ISSN 2221-5646(Print) 2523-4641(Online)

Visnyk of V.N.Karazin Kharkiv National University
Ser. “Mathematics, Applied Mathematics

and Mechanics”

2022, Vol. 96, p. 40-55
DOI: 10.26565/2221-5646-2022-96-03
VIIK 517.929

V. 1. Korobov

D.Sc. in physics and mathematics, Prof.
Head Dep. of Applied Mathematics

V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, Ukraine, 61022

Bicamk XapkiBCBKOTO HAIIOHAJIHLHOTO
yuiBepcurery imeni B.H. Kapa3ina
Cepist "MaTemMaTuka, TPUKIATIHA
MaTeMaTHKa i MexaHika'

2022, Toum 96, c. 40-55

valeriikorobov@gmail.com (2 hitp://orcid.org/0000-0001-8421-1718

O. S. Vozniak

BS in applied mathematics

MS applied mathematics student

V. N. Karazin Kharkiv National University
Svobody Sq., 4, Kharkiv, Ukraine, 61022

0.vozniak0@gmail.com (12 hitp://orcid.org/0000-0001-9729-0742

The explicit form of the switching surface in admissible

synthesis problem

In this article we consider the problem related to positional synthesis and
controllability function method and more precisely to admissible maxi-
mum principle. Unlike the more common approach the admissible maximum
principle method gives discontinuous solutions to the positional synthesis
problem. Let us consider the canonical system of linear equations &; =
Ziy1,4 = 1,n—1,&, = u with constraints |u| < d. The problem for an
arbitrary linear system & = Ax + bu can be simplified to this problem
for the canonical system. A controllability function ©(x) is given as a
unique positive solution of some equation ®(x,©®) = 0. The control is
chosen to minimize derivative of the function ©(z) and can be written as
u(z) = —d sign(s(z,0(z))). The set of points s(z,O(x)) = 0 is called the
switching surface, and it determines the points where control changes its sign.
Normally it contains the variable © which is given implicitly as the solution
of equation ®(z,0) = 0. Our aim in this paper is to find a representation
of the switching surface that does not depend on the function ©(z). We call
this representation the explicit form. In our case the expressions ®(z, ©) and
s(z,©) are both polynomials with respect to ©, so this problem is related
to the problem of finding conditions when two polynomials have a common
positive root. Earlier the solution for the 2-dimensional case was known. But
during the exploration it was found out that for systems of higher dimensi-
ons there exist certain difficulties. In this article the switching surface for the
three dimensional case is presented and researched. It is shown that this swi-
tching surface is a sliding surface (according to Filippov’s definition). Also
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the other ways of constructing the switching surface using the interpolati-
on and approximation are proposed and used for finding the trajectories of
concrete points.

Keywords: controllability; controllability function method; admissi-
ble maximum principle; switching surface.
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1. Introduction

Let us consider the system of differential equations

= f(z,u),zr e R",ue QCR", (1)

and let @ be a neighbourhood of the origin. Our aim is to construct a control
u=u(z),u € Q, such that the trajectory of the system

&= f(z,u(z)), (2)
starting at an arbitrary point zg € @, transfers into the origin in a some finite time
T = T'(xp). This problem is called the admissible positional synthesis problem.

One of the ways to solve it is the admissible maximum principle [6]. We consi-
der constraints |u| < d and the linear canonical system

T1 = T2,
3}2 = I3,
(3)
Tn—1 = Tn,
Ty = U

In this case, the obtained control is discontinuous and takes only values
u = £ d, with trajectories of points sliding along the switching surface. The soluti-
on to this problem is known, but it is interesting to consider a problem of finding
explicit form of the switching surface. It was earlier solved for the two-dimensional
system|[7], and in this work we extend it to the three-dimensional case.

The conditions for reaching the equilibrium point are important problems of
mechanics and differential equations. Important results in this area were obtained
by O. M. Lyapunov, and subsequently they became a part of the foundation of
the mathematical theory of control.

The contributions to the development of the control theory were made
by L. S. Pontryagin, V. G. Boltayanskii, R. V. Gamkrelidze, E. F. Mishchenko,
R. Kalman, R. Bellman and many others. In particular, R. Bellman obtained the
equation that must be satisfied by the solution of the optimal synthesis problem
(finding the control that transfers an arbitrary point to the origin in the shortest

time):
) "L 0T (t, x)
11}16161 (Z (mfi(f’%u)) = -1, (4)
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where T'(¢,z) is a cost function and also a time needed to reach the origin.

In many cases, finding a control that is a solution to this equation is quite
difficult. This is one of the reasons why V. 1. Korobov introduced the problem of
admissible positional synthesis. Admissibility means that the chosen control does
not necessarily provide the given or the shortest time, but ensures its finiteness.

The solution of the admissible positional synthesis problem, called the
controllability function method, was proposed by V. I. Korobov in [4] and later
developed in many other works. This method is based on the construction of the
control u(x), such that for the system (2) there exists a function ©(z) which is
an analogue of the Lyapunov function in the stability theory, but also satisfi-
es a condition which ensures finiteness of the time. More precisely the following
theorem holds.

Theorem 1 ([4]). Suppose that in the system (1) at any set of points
Ki(p1,p2) = {(z,u) : 0 < p1 <||z|| < p2, u € Q} the vector function f(x,u) sati-
sfies the Lipschitz continuity condition:

(@' ') = f(@" ")l < Lapr, p2) (2" — 2| + [[u” = '),
for any (', ), (2", u") € K1(p1,p2).
And suppose that there exists a function O(x), such that the following condi-
tions hold:
1. ©(x) >0 if x # 0 and ©(0) =0;

2. O(x) is continuous everywhere and continuously differentiable at any point
except, perhaps, the point x = 0;

3. there exists a number ¢ > 0 such that the set Q = {z : ©(x) < ¢} is bounded
and there exists R > 0 such that Q C {z : ||z| < R};

4. there ezists a function u(x) : Q — €U, that satisfies the inequality

6= B fiwute)) < —p0'H (1)
=1

for some a >0, B> 0. And u(x) is Lipschitz continuous at any point of the
set K(p1,p2) ={z €Q:0<p1 <|z| < p2}, that is

[u(z”") — u(z")]| < La(p1, p2)[|2" — 2],
for any ', 2" € K(p1, p2).

Then the trajectory x(t) of the system © = f(x,u(x)), which starts at an
arbitrary point x € Q, ends at the point T = 0 at a certain finite moment of time
(which depends on xo) T(xo) < (a/B)Oa(x0). Moreover if & = oo, then x(t) — 0
as t — oo.
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The function O(z) is called the controllability function. The conditions 1-3
of this theorem coincide with the conditions of Lyapunov theorem on asymptotic
stability, and the condition 4 ensures the finiteness of the time for an arbitrary
point to reach the origin. In the case where a = oo the function ©(z) is a Lyapunov
function for the obtained system.

Also in the case when o = # = 1, and instead of inequality, equality is fulfilled,
ie.

390 ) = -1, )

ox;
i=1 ¢

the controllability function is also a motion time from an arbitrary point to the
origin. If, in addition, the Bellman equation is satisfied:

) ", 00(x) " 00(x)
min (Z o fi<a:,u>) - (Z o fi<a:,u<:c>>> -1 ()

i=1 i=1

the function O(x) is also an optimal time.

The function O(x) is naturally constructed implicitly as a solution of some
equation ®(x,©) = 0. It makes it different from the Lyapunov function which
is constructed in explicit form. On the other hand, in the linear optimal control
problem, the motion time is also found implicitly[5].

Let us consider the canonical system:

T1 = T2,
To = T3,
(7)
jjn—l = T,
Ty = U,

with the constraint on control |u| < d. It is a linear system & = Agz + bou, where

0 1 0 0
0 0 1 0 0
do= ... ... . L =10 (8)
o 0 0 1
0 0 0 0 1

An admissible position synthesis problem for an arbitrary linear system
& = Az + bu can be simplified to this problem for the canonical system[4].

Let us describe the algorithm of constructing the control using the admissible
maximum principle described in [7]. We determine the controllability function
©(z) at an arbitrary point = as a positive root of the equation

®(x,0) =2a00 — (D(O)FD(O)x,x) =0, (9)
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(it can be proved that this root is unique at every point [7]), where F' is a positive
definite matrix,

: (10)

P(6) = diag (65"

and numbers m € N, a > 1 are chosen so that the matrix

m+n—i—j+1 "
FO‘:<<1+ ! >fij>
o ij=1

is positive definite. In particular, we will consider m = n, a = 1. The number ag
is chosen to satisfy the constraint on control.
The derivative © of the function ©(z) can be written in the following form:

O((FAy+ AjF)y(x,0),y(z,0)) + 2u0(D(O)FD(O)z, by)
(Fey(z,©),y(z, )

6 — , (11)

where and y(z,0) = D(0)z. Let us denote
s(z,0(x)) = (D(O(2)) FD(O(x))z, bo), (12)
that is,

s(x1, 22, ..., Ty, O(z1,T2,...,2p)) =

13
= fnlml + fnge(xl,xg, .. .a:n)a:g + ...+ fnn@nfl(xl,xg, - ,xn)xn. ( )

We choose the control as u(x) = —dsign(s(xz,©(z))) and call the set of points
satisfying the equation
s(z,0(z)) =0 (14)

the switching surface S.

This control gives the minimum value of the derivative © of the function ©(x)
that can be obtained under given constraints. We note that this control is not
continuous. It takes only boundary values and has discontinuity at points of the
surface (14).

After substitution of the control to the system (7) we obtain:

T = X2,
T9 = w3,
(15)
Tp—1 = Tn,
Ty = —dsign s(x1, 22, ..., Tn, O(21, T2, ..., Ty)).

Algorithm of finding the concrete trajectory from the point zo to the point
x1 = 0 in the case when the switching surface is given by the equation (14) is the
following. At the point x¢ we find a unique positive solution ©q of the equation
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(9) and add the equation (11) to the system (15). After that we find the trajectory
(x1(t), x2(t),...xn(t)) as the solution of the Cauchy problem:

-ill = X2,
j:'Q = I3,
. (16)
Tn—1 = Tn,
&y = —dsign s(x1,x9, ..., Tn, O),
@ _ 20(F(©)z,Aox)—2dO|(D(O©)FD(O)x,by)|
(Fly(0,2),y(0,2)) ’
x1<0) = 210, {L'Q(O) = 20y - - ,a;n(O) = Tno, @(0) = @0. (17)

2. The explicit form of the switching surface

The formula s(z,©(z)) = 0 gives the implicit form of the switching surface,
that is, it contains the function ©(z) as an implicit solution of the equation (9).
We are considering the problem of finding the switching surface in the explicit
form. Hence, we need to exclude the variable © from the equation for the surface.

For this let us write the equation (9) and the formula for the switching surface
in the following form:

O(x,0) =2ag0™ — Y fi;0 Pwiz; =0, (18)
ij=1
$(2,0) = fu1z1 + fn2072 + . + f1n©" 'z, = 0. (19)

One way to remove a common factor from two equations is to use the resultant.
Let z € S,z # 0 be a fixed point, then ®(z,0), s(z,0) are the polynomials
of variable ©. If ®(x,0) and s(x,©) have a common root, then their resultant
R(®, s) is equal to zero. Hence, the set of all points where they have a common
root can be given by the equation:

R(®,s) =0. (20)

But the surface given by equation (20) is larger than the switching surface,
because it also contains points where ®(z, 0), s(x, ©) have common negative root,
or this root equals zero. Instead, the switching surface contains only those points
where a common root © > 0. Therefore, we have certain difficulties related to the
fact that we need to find a way to separate the points where ©(x) > 0 from the
entire set. Hence, further we will use the resultant only for obtaining this wider
set.

As an example let us consider the process of finding switching surface for the
case n = 2 described in [7].
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Let us determine © with the equation

®(0,x) = %@4 — 0223 — 20z129 — 327 =0 (21)

(the algorithm for finding such equations is described in |7]). Then the switching
surface has the equation:

S(@,ﬂ?) =1z + Oxo = 0. (22)

Using the formula (20) we obtain the surface given by resultant:

% 0 -3 —2mxy —322
Tro T 0 0 0
R(®,s)=|0 x2 x1 0 0 |= §x‘f — 2225 =0. (23)
0 0 T2 T 0
0 0 0 T2 I

To separate points where the common root of equations (21) and (22) is posi-
tive we use the fact that the equation (22) has only one root © = —%, which is
positive only when xj29 < 0. The part of surface (23) that satisfies this condition
can be written in the form:

Tr1 = —3%2‘%‘2’. (24)

This formula gives the equation of the switching surface. But for systems of
higher dimensions, overcoming such difficulties can be more complicated. Now we
give the explicit form of the switching surface in the case n = 3.

Let us determine the controllability function by the equation:

9 4 4 g 1
O(x,0) = @96—38@'%—303331302@—4@'1.%3@2—65:102@2—2302963@5—530%@4 =0.
(25)
Then the switching surface has the form:
s(x,©) = 10x; + 509 + ©%x3 = 0, (26)
and equation defined by the resultant is as follows:
R(®,s) = 27 (16021 — 162525 + 5200212573 — 4940232323 + 10402723 + )

+ 845x575 — 2366712375 + 16902725) = 0.

We are searching for the points where there exists a common root © > 0. Let
us show that the factor 27 can be discarded. Indeed, if 1 = 0 then

9 4 1
@(x, @) = @@6 — 651’2@2 — 2x2x3@3 — 51}364 = O, (28)

s(x,0) = 50z, + O%z3 = 0. (29)
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These polynomials always have a common root © = 0. The second root
-5 . . -
© = =2 of equation (29) is also a root for (28) if:
112525 4523
) (30)
13x3 T3
That is,
13
ri = %xé (31)

But the points {xl =0, x% = %—gwg} are also solutions for the equation

16027 — 162525 4 5200z 2523 — 4940222323 + 10402523 +

32
+ 845z324 — 2366112325 + 16902725 = 0. (32)

Hence the factor 23 does not add any non-zero roots to the equation (27) compared
to (32). There is also a case when {z1 =0, z2 =0, x3 # 0}. Then

9 1
> 2 @b =
(.0) = 16259 ~ 5

s(z,0) = 0%z3 = 0. (34)

2201 =0, (33)

In this case ®(z,0) and s(z,0) have common root ® = 0 and we do not
consider it. The surface that show all other solutions for equation (32) is shown
in Figure 1.

Fig. 1. Surface given by equation (32)

This surface consists of two parts. One of them (Part A) includes points
where the common root O(z) of equations (25) and (26) is positive, and the
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other (Part B) includes points corresponding to the negative root and this part
should be excluded.

If we find the switching surface we obtain the system of differential equati-
ons with a discontinuous right-hand side. The control u(z) equals —1 above the
switching surface and +1 below it.

Let us find the switching surface by examining the roots of the polynomial
s(z,0) = 10z + 50z + O%x3.

First, we consider the case when x3 = 0. Then

90°  34230* 15421220

®(z,0) = 6o e 5 — 3827, (35)
s(z,©) = 220 + 10x;. (36)
Then
R(®, s) = 22(160z7 — 162525) = 0. (37)
The equation (37) has solutions x; = 0 and 27 = (1\[(13) W)

Using the fact that s(x,©®) has a positive root only when z1z9 < 0 we obtain the
curve:

V5 ()1 /[ sign(az) =0, -

O /N

[\D\H
\

-

If 23 # 0, then s(x,0) is a quadratic polynomial, if 522 — 8z123 > 0 then it

has two roots ©1 9 = —5$2:i:\[v 5%_8““ . Now we are using the fact that ®(z, ©)
always has exactly one pOSlthQ root O, hence, any point on the switching surface
corresponds either to root ©1 or to root O5 and we can construct parts of switching
surface for this roots separately and then unite them.

_ [522—
By substituting the root ©; = 5$2+\/52x§x2 5173 into (25) we obtain the
surface given by equation:

1125x2 — 2700$1x2x3 + 1620.%'1.’,12‘21'3 144x1x3 585.%'2.1‘3 +

+ 11701:19521:3 468331:103 + 4/ 5:1:2 8:1:1303(—225\/5 + 360\/5$1x%x3 ~ (39)
702x1x2$§> _0

V5
—5z9+v54/bx3—8z 123
23

—108vV/5x2xwox? + 117v5x3as —

The root ©; is positive when > (0. We can rewrite this as:

5 2

if 3 > 0 then <<x2<0andx1<8$2> orx1<0>,
I:
2 ’ (40)

if x5 < 0 then (:1:2>Oand <x1<0>

83
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By constructing (39) only at points where these conditions hold we obtain
the part Aj of the switching surface. Similarly, considering the case of the root

0, — —5m2—\/5\/5z§—8x1x3
2= 2x3

> 0, with conditions

2

if £3 > 0 then (:U2<Oand0<x1§?>,

oy (41)

if 3 < 0 then ((x2>0andx1>ﬁ> or:c1>0),

83:3

we obtain the part As. By combining the parts Ay, As, the curve (38), (purple line

in Figure 2) and the point (0,0,0) we get the graph of the switching surface. It

also can be shown that in the neighborhood of the curve (38) the root © remains

continuous, hence we can consider that switching surface consists of two parts,
each corresponding to a separate root.

Fig. 2. Switching surface

The line separating these parts (blue line in Figure 2) consists of points where
01 =09 = _25;“;2 and can be found explicitly. By substituting root © = %’”32 into

®(x,0) and by using the fact that in this case 5x3 — 8r123 = 0, we can write as
follows:

112525 — 158602523 + 43264z 12325 — 316162725 = 0,
573 — 8r173 = 0.

The solutions of the form x; = 0,29 = 0,23 # 0 belong to case when the
common root © = 0, all other solutions can be written as

: 325 ) 25
x1 = —sign(zg) ¢ m\/ |zo|?, x3 = —&gn(mg){l/ %\/ |zo]. (42)
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Now let us denote:
Py (1, 29, x3) = 112525 — 2700 2323 + 1620230303 — 1442323 — 5852524 +
+ 117021 2325 — 4687725,

Py(x1, 29, 23) = —225V/5 4 360v/521 2323 — 108Vba2zoa? + 117V5a32s —

B 702x1$2x§

V5

Hence, the switching surface is written in the form s(x1,x2,x3) = 0, where:
1
s(x1,x9,23) = 11 + (%\/5 CIERY |:c2|3> sign(zg), if z3 =0,

s(x1, z2,x3) = P (21,22, 23) + \/5m% — 8x123P (21, 22, T3),
if 21 < —sign(m){‘/%\/\xﬂ?’ and (40), (43)

s(x1,x2,23) = Pi(x1, 22, 23) — \/525 — 8123 P2 (21, X2, X3),

if x1 > —51gn(x2),4/%\/|x2|3 and (41).

Now we show graphically that S is a sliding surface [8]. Consider an arbitrary
point x on the surface S and its velocity vectors f* and f~ when it approaches
the switching surface from above and from below respectively. And let o be a
tangent plane to the surface S at the point z (Fig. 3).

Fig. 3. Velocity vector on the switching surface
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We consider (Vs £

_ (Vs f™ b

In= |Vs| 7 In |Vs| 7

and build the graphs of fy = (Vs,f~) and f; = (Vs, f*) (Figures 4 and 5

respectively). We see that fy < 0 and fy >0 (and fy = 0 if and only if f3; = 0)

for an arbitrary point € S. This means that at any point the velocity vectors

are located on different sides of the plane o and, therefore, the resulting vector
always lies in this plane.

0

Fig. 5.

3. Approximation of the surface

Fig. 4. Graph of f;[

Graph of f;

To find specific trajectories, we propose to use an approximate surface that has
a simpler shape. One of the methods can be a construction with an interpolation
polynomial in the form z3 = L(z1, z2). By substituting numbers instead of x1, zo
in equation s(z1,x2,23) = 0 and finding the solution for x3, we can get any
number of points on the switching surface. For interpolation, we select the points
in such a way that they form a rectangular grid in the zix2 plane. Then the
interpolation polynomial is given by the formula

N M N Mo
1— T 2 — T2
L(.T1,$2) = Z Z 1‘3(1‘1i,$2j) H ¢ H St R . (45)
— T, Tln — T o, Tam — X2
n=1m=1 i=1,i#n j=1,j#m
The approximated control w(z) is given in the form: w(z) = —sign(xs —

L(z1,22)). The surface obtained by interpolation and the trajectory of the point
(—1,2.5,1) are shown in Figure 6.

Another method of approximation that can be used is the least-squares
approximation. As an example, we choose multiples with maximal power 3 for
1,22 and construct the approximating surface in the following form:

2
x3 = w(xy,r2) = a1r1 + agzry + agx? + a4xo + asriTo + -0 -+ a15x?x§, (46)

where a1, as, ..., a15 are unknown coefficients.

In this case, the points do not necessarily have to form a rectangular grid,
so the interpolating surface can be constructed for both parts of the surface S
separately (Fig. 7). In addition, if we take symmetrically located points, then the
resulting parts will also be symmetrical.
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Fig. 6. Interpolating surface and the trajectory

Fig. 7. Points for approximation

.,a15 are chosen to minimize the function

Numbers aq, as, . .

(47)

(z3i — L1, 22:))* .

S

B CL15)

J(ai,az,..
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Then in our case we have:

(—0.433897x;  —  0.0525327  —  0.00240945z7 —
—0.994791z2  + 0.170404x129 — 0.0174874a3z0 —
—0.000655178x3x9 — 0.11897623 — 0.0222263z173 —
—0.00191042z323 — 0.0000592797z323 — 0.00572649z5 —
— 0.000934956x1 73 — 0.000068384z w3 — 1.8162 - 10~ Cx3x3

if x> —sign(wg){‘/%\/]wgp,

—0.433897z1  +  0.052532z% —  0.00240945xF —
—0.994791z2 — 0.170404x129 — 0.0174874z3z0 +
+0.000655178z3z2 + 0.118976x3 — 0.0222263z173 +
+0.00191042z%x3 — 0.0000592797x3x3 — 0.0057264923 +
+0.000934956x1 25 — 0.000068384x3x3 + 1.8162 - 10~ x5

| ifz1 < —sign(22) {/ 522 \/|22]3.

w(xy, xe) &

Fig. 8. Approximating surface and the trajectory

The trajectory starting at the point (—1,2.5,1) is shown in Figure 8. We note
that the question whether the concrete obtained approximating or interpolating
surface is a sliding surface can be checked in the same way as for the surface S
and in general this can be not true. The problem which can be considered is how
to choose the interpolation nodes to obtain the sliding surface and to ensure that
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the trajectories reach the origin in a finite time, and if so, how much can time
increase comparing to the original surface.
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ABHuit BUTIsAA TTOBEPXHI MEepeMUKaHHA B 3a/a4i

JOMYCTUMOrO MO3UIIAHOI0 CUHTE3Y
Kopobor B. 1., Bozusik O. C.
Xapriecoruli noutonasvHul yrieepcumem imens B. H. Kapasina
61022, m. Xapwie, matid. Ceobodu, /

B miit crarTi po3rmsmaeTbesa mpobiema, MOB’d3aHa i3 331a9er0 JOIMYCTHMOTO MO3H-
MIHOrO CHHTE3y Ta MeToAoM (PYHKIII KEPOBAHOCTI, a came, 3 JIOMYCTHMHUM IIPUHIIAIIOM
MakcumyMmy. Ha Bigminy Bim Gibin 3BHYOr0 migxomy, ZOMYCTUMAN TPUHITATT MaKCUMYMY
JTa€ PO3pHUBHMIT PO3B’si30K 3ajadui cuaTe3y. Hexail 3a7aHa KaHOHIYHA KEPOBAHA, CUCTE-
Ma &; = Tijr1,i = 1,n—1,&, = u 3 oOMeKeHHAIMU Ha KepyBaHHs Buriaamy |u| < d.
Sazaua cuHTE3y s AOBLIbHOL JiHIMHOI cucremu Buriany & = Ax + bu moxke Oy-
Tu 3BeJeHa 10 KaHoniunol. PyHKuis keposaHocri O(x) 3asaHa gk €auHUN JHOHATHUI
pO3B’s130K Jesikoro pieHsiHHS P(2,0) = 0. KepyBaHHst 0OMpaeThCst TAKWUM YHHOM, 100
minimizyBaTu moxiany dbyskuil O(z) 3a yacom B KOXKHIil TodIl, 1 BOHO MOXKe OyTH 3aru-
cano y Buriani u(x) = —d sign(s(z, ©(x))). MuOXKKHA TOYOK, 10 33 I0BOJIHHIE PIBHOCTI
s(x,0(x)) = 0, HABUBAETHCA IOBEPXHEIO [IEPEMUKAHHS 1 BUBHAYAE TOYKH, J€ KepyBaHHs
3MIiHIOE CBill 3HaK. 3a3BUYail BOHA BKJIIOYAE 3MIHHY O, 1110 € HESIBHUM PO3B’SI3KOM DiBHSIH-
ust ®(z,0) = 0. B uiit pobori MU LIYyKAEMO siBHE [IPEICTABJIEHHS IOBEPXHI LIEPEMUKAHHS,
TOOTO Take, IO He BKJIHOYae 3MiHoi ©. B wamomy eunazaky supasu ®(x,0) rta s(x,©)
€ ToJIIHOMaM¥ BiTHOCHO O, TOMY 3a/a4a MOB’d33aHA 3 33/1a9€l0 3HAXOMKEHHSI yMOB IPHU
AKWX JBa MOJIHOMH MAlOTh CHLIBHHI JOJATHHH KOpiHb. Pamime Oymo Bimomo pimreHHs
JJIsL 2-BUMIpHOrO BULIAJKY. Ajie B X0l JOC/HIIKeHHs 3’CyBajocs, MO I CACTEeM Olib-
1ol po3MipHOCTI iCHYIOTH 1€BHI TPpyAHOII. ¥ IHiff CTATTi IPEICTaBJIEHO Ta JAOCJIi/ZKEHO
MTOBEPXHIO MEPEMUKAHHS IJIsT TPUBAMIPDHOTO BUMAAKY. TaK0XK MOKA3aHO, IO IIsT MTOBEPX-
He [EPEeMUKAHHS € MOBEPXHEI0 KOB3aHHA (3rimHo 3 BusHaueHHaMm Piminmosa). B pobori
TAKOXK 3AIMPONOHOBAHI iHIN CrrOcobM MOOYIOBY TOBEPXHI MEPEMUKAHHS 33 IOMOMOTOI0
inTepmonsrii Ta ampokcuMmariii. Ili crmocobm 3acTOCOBAHO 1T 3HAXOMXKEHHS TPAEKTOPIi
KOHKDPETHHUX [OYaTKOBUX TOYOK.

Karwuosi caosa: kepoBaHicTh; MeTo ] PYHKII KEPOBAHOCTI; JIOMYCTUMUNA TPUH-
ATl MAKCUMYMY; IIOBEPXH NEePEeMUKaHHSI.

Icropia crarri: orpumana: 28 kostHsa 2022; ocranniit Bapiant: 19 rpyausa 2022
npuitnara: 24 rpyaaa 2022.



