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A review on rheological models and mathematical

problem formulations for blood �ows

A review on constitutive equations proposed for mathematical modeling of
laminar and turbulent �ows of blood as a concentrated suspension of soft
particles is given. The rheological models of blood as a uniform Newtoni-
an �uid, non-Newtonian shear-thinning, viscoplastic, viscoelastic, tixotropic
and micromorphic �uids are discussed. According to the experimental data
presented, the adequate rheological model must describe shear-thinning ti-
xotropic behavior with concentration-dependent viscoelastic properties whi-
ch are proper to healthy human blood. Those properties can be studied on
the corresponding mathematical problem formulations for the blood �ows
through the tubes or ducts. The corresponding systems of equations and
boundary conditions for each of the proposed rheological models are di-
scussed. Exact solutions for steady laminar �ows between the parallel plates
and through the circular tubes have been obtained and analyzed for the
Ostwald, Hershel-Bulkley, and Bingham shear-thinning �uids. The in�uence
of the model parameters on the velocity pro�les has been studied for each
model. It is shown, certain sets of �uid parameters lead to �attening of the
velocity pro�le while others produce its sharpening around the axis of the
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channel. It is shown, the second-order terms in the viscoelastic models give
the partial derivative di�erential equations with high orders in time and mi-
xed space-time derivatives. The corresponding problem formulations for the
pulsatile �ows of the �uids with generalized rhelogical laws through the soft
tubes are derived. Their analytical solutions for the �ow velocity, hydrostatic
pressure and cross-sectional area of the tube are derived in the form of the
normal mode. It is shown, the dispersion equations produce an additional set
for the speed of sound (so called second sound) in the �uid. It is concluded,
the most general rheological model of blood must include shear-thinning,
concentration and second sound phenomena.

Keywords: di�erential equations; rheological models; suspensions;

�uid dynamics.

2010 Mathematics Subject Classi�cation: 93C20; 76Axx; 35Q35.

1. Introduction

Recent progress in numerical methods and high performance computing sti-
mulated development of sophisticated patient-speci�c mathematical models for
di�erent physiological systems, organs and tissues [1,2]. The models are based
on the systems of partial di�erential equations (PDE) described the blood �ow
as a viscous liquid (i) along the complex tree-type or network-type structures
of the blood vessels (ii) accounting for the complicated rheological relationshi-
ps for the blood (iii) and viscoelastic walls (iv) of arteries, veins and capillaries.
The �rst set of PDE (i) comprises the compressible Navier-Stokes equations for
the hydrostatic pressure pb, blood �ow velocity v⃗b and temperature Tb. Dynami-
cs of the blood vessel walls (ii) which are in direct �uid-structure interaction
(FSI) with the blood �ow is described based on the 3D models of viscoelastic
solid [3], 2D thin wall models [4], shell theory models [5], or membrane models
[6] for the vessel walls. The two sets (i), (ii) of PDEs give a formulation of the
FSI problem in mathematical hemodynamics [3,4]. Both sets are interconnected
via common boundary conditions (BC) at the �uid-solid interfaces. In the case
of non-Newtonian models of blood and viscoelastic vessel wall, the systems (i),
(ii) are combined via the �ow-dependent material parameters (blood viscosity µb,
wall viscosity µw, etc.) and temperature dependencies. The governing system (i)-
(ii) accounted for complex rheological relations (iii)-(iv) is quite sensitive to the
choice of rheological models and material parameters [3-6]. Therefore, signi�cant
attention has been paid to experimental and theoretical study of blood rheology
and vessel wall rheology.

The linear relationship between the shear rate γ̇ and shear stress τ in the
moving �uids was �rst discovered by I. Newton in his experiments with uniform
liquids [7]. In 1836-1848 French doctor J.Poiseuille experimentally studied slow
steady �ows of di�erent �uids (including blood of some experimental animals)
through circular glass and copper tubes, and found the linear dependence between
the pressure drop ∆p from the inlet to the outlet of the tube and the volumetric
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�ow rate Q (Hagen-Poiseuille law). In 1845 English mathematician G. Stokes
published mathematical derivation of the Hagen-Poiseuille formula

Q =
πR4∆p

8µbL
, (1)

where R and L are the radius and length of the tube.
Eq.(1) allows experimental estimation of the �uid viscosity when the value

Q can be measured at a given ∆p = const. In 1930-th it was shown in a series
experiments that the blood �ows through small capillaries (R ≤ 100µm) are
characterized by lower values of µb at low shear rates, while in the larger tubes it
is noticeably higher. The e�ect was discovered by R. Fahraeus and T. Lindqvist [8].
Besides, µb increases with shear rate γ̇ of the �ow, and at γ̇ ≥ 100s−1 it becomes
almost constant (i.e. �ow-independent). In order to keep the same general form
(1) of the Hagen-Poiseuille law, the e�cient viscosity was introduced as

µeff = k
∆p

Q (∆p)
, k =

πR4

8L
, (2)

computed from (1) on the experimental data; the e�cient viscosity can be a �ow-
dependent function µeff (γ̇).

Later the Fahraeus-Lindqvist e�ect was found not only in blood but also in
other suspensions of small solid particles in a uniform �uid. In some suspensions
dµeff/dγ̇ > 0 (shear-thickening �uids) while in others dµeff/dγ̇ < 0 (shear-
thinning �uids). For dilute suspensions the e�ect was explained by the particle-
free layer (PFL) appeared near the wall of the tube (Fig.1a) due to the net
hydrodynamic forces directed the particles towards the axis of the capillary
(Segre�Silberberg e�ect). One of the main components of the net force is the
Magnus force acting on the rotating particles in the Newtonian �uid �ow [9,10].
In the �ows of diluted blood, the cell-free layer of the thickness δ ∼ 3µm composed
by the blood plasma (BP) only is clearly visible in the glass tubs, small arteries
and capillaries (Fig.1b). The value of δ is comparable to the mean radius of the
red blood cells (RBC) rRBC = 3.5µm.

Fig. 1. Cell-free layer in the �ows of suspensions: a) a scheme;
b) the blood �ow with a PFL in a small artery.
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The simplest mathematical model of the Fahraeus-Lindqvist e�ect is based
on the Poiseuille �ow of two immiscible �uids through a circular tube. The �uids
occupy the core of the �ow (Fig.1a) Vcore = {r ∈ [0, R− δ] , x ∈ [0, L]} and the
PFL VPFL = {r ∈ [R− δ,R] , x ∈ [0, L]} with the viscosities µ1 and µ2, respecti-
vely. Solution of the incompressible Navier-Stokes equations (Poiseuille �ow) of
the two liquids with the velocity and shear stress continuity BC at the interface
r = R− δ gives the following expression for the e�cient viscosity [11]

µeff =
µ2

1− (1− µ2/µ1) (1− δ/R)4
. (3)

At δ = const (3) gives dµeff/dR > 0 that corresponds to the Fahraeus-
Lindqvist e�ect.

Important contributions to rheology and the theory of �uid �ows was done
by French physicist M. Couette who experimentally studied (in 1880-th) steady
�ows between two rotating coaxial cylinders. His rotational rheometer is one of
the most popular types of the viscometers used for the viscosity measurements
until nowadays. Detailed experiments with blood in the capillary, rotational and
other types of viscometers [12-14] revealed some other rheological properties of
blood (behind its shear-thinning properties), namely

1) the dependency µb (CRBC) on the RBC concentration CRBC (or its medical
term hematocrit Ht);

2) thixotropy (time-dependent shear-thinning due to the RBC aggregati-
on/disaggregation);

3) viscoplasticity with the yield stress τ0;
4) viscoelasticity (a combination of viscous and elastic properties);
5) micromorphic properties (due to local �ow-induced deformations of RBC).
Some of those properties promote increase in the blood viscosity, while others

led to its decrease, and their combination can produce some paradoxical e�ects
like a constant viscosity measured at the presence of two opposed e�ects [15].

Besides, more rheological e�ects are produced by speci�c biochemical nature of
the blood as a cellular suspension and its electromagnetic properties [16], namely

6) Electric potential of the RBC surface due to speci�c distribution of the
positive and negative charged molecular groups in the outer layer (glycocalyx)
and electric interaction (mostly repulsion) between the cells;

7) Formation of the hydration layer around the RBC in the aqueous solutions
(in blood plasma as water solution of mineral and organic components);

8) Copley-Scott Blair phenomenon (speci�c adsorption of large molecules and
cells to the vessel wall that lead to the double electric layer (DEL) formation,
electric interaction with the moving cells and ions, and physical decrease in the
vessel diameter) [10,17,18];

9) Active movement of leukocytes to/away from a chemokinetic agent [19];
10) Movement of leukocytes out of blood vessels through the vessel wall

(extravasation) to the location of tissue damage/in�ammation.
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More complex e�ects are connected with the local, humoral and nervous
regulation like

11) Local release of the chemical factors in�uencing the cell properties, wall
thickness and vessel diameter, and therefore, the blood velocity;

12) Movement of the blood cells into the circulatory system from the marrow;
13) Release an additional blood volume into the circulation from the spleen;
14) Movement of the water component from/into the vessels controlled by the

volume receptors in the vessel wall.
In this paper a review of the most popular rheological models of blood is

presented, and the corresponding mathematical formulations for the blood �ow
in the blood vessels, tubes of biomedical units like cardiopulmonary bypass, mi-
cro�uidic systems, lab-on-a-chip or experimental equipment are discussed.

2. Classi�cation of the rheological models of blood.
2.1. Newtonian �uid model.

Newtonian �uid model has a �ow-independent viscosity µb = µb (T,Cj)
only dependent on the temperature T and concentrations Cj of some speci�c
components like polyacrylic polyethylene. Small concentrations of those polymers
can decrease the blood viscosity that is used in reanimation protocols. They can
also decrease the �ow resistivity in the high Reynolds regimes (polymer turbulence
drag reduction Toms e�ect). In the simplest cases the Newton �uid approach
µb = const can be accepted and then the basic mathematical model of the blood
�ow is the incompressible Navier-Stokes equationsdiv (v⃗) = 0,

ρb
dv⃗

dt
= −∇p+ µb∆v⃗ + ρbf⃗ ,

(4)

where f⃗ is the external net force.
This approach is valid for the large vessels (d > 1 − 5mm) and high shear

rates γ̇ > 200 − 400c−1. In the case of rigid boundaries and steady 1D �ow
(4) has analytical solutions for a cylindrical tube with any arbitrary smooth
cross-sectional perimeter [7]. Such solutions are usually used for validation of the
numerical models (�nite di�erence, �nite elements, �nite volumes and others). The
turbulent �ows of blood at higher Reynolds numbers Re=1000-6000 can also be
computed by direct numerical computations on (1); therefore particular turbulent
models (k − ε, k − ω, Spalart-Allmaras and others) are not considered here.

2.2. Shear-thinning models.

According to numerous experimental results, blood exhibits shear-thinning
properties that can be modeled as a linear dependence between the shear stress
τikand shear rate vik tensors with viscosity dependent on the components of the
shear rate tensor τik = 2µb (T,Cj , vik) vik. Since viscosity is a scalar function, the
allowed dependence is µb = µb (I1v, I2v, I3v), where I1v = Tr {vik} = vkk, I2v =
vxxvyy+vyyvzz+vxxvzz−v2xy−v2yz−v2xz, I3v = Det|vik| are the main invariants of
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the strain tensor. For an incompressible �uid I1v = 0 and the simplest rheological

model is µb = µb (I2v). When a synthetic invariant Iv =
√
2
(
I21v − 2I2v

)
is used

instead of I2v, for the 1D �ows Iv = γ̇ that is convenient for both experiments
and theoretical considerations. Therefore, the simplest rheological model of the
blood as a shear-thinning �uid is µb = µb (T,Cj , γ̇), where ∂µb/∂γ̇ < 0. The very
�rst power model was proposed by Ostwald in the form

µ = τ/γ̇ = k (γ̇)n−1 , (5)

where 0 < n < 1. The value of n is computed from experiments with blood �ows
at di�erent shear rates γ̇.

Substitution of (5) or any other complex rheological law into (4) gives the
non-linear system of PDEsdiv (v⃗) = 0,

ρb
dv⃗

dt
= −∇p+ µb (Iv)∆v⃗ + ρbf⃗ .

(6)

For instance, for the 1D Poiseuille �ow between two parallel plates along the
axis 0x (5), (6) gives

∂vx
∂x

= 0,

∂p

∂x
=

k

r

∂

∂r

(
r
∂vx
∂r

)(
∂vx
∂r

)n−1

+ ρbfx.
(7)

It is clear, the parabolic Poiseuille or linear Couette �ow pro�les do not satisfy
(7). Its solution can be found by numerical methods. In the case of the circular
tube and fx = 0 an analytical solution of (7) with the no-slip boundary conditions
(BC) at the walls gives [20]

v (r) =
nR

(n+ 1)

(
R∆p

2kL

)1/n(
1−

( r

R

)(n+1)/n
)
. (8)

The velocity pro�les computed in (8) for di�erent values n ∈]0, 1[ are �attened
(Fig.2a) compared to the parabolic solution (at n=1) while for the shear thickening
�uids (n>1) they become closer to the cone-type pro�le sharpened around the axis
0r (Fig.2b).

2.3. Viscoplastic models.

As other suspensions of aggregating particles, for starting the movement blood
needs a big enough shear stress τ > τ0, where τ0 is the yield stress needed to
destroy the network of aggregates (Fig.3a) those are chains of the RBCs (Fig.3b)
such as

γ̇ = 0 when τ < τ0,
γ̇ > 0 when τ > τ0.

(9)
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Fig. 2. Velocity pro�les v(r) for the Ostwald �uid �ow:
a) at 0 < n < 1; b) at n > 1.

The simplest linear model of (9) was proposed by E.C.Bingham (1916)

τ = τ0 + µγ̇, when τ > τ0 (10)

or in the tensorial form

τik = 2

(
τ0
Iv

+ µ

)
vik,

√
I2τ > 2τ0. (11)

where I2τ is the second invariant of the shear stress tensor τik.

Fig. 3. a) A network of aggregates in the model viscoplastic �uid;
b) RBC chains in the blood.

A non-linear rheological model was proposed by N. Casson (1959) based on
his experiments with pigment-oil suspensions of the ink type [21]

√
τ =

√
τ0 +

√
µbγ̇, when τ > τ0 (12)

or in the tensorial form
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τik = 2

(√
τ0
Iv

+
√
µb

)2

vik,
√

I2τ > 2τ0. (13)

Detailed experimental measurements on blood and RBC suspensions revealed
a very good correlation between

√
τ and

√
γ̇ [12]. The yield stress value depends

on the RBC concentration (Ht) and concentration Cfbg of the protein �brinogen
(fbg) which is responsible for the REB aggregation: τ0 = τ0 (Ht,Cfbg). A typical
value for healthy blood is accepted as τ0 = 0.005N/m2. The most frequently used
approximations are

√
τ0 = (Ht− 0.07)3/2 (0.49Cfbg + 0.24) ;

√
τ0 = 0.01 (Ht− 10) (Cfbg + 0.5) .

(14)

The asymptotic viscosity in blood as a shear-thinning viscoplastic �uid µ∞ =
lim
γ̇→∞

µ (γ̇) = µ∞ (Ht, µbp) is also a function of the RBC concentration (Ht) and

blood plasma viscosity µbp. The former is a Newtonian �uid and its viscosity
depends on the temperature µbp = µbp (T ) and concentrations Cp of the most
important proteins

µbp =
µ0

1− kpCp
, (15)

where kp=const determined for the prevalent proteins.
When (14) is used in the rheological model, the resulting system of PDE must

be completed by the di�usion equation for Cp.
In 1926 the linear Bingham model (10) was generalized by W. Hershel and

R.Bulkley in the form

τ = τ0 + µγ̇n, when τ > τ0. (16)

The model (16) gives
1) Newtonian �uid at τ0 = 0, n = 1;
2) Shear-thinning �uid at τ0 = 0, 0 < n < 1;
3) Ostwald model (5) at τ0 = 0;
4) Bingham �uid (10) at τ0 > 0, n = 1;
5) Generalized viscoplastic shear-thinning �uid at τ0 > 0, 0 < n < 1.
The tensorial form of (16) can be written as

τik = 2µb (I2v) vik, µb (I2v) = kIn−1
2v +

τ0
I2v

, (17)

where k is the constant from (5).
The second expression (17) can be reformulated for the 1D �ow as

ub(γ̇) =

{
µ0, when τ < τ0,

τ0 |γ̇|−1 + k |γ̇|−1 , when τ > τ0,
(18)
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where µ0 = τ0 |γ̇0|−1 + k |γ̇0|−1, γ̇0 is the critical shear rate corresponded to the
yield shear stress τ0.

Substitution (17) into the Navier-Stokes equations gives for the Poiseuille �ow
between the parallel plates located at the distance H [20]

∂p

∂x
=

∂

∂y

(
µb

∂v

∂y

)
=



µb
∂2v

∂y2
, when

∣∣∣∣(∂v

∂y

)∣∣∣∣ < γ0,

∂

∂y

((
k

(
∂v

∂y

)n−1

+ τ0

(
∂v

∂y

)−1
)(

∂v

∂y

))
,

when
∣∣∣(∂v

∂y

)∣∣∣ ≥ γ0.

(19)

Solution of (19) with the no-slip BC at the plates is

v (y) =



n

(n+ 1)π0

(
((y − δ)π0 + γ̇n0 )

n
n+1 − (γ̇n0 − δπ0)

n
n+1

)
,

y ∈ [0, δ [ ,

∣∣∣∣∂v∂y
∣∣∣∣ > γ0,

π0
2µ0

y (y − 1) + k, y ∈ [δ, 1− δ [ ,

∣∣∣∣∂v∂y
∣∣∣∣ < γ0,

n

(n+ 1)π0

(
(γ̇n0 − (y − 1 + δ)π0)

n
n+1 − (γ̇n0 − δπ0)

n
n+1

)
,

y ∈ [1− δ, 1] ,
∂v

∂y
< −γ0,

(20)

where π0 = −∆P
h

L

µ0γ0 − γn0
τ0

, δ =
µ0γ0
|π0|

, k is computed from (19) according to

the velocity continuity conditions at the interfaces y = δ; 1− δ.
Expression (20) gives �attened shear-rate dependent velocity pro�les v(r/circ),

where r/circ = 2r/H (Fig.4).

Fig. 4. Velocity pro�les for generalized viscoplastic �uid (20) at n=1,2,3,4.

E�cient viscosity of the Hershel-Bulkley �uid (17) in steady laminar �ow can
be written as [22]
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µeff = µ0

(
8vav
h

)n−1(3n+ 1

4n

)n (1−X)−1

(1− aX − bX2 − cX3)n
, (21)

where X =
4Lτ0
h∆P

, a = (2n+ 1)−1, b = 2na (n+ 1)−1, c = bn, vav is an averaged

velocity of the �uid �ow through the channel.
Numerical computations on (20) showed a good correspondence with experi-

mental measurements on di�erent �uids. When the Reynolds number is computed
based on the e�cient viscosity Re = ρvavhµ

−1
eff , the standard Newtonian friction

factor

f =
64

Reeff
(22)

is in agreement with measurement data.
The Hershel-Bulkley model is used for optimization of the long-range pipelines

pumping such non-Newtonian �uids like oil. This model gives good results for
steady [23] and pulsatile [24] blood �ow through the curved and stenosed arteries.

2.4. Viscoelastic models

Due to viscoelasticity of the erythrocyte membranes, their aqueous suspensi-
ons possess complex viscoelastic properties with stress and strain relaxations after
each cycle of load-discharge by the external forces. The simplest 3-element model
of blood as a suspension of the �uid-�lled elastic shells is the Je�rey model [25]

k1
∂τik
∂t

+ τik = µbp
∂vik
∂t

+ k2
∂2vik
∂t2

, (23)

where k1 = (µHb + µbp) /Em, k2 = µHbµbp/Em, Em is the Young modulus of the
membrane, µHb and µbp are the viscosities of the hemoglobin solutions inside the
erythrocytes and the blood plasma.

More sophisticated models accounted for the membrane sublayers and vi-
scoelasticity of the blood plasma can be written in the general form

...+ k3
∂2τik
∂t2

+ k1
∂τik
∂t

+ τik = µ0vik + k2
∂vik
∂t

+ k4
∂2vik
∂t2

+ .... (24)

3. Mathematical problem formulations for generalized rheological laws

Substitution (24) into the Navier-Stokes equations gives the momentum
equation (linearized 1D case) in the form

[
...+ k3

∂2

∂t2
+ k1

∂

∂t
+ I

](
ρ
∂v

∂t
+

∂p

∂x

)
=

[
µ0I + k2

∂

∂t
+ k4

∂2

∂t2
+ ...

]
∂2v

∂x2
, (25)

where I is the unit operator.
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When k1−4 = 0, (25) gives the 1D equation for Newtonian �uids. When k2−4 =
0, k1 ̸= 0, the hyperbolic equation (25) describes the wave propagation in the
viscoelastic �uid. In the case of plane waves propagation through a long �uid-
�lled soft tube with a given unstrained cross-section pro�le S0 (x), the well-known
J.Lighthill's model can be generalized for the viscoelastic �uid with rheological
equation (24) in the form

∂S

∂t
+ S0

∂U

∂x
= 0,

∂U

∂t
+

1

ρ

∂P

∂x
− µ0U

S0
= 0,

...+ k4
∂2S

∂t2
+ k2

∂S

∂t
+ S = k0P + k1

∂P

∂t
+ k3

∂2P

∂t2
+ ...,

(26)

where P and U are the mean pressure and �ow velocity through the cross-section
of the tube, k−1

0 is the circumferential elasticity of the soft tube per unit length.
By excluding the variables S (t, x) and P (t, x)from (26), one can obtain a

partial derivative di�erential equation for U (t, x)in the form

...− k3
∂4U

∂t4
+

(
k3µ0

S0
− k1

)
∂3U

∂t3
+

(
k1µ0

S0
− k0

)
∂2U

∂t2
+

k0µ0

S0

∂U

∂t
+

S0

ρ

∂2U

∂x2
+

k2S0

ρ

∂3U

∂t∂x2
+

k4S0

ρ

∂4U

∂t2∂x2
+ ... = 0.

(27)

Eq.(27) has a solution in the form of running wave U (t, x) = U∗ ·
exp (i (ωt− nx)), where U∗is the amplitude, n is the wave number. Substitution
gives the dispersion equation

...+ ω4 + ip1ω
3 + ω2

(
p2 − p3n

2
)
+ iω

(
p4n

2 − p5
)
+ p6n

2 = 0, (28)

where p1 =
µ0

S0
− k1

k3
, p2 =

k1µ0

k3S0
− k0

k3
, p3 =

k4S0

k3ρ
, p4 =

k2S0

k3ρ
, p5 =

k0µ0

k3S0
,

p6 =
S0

k3ρ
.

For the case k5,6,7,... = 0 the expressions for the wave speed c (ω) and
wave dispersion ω (n) have been computed in [26]. Numerical computations on
the generalized Lighthill-Shapiro model have been performed with the material
parameters of blood and arterial vessel walls. Despite the four di�erent soluti-
ons for the wave speed obtained in [25] (two Young's �uid-based modes and two
Lamb's solid-based modes), the model (28) gives more types of the solid-based
wave modes which could characterize the micro- and nanostructure of the wall
material. The models with additional relaxation times gives the stress-strain rate
curves, strain relaxation curves in the isotopic experiments and stress relaxation
curves in the isometric experiments which �t better to the experimental curves
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measured on biological tissues compared to the standard 3-element rheological
models [27].

In the 3D case (24) can be rewritten as

ρ

(
...+ k3

∂3v⃗

∂t3
+ k1

∂2v⃗

∂t2
+

∂v⃗

∂t

)
=

= −
[
I + k1

∂

∂t
+ k3

∂2

∂t2
+ k5

∂3

∂t3
+ ...

]
∇p+

+

[
µ0 + k2

∂

∂t
+ k4

∂2

∂t2
+ k6

∂3

∂t3
+ ...

]
∆v⃗.

(29)

Eq.(29) also admits wave solutions in the form of normal mode

f (t, x) = f∗ · exp (i (ωt− nr⃗)) , f = {p, v⃗} . (30)

Substitution of (30) into (29) gives the sound speed and dispersion in the
bulk viscoelastic �uid. In the case of a long axisymmetric �uid-�lled distensible
tubes when the �uid �ow is initiated by periodic pressure oscillations P (t)|x=0 =
P ∗eiωt at the inlet of the tube, (30) describes 2D cylindrical wave propagation
vx (t, r, x) = v∗ (r) · exp (iω (t− x/c)), c = ω/n (ω), and the wave amplitude is a
solution of the Bessel's equation

1

r

∂

∂r

(
r
∂v∗

∂r

)
− Ξv∗ (r) = ΘP ∗, (31)

where Ξ = ρ
...− ik3ω

3 − k1ω
2 + iω

µ0 + ik2ω − k4ω2 − ik6ω3 + ...
+

ω2

c2
,

Θ =
iω
(
1 + ik1ω − k3ω

2 − k5ω
3 + ...

)
c (µ0 + ik2ω − k4ω2 − ik6ω3 + ...)

.

In the case k5,6,7,... = 0 the solution of (31) has been computed and analyzed
in [28] for the material parameters corresponded to blood as the �uid and arterial
vessel wall of healthy individuals and patients with some diseases.

Similar problem formulations can be derived for shear-thinning and vi-
scoplastic models as well as their combinations with viscoelastic model (25). For
each separate case the problem of solution existence and uniqueness, stability and
physical relevance must be studies. Moreover, correct formulation of boundary
and initial conditions for the partial di�erential equations with time derivatives
of order n⟩2 must be a case for special considerations.

4. Conclusions

Real liquids usually possess more complex rheological properties that cannot
be described by uniform Newtonian �uids. Many sophisticated constitutive equati-
ons for complex solids and �uids have been developed in theoretical rheology.
Recently, an attention was attracted by the suspensions of micro- and nanoparti-
cles (micro/nano�uids, respectively), and blood is one the most studied micro�ui-
ds. The rheological models developed for blood and other suspensions can be divi-
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ded into the shear-thinning, viscoplastic, viscoelastic general models. Their combi-
nations allow characterization of their viscous, elastic, shear rate dependent, yield
stress (tixotropy) and other mechanical properties. Substitution of more general
rheological laws into the Navier-Stokes equations for viscous �uids give systems
of partial di�erential equations with time derivatives of the orders n⟩2 that needs
correct formulations of additional boundary and initial conditions for the vari-
ables. It is shown, for the viscoelastic models the governing system of equations
is hyperbolic and allows solution in the form of running pressure and �ow waves.
Due to the high order derivatives, the dispersion relations produce a big variety of
the frequency-dependent properties and types of the stress and strain relaxation.
Bifurcations and stability of the solutions as well as the problem formulations of
the mixed shear-thinning, viscoplastic and viscoelastic rheological properties will
be a subject for our future studies.
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Îãëÿä ðåîëîãi÷íèõ ìîäåëåé i ïîñòàíîâîê ìàòåìàòè÷íèõ çàäà÷
äëÿ êðîâîòîêó

Áàòþê Ë. Â.1, Êiçiëîâà Í. Ì.2, Ïîñëàâñüêèé Ñ. Î. 2

1 Õàðêiâñüêèé íàöiîíàëüíèé ìåäè÷íèé óíiâåðñèòåò

ïðîñïåêò Íàóêè 4, 61000, Õàðêiâ, Óêðà¨íà
2 Õàðêiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Â. Í. Êàðàçiíà

ìàéäàí Ñâîáîäè 4, 61022, Õàðêiâ, Óêðà¨íà
Íàâåäåíî îãëÿä ðåîëîãi÷íèõ ðiâíÿíü, ÿêi çàïðîïîíîâàíi â ëiòåðàòóði äëÿ ìàòå-

ìàòè÷íîãî ìîäåëþâàííÿ ëàìiíàðíèõ i òóðáóëåíòíèõ òå÷ié êðîâi ÿê êîíöåíòðîâàíî¨
ñóñïåíçi¨ ì'ÿêèõ ÷àñòèíîê. Äåòàëüíî îáãîâîðþþòüñÿ ðåîëîãi÷íi ìîäåëi êðîâi ÿê îäíî-
ðiäíî¨ íüþòîíiâñüêî¨ òà íåíüþòîíiâñüêî¨ ðiäèí; ðiäèíè, ùî ðîçðiäæóþòü çi çñóâîì;
â'ÿçêîïëàñòè÷íî¨; â'ÿçêîïðóæíî¨; òèêñîòðîïíî¨ òà ìiêðîìîðôíî¨ ðiäèí. Çãiäíî ç íà-
âåäåíèìè åêñïåðèìåíòàëüíèìè äàíèìè, àäåêâàòíà ðåîëîãi÷íà ìîäåëü êðîâi ïîâèííà

https://doi.org/10.3390/polym14183890
https://doi.org/10.1063/1.5004759
https://doi.org/10.1186/s13662-021-03539-x
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îïèñóâàòè ïñåâäîïëàñòè÷íó i òiêñîòðîïíó ïîâåäiíêó ç çàëåæíèìè âiä êîíöåíòðàöi¨
â'ÿçêîïðóæíèìè âëàñòèâîñòÿìè, ÿêi âëàñòèâi êðîâi çäîðîâî¨ ëþäèíè. Öi âëàñòèâîñòi
ìîæíà äåòàëüíiøå âèâ÷àòè íà âiäïîâiäíèõ ìàòåìàòè÷íèõ ôîðìóëþâàííÿõ çàäà÷ äëÿ
òå÷ié êðîâi êðiçü òðóáêè àáî êàíàëè. Îáãîâîðåíi ñèñòåìè ðiâíÿíü i ãðàíè÷íi óìîâè
äëÿ êîæíî¨ iç çàïðîïîíîâàíèõ ðåîëîãi÷íèõ ìîäåëåé. Òî÷íi ðiøåííÿ äëÿ ñòàöiîíàðíèõ
ëàìiíàðíèõ òå÷ié ìiæ ïàðàëåëüíèìè ïëàñòèíàìè òà ÷åðåç òðóáêè êðóãîâîãî ïåðåðiçó
âèïèñàíi òà ïðîàíàëiçîâàíi äëÿ ðiäèí Îñòâàëüäà, Ãåðøåëÿ-Áàëêëi òà Áiíãàìà. Äëÿ
êîæíî¨ ìîäåëi äîñëiäæåíî âïëèâ ïàðàìåòðiâ ìîäåëi íà ïðîôiëi øâèäêîñòi. Ïîêàçàíî,
ùî ïåâíi íàáîðè ïàðàìåòðiâ ðiäèíè ïðèçâîäÿòü äî ñïëîùåííÿ ïðîôiëþ øâèäêîñòi, à
iíøi âèêëèêàþòü éîãî çàãîñòðåííÿ íàâêîëî îñi êàíàëó. Ïîêàçàíî, ùî ÷ëåíè äðóãîãî
ïîðÿäêó â ìîäåëÿõ â'ÿçêîïðóæíîñòi ïðèâîäÿòü äî ñèñòåì äèôåðåíöiàëüíèõ ðiâíÿíü
ç ÷àñòèííèìè ïîõiäíèìè ç âèñîêèìè ïîðÿäêàìè çà ÷àñîì i çìiøàíèìè ïðîñòîðîâî-
÷àñîâèìè ïîõiäíèìè. Íàâåäåíi âiäïîâiäíi ïîñòàíîâêè çàäà÷ äëÿ õâèëüîâèõ òå÷ié ði-
äèí ç óçàãàëüíåíèìè ðåîëîãi÷íèìè çàêîíàìè êðiçü ì'ÿêi òðóáêè. Îòðèìàíî àíàëiòè-
÷íi ðîçâ'ÿçêè äëÿ øâèäêîñòi òå÷i¨, ãiäðîñòàòè÷íîãî òèñêó i ïëîùi ïåðåðiçó òðóáêè ó
âèãëÿäi íîðìàëüíèõ ìîä. Ïîêàçàíî, ùî äèñïåðñiéíi ðiâíÿííÿ äàþòü äîäàòêîâèé íà-
áið äëÿ øâèäêîñòi çâóêó (òàê çâàíèé äðóãèé çâóê) ó ðiäèíi. Çðîáëåíî âèñíîâîê, ùî
íàéáiëüø çàãàëüíà ðåîëîãi÷íà ìîäåëü ïîâèííà âêëþ÷àòè åôåêòè ïñåâäîïëàñòè÷íi,
êîíöåíòðàöi¨ ÷àñòèíîê òà äðóãîãî çâóêó.
Êëþ÷îâi ñëîâà: äèôåðåíöiàëüíi ðiâíÿííÿ; ðåîëîãi÷íi ìîäåëi; ñóñïåíçi¨; ãi-

äðîäèíàìiêà.
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