ISSN 2221-5646(Print) 2523-4641(Online) Bicruk XapKiBCHKOTO HANiOHAJIHHOTO
Visnyk of V.N.Karazin Kharkiv National University yuiBepcurery imeni B.H. Kapasina
Ser. “Mathematics, Applied Mathematics Cepist "MaTemaTnka, IPUKIATIHA

and Mechanics”

2023, Vol. 97, p. 25-40

DOI: 10.26565/2221-5646-2023-97-03
VIIK 532.59

L. V. Batyuk

PhD biol, docent

Assoc. Prof. Dep. of Med. Biol. Phys. and Med. Inform.
Kharkiv National Medical University

4 Nauki av., Kharkiv, Ukraine, 61000

lili.batyuk@gmail.com (2 hitp://orcid.org/0000-0003-1863-0265

N. M. Kizilova

DSc mech, prof.

Prof. Dep. Appl. Math.

V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, Ukraine, 61022

n.kizilova@gmail.com (%) hitp://orcid.org/0000-0001-9981-7616

S. O. Poslavski

PhD mech

Assoc. Prof. Dep. Appl. Math.

V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, Ukraine, 61022

s.poslavski@gmail.com http://orcid.org/0000-0002-1049-9947

MaTeMaTHKa i MexaHika'

2023, Tom 97, c. 2540

A review on rheological models and mathematical

problem formulations for blood flows

A review on constitutive equations proposed for mathematical modeling of
laminar and turbulent flows of blood as a concentrated suspension of soft
particles is given. The rheological models of blood as a uniform Newtoni-
an fluid, non-Newtonian shear-thinning, viscoplastic, viscoelastic, tixotropic
and micromorphic fluids are discussed. According to the experimental data
presented, the adequate rheological model must describe shear-thinning ti-
xotropic behavior with concentration-dependent viscoelastic properties whi-
ch are proper to healthy human blood. Those properties can be studied on
the corresponding mathematical problem formulations for the blood flows
through the tubes or ducts. The corresponding systems of equations and
boundary conditions for each of the proposed rheological models are di-
scussed. Exact solutions for steady laminar flows between the parallel plates
and through the circular tubes have been obtained and analyzed for the
Ostwald, Hershel-Bulkley, and Bingham shear-thinning fluids. The influence
of the model parameters on the velocity profiles has been studied for each
model. It is shown, certain sets of fluid parameters lead to flattening of the
velocity profile while others produce its sharpening around the axis of the
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channel. It is shown, the second-order terms in the viscoelastic models give
the partial derivative differential equations with high orders in time and mi-
xed space-time derivatives. The corresponding problem formulations for the
pulsatile flows of the fluids with generalized rhelogical laws through the soft
tubes are derived. Their analytical solutions for the flow velocity, hydrostatic
pressure and cross-sectional area of the tube are derived in the form of the
normal mode. It is shown, the dispersion equations produce an additional set
for the speed of sound (so called second sound) in the fluid. It is concluded,
the most general rheological model of blood must include shear-thinning,
concentration and second sound phenomena.

Keywords: differential equations; rheological models; suspensions;
fluid dynamics.

2010 Mathematics Subject Classification: 93C20; 76Axx; 35Q35.

1. Introduction

Recent progress in numerical methods and high performance computing sti-
mulated development of sophisticated patient-specific mathematical models for
different physiological systems, organs and tissues [1,2]. The models are based
on the systems of partial differential equations (PDE) described the blood flow
as a viscous liquid (i) along the complex tree-type or network-type structures
of the blood vessels (ii) accounting for the complicated rheological relationshi-
ps for the blood (iii) and viscoelastic walls (iv) of arteries, veins and capillaries.
The first set of PDE (i) comprises the compressible Navier-Stokes equations for
the hydrostatic pressure pp, blood flow velocity #, and temperature Tp. Dynami-
cs of the blood vessel walls (ii) which are in direct fluid-structure interaction
(FSI) with the blood flow is described based on the 3D models of viscoelastic
solid |3], 2D thin wall models [4], shell theory models |5], or membrane models
[6] for the vessel walls. The two sets (i), (ii) of PDEs give a formulation of the
FSI problem in mathematical hemodynamics [3,4]. Both sets are interconnected
via common boundary conditions (BC) at the fluid-solid interfaces. In the case
of non-Newtonian models of blood and viscoelastic vessel wall, the systems (i),
(i) are combined via the flow-dependent material parameters (blood viscosity up,
wall viscosity iy, etc.) and temperature dependencies. The governing system (i)-
(ii) accounted for complex rheological relations (iii)-(iv) is quite sensitive to the
choice of rheological models and material parameters [3-6]. Therefore, significant
attention has been paid to experimental and theoretical study of blood rheology
and vessel wall rheology.

The linear relationship between the shear rate 4 and shear stress 7 in the
moving fluids was first discovered by I. Newton in his experiments with uniform
liquids [7]. In 1836-1848 French doctor J.Poiseuille experimentally studied slow
steady flows of different fluids (including blood of some experimental animals)
through circular glass and copper tubes, and found the linear dependence between
the pressure drop Ap from the inlet to the outlet of the tube and the volumetric
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flow rate ) (Hagen-Poiseuille law). In 1845 English mathematician G. Stokes
published mathematical derivation of the Hagen-Poiseuille formula

TRYAp

Q=" 1

where R and L are the radius and length of the tube.

Eq.(1) allows experimental estimation of the fluid viscosity when the value
Q can be measured at a given Ap = const. In 1930-th it was shown in a series
experiments that the blood flows through small capillaries (R < 100um) are
characterized by lower values of u; at low shear rates, while in the larger tubes it
is noticeably higher. The effect was discovered by R. Fahraeus and T. Lindqvist [8].
Besides, ju, increases with shear rate 4 of the flow, and at 4 > 100s~! it becomes
almost constant (i.e. flow-independent). In order to keep the same general form
(1) of the Hagen-Poiseuille law, the efficient viscosity was introduced as

Ap TR

Meff:kmy = R0 (2)

computed from (1) on the experimental data; the efficient viscosity can be a flow-
dependent function pers (7).

Later the Fahraeus-Lindqvist effect was found not only in blood but also in
other suspensions of small solid particles in a uniform fluid. In some suspensions
dpierf/dy > 0 (shear-thickening fluids) while in others du.rs/dy < 0 (shear-
thinning fluids). For dilute suspensions the effect was explained by the particle-
free layer (PFL) appeared near the wall of the tube (Fig.1a) due to the net
hydrodynamic forces directed the particles towards the axis of the capillary
(Segre-Silberberg effect). One of the main components of the net force is the
Magnus force acting on the rotating particles in the Newtonian fluid flow [9,10].
In the flows of diluted blood, the cell-free layer of the thickness § ~ 3um composed
by the blood plasma (BP) only is clearly visible in the glass tubs, small arteries
and capillaries (Fig.1b). The value of § is comparable to the mean radius of the
red blood cells (RBC) rrpc = 3.5um.

"
R
R-0

Fig. 1. Cell-free layer in the flows of suspensions: a) a scheme;
b) the blood flow with a PFL in a small artery.
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The simplest mathematical model of the Fahraeus-Lindqvist effect is based
on the Poiseuille flow of two immiscible fluids through a circular tube. The fluids
occupy the core of the flow (Fig.1a) Viore = {r € [0, R — 4],z € [0, L]} and the
PFL Vppr ={r € [R -6, R],x € [0, L]} with the viscosities 1 and pso, respecti-
vely. Solution of the incompressible Navier-Stokes equations (Poiseuille flow) of
the two liquids with the velocity and shear stress continuity BC at the interface
r = R — ¢ gives the following expression for the efficient viscosity [11]

feff = e : (3)
1— (1= pa/m)(1—6/R)*

At 6 = const (3) gives ducr¢/dR > 0 that corresponds to the Fahraeus-
Lindqvist effect.

Important contributions to rheology and the theory of fluid flows was done
by French physicist M. Couette who experimentally studied (in 1880-th) steady
flows between two rotating coaxial cylinders. His rotational rheometer is one of
the most popular types of the viscometers used for the viscosity measurements
until nowadays. Detailed experiments with blood in the capillary, rotational and
other types of viscometers [12-14| revealed some other rheological properties of
blood (behind its shear-thinning properties), namely

1) the dependency uy (Crpce) on the RBC concentration Crpe (or its medical
term hematocrit Ht);

2) thixotropy (time-dependent shear-thinning due to the RBC aggregati-
on/disaggregation);

3) viscoplasticity with the yield stress 7o;

4) viscoelasticity (a combination of viscous and elastic properties);

5) micromorphic properties (due to local flow-induced deformations of RBC).

Some of those properties promote increase in the blood viscosity, while others
led to its decrease, and their combination can produce some paradoxical effects
like a constant viscosity measured at the presence of two opposed effects [15].

Besides, more rheological effects are produced by specific biochemical nature of
the blood as a cellular suspension and its electromagnetic properties [16], namely

6) Electric potential of the RBC surface due to specific distribution of the
positive and negative charged molecular groups in the outer layer (glycocalyx)
and electric interaction (mostly repulsion) between the cells;

7) Formation of the hydration layer around the RBC in the aqueous solutions
(in blood plasma as water solution of mineral and organic components);

8) Copley-Scott Blair phenomenon (specific adsorption of large molecules and
cells to the vessel wall that lead to the double electric layer (DEL) formation,
electric interaction with the moving cells and ions, and physical decrease in the
vessel diameter) [10,17,18];

9) Active movement of leukocytes to/away from a chemokinetic agent [19];

10) Movement of leukocytes out of blood vessels through the vessel wall
(extravasation) to the location of tissue damage/inflammation.
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More complex effects are connected with the local, humoral and nervous
regulation like

11) Local release of the chemical factors influencing the cell properties, wall
thickness and vessel diameter, and therefore, the blood velocity;

12) Movement of the blood cells into the circulatory system from the marrow;

13) Release an additional blood volume into the circulation from the spleen;

14) Movement of the water component from/into the vessels controlled by the
volume receptors in the vessel wall.

In this paper a review of the most popular rheological models of blood is
presented, and the corresponding mathematical formulations for the blood flow
in the blood vessels, tubes of biomedical units like cardiopulmonary bypass, mi-
crofluidic systems, lab-on-a-chip or experimental equipment are discussed.

2. Classification of the rheological models of blood.
2.1. Newtonian fluid model.

Newtonian fluid model has a flow-independent viscosity p, = (T, C;)
only dependent on the temperature T and concentrations C; of some specific
components like polyacrylic polyethylene. Small concentrations of those polymers
can decrease the blood viscosity that is used in reanimation protocols. They can
also decrease the flow resistivity in the high Reynolds regimes (polymer turbulence
drag reduction Toms effect). In the simplest cases the Newton fluid approach
uy = const can be accepted and then the basic mathematical model of the blood
flow is the incompressible Navier-Stokes equations

div (7) = 0,
dv . . (4)
Po gy = —Vp + AV + py f,

where f is the external net force.

This approach is valid for the large vessels (d > 1 — 5mm) and high shear
rates 4 > 200 — 400c™!. In the case of rigid boundaries and steady 1D flow
(4) has analytical solutions for a cylindrical tube with any arbitrary smooth
cross-sectional perimeter [7]. Such solutions are usually used for validation of the
numerical models (finite difference, finite elements, finite volumes and others). The
turbulent flows of blood at higher Reynolds numbers Re=1000-6000 can also be
computed by direct numerical computations on (1); therefore particular turbulent
models (k — ¢, k — w, Spalart-Allmaras and others) are not considered here.

2.2. Shear-thinning models.

According to numerous experimental results, blood exhibits shear-thinning
properties that can be modeled as a linear dependence between the shear stress
T;rand shear rate v;; tensors with viscosity dependent on the components of the
shear rate tensor 7, = 2uyp, (T, Cj, vix) vk Since viscosity is a scalar function, the
allowed dependence is up = pp (L10, L20, I3y), where Iy, = Tr{vi} = vgk, oy =

2 2 2
Vg Vyy T VyyVzz + Vg Vzz — Vgy — U

oz~ Unz, 130 = Det|vy| are the main invariants of
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the strain tensor. For an incompressible fluid /1, = 0 and the simplest rheological
model is pp = pp (I2,). When a synthetic invariant I, = 4/2 (va — 2[2v) is used
instead of Is,, for the 1D flows I, = 4 that is convenient for both experiments
and theoretical considerations. Therefore, the simplest rheological model of the
blood as a shear-thinning fluid is p, = pp, (T, Cj, ), where Oy /07 < 0. The very
first power model was proposed by Ostwald in the form

p=T/4=k(#)", (5)

where 0 < n < 1. The value of n is computed from experiments with blood flows
at different shear rates .

Substitution of (5) or any other complex rheological law into (4) gives the
non-linear system of PDEs

div (V) = 0,
dv . . (6)
Py = —Vp + iy (Iy) AT+ pp f .

For instance, for the 1D Poiseuille flow between two parallel plates along the
axis 0x (5), (6) gives

9 _ g

Oz 1 (7)
Op kO (O (Ov\T

or  ror \ or or Phla:

It is clear, the parabolic Poiseuille or linear Couette flow profiles do not satisfy
(7). Its solution can be found by numerical methods. In the case of the circular
tube and f, = 0 an analytical solution of (7) with the no-slip boundary conditions
(BC) at the walls gives |20]

=gy () (-G e

The velocity profiles computed in (8) for different values n €]0, 1] are flattened
(Fig.2a) compared to the parabolic solution (at n=1) while for the shear thickening
fluids (n>>1) they become closer to the cone-type profile sharpened around the axis
Or (Fig.2b).

2.3. Viscoplastic models.

As other suspensions of aggregating particles, for starting the movement blood
needs a big enough shear stress 7 > 79, where 79 is the yield stress needed to
destroy the network of aggregates (Fig.3a) those are chains of the RBCs (Fig.3b)
such as

=0 when T < T,
>0 when T > 719

(9)
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Fig. 2. Velocity profiles v(r) for the Ostwald fluid flow:
a)at 0 <n <1;b)atn> 1.

The simplest linear model of (9) was proposed by E.C.Bingham (1916)

T =10+ py, whenT>1 (10)

or in the tensorial form

.
Tik = 2 (I—O + M) Vi, V1or > 270. (11)

v

where Io; is the second invariant of the shear stress tensor 7;.

Fig. 3. a) A network of aggregates in the model viscoplastic fluid;
b) RBC chains in the blood.

T - 5

A non-linear rheological model was proposed by N. Casson (1959) based on
his experiments with pigment-oil suspensions of the ink type [21]

VT =70+ VY, when 1> (12)

or in the tensorial form
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2
Tik = 2 <1 / 71;0 + \//Tb> Viks \/ Iy > 27. (13)

Detailed experimental measurements on blood and RBC suspensions revealed
a very good correlation between /7 and /3 [12]. The yield stress value depends
on the RBC concentration (Ht) and concentration C'yg of the protein fibrinogen
(fbg) which is responsible for the REB aggregation: 7o = 7o (Ht, C'tpg). A typical
value for healthy blood is accepted as 79 = 0.005N/m?. The most frequently used
approximations are

V70 = (Ht —0.07)%2 (0.49C 13, 4 0.24) ;
(14)
V70 = 0.01 (Ht — 10) (Cjpy + 0.5).

The asymptotic viscosity in blood as a shear-thinning viscoplastic fluid g =
lim (%) = ploo (Ht, pipp) is also a function of the RBC concentration (Ht) and
J—o0

blood plasma viscosity up,. The former is a Newtonian fluid and its viscosity
depends on the temperature py, = gy (1) and concentrations C), of the most
important proteins

_ Ho
Hop = 1— kp Cpa
where k,—const determined for the prevalent proteins.
When (14) is used in the rheological model, the resulting system of PDE must
be completed by the diffusion equation for C,.
In 1926 the linear Bingham model (10) was generalized by W. Hershel and
R.Bulkley in the form

(15)

T=19+p¥", when T>T19. (16)

The model (16) gives

1) Newtonian fluid at 7o =0, n=1;

2) Shear-thinning fluid at 0 =0, 0<n < 1;

3) Ostwald model (5) at 7o = 0;

4) Bingham fluid (10) at 70 > 0, n =1,

5) Generalized viscoplastic shear-thinning fluid at 70 >0, 0<n < 1.
The tensorial form of (16) can be written as

_ To
Tite = 24y (I2y) Vi, iy (I2y) = k13, 1y o
v

where k is the constant from (5).
The second expression (17) can be reformulated for the 1D flow as

, when T < 19,
wp(y) =40 TS (18)
oY+ k|, when T > 70,
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where 119 = 70 |50 + k [30] ", Ao is the critical shear rate corresponded to the
yield shear stress 7p.
Substitution (17) into the Navier-Stokes equations gives for the Poiseuille flow
between the parallel plates located at the distance H [20]
(0%

0w | _
Hb 8y2 ) ay 70,

oo (o) Vg (&) ) ) G))

when )(3—;)‘ > Y.

when

Solution of (19) with the no-slip BC at the plates is

e (= 0)m 55 — (6 — m) =),
ve sl |5 >

") = v+ veloa-ol, | <0 n 20)
rmym (68 = =14 8)m0) ™ — (3 — m) 7).
yel—a,1], gz<—”yo,

h )
where 7y = _Apfw’ 5 — Holo
L 70 |70
the velocity continuity conditions at the interfaces y = ;1 — 9.

Expression (20) gives flattened shear-rate dependent velocity profiles v(r/"),

where 7/¢"¢ = 21 /H (Fig.4).

, k is computed from (19) according to

yO
0.41'%

0.3

02 25"
Bep g
0.1’ n:4/ W
N
1 I 1 I 1 i Il:v i :\ I 1 L
L 0.4 06 03

s i V
Fig. 4. Velocity profiles for generalized viscoplastic fluid (20) at n=1,2,3 4.

Efficient viscosity of the Hershel-Bulkley fluid (17) in steady laminar flow can
be written as [22]
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8vaw \" ! (30 +1\" (1—-x)7"
eff — ; y 21
Hetf “°< h) ( in ) (1—aX — bX2 — cX3)" (21)

4L
where X = ﬁ, a=02n+1)"1 b=2na(n+1)"", ¢ = bn, vay is an averaged

velocity of the fluid flow through the channel.

Numerical computations on (20) showed a good correspondence with experi-
mental measurements on different fluids. When the Reynolds number is computed
based on the efficient viscosity Re = pvavhp;flf, the standard Newtonian friction
factor

64
Regyr

(22)

is in agreement with measurement data.

The Hershel-Bulkley model is used for optimization of the long-range pipelines
pumping such non-Newtonian fluids like oil. This model gives good results for
steady [23] and pulsatile [24] blood flow through the curved and stenosed arteries.

2.4. Viscoelastic models

Due to viscoelasticity of the erythrocyte membranes, their aqueous suspensi-
ons possess complex viscoelastic properties with stress and strain relaxations after
each cycle of load-discharge by the external forces. The simplest 3-element model
of blood as a suspension of the fluid-filled elastic shells is the Jeffrey model [25]

OTik ov; 0?v;
IR A
where k1 = (1y + top) /Em, k2 = prvttep/ Em, Em is the Young modulus of the
membrane, gy and ji, are the viscosities of the hemoglobin solutions inside the
erythrocytes and the blood plasma.

More sophisticated models accounted for the membrane sublayers and vi-
scoelasticity of the blood plasma can be written in the general form

k1 (23)

%7 0Tk Ok 0%,
k T ik + k k
2 + k1— ot + Tik = HoVik + Ko—— ot + K4 o2

e+ k33— + ... (24)

3. Mathematical problem formulations for generalized rheological laws

Substitution (24) into the Navier-Stokes equations gives the momentum
equation (linearized 1D case) in the form

(92 0%

Ltk o
+ ks a2 T | a2

(25)

0? 0 ov Op
a2 m”](m B

)
+ +>:{01+k26 +kips

where [ is the unit operator.
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When k14 = 0, (25) gives the 1D equation for Newtonian fluids. When ko4 =
0, k1 # 0, the hyperbolic equation (25) describes the wave propagation in the
viscoelastic fluid. In the case of plane waves propagation through a long fluid-
filled soft tube with a given unstrained cross-section profile Sy (z), the well-known
J.Lighthill’s model can be generalized for the viscoelastic fluid with rheological
equation (24) in the form

oS ou

E‘FSO%—O,

oU 18P U

D por S (26)
08 aS OP 0*P

where P and U are the mean pressure and flow velocity through the cross-section
of the tube, &, Lis the circumferential elasticity of the soft tube per unit length.

By excluding the variables S (¢,x) and P (f,z)from (26), one can obtain a
partial derivative differential equation for U (¢, z)in the form

64U kguo 83U klMO 82U ko,u() oUu
ks (B ) ko) S OMOCT
3 o +( So 1) o +< So 0> oz S, ot 2
Sp 9°U N kaSo 03U N kiSo O*U +o =0
p O0x2 p Otdxr? p Ot20x2 7
Eq.(27) has a solution in the form of running wave U (t,z) = U* -

exp (i (wt —nx)), where U*is the amplitude, n is the wave number. Substitution
gives the dispersion equation

o+ W +ipw® + w? (p2 — p3n?) +iw (pan® — ps) +pen® =0,  (28)
where p; = ok b2 = firo _ Ko p3 = Fa50 bs = k250 D5 = Kotio
So k3’ ksSo ks’ ksp’ ksp’ k3So’
So
pPe = 7 —-
ksp
For the case ksg7,.. = 0 the expressions for the wave speed c(w) and

wave dispersion w (n) have been computed in [26]. Numerical computations on
the generalized Lighthill-Shapiro model have been performed with the material
parameters of blood and arterial vessel walls. Despite the four different soluti-
ons for the wave speed obtained in [25] (two Young’s fluid-based modes and two
Lamb’s solid-based modes), the model (28) gives more types of the solid-based
wave modes which could characterize the micro- and nanostructure of the wall
material. The models with additional relaxation times gives the stress-strain rate
curves, strain relaxation curves in the isotopic experiments and stress relaxation
curves in the isometric experiments which fit better to the experimental curves
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measured on biological tissues compared to the standard 3-element rheological
models [27].
In the 3D case (24) can be rewritten as
Tk 8364—]{: 8217+817 B
P T3 T2 T ) T

0 0? 03
=—|I — — — + .. 29
|: +k16t+k36t2+k58t3+ :|Vp+ (29)
0 0? 03 .

Eq.(29) also admits wave solutions in the form of normal mode

f(tx) = f*-exp(i(wt —nr)), f={p}. (30)

Substitution of (30) into (29) gives the sound speed and dispersion in the
bulk viscoelastic fluid. In the case of a long axisymmetric fluid-filled distensible
tubes when the fluid flow is initiated by periodic pressure oscillations P (t)|,_, =
P*e™t at the inlet of the tube, (30) describes 2D cylindrical wave propagation
Vg (t,ryx) = 0™ (1) - exp (iw (t — z/c)), ¢ = w/n (w), and the wave amplitude is a
solution of the Bessel’s equation

10 ([ ov* .
ror (7“ o > — =" (r) = OF7, (31)
e — ik3w3 - k1w2 + tw w2

here = = —
v u0+ik52w—k4w2—ik’6w3+... + 2’

Tw (1 + iklw - k3w2 — ]{75003 + )
C (,U() + ikzw - k4w2 — ik6w3 + ) ’

In the case ks 67,.. = 0 the solution of (31) has been computed and analyzed
in [28] for the material parameters corresponded to blood as the fluid and arterial
vessel wall of healthy individuals and patients with some diseases.

Similar problem formulations can be derived for shear-thinning and vi-
scoplastic models as well as their combinations with viscoelastic model (25). For
each separate case the problem of solution existence and uniqueness, stability and
physical relevance must be studies. Moreover, correct formulation of boundary
and initial conditions for the partial differential equations with time derivatives
of order n)2 must be a case for special considerations.

4. Conclusions

Real liquids usually possess more complex rheological properties that cannot
be described by uniform Newtonian fluids. Many sophisticated constitutive equati-
ons for complex solids and fluids have been developed in theoretical rheology.
Recently, an attention was attracted by the suspensions of micro- and nanoparti-
cles (micro/nanofluids, respectively), and blood is one the most studied microflui-
ds. The rheological models developed for blood and other suspensions can be divi-
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ded into the shear-thinning, viscoplastic, viscoelastic general models. Their combi-
nations allow characterization of their viscous, elastic, shear rate dependent, yield
stress (tixotropy) and other mechanical properties. Substitution of more general
rheological laws into the Navier-Stokes equations for viscous fluids give systems
of partial differential equations with time derivatives of the orders n)2 that needs
correct formulations of additional boundary and initial conditions for the vari-
ables. It is shown, for the viscoelastic models the governing system of equations
is hyperbolic and allows solution in the form of running pressure and flow waves.
Due to the high order derivatives, the dispersion relations produce a big variety of
the frequency-dependent properties and types of the stress and strain relaxation.
Bifurcations and stability of the solutions as well as the problem formulations of
the mixed shear-thinning, viscoplastic and viscoelastic rheological properties will
be a subject for our future studies.
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Oruisia peoJiorivamx mMozeJieii i IIoCTaHOBOK MaTeMAaTHUYHUX 331249
JJI9 KPOBOTOKY

Bamriox JI. B.!, Kizinosa H. M.2, ITocnascekuit C. O. 2
L Xapriscoruti nayionarvrut meduwnud yrisepcumen
npocnexm Hoywu 4, 61000, Xapwie, Yxpaina
2 Xapriscoruti nayionarvrut yrisepcumem imeni B. H. Kapasina
matidarn Ceobodu 4, 61022, Xapxise, Yrpaina
Hapeneno orsisi peosorivHuX piBHSAHDB, SKi 3alPOMOHOBAHI B JIITEpaTypi JJIsl MaTe-
MaTHIHOTO MOJIEIIOBAHHS JIAMIHAPDHUX 1 TypOyJE€HTHUX Tedill KPOBi K KOHIIEHTPOBAHOL
cycrensii M’ IKuX 9acTHHOK. /leTabHO 0OrOBOPIOIOTHCS PEOTOTITHI MO KPOBi K OTHO-
PiZIHOT HBIOTOHIBCHKOI Ta HEHbIOTOHIBCHKOI PiJIMH; PIAMHM, 110 PO3PLIKYIOTH 31 3CyBOM;
B’SI3KOIIACTUYHOT; B’ I3KOMPYKHOT; THKCOTPOMHOI Ta, MiKpOMOP(MHOI pianH. 3rigHo 3 HaA-
BEJIEHUMHU eKCIIePUMEHTAILHUMHI JJAHNMH, a/IEKBATHA PEOJIOTIHA MOIETh KPOBi TOBUHHA
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OIUCYBATH IICEBIOIJIACTUYHY 1 TIKCOTPOIIHY IOBEJIHKY 3 3aJI€2KHUMHU BiJl KOHIIEHTPAIil
B’SI3KOTIPY KHUMY BJIACTHBOCTSIMHY, SIKi BJIACTUBI KPOBi 310poBoi jtroaunun. 11i BractuBocTi
MOXKHQ, [IeTaJIbHIITE BUBYATH HA BiAMOBIIHUX MaTEMATHIHUX (DOPMYITIOBAHHSAX 33,124 /It
Tediit KpoBi Kpi3b TpyOku abo kanaju. OOTOBOpeHi CHCTeMM PIBHSHB i "DAHWYHI YMOBHU
JI7IsT KOPKHOI 13 3aIIPOIIOHOBAHUX Peooriaanx Momesneil. Toani pimerHs A CTamioHapHuX
JIAMIHAPHHUX Tediil MixK mapaJjelbHIMH IJTACTHHAMHE Ta 9epe3 TPYOKHU KPyTroBOro nepepisy
BUMMCaHi Ta mpoanasizosani mus pigun Ocreannga, Leprmens-Baakm Tta Binrama. dna
KOXKHOI MOJIEJI JTOCTIIKEHO BIIMB TTapaMeTpiB Moe i Ha mpodii meuakocti. [Tokazano,
10 TeBHI HAOOPH MapaMeTpiB PiAuHN MPU3BOAATH 10 CIIOMIEHHS MPOQIIIO MBUIKOCTI, a
iHII BEUKJIUKAIOTH HOr0 3aroCTPeHHs] HABKOJIO OCi KaHaty. [loka3aHo, 1Mo 9ieHn Ipyroro
MOPSAJIKY B MOJEJAX B’sI3KOMPYKHOCTI IPUBOAATH J0 cucTeM audepeHIiaIbHuX PiBHIHD
3 YACTUHHUMU IIOXI/THUMHU 3 BHCOKUMHU IIOPAIKAMH 33 9ACOM 1 3MilIAHUMU [IPOCTOPOBO-
gyacoruMU ToximHuMu. HaBemeri BiAMOBIAHI MOCTAHOBKYU 3a7a4 JJsT XBUJIBOBUX Tediil pi-
JVH 3 y3araJbHEHUMU PEOJIOTITHUMEU 3aKOHAMHU Kpi3b M gKi TpyOku. OTpuMaHo aHAMITH-
9Hi pO3B’SA3KH M1 MIBUAKOCTI T€dUil, TiIPOCTATHIHOIO THCKY 1 IO ITepepily TpyOKu y
BUIJIAA HOpMaIbHUX MO, [lokazano, 1m0 aucmepciiini piBHAHHA JAI0Th J0JIaTKOBUM Ha-
6ip Juis wBMAKOCTI 3BYKY (Tak 3BaHuil apyruii 38yK) y piauni. 3pobieHo BUCHOBOK, IO
HaOIIBIT 3arajbHa PEOJIOTIUHA MOJEh MOBUHHA BKIIOYATH €(QEKTH MCeBIOIIACTUYHI,
KOHTIEHTPAIIll YaCTHHOK Ta JAPYTOTO 3BYKY.

Karwuosi crosa: nudpepeHiagbpHl PIBHAHHS; PEOJIOTIYHI MO/ieji; cycmeHs3il; ri-
JpoAanHaMiKa.

Icropis crarTi: orpumana: 4 ciuns 2023; ocrauniit Bapiant: 17 tpasus 2023
npuitaara: 7 gepaa 2023.



