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Control of wheeled platforms straight motions taking

into account jerk restrictions under speeding-up from

the state of rest

The generalized mathematical model of wheeled platforms straight motions
on the ideal horizontal plane under speeding-up from the state of rest mode
is proposed, and the controls satisfying the restrictions of motion jerks are �-
nd. The pure mechanical and electromechanical wheeled platforms are consi-
dered, as well as the computer simulations of the researched processes are
made. The jerks restrictions are reduced to limiting the value of the wheeled
platform acceleration time derivative. The proposed approaches are based
on the holonomic systems mechanics and on the electromechanical analogi-
es allowing to consider the di�erent kinds of the wheeled platforms taking
into account the electric on-board systems like the drive electric motors and
the control systems by using the Lagrange equations of second kind. The
examples of the proposed approaches using to de�ne the controls satisfying
the jerks restrictions under speeding-up from the state of rest are consi-
dered for the pure mechanical and electromechanical wheeled platforms. It
is obtained the inequality allowing to chose the instantly supplied drivi-
ng mechanical couple which will provide the admissible jerks of the moti-
on of the wheeled platform under speeding-up from the state of rest. It
is shown that the rolling friction and the viscous damping are the princi-
pal causes of the wheeled platforms jerks under speeding-up from the state
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of rest. It is obtained the inequality de�ning the voltage instantly suppli-
ed on the drive electric motors which will provide the admissible jerks of
the motion of the electromechanical wheeled platform during speeding-up
from the state of rest, and it is shown that the proposed general approaches
are suitable for considering the di�erent kinds of wheeled platforms. The
computer simulations of the processes of speeding-up from the state of
rest for the electromechanical wheeled platform are considered to show
results correctness and to illustrate satisfying the restrictions of the moti-
on jerks. The obtained results of the computer simulations are in the
full agreement with the well-known fundamental property inherent for the
wheeled platforms. The results for the jerks show that the maximum value
of the jerk is really at the initial time as was suggested before, and it
is shown that the jerks values at the initial time obtained by using the
computer simulations are in full agreement with the theoretically de�ned
correspondent exact values. The big jerks of the considered electromechani-
cal wheeled platform are due to the voltage instantly supplying on the drive
electric motors at the initial time, and it is understandable that limiting of
such instantly supplied voltage value cannot provide any wished small jerks.
The smooth time depending for the voltages supplying on the drive electric
motors are required to provide any wished small jerks of the electromechani-
cal wheeled platforms.

Keywords: control; motion; jerk; wheeled platform; mathematical

modelling.

2010 Mathematics Subject Classi�cation: 49K15; 70E60; 70E55.

1. Introduction

Di�erent kinds of wheeled platforms are widely used for human operated
transportation systems, but last times it is existed the trend in using them also as
the carriers of the di�erent autonomous mobile transportation and technological
systems for industrial, military, police, agriculture and house holding purposes.
The motions jerks can limit the implementing possibilities of the autonomous
wheeled platforms and other robotic systems for automated executing of some
kinds of operations. Du to this circumstance, restricting the motions jerks is in
current interest problem necessary to increase the operational quality and possi-
bilities of implementing of wheeled platforms [1] and of di�erent kinds of robotic
systems. The theme of the proposed research deals with the particular problems
about control of wheeled platforms straight motions taking into account jerk
restrictions under speeding-up from the state of rest, and this theme is in current
interest, because of it is in agreement with the existed general trends in developing
the robotic systems directed to extensions of their implementing.

First principal reason for motions jerks limiting is due to the requirements
of motion smooth necessary for normal operating of di�erent kinds of robotic
systems [2], [3]. The motions smoothness and excluding the jerks can be requi-
red for example for delicate or dangerous cargoes transportation [4] as well as for
providing the most accurate relative positioning of technological systems parts [5].
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It is necessary to note that excluding the motions jerks requires implementing the
mechanisms special designs [6], as well as implementing the special control algori-
thms [4], [5]. So, excluding the wheeled platforms motions jerks is the multidiscipli-
nary problem, and it requires the corresponded developing both the mechanical
design both the control systems which must be corresponded with the existed
imperfections of the mechanical joints due to the friction and the clearances.

Second principal reason for limiting the motions jerks is due to the moti-
on smooth requirements necessary to provide the normal operation conditions
for the sensitive components of on-board measuring systems [7], [8], including the
sensors and the complementary electronic devices like analog-to-digital converters
and computers for real time processing of the measured signals. Really, motions
jerks have in�uence on on-board sensors like accelerometers or tachometers, and
this in�uence is equivalent to noises disturbing measured signals used for positi-
oning and de�ning current state parameters like velocities and accelerations [8].
Due to these circumstances, the motions jerks can lead to failures in positioning,
in velocities and accelerations de�ning and in control of planed paths. As the
result of all these, normal operation can be broken, and, furthermore, a lot of di-
�erent dangerous can be created especially in using the fully autonomous wheeled
platforms. So, de�ning the admissible motions jerks providing the normal operati-
on of the wheeled platforms taking into account in�uencing on on-board measuri-
ng systems is the complicated problem required multidisciplinary approaches
providing opportunities to consider the interactions between the mechanical,
electromechanical and electronic parts [4], [8]. It is naturally that the motions
jerks are associated with the accelerations and their changes like was discussed
in the research [4] for example, so the quantitative measures of the motions jerks
are based on using accelerations and their �rst and higher derivatives [9]. At the
same time, the mechanical motions are represented by the di�erential equations of
second orders, so researching the accelerations derivatives is the special separate
problem [10].

To research the wheeled platforms motions jerks it is necessary to have some
general methodology which will allow considering di�erent causes leading to the
jerks. There are a lot of causes leading to the wheeled platforms motions jerks
[1], and it is necessary to research all of them, but it is the complicated problem
not for one research. It is well-known [1] that the jerks are inherent especially for
transient modes of wheeled platforms motions. Thus, the purpose of this research
is in considering the particular problem about control of wheeled platforms strai-
ght motions on the ideal horizontal plane taking into account jerk restrictions
under speeding-up from the state of rest. It is understood that the speeding-up
is the particular case of transient modes of wheeled platforms, and jerks will be
necessarily presented on this mode. Choosing the state of rest as the initial state
is to simplify formulating the initial conditions, and such simpli�cation is suitable
for obtaining the primary results for planning the further researches in the �eld of
the motion control under jerks restrictions. To realize the purpose of the research
the follows tasks will be considered:
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• the generalized approaches to de�ne the controls satisfying the straight moti-
ons jerks restrictions of wheeled platforms will be developed for the speeding-up
from the state of rest modes;
• the examples of the proposed approaches using to de�ne the permissible

controls satisfying the jerks restrictions under speeding-up from the state of
rest will be considered for the pure mechanical and electromechanical wheeled
platforms;
• computer simulations of the processes of speeding-up from the state of rest

will be executed for the electromechanical wheeled platforms to show the results
correctness and to illustrate satisfying the restrictions of the motions jerks.

Developing all noted above tasks will allow giving the clear imaginations about
the proposed generalized approaches and their using in the important particular
cases, as well as it will allow illustrating the in�uence of the researched control
processes on the motions jerks for the wheeled platforms under speeding-up from
the state of rest.

2. Generalized approaches

Developing the generalized approaches is more suitable than developing the
particular approaches for each particular task. The generalized approaches to de�-
ne the controls satisfying the wheeled platforms jerks restrictions under speeding-
up modes from the state of rest are reduced to mathematical modelling of the
researched modes and to resolving the formulated restrictions. The mathematical
modelling of the wheeled platforms speeding-up modes will be considered under
the most generalized assumptions that the researched wheeled platforms can be
reduced to the holonomic systems. It is really the serious simpli�cation because of
the nonholonomic constraints are inherent for the wheeled platforms in general,
but we have the hope that considering the particular case of the straight motions
under speeding-up modes from the state of rest allow reducing to the holonomic
systems.

It is well-known [11], [12] that the state of the holonomic systems can be
de�ned by using the generalized coordinates:

qk = qk(t), k = 1, 2, .., N, (1)

where qk, k = 1, 2, .., N are the generalized coordinates; N is the number of the
freedom degrees of the holonomic system; t ≥ 0 is the time.

It is necessary to note that not all generalized coordinates (1) will have the
mechanical sense like linear displacements or angles, and some of these coordinates
(1) can have the electrical sense like the electrical charges in the case of the
electromechanical wheeled platforms. The translational straight motions of the
wheeled platform can be imagined as the motions of its mass center, and it can
be represented in the natural coordinates, so that we will have for the holonomic
system the follows relation:

s = s(q1, q2, ..., qN ), (2)
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where s is the length of the arc of the trajectory of the mass center of the consi-
dered wheeled platform.

It is not unexpectedly to de�ne the jerk as the time derivative of the accelerati-
on and as the time third derivative of the coordinate:

j = d3s
dt3
, (3)

where j is the estimation of the jerk of the motion of the considered wheeled
platform.

Taking into account the used estimation of the motion jerk (3) and the relati-
ons (2), (1), we will have the follows:

j(t) =
N∑
k=1

(
N∑
i=1

N∑
j=1

∂3s
∂qk∂qi∂qj

dqk
dt

dqi
dt

dqj
dt + 3

N∑
i=1

∂2s
∂qk∂qi

dqk
dt

d2qi
dt2

+ ∂s
∂qk

d3qk
dt3

)
. (4)

Relation (4) shows that the jerks of the translational motions of the wheeled
platforms are depended on the generalized velocities, generalized accelerations
and the generalized accelerations time derivatives as well as on the building of the
wheeled platform.

The Lagrange equations of second kind give us one of the most general form
of the di�erential equations of dynamics of holonomic systems representing the
di�erent kinds of wheeled platform under the di�erent operational modes:

d
dt

∂L
∂q̇k
− ∂L

∂qk
= − ∂R

∂q̇k
+Qk, k = 1, 2, .., N, (5)

where L is the Lagrange function de�ned as di�erence between the kinetic and
potential energies of the considered wheeled platform; q̇k ≡ dqk/dt; R is the
generalized Raleigh function de�ning all the dissipation for the considered wheeled
platform; Qk are the generalized forces corresponding with the relevant generali-
zed coordinates and de�ning all the driving forces and couples of the considered
wheeled platform.

The equations (5) are the di�erential equations of second order, so the
assumption about the initial state of rest for the considered wheeled platform
allows formulating the initial conditions:

qk(0) = 0, q̇k = 0, k = 1, 2, .., N. (6)

Thus, the di�erential equations (5) with the initial conditions (6) generally
represent the mathematical model of motion from the state of rest of the wheeled
platform considered under the restrictions leading to the correspondent holonomic
system with the generalized coordinates (1).

Taking into account the purpose of the research, we will consider further the
transient modes from the initial state (6) to some state of uniform motion with the
relative small velocity allowing the linearization of the di�erential equations (5) of
the dynamic of the wheeled platform which is considered as the holonomic system.
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Such linearization will allow represent the Lagrange L and Raleigh functions R
in the follows form:

L = 1
2

N∑
k=1

N∑
i=1

mkiq̇kq̇i − 1
2

N∑
k=1

N∑
i=1

ckiqkqi, (7)

R =
N∑
k=1

fkq̇k + 1
2

N∑
k=1

N∑
i=1

βkiq̇kq̇i, (8)

where mki and cki are the generalized inertia and sti�ness constant parameters of
the considered wheeled platform parts; fk are the parameters de�ning the non-
viscous frictions not depending on the velocities; βki are the generalized damping

parameters satisfying the conditions: βk ≥ 0, βki = βik and
N∑
k=1

N∑
i=1

βkiq̇kq̇i ≥ 0

and de�ning the linearized viscous damping.
It is naturally to imagine that motion control of the wheeled platforms is

realized thru the driving generalized forces. We will assume that the control of
the wheeled platform can be reduced to one time depended function:

u = u(t), (9)

where u is the parameter de�ning the control in�uence on the considered wheeled
platform.

The assumption (9) limits the possible class of the considered wheeled
platforms, but this theoretically limited class can represent the most of actually
existed and widely used wheeled platforms. Really, each wheeled platform has the
energy source, the transmission as well as the drive and supporting wheels, so that
the state of the energy source naturally de�nes the state of the wheeled platform.
Although, the physical essentials of the power produced by the energy source is
signi�cantly depended on the type and on the design of the energy source, but it
is more principally for us to de�ne the state of the energy source by the power
supplied to the transmission to move the drive wheels of the wheeled platform.
Due to the noted here circumstances, the assumption (9) seems as the natural
because of we have only one principal parameter de�ning the state of the consi-
dered wheeled platform and this parameter is the power supplied from the energy
source to the transmission. Of course, the supplied power can be de�ned by other
parameters like the torque, the position of the fuel valve or the voltage supplied
to drive electric motors. Exactly, the noted case is the typical for the most of
existed and used wheeled platforms. Considering the transient modes from the
initial state (6) to some state of the motion with the relative small velocity is
in agreement with the purposes of this research, and it allows linearization of
the di�erential equations (5) of the dynamics of the wheeled platform which is
considered as some holonomic system. Thus, the driving generalized forces can be
represented taking into account the assumption (9) in the follows linearized view:

Qk =
N∑
i=1

αkiq̇i + bku(t), k = 1, 2, .., N, (10)
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where αki are the parameters de�ning the linearized velocity depending of the
driving generalized forces, but bk are the constant parameters characterizing the
sensitivity of the control of the considered wheeled platform.

Taking into account the relations (7), (8) and (10) in the Lagrange equati-
ons of second kind (5), we will have the follows linearized di�erential equations
representing the dynamics of the considered wheeled platform:

N∑
i=1

mkiq̈i = −
N∑
i=1

ckiqi −
N∑
i=1

dkiq̇i − fk + bku(t), k = 1, 2, .., N, (11)

where dki = βki − αki.
Further, it will be suitable to have the vector-matrix representation of the

di�erential equations (11), and to have this representation, we will introduce the
follows vectors and matrices:

q =


q1

q2
...
qN

 , f̄ =


f1

f2
...
fN

 , b̄ =


b1
b2
...
bN

 ,

M =


m11 m12 · · · m1N

m21 m22 · · · m2N
...

...
. . .

...
mN1 mN2 · · · mNN

 ,C =


c11 c12 · · · c1N

c21 c22 · · · c2N
...

...
. . .

...
cN1 cN2 · · · cNN

 ,

D =


d11 d12 · · · d1N

d21 d22 · · · d2N
...

...
. . .

...
dN1 dN2 · · · dNN

 .

(12)

The introduced above vectors and matrices (12) allow representing the di�erential
equations (11) and the initial conditions (6) in the suitable vector-matrix form:

Mq̈ = −Cq−Dq̇− f̄+ b̄u(t), q(0) = 0, q̇(0) = 0, (13)

where 0 is the zero vector having the correspondent dimension.
Solving the initial-value problem (13) will give the opportunities to �nd the

jerks (4) corresponded to the given control (9), so in the form (13) we have the
mathematical model of the considered wheeled platform representing its dynami-
cal properties which must be taken into account to design the controls satisfying
the motions jerks restrictions. We will consider further one of the principal kinds
of the control (9) de�ned by the constant:

u(t) = uc, (14)

where uc > 0 is the given constant corresponded to some quasi-stationary mode
of the motions of the considered wheeled platform characterized by the constant
velocity of its mass center.
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Considering the particular case (14) of the control (9) is really very important
from the point of view on designing the control of wheeled platforms speeding-
up from the state of rest taking account the motion jerks restriction. Really, the
motions de�ned by the di�erential equations and the initial conditions (13) for
the control (14) represent the transient characteristics of the considered wheeled
platform, and exactly these transient characteristics de�ne the transient processes
including the jerks during speeding-up of the wheeled platform from the state of
rest. It is naturally to assume that the maximum jerks of the wheeled platform
are at the beginning of the motions, because of exactly in this moment the motion
is created from the state of rest, and further we will have only increasing of the
velocity of the already existed motion, until this velocity will achieve the steady
value, corresponded to the control (14). Taking into account the initial conditions
(6), the relation (4) allows de�ning the wheeled platform jerk at the initial time
of the speeding-up process:

j(0) = j0, j0 =
N∑
k=1

jk
d3qk
dt3

(0), (15)

where j0 is the jerk at the initial time; jk = ∂s
∂qk

∣∣∣∣ qi=0

i=1,2,...,N

.

To restrict the jerks of the considered wheeled platform it is naturally to limit
the initial jerk (15):

|j0| ≤ [j] , (16)

where [j] ≥ 0 is the admissible jerk of the considered wheeled platform.
Considering the transient process (13) during the wheeled platform speeding-

up for the control (14) will allow de�ning the control satisfying the jerk restriction
(16), but to do this it is principally more suitable to represent the mathematical
model (13) representing the considered wheeled platform in the form of the system
of �rst ordered di�erential equations. To represent the second ordered di�erential
equations (13) as the system of the �rst ordered di�erential equations we will
introduce the follows phase state space:

x1 = q1, x2 = q2, . . . , xN = qn, xN+1 = q̇1, xN+2 = q̇2, . . . , x2N = q̇n, (17)

where xk, k = 1, 2, ...2N are the phase coordinates.
It is suitable to represent the phase coordinate (17) as the vector:

x =
(
x1 x2 · · · xn

)T
, (18)

where n = 2N is the dimension of the state phase space and T is the transpose
operation symbol.

The introduced vector (18) and the assumption (14) about the control allow
representing the di�erential equations and the initial conditions (13) in the follows
suitable form:

dx
dt = Ax− f+ buc, x(0) = 0, (19)
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where A is some matrix, f and b are some vectors; 0 is the zero vector.
Comparing the equation (19) and the equation (13) allow us to write the

matrix A and the vectors f and b included in the equation (19):

A =

(
O I

−M−1C −M−1D

)
, f =

(
0

M−1f̄

)
,b =

(
0

M−1b̄

)
, (20)

where O and I are the zero and unit matrix, but 0 is the zero vector of the
correspondent dimensions.

Taking into account the introduced above vector (17), (18), the initial jerk
(15) of the wheeled platform can be represented in the follows view:

j0 = jd
2x

dt2
(0), j =

 0 0 · · · 0︸ ︷︷ ︸
N

j1 j2 · · · jN

 . (21)

Solution of the initial-value problem (19), (20) and the relation (21) allow �nding
the initial jerk j0 required for the jerk restriction (16) of the considered wheeled
platform. Really, the solution of the problem (19) can be represented in the follows
form:

x(t) =
(
eAt − I

) (
A−1 (buc − f)

)
. (22)

The solution (22) and the relation (21) allow �nding the initial jerk of the motion
for the considered wheeled platform:

j0 = jA (buc − f) . (23)

Relation (23) and the the restriction (16) will allow de�ning the control (14) and
representing this control thru the primary linearized di�erential equations (13).
To do this, it is necessary to take into account the relations (20) and (21), so the
result of all these will lead to the restriction of the control (14) in the follow view:∣∣̄jM−1DM−1f̄−

(̄
jM−1DM−1b̄

)
uc
∣∣ ≤ [j] , (24)

where j̄ =
(
j1 j2 · · · jN

)
The relation (24) is actually gave the restriction of the considered wheeled

platform control (14) providing speeding-up from the state of rest under the limi-
ted motion jerks. We can see from the relation (24) that the jerks can be only due
to existing the linear dissipative and gyroscopic generalized forces, because the
zero matrixD allows satisfying the jerk restriction (24) for any control (14). These
dissipative forces are usually the result of the aerodynamic and hydrodynamic fri-
ctions; the Coriolis forces are the example of the gyroscopic forces.

The constant generalized forces of the wheeled platform are represented by
the vector f̄ and are had the signi�cant in�uencing on the motions jerks. These
constant generalized forces are usually for example the gravity forces acting on
the wheeled platforms moved on the inclining road or the rolling friction couples
of the wheels interacting with the soil.
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3. Examples

The developed approaches reduced to the inequality (24) for control of the
straight motion under speeding-up from the state of rest mode taking into account
the jerks restrictions can be used for di�erent kinds of the wheeled platforms.
Further, we will illustrate the mechanics foundations of the developed approaches
as well as we will consider the particular application of these developed approaches
deals with the control of autonomous electromechanical wheeled platform.

Example 1. The simple schematization (�g. 1a) of the four-wheeled platform
will be considered �rstly to illustrate the mechanical foundations of the proposed
approaches reduced to the inequality (24). This schematization (�g. 1a) is based
on the assumption (1) about the generalized coordinates, and in this particular
case it will be assumed that the straight motion of the considered four-wheeled
platform can be de�ned by one generalized coordinate q1 representing the rotation
angle of its wheels, so the straight motion can be de�ned as follows (�g. 1a):

s = q1r, (25)

where s is the linear coordinate de�ning the straight motion; q1 is the rotation
angle and r is the radius of the wheels of the considered platform.

Fig. 1. Schematizing of the four-wheeled platform (a) with the housing-1
and the wheels-2, as well as the result for the jerk (b) of this platform

and the equivalent scheme of the drive electric motors (c)

The relation (25) actually is the particular case of the generalized form relation
(2), so the relation (4) de�ning the jerk (3) will have the more simple view:

j(t) = r d
3q1
dt3

. (26)

For the assumed schematization (�g. 1a) of the considered four-wheeled platform
we will have the follows Lagrange function L, the Raleigh function R and the
driving generalized force Q1:

L = 1
2Jq̇

2
1, J = mpr

2 + 4Jw, (27)
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R = 4Mrf q̇1 + 1
2βq̇

2
1, (28)

Q1 = 4Md, uc = Md, (29)

where mp is the total mass and Jw is the inertia moment of the wheel of the
considered platform (�g. 1a); Mrf = const is the rolling friction couple; β is the
parameter de�ning the viscous linear damping;Md is the driving couple acting to
each of the wheels.

The relations (27)-(29) and the Lagrange equations (5) with the assumed
initial conditions (6) in the considered case of the system with one freedom degree
(N = 1) allow writing the follows di�erential equation and the initial conditions:

Jq̈1 + βq̇1 = 4 (Md −Mrf ) , q1(0) = 0, q̇1(0) = 0. (30)

Solution of the Cauchy linear problem (30) can be represented in the follows view:

q1(t) = 4
β (Md −Mrf )

(
t− J

β

(
1− e−

β
J
t
))

. (31)

The solution (32) allows �nding the jerk of the considered wheeled platform using
the relation (26):

j(t) = −4βr
J2 (Md −Mrf ) e−

β
J
t. (32)

Solution (32) shows (�g. 1b) that the maximal jerk of the motion is in the ini-
tial time moment corresponding to the beginning of speeding-up of the consi-
dered wheeled platform from the state of rest, and this circumstance in the full
agreement with the previously used limitation of the jerks which was represented
by the inequality (16). Thus, the maximal jerk of the considered wheeled platform
(�g. 1b) can be de�ned by the relation (32) at the initial time moment t = 0:

j(0) = −4βr
J2 (Md −Mrf ) . (33)

Due to the relation (33), it is possible to have the particular representation of the
generalized inequality (16):

4βr
J2 |Md −Mrf | ≤ [j]. (34)

To provide the motion of the considered wheeled platform it is necessary to satisfy
the follows relation:

Md ≥Mrf . (35)

Due to the inequalities (34) and (35), it is possible to have the condition on the
driving couple:

Md ≤Mrf + J2

4βr [j]. (36)

The inequality (36) allows choosing the driving couple which will provide the
admissible jerks of the motion of the wheeled platform speeding up from the state
of rest. The inequality (36) shows that the rolling friction and the viscous damping
are the principal causes of the jerks of the wheeled platforms under speeding up
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from the state of rest. Besides, the obtained result (34) is the illustration of the
generalized approaches reduced to the inequality (24). Really, the result (34) can
be obtained by using the generalized inequality (24), if are will be assumed the
follows:

j̄ = (r), M = (J), D = (β), f̄ = (4Mrf ), b̄ = (4). (37)

Example 2. In the previously considered example, the control was reduced to the
drive couple (29) immediately acting on the wheel. At the same time, the drive
couples are often the results of some power source operating, and it is possible
only the indirect control of the drive couples due to the controlling of the power
source state. This circumstance make more di�cult the wheeled platforms control
under the motions jerks restrictions because of the power sources have the own
inherent properties and can have additional in�uence on the wheeled platforms. To
show this, we will consider the same four-wheeled platform (�g. 1a), but driving
by means the direct current electric motors schematized as shown on the �g. 1c.
In this case the generalized coordinate q2 representing the electric charge in the
equivalent electric circuits of the electric motors actually de�nes the state of the
drive electric motors, and the voltage U = U(t) supplied to the each of these
drive electric motor actually controls the drive couple Md on the wheels. So, the
Lagrange function, the generalized Raleigh function and the generalized forces
representing the four-wheeled platform (�g. 1a) with the driving electric couples
(�g. 1c) on each of the wheels will have the follows view:

L = 1
2Jq̇

2
1 + 1

24Lq̇2
2, (38)

R = 4Mrf q̇1 + 1
2βq̇

2
1 + 1

24Rq̇2
2, (39)

Q1 = 4Md, Md = Bq̇2, Q2 = 4(U −Bq̇1), uc = U, (40)

where L is the inductance, R is the resistance of the equivalent electric circuit and
B is the electromechanical parameter of the drive direct current electric motor;
U is the supplied voltage on the drive electric motors.

The relations (38)-(40) and the Lagrange equations (5) with the assumed
initial conditions (6) in the considered case of the system with two freedoms
degree (N = 2) allow writing the follows di�erential equations and the initial
conditions:

Jq̈1 = −βq̇1 + 4Bq̇2 − 4Mrf , 4Lq̈2 = −4Bq̇1 − 4Rq̇2 + 4U, (41)

q1(0) = 0, q2(0) = 0, q̇1(0) = 0, q̇2(0) = 0. (42)

The di�erential equations (41) with the initial conditions (42) can be represented
in the generalized form (13) in which we will have the follows vectors and matrices:

q =

(
q1

q2

)
, f̄ =

(
4Mrf

0

)
, b̄ =

(
0
4

)
, (43)
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M =

(
J 0
0 4L

)
,C =

(
0 0
0 0

)
,D =

(
β −4B

4B 4R

)
. (44)

Substituting the vectors (43) and matrices (44) to the inequality (24) allows obtai-
ning the limitation on the supplied voltage on the drive electric motors providing
the required restriction of the jerk of the straight motion under the speeding-up
of the four-wheeled electromechanical platform:

j0 = 4r
J

(
β
JMrf + B

LU
)
, 4r

J

∣∣∣βJMrf + B
LU
∣∣∣ ≤ [j]. (45)

The results (34) and (45) allow showing that increasing the inertia of the wheeled
platform represented by the generalized inertia moment J leads to decreasing the
straight motion jerks under speeding-up from the state of rest. So, in the case of
importance of limiting the jerks it is necessary to increase the mass of the wheeled
platform. The results (34) and (45) also showing that decreasing the radius of the
wheels of the platform leads to decreasing the jerks of the straight motion under
speeding-up from the state of rest. Both the results (34) and (45) show that the
rolling friction will necessarily lead to the jerks. At the same time, the result (35)
shows that choosing the drive couple allows provide any wished small jerk, even
if the rolling friction is presented, but the result (45) shows that it is impossible
to have any wished small jerks of the electromechanical wheeled platform, if the
rolling friction is presented, and it is only possible to minimize the jerks. This
di�erence in the results (34) and (45) is due to that the properties of the sources
of the drive mechanical torque of the wheels are not considered in the result (34),
but this was considered in the result (45). So, properties of the the power source
have the signi�cant in�uence on the control providing the jerks restrictions of the
straight motion under speeding-up from the state of rest of the wheeled platform.

4. Computer simulations

Further, we will consider the computer simulation of the wheeled electromecha-
nical platform de�ned by the mathematical model (41), (42). This computer si-
mulation will be reduced to the numerical solving of the initial value problem
(41), (42), which will be represented as the system of the �rst ordered di�erential
equations with the initial conditions (19). To have the required representation
(19) of the initial value problem (41), (42) we will use new variables (17) with the
N = 2 generalized coordinates and the control uc = U , as it was de�ned in the
last relation (40). Thus, taking into account the relations (20), (43) and (44), we
will have the vector x, the matrix A as well as the vectors f and b de�ning the
linear di�erential equations (19) in the follows view:

x =
(
x1 x2 x3 x4

)T
, (46)

A =


0 0 1 0
0 0 0 1
0 0 −β/J 4B/J
0 0 −B/L −R/J

 , f =


0
0

4Mrf/J
0

 , b =


0
0
0

1/L

 . (47)
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The involved in the di�erential equations (41) numerical parameters representing
the characteristics of the wheeled electromechanical platform will be considered
as follows:

J = 80 kg ·m2, r = 0, 15 m, β = 2, 5 kg·m2

s , Mrf = 515 N ·m, (48)

L = 2, 6mH, R = 1, 18 Ω, B = 4 N·m
A . (49)

Fig. 2. Graphical representation of the model of the electromechanical
wheeled platform in the Scilab free open source software

To solve the initial value problem (41), (42), (46)-(49) we will use the Scilab
free open source scienti�c software in which we will use the especially designed
graphical representation of the model of the considered electromechanical wheeled
platform as shown on the �g. 2. This computer model (�g. 2) allows having di-
�erent results, but further, we will consider only the follows:

v (t) = rx3 (t) , (50)

j (t) = r d
2x3
dt2

(t) , (51)

where v is the velocity and j is the jerk of the motion of the considered wheeled
electromechanical platform.

Numerical solving of the initial value problem (41), (42), (46)-(49) allows havi-
ng only the approximate solution for the x3 (t), but this approximate solution will
be close to the exact solution of this problem, so we can have the correct results for
the velocity (50) of the considered wheeled platform. At the same time, it is well
known that di�erentiation of the approximate solution x3 (t) is incorrect in the
Hadamard sense, and due to this we cannot have the correct results for the jerk
of the considered electromechanical wheeled platform, if the formula (51) will be
used directly. To exclude the Hadamard incorrectness to have the correct results
for the jerk (51) it is necessary to represent the derivative d2x3/dt

2 thru the x
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vector. It is not di�cult in the considered example; really, taking into account
the relation x3 = q̇1 and �rst di�erential equation (41), we will have the follows
relation:

d2x3
dt2

= −β
J q̈1 + 4B

J q̈2. (52)

Further, it is necessary to exclude the second derivatives of the generalized coordi-
nates from the obtained relation (52) using the di�erential equations (41). All
these and the de�nitions (17) will allow having the follows:

d2x3
dt2

=
(
β2

J2 − 4B2

JL

)
x3 −

(
4βB
J2 + 4BR

JL

)
x4 +

4βMrf

J2 + 4B
JLU. (53)

Fig. 3. Velocity (a) and jerk (b) of the electromechanical wheeled platform
corresponded to the voltages U = 60 V (curve 1) and U = 40 V (curve 2)

supplied on the drive electric motors

It is necessary to note, that instead the particular result (53) it is possible to
use the generalized result obtained from the di�erential equations (19):

d2x
dt2

= (AA)x−Af+ (A)buc. (54)

The opportunities of representing the jerk thru the vector x in the general
form (54) for the linearized problem (19) are really very important to exclude
the di�erentiation of the x vector leading to the Hadamard incorrectness in the
case of using the numerical methods for �nding the x vector. The most interested
quantitative results obtained by using the computer simulations (�g. 2) for the
velocity (50) and for the jerk (51), (53) of the considered wheeled electromechani-
cal platform are presented on the �g. 3. We can see (�g. 3a) that the velocity of the
wheeled platform is directed to the maximum value corresponding to equilibrium
between the viscous damping and the driving couples which are depended on the
voltage supplied to the drive electric motors. This is in the full agreement with
the well-known fundamental property inherent for the wheeled platforms. The
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results for the jerk (�g. 3b) show that the maximum value of the jerk is really
at the initial time moment as was suggested before in the relations (16) and
(24). The jerks values at the initial time moment (�g. 3b) obtained by using the
computer simulations are in full agreement with the correspondent exact values
de�ned theoretically by using �rst relation (45). Aspiration of the jerk's value to
zero value during the time is in the agreement with aspiration of the accelerati-
on value to zero. We can see (�g. 3b) the signi�cant values of the jerks of the
considered electromechanical wheeled platform due to instant voltage supplying
on the drive electric motors at the initial time moment, and it is understandable
that limiting of the value of the instantly supplied voltage cannot provide any
given small jerks. Thus, to provide any small given jerks of the electromechanical
wheeled platforms the smooth time's depending for the voltages supplying on the
drive electric motors is required, and it is looked understandable.

Conclusion

The researches of the particular problem about control of wheeled platforms
straight motions on the ideal horizontal plane taking into account jerk restrictions
under speeding-up from the state of rest allowed obtaining some results, and due
to these results it is possible to have the follows conclusions.

First of all, the generalized approaches to de�ne the controls satisfying the
straight motions jerks restrictions of wheeled platforms are developed for the
modes of speeding-up from the state of rest. The jerks restrictions are reduced to
limiting of the time derivative value of the wheeled platform acceleration. These
generalized approaches based on the holonomic systems mechanics and on the
electromechanical analogies allow considering the di�erent kinds of the wheeled
platforms taking into account the electric on-board systems like the drive electric
motors and the control systems by using the Lagrange equations of second ki-
nd. Although, holonomic systems can represent only some particular motions of
the wheeled platforms, but such particular cases are really important for solving
the problems about the speeding-up and slowing-up straight motions of wheeled
platforms. Considering the nongolonomic systems which can represent all the
modes of the motions of wheeled platforms is planned for the future researches.

Secondly, the examples of the proposed approaches using to de�ne the controls
satisfying the jerks restrictions under speeding-up from the state of rest are
considered for the pure mechanical and electromechanical wheeled platforms. It
is obtained the inequality which allows choosing the instantly supplied driving
mechanical couple which will provide the admissible motion jerks of the wheeled
platform under speeding-up from the state of rest. It is shown, the rolling friction
and the viscous damping are the principal causes of the motion jerks of the wheeled
platforms under speeding-up from the state of rest. It is obtained the inequality
de�ning the voltage instantly supplied on the drive electric motors which wi-
ll provide the admissible motion jerks of the electromechanical wheeled platform
under speeding-up from the state of rest, and it is shown that the proposed general
approaches are suitable also for considering the jerks of di�erent kinds of wheeled
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platforms.
Thirdly, the computer simulations of the processes of speeding-up from the

state of rest for the electromechanical wheeled platform are considered to show
the results correctness and to illustrate satisfying the motions jerks restrictions.
The obtained results of the computer simulations are in the full agreement with
the well-known fundamental property inherent for the wheeled platforms. The
results for the jerk show that the maximum value of the jerk is really at the
initial time moment as was suggested before, and it is noted that the jerks values
at the initial time moment obtained by using the computer simulations are in
full agreement with the correspondent exact values de�ned theoretically. The big
values obtained for the jerks of the considered electromechanical wheeled platform
are due to instant voltage supplying on the drive electric motors at the initial
time moment, and it is understandable that limiting of the value of the instantly
supplied voltage cannot provide any wished small jerks. To provide any wished
jerks of the electromechanical wheeled platforms it is required to have the smooth
time depending for the voltages supplying on the drive electric motors.
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Êåðóâàííÿ ïðÿìîëiíiéíèì ðóõîì êîëiñíèõ ïëàòôîðì
ç óðàõóâàííÿì îáìåæåíü íà ðèâêè ïðè ðîçãàíÿííi çi ñòàíó ñïîêîþ

Íåâëþäîâ I. Ø.1, Ðîìàøîâ Þ. Â.1,2
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ïëîùà Ñâîáîäè, 4, Õàðêiâ, Óêðà¨íà, 61022
Çàïðîïîíîâàíî óçàãàëüíåíó ìàòåìàòè÷íó ìîäåëü ïðîöåñó ðîçãàíÿííÿ êîëiñíèõ

ïëàòôîðì íà iäåàëüíié ãîðèçîíòàëüíié ïëîùèíi çi ñòàíó ñïîêîþ òà îäåðæàíî êåðóâà-
ííÿ, ùî çàäîâîëüíÿ¹ îáìåæåííÿ íà ðèâêè âiäïîâiäíèõ ïðÿìîëiíiéíèõ ðóõiâ. Ðîçãëÿ-
íóòi ÷èñòî ìåõàíi÷íà òà åëåêòðîìåõàíi÷íà êîëiñíi ïëàòôîðìè, âèêîíàíî êîìï'þòåðíå
ìîäåëþâàííÿ äîñëiäæóâàíèõ ïðîöåñiâ. Óçàãàëüíåíi ïiäõîäè çàñíîâàíi íà ìåõàíiöi
ãîëîíîìíèõ ñèñòåì òà åëåêòðîìåõàíi÷íèõ àíàëîãiÿõ, ùî äîçâîëÿþòü çà äîïîìîãîþ
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ðiâíÿíü Ëàãðàíæà äðóãîãî ðîäó ðîçãëÿäàòè ðiçíi òèïè êîëiñíèõ ïëàòôîðì ç óðàõó-
âàííÿì åëåêòðè÷íèõ áîðòîâèõ ñèñòåì, òàêèõ ÿê ïðèâîäíi åëåêòðîäâèãóíè òà ñèñòåìè
êåðóâàííÿ. Õî÷à ãîëîíîìíi ñèñòåìè âiäîáðàæàþòü ëèøå äåÿêi îêðåìi ðóõè êîëiñíèõ
ïëàòôîðì, àëå òàêi îêðåìi âèïàäêè äiéñíî âàæëèâi äëÿ ðîçâ'ÿçóâàííÿ çàäà÷ ïðî
ïðèñêîðåííÿ òà óïîâiëüíåííÿ ðóõiâ êîëiñíèõ ïëàòôîðì ç óðàõóâàííÿì îáìåæåíü
íà ðèâêè. Äëÿ ñóòî ìåõàíi÷íèõ òà åëåêòðîìåõàíi÷íèõ êîëiñíèõ ïëàòôîðì ðîçãëÿ-
íóòî ïðèêëàäè âèêîðèñòàííÿ çàïðîïîíîâàíèõ ïiäõîäiâ äëÿ âèçíà÷åííÿ äîïóñòèìèõ
êåðóâàíü, ùî çàäîâîëüíÿþòü îáìåæåííÿ íà ðèâêè ïðè ðîçãàíÿííi çi ñòàíó ñïîêîþ.
Îòðèìàíî íåðiâíiñòü ùîäî âèçíà÷åííÿ ìèòò¹âî ïîäàíî¨ âåäó÷î¨ ìåõàíi÷íî¨ ïàðè, ÿêà
çàáåçïå÷èòü äîïóñòèìi ðèâêè ðóõó êîëiñíî¨ ïëàòôîðìè, ùî ïðèñêîðþ¹òüñÿ çi ñòàíó
ñïîêîþ. Ïîêàçàíî, ùî òåðòÿ êî÷åííÿ òà â'ÿçêèé îïið ¹ îñíîâíèìè ïðè÷èíàìè ðèâêiâ
êîëiñíèõ ïëàòôîðì ïðè ðîçãàíÿííi çi ñòàíó ñïîêîþ. Îòðèìàíî íåðiâíiñòü, ÿêà âè-
çíà÷à¹ åëåêòðè÷íó íàïðóãó, ùî ìèòò¹âî ïîäà¹òüñÿ íà ïðèâîäíi åëåêòðîäâèãóíè òà
çàáåçïå÷ó¹ äîïóñòèìi ðèâêè ðóõó åëåêòðîìåõàíi÷íî¨ êîëiñíî¨ ïëàòôîðìè, ùî ïðè-
ñêîðþþòüñÿ çi ñòàíó ñïîêîþ. Çàâäÿêè öüîìó ïîêàçàíî, ùî çàïðîïîíîâàíi çàãàëüíi
ïiäõîäè ïiäõîäÿòü òàêîæ äëÿ äîñëiäæåííÿ êîëiñíèõ ïëàòôîðì ðiçíîãî òèïó. Ðîçãëÿ-
äà¹òüñÿ êîìï'þòåðíå ìîäåëþâàííÿ ïðîöåñiâ ðîçãàíÿííÿ çi ñòàíó ñïîêîþ åëåêòðî-
ìåõàíi÷íèõ êîëiñíèõ ïëàòôîðì ùîá ìàòè ïiäòâåðäæåííÿ ìîæëèâîñòi âèêîðèñòàííÿ
çàïðîïîíîâàíèõ ìîäåëåé òà ïðîiëþñòðóâàòè âèêîíàííÿ îáìåæåíü íà ðèâêè ïiä ÷àñ
ðóõiâ. Îòðèìàíi ðåçóëüòàòè êîìï'þòåðíîãî ìîäåëþâàííÿ ïîâíiñòþ óçãîäæóþòüñÿ ç
âiäîìîþ ôóíäàìåíòàëüíîþ âëàñòèâiñòþ, ïðèòàìàííîþ êîëiñíèì ïëàòôîðìàì. Ðå-
çóëüòàòè äëÿ ðèâêiâ ïîêàçóþòü, ùî ìàêñèìàëüíå çíà÷åííÿ ðèâêà äiéñíî ¹ â ïî÷à-
òêîâèé ìîìåíò ÷àñó, ÿê áóëî çàïðîïîíîâàíî ðàíiøå, i ïîêàçàíî, ùî çíà÷åííÿ ðèâêiâ
ó ïî÷àòêîâèé ìîìåíò ÷àñó, îòðèìàíi çà äîïîìîãîþ êîìï'þòåðíîãî ìîäåëþâàííÿ,
ïîâíiñòþ óçãîäæóþòüñÿ ç âiäïîâiäíèìè çíà÷åííÿìè, òî÷íî âèçíà÷åíèìè òåîðåòè-
÷íî. Âåëèêi çíà÷åííÿ, îòðèìàíi äëÿ ðèâêiâ ðîçãëÿíóòî¨ åëåêòðîìåõàíi÷íî¨ êîëiñíî¨
ïëàòôîðìè, çóìîâëåíi ìèòò¹âîþ ïîäà÷åþ íàïðóãè íà ïðèâîäíi åëåêòðîäâèãóíè â
ïî÷àòêîâèé ìîìåíò ÷àñó, i, çðîçóìiëî, ùî îáìåæåííÿ âåëè÷èíè ìèòò¹âî ïîäàíî¨ íà-
ïðóãè íå ìîæå çàáåçïå÷èòè áóäü-ÿêèõ áàæàíèõ íåâåëèêèõ ðèâêiâ. Äëÿ çàáåçïå÷åííÿ
áóäü-ÿêèõ íåâåëèêèõ áàæàíèõ ðèâêiâ åëåêòðîìåõàíi÷íèõ êîëiñíèõ ïëàòôîðì íåîáõi-
äíî ìàòè ïëàâíó çàëåæèòü âiä ÷àñó íàïðóã, ùî ïîäàþòü íà åëåêòðîäâèãóíè ïðèâîäó.
Êëþ÷îâi ñëîâà: êåðóâàííÿ; ðóõ; ðèâîê; êîëiñíà ïëàòôîðìà; ìàòåìàòè÷íå ìî-

äåëþâàííÿ.

Iñòîðiÿ ñòàòòi: îòðèìàíà: 21 áåðåçíÿ 2022; îñòàííié âàðiàíò: 15 ñåðïíÿ 2022
ïðèéíÿòà: 18 ëèñòîïàäà 2022.


