1

∂Θ(x)

∂xi
fi(x, u(x))

)
= −1, (6)

the function Θ(x) is also an optimal time.

The function Θ(x) is naturally constructed implicitly as a solution of some
equation Φ(x,Θ) = 0. It makes it di�erent from the Lyapunov function which
is constructed in explicit form. On the other hand, in the linear optimal control
problem, the motion time is also found implicitly[5].

Let us consider the canonical system:

ẋ1 = x2,

ẋ2 = x3,

...

ẋn−1 = xn,

ẋn = u,

(7)

with the constraint on control |u| ≤ d. It is a linear system ẋ = A0x+ b0u, where

A0 =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0

 , b0 =


0
0
0
. . .
1

 . (8)

An admissible position synthesis problem for an arbitrary linear system
ẋ = Ax+ bu can be simpli�ed to this problem for the canonical system[4].

Let us describe the algorithm of constructing the control using the admissible
maximum principle described in [7]. We determine the controllability function
Θ(x) at an arbitrary point x as a positive root of the equation

Φ(x,Θ) = 2a0Θ− (D(Θ)FD(Θ)x, x) = 0, (9)
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(it can be proved that this root is unique at every point [7]), where F is a positive
de�nite matrix,

D(Θ) = diag
(

Θ−
m+n−2i+1

2α

)n
i=1

, (10)

and numbers m ∈ N, α ≥ 1 are chosen so that the matrix

Fα =

((
1 +

m+ n− i− j + 1

α

)
fij

)n
i,j=1

is positive de�nite. In particular, we will consider m = n, α = 1. The number a0

is chosen to satisfy the constraint on control.

The derivative Θ̇ of the function Θ(x) can be written in the following form:

Θ̇ =
Θ((FA0 +A∗0F )y(x,Θ), y(x,Θ)) + 2uΘ(D(Θ)FD(Θ)x, b0)

(Fαy(x,Θ), y(x,Θ))
, (11)

where and y(x,Θ) = D(Θ)x. Let us denote

s(x,Θ(x)) = (D(Θ(x))FD(Θ(x))x, b0), (12)

that is,

s(x1, x2, . . . , xn,Θ(x1, x2, . . . , xn)) =

= fn1x1 + fn2Θ(x1, x2, . . . xn)x2 + ...+ fnnΘn−1(x1, x2, . . . , xn)xn.
(13)

We choose the control as u(x) = −d sign(s(x,Θ(x))) and call the set of points
satisfying the equation

s(x,Θ(x)) = 0 (14)

the switching surface S.

This control gives the minimum value of the derivative Θ̇ of the function Θ(x)
that can be obtained under given constraints. We note that this control is not
continuous. It takes only boundary values and has discontinuity at points of the
surface (14).

After substitution of the control to the system (7) we obtain:

ẋ1 = x2,

ẋ2 = x3,

...

ẋn−1 = xn,

ẋn = −d sign s(x1, x2, ..., xn,Θ(x1, x2, ..., xn)).

(15)

Algorithm of �nding the concrete trajectory from the point x0 to the point
x1 = 0 in the case when the switching surface is given by the equation (14) is the
following. At the point x0 we �nd a unique positive solution Θ0 of the equation
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(9) and add the equation (11) to the system (15). After that we �nd the trajectory
(x1(t), x2(t), . . . xn(t)) as the solution of the Cauchy problem:

ẋ1 = x2,

ẋ2 = x3,

...

ẋn−1 = xn,

ẋn = −d sign s(x1, x2, ..., xn,Θ),

Θ̇ = 2Θ(F (Θ)x,A0x)−2dΘ|(D(Θ)FD(Θ)x,b0)|
(F 1y(Θ,x),y(Θ,x))

,

(16)

x1(0) = x10, x2(0) = x20, . . . , xn(0) = xn0,Θ(0) = Θ0. (17)

2. The explicit form of the switching surface

The formula s(x,Θ(x)) = 0 gives the implicit form of the switching surface,
that is, it contains the function Θ(x) as an implicit solution of the equation (9).
We are considering the problem of �nding the switching surface in the explicit
form. Hence, we need to exclude the variable Θ from the equation for the surface.

For this let us write the equation (9) and the formula for the switching surface
in the following form:

Φ(x,Θ) = 2a0Θ2n −
n∑

i,j=1

fijΘ
i+j−2xixj = 0, (18)

s(x,Θ) = fn1x1 + fn2Θx2 + ...+ fnnΘn−1xn = 0. (19)

One way to remove a common factor from two equations is to use the resultant.
Let x ∈ S, x 6= 0 be a �xed point, then Φ(x,Θ), s(x,Θ) are the polynomials
of variable Θ. If Φ(x,Θ) and s(x,Θ) have a common root, then their resultant
R(Φ, s) is equal to zero. Hence, the set of all points where they have a common
root can be given by the equation:

R(Φ, s) = 0. (20)

But the surface given by equation (20) is larger than the switching surface,
because it also contains points where Φ(x,Θ), s(x,Θ) have common negative root,
or this root equals zero. Instead, the switching surface contains only those points
where a common root Θ > 0. Therefore, we have certain di�culties related to the
fact that we need to �nd a way to separate the points where Θ(x) > 0 from the
entire set. Hence, further we will use the resultant only for obtaining this wider
set.

As an example let us consider the process of �nding switching surface for the
case n = 2 described in [7].
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Let us determine Θ with the equation

Φ(Θ, x) =
2

9
Θ4 −Θ2x2

2 − 2Θx1x2 − 3x2
1 = 0 (21)

(the algorithm for �nding such equations is described in [7]). Then the switching
surface has the equation:

s(Θ, x) = x1 + Θx2 = 0. (22)

Using the formula (20) we obtain the surface given by resultant:

R(Φ, s) =

∣∣∣∣∣∣∣∣∣∣

2
9 0 −x2

2 −2x1x2 −3x2
1

x2 x1 0 0 0
0 x2 x1 0 0
0 0 x2 x1 0
0 0 0 x2 x1

∣∣∣∣∣∣∣∣∣∣
=

1

9
x4

1 − x2
1x

4
2 = 0. (23)

To separate points where the common root of equations (21) and (22) is posi-
tive we use the fact that the equation (22) has only one root Θ = −x1

x2
, which is

positive only when x1x2 < 0. The part of surface (23) that satis�es this condition
can be written in the form:

x1 = −3x2|x2|. (24)

This formula gives the equation of the switching surface. But for systems of
higher dimensions, overcoming such di�culties can be more complicated. Now we
give the explicit form of the switching surface in the case n = 3.

Let us determine the controllability function by the equation:

Φ(x,Θ) =
9

1625
Θ6−38x2

1−30
4

5
x1x2Θ−4x1x3Θ2−6

4

5
x2Θ2−2x2x3Θ3−1

5
x2

3Θ4 = 0.

(25)
Then the switching surface has the form:

s(x,Θ) = 10x1 + 5Θx2 + Θ2x3 = 0, (26)

and equation de�ned by the resultant is as follows:

R(Φ, s) = x2
1

(
160x4

1 − 1625x6
2 + 5200x1x

4
2x3 − 4940x2

1x
2
2x

2
3 + 1040x3

1x
2
3 +

+ 845x4
2x

4
3 − 2366x1x

2
2x

5
3 + 1690x2

1x
6
3

)
= 0.

(27)

We are searching for the points where there exists a common root Θ > 0. Let
us show that the factor x2

1 can be discarded. Indeed, if x1 = 0 then

Φ(x,Θ) =
9

1625
Θ6 − 6

4

5
x2Θ2 − 2x2x3Θ3 − 1

5
x2

3Θ4 = 0, (28)

s(x,Θ) = 5Θx2 + Θ2x3 = 0. (29)
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These polynomials always have a common root Θ = 0. The second root
Θ = −5x2

x3
of equation (29) is also a root for (28) if:

1125x6
2

13x6
3

− 45x4
2

x2
3

= 0. (30)

That is,

x2
2 =

13

25
x4

3. (31)

But the points
{
x1 = 0, x2

2 = 13
25x

4
3

}
are also solutions for the equation

160x4
1 − 1625x6

2 + 5200x1x
4
2x3 − 4940x2

1x
2
2x

2
3 + 1040x3

1x
2
3 +

+ 845x4
2x

4
3 − 2366x1x

2
2x

5
3 + 1690x2

1x
6
3 = 0.

(32)

Hence the factor x2
1 does not add any non-zero roots to the equation (27) compared

to (32). There is also a case when {x1 = 0, x2 = 0, x3 6= 0}. Then

Φ(x,Θ) =
9

1625
Θ6 − 1

5
x2

3Θ4 = 0, (33)

s(x,Θ) = Θ2x3 = 0. (34)

In this case Φ(x,Θ) and s(x,Θ) have common root Θ = 0 and we do not
consider it. The surface that show all other solutions for equation (32) is shown
in Figure 1.

Fig. 1. Surface given by equation (32)

This surface consists of two parts. One of them (Part A) includes points
where the common root Θ(x) of equations (25) and (26) is positive, and the
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other (Part B) includes points corresponding to the negative root and this part
should be excluded.

If we �nd the switching surface we obtain the system of di�erential equati-
ons with a discontinuous right-hand side. The control u(x) equals −1 above the
switching surface and +1 below it.

Let us �nd the switching surface by examining the roots of the polynomial
s(x,Θ) = 10x1 + 5Θx2 + Θ2x3.

First, we consider the case when x3 = 0. Then

Φ(x,Θ) =
9Θ6

1625
− 34x2

2Θ2

5
− 154x1x2Θ

5
− 38x2

1, (35)

s(x,Θ) = x2Θ + 10x1. (36)

Then

R(Φ, s) = x2
1(160x4

1 − 1625x6
2) = 0. (37)

The equation (37) has solutions x1 = 0 and x1 = ±
(

1
2

√
5
(

13
2

) 1
4
√
|x2|3

)
.

Using the fact that s(x,Θ) has a positive root only when x1x2 < 0 we obtain the
curve: x1 +

(
1
2

√
5
(

13
2

) 1
4
√
|x2|3

)
sign(x2) = 0,

x3 = 0.
(38)

If x3 6= 0, then s(x,Θ) is a quadratic polynomial, if 5x2
2 − 8x1x3 > 0 then it

has two roots Θ1,2 =
−5x2±

√
5
√

5x22−8x1x3
2x3

. Now we are using the fact that Φ(x,Θ)
always has exactly one positive root Θ, hence, any point on the switching surface
corresponds either to root Θ1 or to root Θ2 and we can construct parts of switching
surface for this roots separately and then unite them.

By substituting the root Θ1 =
−5x2+

√
5
√

5x22−8x1x3
2x3

into (25) we obtain the
surface given by equation:

1125x6
2 − 2700x1x

4
2x3 + 1620x2

1x
2
2x

2
3 − 144x3

1x
3
3 − 585x4

2x
4
3 +

+ 1170x1x
2
2x

5
3 − 468x2

1x
6
3 +

√
5x2

2 − 8x1x3

(
−225

√
5 + 360

√
5x1x

3
2x3 −

−108
√

5x2
1x2x

2
3 + 117

√
5x3

2x
4
3 −

702x1x2x
5
3√

5

)
= 0.

(39)

The root Θ1 is positive when
−5x2+

√
5
√

5x22−8x1x3
2x3

> 0. We can rewrite this as:

if x3 > 0 then

((
x2 < 0 and x1 <

5x2
2

8x3

)
or x1 < 0

)
,

if x3 < 0 then

(
x2 > 0 and

5x2
2

8x3
≤ x1 < 0

)
.

(40)
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By constructing (39) only at points where these conditions hold we obtain
the part A1 of the switching surface. Similarly, considering the case of the root

Θ2 =
−5x2−

√
5
√

5x22−8x1x3
2x3

> 0, with conditions

if x3 > 0 then

(
x2 < 0 and 0 < x1 ≤

5x2
2

8x3

)
,

if x3 < 0 then

((
x2 > 0 and x1 >

5x2
2

8x3

)
or x1 > 0

)
,

(41)

we obtain the part A2. By combining the parts A1, A2, the curve (38), (purple line
in Figure 2) and the point (0, 0, 0) we get the graph of the switching surface. It
also can be shown that in the neighborhood of the curve (38) the root Θ remains
continuous, hence we can consider that switching surface consists of two parts,
each corresponding to a separate root.

Fig. 2. Switching surface

The line separating these parts (blue line in Figure 2) consists of points where
Θ1 = Θ2 = −5x2

2x3
and can be found explicitly. By substituting root Θ = −5x2

2x3
into

Φ(x,Θ) and by using the fact that in this case 5x2
2 − 8x1x3 = 0, we can write as

follows: {
1125x6

2 − 15860x4
2x

4
3 + 43264x1x

2
2x

5
3 − 31616x2

1x
6
3 = 0,

5x2
2 − 8x1x3 = 0.

The solutions of the form x1 = 0, x2 = 0, x3 6= 0 belong to case when the
common root Θ = 0, all other solutions can be written as

x1 = −sign(x2)
4

√
325

2048

√
|x2|3, x3 = −sign(x2)

4

√
25

26

√
|x2|. (42)
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Now let us denote:

P1(x1, x2, x3) = 1125x6
2 − 2700x1x

4
2x3 + 1620x2

1x
2
2x

2
3 − 144x3

1x
3
3 − 585x4

2x
4
3 +

+ 1170x1x
2
2x

5
3 − 468x2

1x
6
3,

P2(x1, x2, x3) = −225
√

5 + 360
√

5x1x
3
2x3 − 108

√
5x2

1x2x
2
3 + 117

√
5x3

2x
4
3 −

− 702x1x2x
5
3√

5
.

Hence, the switching surface is written in the form s(x1, x2, x3) = 0, where:

s(x1, x2, x3) = x1 +
(

1
2

√
5
(

13
2

) 1
4
√
|x2|3

)
sign(x2), if x3 = 0,

s(x1, x2, x3) = P1(x1, x2, x3) +
√

5x2
2 − 8x1x3P2(x1, x2, x3),

if x1 < −sign(x2) 4

√
325
2048

√
|x2|3 and (40),

s(x1, x2, x3) = P1(x1, x2, x3)−
√

5x2
2 − 8x1x3P2(x1, x2, x3),

if x1 ≥ −sign(x2) 4

√
325
2048

√
|x2|3 and (41).

(43)

Now we show graphically that S is a sliding surface [8]. Consider an arbitrary
point x on the surface S and its velocity vectors f+ and f− when it approaches
the switching surface from above and from below respectively. And let α be a
tangent plane to the surface S at the point x (Fig. 3).

Fig. 3. Velocity vector on the switching surface
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We consider

f−N =
〈∇s, f−〉
|∇s|

, f+
N =

〈∇s, f+〉
|∇s|

, (44)

and build the graphs of f̃−N = 〈∇s, f−〉 and f̃+
N = 〈∇s, f+〉 (Figures 4 and 5

respectively). We see that f−N ≤ 0 and f+
N ≥ 0 (and f−N = 0 if and only if f+

N = 0)
for an arbitrary point x ∈ S. This means that at any point the velocity vectors
are located on di�erent sides of the plane α and, therefore, the resulting vector
always lies in this plane.

Fig. 4. Graph of f̃−N Fig. 5. Graph of f̃+
N

3. Approximation of the surface

To �nd speci�c trajectories, we propose to use an approximate surface that has
a simpler shape. One of the methods can be a construction with an interpolation
polynomial in the form x3 = L(x1, x2). By substituting numbers instead of x1, x2

in equation s(x1, x2, x3) = 0 and �nding the solution for x3, we can get any
number of points on the switching surface. For interpolation, we select the points
in such a way that they form a rectangular grid in the x1x2 plane. Then the
interpolation polynomial is given by the formula

L(x1, x2) =

N∑
n=1

M∑
m=1

x3(x1i, x2j)

N∏
i=1,i 6=n

x1 − x1i

x1n − x1i

M∏
j=1,j 6=m

x2 − x2j

x2m − x2j

 . (45)

The approximated control u(x) is given in the form: u(x) = −sign(x3 −
L(x1, x2)). The surface obtained by interpolation and the trajectory of the point
(−1, 2.5, 1) are shown in Figure 6.

Another method of approximation that can be used is the least-squares
approximation. As an example, we choose multiples with maximal power 3 for
x1, x2 and construct the approximating surface in the following form:

x3 = w(x1, x2) = a1x1 + a2x
2
1 + a3x

3
1 + a4x2 + a5x1x2 + · · ·+ a15x

3
1x

3
2, (46)

where a1, a2, . . . , a15 are unknown coe�cients.
In this case, the points do not necessarily have to form a rectangular grid,

so the interpolating surface can be constructed for both parts of the surface S
separately (Fig. 7). In addition, if we take symmetrically located points, then the
resulting parts will also be symmetrical.
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Fig. 6. Interpolating surface and the trajectory

Fig. 7. Points for approximation

Numbers a1, a2, . . . , a15 are chosen to minimize the function

J(a1, a2, . . . , a15) =
k∑
i=1

(x3i − L(x1i, x2i))
2 . (47)
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Then in our case we have:

w(x1, x2) ≈



− 0.433897x1 − 0.05253x2
1 − 0.00240945x3

1 −
− 0.994791x2 + 0.170404x1x2 − 0.0174874x2

1x2 −
− 0.000655178x3

1x2 − 0.118976x2
2 − 0.0222263x1x

2
2 −

− 0.00191042x2
1x

2
2 − 0.0000592797x3

1x
2
2 − 0.00572649x3

2 −
− 0.000934956x1x

3
2 − 0.000068384x2

1x
3
2 − 1.8162 · 10−6x3

1x
3
2

if x1 ≥ −sign(x2) 4

√
325
2048

√
|x2|3,

− 0.433897x1 + 0.05253x2
1 − 0.00240945x3

1 −
− 0.994791x2 − 0.170404x1x2 − 0.0174874x2

1x2 +

+ 0.000655178x3
1x2 + 0.118976x2

2 − 0.0222263x1x
2
2 +

+ 0.00191042x2
1x

2
2 − 0.0000592797x3

1x
2
2 − 0.00572649x3

2 +

+ 0.000934956x1x
3
2 − 0.000068384x2

1x
3
2 + 1.8162 · 10−6x3

1x
3
2

if x1 < −sign(x2) 4

√
325
2048

√
|x2|3.

(48)

Fig. 8. Approximating surface and the trajectory

The trajectory starting at the point (−1, 2.5, 1) is shown in Figure 8. We note
that the question whether the concrete obtained approximating or interpolating
surface is a sliding surface can be checked in the same way as for the surface S
and in general this can be not true. The problem which can be considered is how
to choose the interpolation nodes to obtain the sliding surface and to ensure that
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the trajectories reach the origin in a �nite time, and if so, how much can time
increase comparing to the original surface.
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ßâíèé âèãëÿä ïîâåðõíi ïåðåìèêàííÿ â çàäà÷i
äîïóñòèìîãî ïîçèöiéíîãî ñèíòåçó

Êîðîáîâ Â. I., Âîçíÿê Î. Ñ.
Õàðêiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Â. Í. Êàðàçiíà

61022, ì. Õàðêiâ, ìàéä. Ñâîáîäè, 4
Â öié ñòàòòi ðîçãëÿäà¹òüñÿ ïðîáëåìà, ïîâ'ÿçàíà iç çàäà÷åþ äîïóñòèìîãî ïîçè-

öiéíîãî ñèíòåçó òà ìåòîäîì ôóíêöi¨ êåðîâàíîñòi, à ñàìå, ç äîïóñòèìèì ïðèíöèïîì
ìàêñèìóìó. Íà âiäìiíó âiä áiëüø çâè÷îãî ïiäõîäó, äîïóñòèìèé ïðèíöèï ìàêñèìóìó
äà¹ ðîçðèâíèé ðîçâ'ÿçîê çàäà÷i ñèíòåçó. Íåõàé çàäàíà êàíîíi÷íà êåðîâàíà ñèñòå-
ìà ẋi = xi+1, i = 1, n− 1, ẋn = u ç îáìåæåííÿìè íà êåðóâàííÿ âèãëÿäó |u| ≤ d.
Çàäà÷à ñèíòåçó äëÿ äîâiëüíî¨ ëiíiéíî¨ ñèñòåìè âèãëÿäó ẋ = Ax + bu ìîæå áó-
òè çâåäåíà äî êàíîíi÷íî¨. Ôóíêöiÿ êåðîâàíîñòi Θ(x) çàäàíà ÿê ¹äèíèé äîäàòíèé
ðîçâ'ÿçîê äåÿêîãî ðiâíÿííÿ Φ(x,Θ) = 0. Êåðóâàííÿ îáèðà¹òüñÿ òàêèì ÷èíîì, ùîá
ìiíiìiçóâàòè ïîõiäíó ôóíêöi¨ Θ(x) çà ÷àñîì â êîæíié òî÷öi, i âîíî ìîæå áóòè çàïè-
ñàíî ó âèãëÿäi u(x) = −d sign(s(x,Θ(x))). Ìíîæèíà òî÷îê, ùî çàäîâîëüíÿ¹ ðiâíîñòi
s(x,Θ(x)) = 0, íàçèâà¹òüñÿ ïîâåðõíåþ ïåðåìèêàííÿ i âèçíà÷à¹ òî÷êè, äå êåðóâàííÿ
çìiíþ¹ ñâié çíàê. Çàçâè÷àé âîíà âêëþ÷à¹ çìiííó Θ, ùî ¹ íåÿâíèì ðîçâ'ÿçêîì ðiâíÿí-
íÿ Φ(x,Θ) = 0. Â öié ðîáîòi ìè øóêà¹ìî ÿâíå ïðåäñòàâëåííÿ ïîâåðõíi ïåðåìèêàííÿ,
òîáòî òàêå, ùî íå âêëþ÷à¹ çìiíî¨ Θ. Â íàøîìó âèïàäêó âèðàçè Φ(x,Θ) òà s(x,Θ)
¹ ïîëiíîìàìè âiäíîñíî Θ, òîìó çàäà÷à ïîâ'ÿçàíà ç çàäà÷åþ çíàõîäæåííÿ óìîâ ïðè
ÿêèõ äâà ïîëiíîìè ìàþòü ñïiëüíèé äîäàòíèé êîðiíü. Ðàíiøå áóëî âiäîìî ðiøåííÿ
äëÿ 2-âèìiðíîãî âèïàäêó. Àëå â õîäi äîñëiäæåííÿ ç'ÿñóâàëîñÿ, ùî äëÿ ñèñòåì áiëü-
øî¨ ðîçìiðíîñòi iñíóþòü ïåâíi òðóäíîùi. Ó öié ñòàòòi ïðåäñòàâëåíî òà äîñëiäæåíî
ïîâåðõíþ ïåðåìèêàííÿ äëÿ òðèâèìiðíîãî âèïàäêó. Òàêîæ ïîêàçàíî, ùî öÿ ïîâåðõ-
íÿ ïåðåìèêàííÿ ¹ ïîâåðõíåþ êîâçàííÿ (çãiäíî ç âèçíà÷åííÿì Ôiëiïïîâà). Â ðîáîòi
òàêîæ çàïðîïîíîâàíi iíøi ñïîñîáè ïîáóäîâè ïîâåðõíi ïåðåìèêàííÿ çà äîïîìîãîþ
iíòåðïîëÿöi¨ òà àïðîêñèìàöi¨. Öi ñïîñîáè çàñòîñîâàíî äëÿ çíàõîäæåííÿ òðà¹êòîðié
êîíêðåòíèõ ïî÷àòêîâèõ òî÷îê.
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öèï ìàêñèìóìó; ïîâåðõíÿ ïåðåìèêàííÿ.
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