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On relation between statistical ideal and ideal

generated by a modulus function

Ideal on an arbitrary non-empty set Ω it's a non-empty family of subset I
of the set Ω which satis�es the following axioms: Ω /∈ I, if A,B ∈ I, then
A ∪ B ∈ I, if A ∈ I and D ⊂ A, then D ∈ I. The ideal theory is a very
popular branch of modern mathematical research. In our paper we study
some classes of ideals on the set of all positive integers N, namely the ideal of
statistical convergence Is and the ideal If generated by a modular function
f . Statistical ideal it's a family of subsets of N whose natural density is

equal to 0, i.e. A ∈ Is if and only if lim
n→∞

#{k ≤ n : k ∈ A}
n

= 0. A function

f : R+ → R+ is called a modular function, if f(x) = 0 only if x = 0,
f(x + y) ≤ f(x) + f(y) for all x, y ∈ R+, f(x) ≤ f(y) whenever x ≤ y, f
is continuous from the right 0, and �nally lim

n→∞
f(n) = ∞. Ideal, generated

by the modular function f it's a family of subsets of N with zero f -density,

in other words, A ∈ If if and only if lim
n→∞

f(#{k ≤ n : k ∈ A})
f(n)

= 0. It

is known that for an arbitrary modular function f the following is true:
If ⊂ Is. In our research we give the complete description of those modular
functions f for which If = Is. Then we analyse obtained result, give some
partial cases of it and prove one simple su�cient condition for the equality
If = Is. The last section of this article is devoted to examples of some
modulus functions f, g for which If = Is and Ig 6= Is. Namely, if f(x) = xp

where p ∈ (0, 1] we have If = Is; for g(x) = log(1 + x), we obtain Ig 6= Is.
Then we consider more complicated function f which is given recursively to
demonstrate that the conditions of the main theorem of our paper can't be
reduced to the su�cient condition mentioned above.

Keywords: ideal, statistical ideal, modulus function.

2010 Mathematics Subject Classi�cation: 76A11; 76B11; 76M11.

1. Introduction

Let Ω be a non-empty set. Let us remind that a non-empty family I ⊂ 2Ω is
called an ideal on Ω if I satis�es:

23

https://doi.org/10.26565/2221-5646-2022-95-02
https://orcid.org/0000-0002-4591-7272


24 D. Seliutin

1. Ω /∈ I;

2. if A,B ∈ I then A ∪B ∈ I;

3. if A ∈ I and D ⊂ A then D ∈ I.

In our article we consider those ideals I which contain the family of �nite sets
Fin.

For a subset A ⊂ N denote αA(n) := |A ∩ [1, n]|, where |M | stands for a
number of elements in the set M ⊂ N. Let A ⊂ N. The natural density of A is

d(A) := lim
n→∞

αA(n)

n
.

The ideal of sets A ⊂ N having d(A) = 0 is called the statistical ideal. We
denote this ideal Is.

The statistical ideal is related to the statistical convergence and is a very
popular branch of research.

In [1] authors introduced a generalization of the natural density of subset in
N. They called it f -density, where f is a modulus function.

Recall that a function f : R+ → R+ is called an unbounded modulus function
(modulus function for short) if:

1. f(x) = 0 if and only if x = 0;

2. f(x+ y) ≤ f(x) + f(y) for all x, y ∈ R+;

3. f(x) ≤ f(y) if x ≤ y;

4. f is continuous from the right at 0;

5. lim
n→∞

f(n) =∞.

Let f be a modulus function. The quantity df (A) := lim
n→∞

f(αA(n))

f(n)
is called

the f -density of A ⊂ N. The ideal If := {A ⊂ N : df (A) = 0} is called the f -
ideal. If appears implicitly in [1] where the convergence of sequences with respect
to If was studied, and appears explicitly in [3].

In [1, p. 527] it is noted that for an arbitrary modulus function f and A ⊂ N if
df (A) = 0 then d(A) = 0. In other words, If ⊂ Is. The ideals If and Is and the
corresponding ideal convergences have some similarities and some di�erences. The
aim of the paper is to present a complete description of those modulus functions
f for which If = Is. We do this in Theorem 1. After that in Theorem 2 we give
a handy su�cient condition for the equality Is = If , and �nally we present some
illustrative examples.

2. Main results

Let f be a modulus function, t ∈ [1,+∞), k ∈ N. Denote

hf (t) := lim sup
n→∞

f(n)

f(tn)
, gf (k) := hf (2k) = lim sup

n→∞

f(n)

f(2kn)
.
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The following Theorem is the promised main result of our paper.

Theorem 1. Let f be a modulus. The following statements are equivalent:

1. Is = If ;

2. lim
k→∞

gf (k) = 0.

3. lim
t→∞

hf (t) = 0.

Proof. Remark that the equivalence of conditions (2) and (3) follows evidently
from the monotonicity of hf (t) in the variable t. We include both of the conditions
because of some conveniences in the proof and for the future applications. So, it
is su�cient to demonstrate implications (3)⇒ (1) and (1)⇒ (2).

(3)⇒ (1). As we remarked in the Introduction, the inclusion Is ⊃ If is known,

so we need to show that Is ⊂ If . Denote δ
f
t := hf (t) +

1

t
. The quantity δft

is decreasing in t and lim
t→∞

δft = 0. We know that lim sup
n→∞

f(n)

f(tn)
< δft for all

t ∈ [1,+∞), in particular we have that for every k ∈ N there exists N1(k) ∈ N
such that for all n ≥ N1(k) the following holds true: f

(n
k

)
< δfkf(n).

Let A ∈ Is. By the de�nition of Is his means that lim
n→∞

αA(n)

n
= 0. In other

words, for each k ∈ N there exists N2(k) ∈ N such that αA(n) <
n

k
for each

n > N2(k). Denote Nk := max {N1(k), N2 (k)}. Then for each n > Nk

f(αA(n)) < f
(n
k

)
< δfkf(n).

From the previous inequality we have:

lim sup
n→∞

f(αA(n))

f(n)
≤ δfk −→k→∞ 0,

which completes the proof of the implication (3)⇒ (1).

(1)⇒ (2). Assume that lim
k→0

gf (k) 6= 0. By monotonicity, this implies the

existence of ξ > 0 such that gf (k) > ξ for every k ∈ N . Consequently,

lim sup
n→∞

f(n)

f(2kn)
> ξ for each k ∈ N. Then for every k ∈ N there exists an in�nite

subset Nk ⊂ N such that for each n ∈ Nk

f(n) > ξf(2kn). (1)

Choose 0 = n0 < n1 < n2 < n3 < ... such that nj ∈ Nj for each j ∈ N. So for
each k ∈ N

f(nk) > ξf(2knk).
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Denote mk := 2knk, k = 1, 2, . . . . Let us consider the following set A:

A = {m1 − n1 + 1,m1 − n1 + 2, ...,m1 − 1,

m2 − n2 + n1,m2 − n2 + n1 + 1,m2 − n2 + n1 + 2, ...,m2 − 1, ...},

that is from each block of naturals in (mk−1,mk] we chose the nk − nk−1 biggest
ones. For the correctness of the de�nition of A we have to check thatmk−mk−1 >
nk − nk−1 for every k ∈ N. Indeed, for all k ∈ N we have:

mk − nk + nk−1 −mk−1 = 2knk − nk + nk−1 − 2k−1nk−1 =

= nk(2
k − 1)− nk−1(2k−1 − 1) > 0,

because nk > nk−1 and 2k − 1 > 2k−1 − 1.
Denote αn := αA(n). Let us show that A /∈ If . By our construction, αmk

= nk

for all k ∈ N. Using the inequality (1) we obtain that
f(αmk

)

f(mk)
> ξ > 0, so

f(αn)

f(n)
6→ 0 as n→∞, that's why A /∈ If .

Let us �nally show that A ∈ Is. For every k ∈ N we can split the block of
naturals [mk + 1,mk+1] ∩ N as follows:

[mk + 1,mk+1] ∩ N = [mk + 1,mk+1 − nk+1 + nk − 1] ∩ N
∪ [mk+1 − nk+1 + nk,mk+1 − 1] ∩ N ∪ {mk+1}.

On the initial part of this set for j ∈ [mk + 1,mk+1 − nk+1 + nk − 1] we have:

αj = nk and
αj
j

=
nk
j
≤ nk
mk + 1

≤ nk
mk

=
1

2k
. On the next part, for j ∈ [mk+1 −

nk+1 + nk,mk+1 − 1] = [nk+1(2k+1 − 1) + nk, 2
k+1nk+1] we have αj = nk + xj ,

where 1 ≤ xj ≤ nk+1 − nk. Using this, we obtain that
1

j
≤ xj

j
≤ nk+1 − nk

j
, and

so

αj
j

=
nk + xj

j
≤ nk+1

nk+1(2k+1 − 1) + nk
≤ nk+1

nk+1(2k+1 − 1)
=

1

2k+1 − 1
<

1

2k
.

At the last point j = mk+1 we have: αj = nk+1 and

αj
j

=
nk+1

mk+1
=

1

2k+1
<

1

2k
.

So for an arbitrary k ∈ N and for j ∈ [mk + 1,mk+1] we have
αj
j
<

1

2k
, in other

words A ∈ Is.

Now let us discuss a particular case of Theorem 1 in which the condition for
If = Is can be substantially simpli�ed. First, a simple technical lemma.
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Lemma 1. Let f be a modulus function. Let there exists lim
n→∞

f(n)

f(2n)
= a. Then

gf (k) = lim
n→∞

f(n)

f(2kn)
= ak for all k ∈ N.

Proof. Let us use method of mathematical induction.
The base of induction: k = 2.

lim
n→∞

f(n)

f(4n)
= lim

n→∞

f(n) · f(2n)

f(2n) · f(4n)
= lim

n→∞

f(n)

f(2n)
· lim
n→∞

f(2n)

f(4n)
= a2.

The inductive transition: k → k + 1.

lim
n→∞

f(n)

f(2k+1n)
= lim

n→∞

f(n)

f(2kn)
· lim
n→∞

f(2kn)

f(2k+1n)
= ak · a = ak+1.

Theorem 2. Let f be a modulus. Suppose that there exists lim
n→∞

f(n)

f(2n)
. Then the

following statements are equivalent:

1. Is = If ;

2. lim
n→∞

f(n)

f(2n)
< 1.

Proof. Under the assumption of existence of lim
n→∞

f(n)

f(2n)
, Lemma 1 gives the

equivalence of our condition (2) and the condition (2) of Theorem 1.

3. Examples

At �rst, let us show that among the very elementary modulus functions f the
both possibilities If = Is and If 6= Is may happen.

Example 1. f(x) = xp, p ∈ (0, 1]. For this kind of functions If = Is. Indeed,

lim
n→∞

f(n)

f(2n)
= lim

n→∞

np

(2n)p
=

(
1

2

)p
< 1.

Example 2. f(x) = log(1 + x). In this case If 6= Is, because lim
n→∞

f(n)

f(2n)
=

lim
n→∞

log(1 + n)

log(1 + 2n)
= 1.

Our next goal is to show that Theorem 1 does not reduce to its particular case
given in Theorem 2, i.e. that there is a modulus functions f for which the limit

of
f(n)

f(2n)
does not exist.

Example 3. Put f(0) = 0, f(1) = 1, f(2) = 2. The values of f in the remaining
natural numbers we de�ne recurrently: if for some n ∈ N the values f(k) are
already de�ned for k ∈ [1, 2n], we de�ne f(k) for k = 2n + α ∈ [2n + 1, 2n+1],
α ∈ [1, 2n], by means of the formula

f(2n + α) =

{
f(2n), if n ∈ {1, 3, 5, ..}
f(2n) + f(α), if n ∈ {2, 4, 6, ...}.

(2)
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This de�nes f(n) for each n ∈ N ∪ {0}. In the intermediate points let us de�ne f
by means of linear interpolation. Such f is de�ned for each x ∈ R+, is monotonic,

continuous, and f(2k) := 2d
k
2
e for k ∈ N ∪ {0}.

Let us verify that f is a modulus function. For every w, z ∈ N (without lost
of generality we consider w > z) we have to demonstrate that

f(w + z) ≤ f(w) + f(z). (3)

This can be done by induction in n, where n is the smallest natural for which
w + z ≤ 2n.

The base n = 1 is straightforward. Suppose now that we already proved (3) for
0 ≤ w+ z ≤ 2n and let us prove it for 2n < w+ z ≤ 2n+1. Denote w+ z = 2n+α,
where α ∈ [1, 2n].

1. Let n be an odd number. It is clear that there are numbers w̃, z̃ ∈ N,
w̃ < w, z̃ < z such that w̃ + z̃ = 2n. Then f(w + z) = f(2n) = f(w̃ + z̃) ≤
f(w̃) + f(z̃) ≤ f(w) + f(z).

2. Let n be an even number. Then f(w + z) = f(2n + α) = f(2n) + f(α).

(à) Let w ≥ 2n, then z ≤ α. Represent w in the form of w = 2n + β. In
this case f(w + z) = f(2n) + f(α) and f(w) = f(2n) + f(β). Then
the inequality (3) rewrites as f(α) ≤ f(z) + f(β) which is true by the
inductive assumption.

(á) Let w < 2n, which means that 2n−1 < w < 2n and z > α. Then
f(w) = f(2n−1) = f(2n), because n− 1 is odd. Again, in this case the
inequality (3) is equivalent to a simpler one: f(α) ≤ f(w) which is true
since z > α.

So, we proved that the function, de�ned by (2) is a modulus function. Consider

now the sequence
f(2n)

f(2n+1)
, n = 0, 1, 2, .... When n is odd we have

f(2n)

f(2n+1)
= 1

and if n is even we have
f(2n)

f(2n+1)
=

1

2
. This means that the sequence

f(n)

f(2n)
has

no limit.

By the way, in this example gf (k) = lim sup
n→∞

f(n)

f(2kn)
=

1

2k−1
, so If = Is.
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Conclusion

In our paper we studied the ideal of statistical convergence Is and the ideal
If generated by a modular function f . In our research we gave the complete
description of those modular functions f for which If = Is. Then we analysed
obtained result, gave some partial cases of it and proved one simple su�cient
condition for the equality If = Is. At the end of this article we gave some examples
of some modulus functions f, g for which If = Is and Ig 6= Is.
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Ïðî çâ'ÿçîê ìiæ ñòàòèñòè÷íèì iäåàëîì òà iäåàëîì,

ïîðîäæåíèì ìîäóëüíîþ ôóíêöi¹þ

Ä. Ä. Ñåëþòií
Õàðêiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Â. Í. Êàðàçiíà

ìàéäàí Ñâîáîäè 4, Õàðêiâ, 61022, Óêðà¨íà

Iäåàë íà äîâiëüíié íåïîðîæíié ìíîæèíi Ω � öå íåïîðîæíÿ ñiì'ÿ ïiäìíîæèí I ìíî-
æèíè Ω, ÿêà çàäîâîëüíÿ¹ íàñòóïíèì óìîâàì: Ω /∈ I, ÿêùî A,B ∈ I, òî A ∪ B ∈ I,
ÿêùî A ∈ I i D ⊂ A, òî D ∈ I. Òåîðiÿ iäåàëiâ ¹ äóæå ïîïóëÿðíîþ îáëàñòþ ñó÷à-
ñíèõ ìàòåìàòè÷íèõ äîñëiäæåíü. Â äàíié ðîáîòi äîñëiäæåíî äåÿêi ñïåöiàëüíi êëàñè
iäåàëiâ íà ìíîæèíi íàòóðàëüíèõ ÷èñåë N, à ñàìå iäåàë ñòàòèñòè÷íî¨ çáiæíîñòi Is,
àáî ñòàòèñòè÷íèé iäåàë, òà iäåàë If , ÿêèé çàäàíî ìîäóëüíîþ ôóíêöi¹þ If . Ñòàòè-
ñòè÷íèé iäåàë � öå ñiì'ÿ ïiäìíîæèí ìíîæèíè N, ÿêi ìàþòü íóëüîâó íàòóðàëüíó
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ùiëüíiñòü, òîáòî A ∈ Is òîäi i òiëüêè òîäi, êîëè lim
n→∞

#{k ≤ n : k ∈ A}
n

= 0. Ôóíêöiþ

f : R+ → R+ íàçèâàþòü ìîäóëüíîþ ôóíêöi¹þ, ÿêùî f(x) = 0 òiëüêè ïðè x = 0,
f(x + y) ≤ f(x) + f(y) äëÿ áóäü-ÿêèõ x, y ∈ R+, f(x) ≤ f(y) ÿêùî x ≤ y, f íåïå-
ðåðâíà ñïðàâà â 0, i lim

n→∞
f(n) = ∞. Iäåàë, ÿêèé çàäàíî ìîäóëüíîþ ôóíêöi¹þ � öå

ñiì'ÿ ïiäìíîæèí ìíîæèíè N, ÿêi ìàþòü íóëüîâó f -ùiëüíiñòü, òîáòî A ∈ If òîäi i

òiëüêè òîäi, êîëè lim
n→∞

f(#{k ≤ n : k ∈ A})
f(n)

= 0. Âiäîìî, ùî äëÿ äîâiëüíî¨ ìîäóëüíî¨

ôóíêöi¨ f ìè ìà¹ìî íàñòóïíå âêëþ÷åííÿ: If ⊂ Is. Â íàøié ñòàòòi ìè äà¹ìî ïîâíèé
îïèñ òàêèõ ìîäóëüíèõ ôóíêöié f , ùî If = Is. Äàëi ìè äîñëiäæó¹ìî îòðèìàíèé ðå-
çóëüòàò, íàâîäèìî äåÿêi ÷àñòêîâi âèïàäêè îñíîâíîãî ðåçóëüòàòó òà äîâîäèìî ïðîñòó
äîñòàòíþ óìîâó äëÿ ðiâíîñòi If = Is. Îñòàííié ðîçäië íàøî¨ ðîáîòè ïðèñâÿ÷åíî ðîç-
ãëÿäó ïðèêëàäiâ êîíêðåòíèõ ìîäóëüíèõ ôóíêöié f , äëÿ êîòðèõ If = Is i If 6= Is.
À ñàìå, ó âèïàäêó f(x) = xp, ïðè p ∈ (0, 1] ìà¹ìî If = Is; ÿêùî f(x) = log(1 + x),
ìà¹ìî If 6= Is. Äàëi â ÿêîñòi ïðèêëàäó ìè ðîçãëÿäà¹ìî áiëüø ñêëàäíó ôóíêöiþ f ,
ÿêà ìà¹ ðåêóðåíòíó ïîáóäîâó, i ÿêà ïîêàçó¹, ùî óìîâè îñíîâíîãî ðåçóëüòàòó äàíî¨
ðîáîòè íå ìîæíà ïîñëàáèòè äî îäíîãî ÷àñòêîâîãî âèïàäêó.
Êëþ÷îâi ñëîâà: iäåàë, ñòàòèñòè÷íèé iäåàë, ìîäóëüíi ôóíêöi¨.
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