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On relation between statistical ideal and ideal
generated by a modulus function

Ideal on an arbitrary non-empty set {2 it’s a non-empty family of subset J

of the set Q which satisfies the following axioms 0 ¢7if A,B €7, then
AUB e J,if Ae Jand D C A, then D € 7. The ideal theory is a very
popular branch of modern mathematical research. In our paper we study
some classes of ideals on the set of all positive integers N, namely the ideal of
statistical convergence Js and the ideal J; generated by a modular function

f- Statistical ideal it’s a family of subsets of N whose natural density is

<n:
#{k<n:keA} = 0. A function

f: RY — RT is called a modular functlon if f( ) =0 only if z = 0,

fl@+y) < flx) + f(y) for all 2,y € R, f(z) < f(y) whenever z <y, f

is continuous from the right 0, and finally lim f(n) = co. Ideal, generated
n—

equal to 0, i.e. A € J; if and only if hm

by the modular function f it’s a family of subosoets of N with zero f-density,
k<n:keA
in other words, A € Jy if and only if lim JE#iksn:keA)) =0 It

n—00 f n

is known that for an arbitrary modular function f the following is true:
J¢ C Js. In our research we give the complete description of those modular
functions f for which J; = J,. Then we analyse obtained result, give some
partial cases of it and prove one simple sufficient condition for the equality
J¢ = Js. The last section of this article is devoted to examples of some
modulus functions f, g for which J; = J5 and J, # J5. Namely, if f(z) = 2P
where p € (0,1] we have J; = J; for g(z) = log(1 + ), we obtain J, # J,.
Then we consider more complicated function f which is given recursively to
demonstrate that the conditions of the main theorem of our paper can’t be
reduced to the sufficient condition mentioned above.
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1. Introduction

Let Q be a non-empty set. Let us remind that a non-empty family J c 2% is

called an ideal on Q if J satisfies:
© D. Seliutin, 2022
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1. Q¢ 7;
2. if A,B € Jthen AUB € 7J;
3.ifAeJand D C Athen D€ 7.

In our article we consider those ideals J which contain the family of finite sets
Fin.

For a subset A C N denote aa(n) := |A N [1,n]|, where |M]| stands for a
number of elements in the set M C N. Let A C N. The natural density of A is
d(A) = lim A0

n—00 n

The ideal of sets A C N having d(A) = 0 is called the statistical ideal. We
denote this ideal Js.

The statistical ideal is related to the statistical convergence and is a very
popular branch of research.

In [1] authors introduced a generalization of the natural density of subset in
N. They called it f-density, where f is a modulus function.

Recall that a function f: RT — R* is called an unbounded modulus function
(modulus function for short) if:

1. f(z) =0 if and only if x = 0;
flx+y) < f(x)+ f(y) for all z,y € RT;
3. f(@) < fly) ifw <y;

4. f is continuous from the right at 0;

N

5. lim f(n) = cc.

n—oo

M is called

n
the f-density of A C N. The ideal J5 := {A C N : df(A) = 0} is called the f-
ideal. T appears implicitly in [1] where the convergence of sequences with respect
to Jy was studied, and appears explicitly in [3].

In [1, p. 527] it is noted that for an arbitrary modulus function f and A C N if
d¢(A) = 0 then d(A) = 0. In other words, J5 C Js. The ideals J¢ and J, and the
corresponding ideal convergences have some similarities and some differences. The
aim of the paper is to present a complete description of those modulus functions
f for which J; = J;. We do this in Theorem 1. After that in Theorem 2 we give
a handy sufficient condition for the equality Js = J¢, and finally we present some
illustrative examples.

Let f be a modulus function. The quantity d¢(A4) := lim

2. Main results
Let f be a modulus function, ¢ € [1,400), k € N. Denote

f(n) __ o f(n)
(i)’ g (k) == hy(2¥) = limsup F@Fn)

n—oo

hy(t) := limsup

n—o0 f
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The following Theorem is the promised main result of our paper.
Theorem 1. Let f be a modulus. The following statements are equivalent:
1. Js=7Ty;
2. i k) =0.
Jim gy (k)

3. tliglo hf(t) =0.

Proof. Remark that the equivalence of conditions (2) and (3) follows evidently
from the monotonicity of k() in the variable t. We include both of the conditions
because of some conveniences in the proof and for the future applications. So, it
is sufficient to demonstrate implications (3) = (1) and (1) = (2).

(3) = (1). As we remarked in the Introduction, the inclusion Js O J is known,

1
so we need to show that J, C J;. Denote 5 = hy(t) + T The quantity 6]

is decreasing in ¢ and lim 5{ = 0. We know that limsup f(n) < 5{ for all
t—00 N—00 f(tn)

t € [1,400), in particular we have that for every k € N there exists Ny(k) € N
such that for all n > Ny (k) the following holds true: f (%) < 5£f(n)
Let A € J5. By the definition of J; his means that lim M

n—oo n
words, for each k € N there exists Na(k) € N such that asa(n) < % for each

n > Na(k). Denote Ny, := max {Nj(k), N2 (k)}. Then for each n > Ny,

= 0. In other

n
flaam) < £ () < oLs o).
From the previous inequality we have:

limsupM < 5,{ — 0,
which completes the proof of the implication (3) = (1).
(1) = (2). Assume that %irr[l)gf(k:) # 0. By monotonicity, this implies the
ﬁ
existence of & > 0 such that gy(k) > ¢ for every k € N . Consequently,

lim sup f(z)
subset N, C N such that for each n € N

> £ for each k € N. Then for every k € N there exists an infinite

f(n) > &£ (2Fn). (1)

Choose 0 = ng < n1 < ng < n3g < ... such that n; € N; for each j € N. So for
each k € N

flng) > &f(25ng).
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Denote my, := 2Fny, k =1,2,... . Let us consider the following set A:

A:{ml —m+1m —ni+2,....,m —1,
mg—ng—i—nl,mg—ng—i—nl+1,m2—n2+n1+2,...,m2—1,...},
that is from each block of naturals in (mg_1, my| we chose the ny — ni_1 biggest

ones. For the correctness of the definition of A we have to check that my —mp_1 >
ng — ni_1 for every k € N. Indeed, for all £ € N we have:

Mg — N+ N1 — mi—1 = 2" — g +ngog — 28 gy =
= (28 —1) =y (21— 1) >0,

because ny > ngy_; and 2F — 1 > 2k=1 — 1,
Denote v, := aa(n). Let us show that A ¢ J;. By our construction, o, = ng

for all k& € N. Using the inequality (1) we obtain that é({:];nk)) > & > 0, s0
k
f(an)
0 as n — oo, that’s why A ¢ J.
) 7 ¢35

Let us finally show that A € Js. For every k € N we can split the block of
naturals [my + 1, my1] NN as follows:

[mk + 1,mk+1] NN = [mk + 1, mg41 — Nggr1 + Nk — 1] NN
U [karl — N1 + Nk, Mp1 — 1] NNU {mk+1}.

On the initial part of this set for j € [mg + 1, mgy1 — ngr1 + nk — 1] we have:

o g N N .
a; =ng and L = 2 < < — = —. On the next part, for j € |m —
J k j ] _mk+1_mk 2k: p ) J [ k+1
Nk+1 + Nk, Mkg+1 — 1] = [nk+1(2k+1 — 1) + ng, 2k+1nk+11] we have a; = Nk + Zj,

T n -n
where 1 < x; < ngiq — nyg. Using this, we obtain that — < 2< M, and
<0 J J J

Qj T + x; < Ng+1 Tk41 _ 1 < i
j j T ngpe1 (28 — 1) g T ongg (26— 1) ok+1l 1 T 9k’

At the last point j = my4q1 we have: a; = ng4q and

Qg o Nk+1 o 1 1

j - Mpt1 9k+1 ok’

j 1
So for an arbitrary k£ € N and for j € [my + 1, mg1] we have a—? < ok in other
J
words A € Js.

Now let us discuss a particular case of Theorem 1 in which the condition for
J7 = Js can be substantially simplified. First, a simple technical lemma.
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= a. Then

Lemma 1. Let f be a modulus function. Let there exists lim ()

n—00 f(Qn)
- f(n)
k)=1
95 (k) = lim <ot
Proof. Let us use method of mathematical induction.
The base of induction: k = 2.

f) S0 fen) ) S,

lim = lim —+———> = lim im =
e f(4n) e F(2n) - [(dn) | o f(2n) e f(dn)
The inductive transition: k¥ — k + 1.
: ftn) o fn) . f(2) k1
W3R F(2FF ) o F(2Fn) e F@F) |

=d"* for all k € N.

f(n)

Theorem 2. Let f be a modulus. Suppose that there exists lim . Then the
w5 £(2n)
following statements are equivalent:
1. Js=7Ty;
o tim 0

Proof. Under the assumption of existence of lim f(n)

equivalence of our condition (2) and the condition (2) of Theorem 1.

, Lemma 1 gives the

3. Examples
At first, let us show that among the very elementary modulus functions f the
both possibilities Jy = J, and Jy # J; may happen.
Example 1. f(z) = 2P, p € (0,1]. For this kind of functions Jy = J,. Indeed,
P

. fn) . n? (1
e F2n) ke R (2> <t

Example 2. f(z) = log(1 + ). In this case J; # J,, because nhHrI;o f((;l)) =

log(1 4+ n)
im ————— =

n—oo log(1 + 2n)

Our next goal is to show that Theorem 1 does not reduce to its particular case
given in Theorem 2, i.e. that there is a modulus functions f for which the limit

f(n)
of

f(2n)
Example 3. Put f(0) =0, f(1) =1, f(2) = 2. The values of f in the remaining
natural numbers we define recurrently: if for some n € N the values f(k) are
already defined for k € [1,2"], we define f(k) for k = 2" + a € [2" + 1,2"F1],
a € [1,2"], by means of the formula

does not exist.

f2m),ifn € {1,3,5,..}

n : (2)
f2") + f(a),if n € {2,4,6,...}.

o= {
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This defines f(n) for each n € NU{0}. In the intermediate points let us define f
by means of linear interpolation. Such f is defined for each z € R, is monotonic,
continuous, and f(2F) := 2051 for k e NU {0}.

Let us verify that f is a modulus function. For every w, z € N (without lost
of generality we consider w > z) we have to demonstrate that

flw+2) < f(w) + f(2). (3)

This can be done by induction in n, where n is the smallest natural for which
w+z < 2™

The base n = 1 is straightforward. Suppose now that we already proved (3) for
0 < w+ 2z < 2™ and let us prove it for 2" < w+ z < 2" Denote w4+ 2z = 2" +«,
where o € [1,2"].

1. Let n be an odd number. It is clear that there are numbers w,z € N,
W < w, Z < z such that W+ Z =2". Then f(w+z2) = f(2") = f(w + 2) <
f(@) + f(2) < f(w) + f(2).

2. Let n be an even number. Then f(w + 2z) = f(2" + ) = f(2") + f(«).

(a) Let w > 2", then z < a. Represent w in the form of w = 2" + . In
this case f(w + z) = f(2") + f(a) and f(w) = f(2") + f(B). Then
the inequality (3) rewrites as f(«) < f(z) + f(/5) which is true by the
inductive assumption.

(6) Let w < 2", which means that 2! < w < 2" and z > «. Then
f(w) = f(2"71) = f(2"), because n — 1 is odd. Again, in this case the
inequality (3) is equivalent to a simpler one: f(«) < f(w) which is true
since 2z > a.

So, we proved that the function, defined by (2) is a modulus function. Consider

2n 2m
now the sequence fJ(CQ(”JF)l)’ n =20,1,2,.... When n is odd we have fj(f2("+)1) =1
2" 1
and if n is even we have 12" = —. This means that the sequence () has
f@rtty 2 f(2n)
no limit.
h TN 1 NS
y the way, in this example g;(k) = limsup so Jr = TJs.

n—00 f(an) N 2k—1"
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Conclusion

In our paper we studied the ideal of statistical convergence Js and the ideal
Js generated by a modular function f. In our research we gave the complete
description of those modular functions f for which J; = J,. Then we analysed
obtained result, gave some partial cases of it and proved one simple sufficient
condition for the equality Jy = J,. At the end of this article we gave some examples
of some modulus functions f, g for which J; = J, and J, # Js.
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ITpo 3B 430K MiXk CTATUCTUYHHNM 1JI€aJIOM Ta izeasiom,
HOPO2KEHUM MOAYJIbHOIO (PYyHKI[IEIO
. JI. Cegmtorin
Xapriecoruti noutonasvrull yrisepcumem imens B. H. Kapasina
matidarn Ceobodu 4, Xapwie, 61022, Vrpaina

Inean ma MOBiMBHIN HETOPOXKHIN MHOXKUHI () — 1€ HEMOPOKHSA CiM’S TIMHOKAH J MHO-
kunu ), sgKa 3a70BOJIbHsIE€ HacTymauM ymoBam: 0 ¢ J, akmo A, B € 3, 10 AUB € 7,
akmo A € 31 D C A, ro D € 7. Teopid imeaniB € myKe MOMyJsipHOIO 00JIACTIO Cyda-
CHHX MaTeMaTHIHHUX JOCTiIKeHb. B mamiit poboTi mOCTiaKeHO JAesKi cremianbHi KIacu
imeasiB ma MHOXKUHI HaTypasbHuxX uducesn N, a came imeasn crarucruynoi 36ixkuocti Jg,
abo crarucTwaamii igeas, Ta imeas Jy, akwmit 3amaH0 MomyabHOIO dynKmieo Jy. CraTu-
CTUYHHI imean — 1e ciM’s miAMHOXKWH MHOXKUHU N, fKi MaiOTh HYJIOBY HATYPAJIbHY
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#{k<n:ke A}

MIbHICTE, TOOTO A € J, Tomi 1 TiibKu Toxl, Koau lim
n—oo

n
f: RY — R* masmpaiors momymbHOIO dyHKIi€o, axkmo f(x) = 0 Tiapkw npu x = 0,
f@+y) < f(@) + f(y) ana Gymp-axnx z,y € RY, f(z) < f(y) axmo @ < y, f Hene-
pepsHa copasa B 0, 1 lim f(n) = oco. Ineasn, axuii 3a7aH0 MOAYJIbHOIO (DYHKIED — 1€
n—oo

= (0. OysKIio

ciM’a migmuoxkun MHOKuMHE N, aKi MaroThb HyNbOBY f-miijibHiCTB, TOOTO A € Jf TOmi i
. . . k<n:keA
TiNbKY TOAL, Ko lim fk < b

n—00 f(n)

dynkuii f Mu Maemo HacTynHe BKIoveHHA: Jr C Js. B mamiit crarTi Mn 1aemMo moBHMt
OTIIC TaKUX MOMYNbHUX GyHKIiH f, mo Jf = J,. Jami Mu gocmimgKyemo oTpuMaHmit pe-
3yJIBTAT, HABOJUMO JI€sIKi YACTKOBI BUIAJKH OCHOBHOIO PE3YJIbTATY Ta JOBOAUMO IIPOCTY
JloCTaTHIO yMOBY 1A pisuocti Jy = Jg. Ocranniit pos/in Hamoi poboru HpUcBA4eHO Po3-
DAy TPUKJIaIiB KOHKPeTHUX MOAYIbHUX GyHKniil f, ama xorpux Jy = J, i Ty # Js.
A cawme, y Bunagky f(z) = zP, mpu p € (0, 1] maemo J; = J,; axmo f(z) = log(l + ),
maeMo Jy # Jg. Jani B sikocTi npukiagy Mu posrisigaeMo Oibin ckiaaaHy dyHKIio f,
KA MA€ PEKyPEHTHY MOOYIO0BY, i sIKa MOKA3YE, IO YMOBU OCHOBHOTO PE3YIbTATY JAHOL
poboTy He MOXKHA TOCTAOUTH JI0 OTHONO YACTKOBOI'O BHIAJIKY.

Karwouosi crosa: imeast, craTUCTUYHUN i/1easr, MOAYJIbHI (DYHKITII.
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