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We prove a small-gain sufficient condition for (global) finite-time input-to-
state stability (FTISS) of infinite networks. The network under consideration
is composed of a countable set of finite-dimensional subsystems of ordinary
differential equations, each of which is interconnected with a finite number of
its “neighbors” only and is affected by some external disturbances. We assume
that each node (subsystem) of our network is finite-time input-to-state stable
(FTISS) with respect to its finite-dimensional inputs produced by this finite set
of the neighbors and with respect to the corresponding external disturbance. As
an application we obtain a new theorem on decentralized finite-time input-to-
state stabilization with respect to external disturbances for infinite networks
composed of a countable set of strict-feedback form systems of ordinary di-
flerential equations. For this we combine our small-gain theorem proposed in
the current work with the controllers design developed by S. Pavlichkov and
C. K. Pang (NOLCOS-2016) for the gain assignment of the strict-feedback form
systems in the case of finite networks.

The current results address the FTISS and decentralized FTISS stabilizati-
on and redesign the technique proposed in recent work S. Dashkovskiy and
S. Pavlichkov, Stability conditions for infinite networks of nonlinear systems
and their application for stabilization, Automatica. — 2020. — 112. — 108643,
in which the case of ¢,.-ISS of infinite networks was investigated.

Keywords: nonlinear systems; input-to-state stability; small gain conditions.

ITasnuukos C. C. Teopema mpo maJjie MOCUJIEHHS OJIsI CTiAKocTi BXina-
CTaH 34 CKiHYEeHHU 9ac HECKiHYEeHHUX MepeXXeBux cucrtem i 11 3acrocy-
BaHHA. MU J0BOJIMMO JIOCTATHIO YMOBY CTiHKOCTI BXiJI-CTaH 3a CKiYeHHUH Jac
HECKIHYEHHUX MEPEXKEBUX CHUCTeM B TepMiHaxX MaJjoro mnocuieHHs (small gain
condition). MepexxeBa cucrema, M0 PO3IIISIIAETHCS, CKIAIAETHC 31 3J11UeHHOT
MHOXKWHH CKIHYEHHOBHUMIDHUX CHCTEM 3BHYAMHUX JndepeHniaIbHIX PiBHAHD,
KOXKHA 3 IKUX 3’€HAHA TIIBKH 31 CKIY€HHOK MHOYKUHO CYCIJIHIX ITiJICcHCTeM, a
TaKOXK MICTUTH 30BHimIHE 30ypenHsi. [lepenbadaeTbest, M0 KOXKEH BY30JI MepexKi
(kokHa mizcucTeMa) € CTIHKOI BXiZ-CTaH 3a CKIHYEHHMH dYac BIHOCHO Horo
CKIHYEHHOBUMIPHUX BXOIB yTBOPEHUX (HPa30BUMHU 3MIHHUME CYyCiTHIX ITiCcH-
creM i 30BHiIHIM 30ypeHHAM. 1K 3aCTOCYBaHHS IHOTO PE3YIIBTATY (HACIIIOK)
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MH OTPHUMYEMO HOBY TEOpPEMY IIPO JEIEeHTPaJi30BaHy CTabimizaliio BXig-cTam
3a CKIHYEHHMIH 9ac /Il HECKIHUEHHUX MEPEXKEBUX CUCTEM, sIKi IIPeJICTaBJISIIOTh
co0010 3jiueHHN HAbIp 3’€HAHUX TPUKYTHUX CUCTEM 3BUYANHUX Ju(epeHIii-
aJbHUX PiBHAHB. [lJIs OO0 MU KOMOIHYEMO JIOBEIEHY B JlaHiit poboTi TeopeMy
MmaJsioro nocuiends (small gain theorem) 3 Meromom 10GymH0BU JelEHTPAIZ0-
BaHUX CTabLIi3yI0YnX KepyBaHb, sKkuit orpumano B pobori S. Pavlichkov and
C. K. Pang (NOLCOS-2016) mist KiHIIEBAX MepesKEBUX CHCTEM.

Jlana pobota mepeHOCUTh pe3y/bTaTu HemaBHbOI poboru S. Dashkovskiy and
S. Pavlichkov, Stability conditions for infinite networks of nonlinear systems
and their application for stabilization, Automatica. — 2020. — 112. — 108643 ua
BUNAJIOK cTabliaizamil 3a CKIYeHHUH Yac.

Knaovoei caosa: Heminiitai cucremu; CTifiKicTh BXi/I-CTaH; YMOBU MAaJIOT'O TTOCH-
JIEHHSI

[MaBanukos C. C. Teopema 0 MajioM yCUJIEHUH [IJISI YCTOWYIUBOCTHA BXO/I-
COCTOSIHHE 33 KOHEYHOe BpeMs OEeCKOHEYHBIX CETEBBIX CHCTEM U ee
npuMeHeHus. Mbl JOKa3bIBaeM JIOCTATOYHOE YCJOBHE YCTOWYUBOCTH BXOJI-
COCTOSTHHUE 32 KOHEYHOE BpeMsi OECKOHETHBIX CETEBBIX CUCTEM B TEPMHHAX Ma-
noro ycuienust (small gain condition). PaccmarpuBaemas cereBasi cucrema co-
CTOUT U3 CYETHOI'O MHOYKECTBA KOHEIYHOMEDPHBIX CHCTEM OOBIKHOBEHHBIX Iud-
depeHnuaIbHbIX YpaBHEHUN, KayKIasd U3 KOTOPBIX COEINHEHA TOJHKO C KOH-
YHBIM MHOYKECTBOM COCEJIHUX CHCTEM, a TAKYKe COJEP’KUT BHEITHEee BO3MYIIe-
uue. IIpeamosaraercs, 4To KaxkAblil y3es1 cern (Kaxkias IOACHCTEMA) 00Jia-
JIaeT CBOMCTBOM YCTONYHUBOCTH BXOJI-COCTOSIHWE 33 KOHEYHOE BpPEMsi OTHOCH-
TEJIBHO €r0 KOHEYHOMEDHBIX BXOJI0B OOPA30BAHHBIX (DA3OBBIMU IT€PEMEHHBIMUI
COCEJTHUX TIO/ICUCTEM U BHEITHUM BO3MYIIEHHEM. B KadecTBe NpuMeHeHus: 3TO-
ro pesyubrara (CIEJCTBUs) MBI MOJIYyYaeM HOBYHIO TEOPEMY O JIENEHTPaJIAn30-
BaHHOHN CTAOMJIM3AINN BXO/-COCTOSTHUE 38 KOHETHOE BPEMs OECKOHEUHBIX CeTe-
BBIX CHCTEM IIPEJICTABJISIIONINX COOON CUETHDBIN HAOOpP COEIMHEHHBIX TPEYTrOJib-
HBIX CHCTE€M OOBIKHOBEHHBIX AudepeHnuaabubix ypaBHeruit. s 9Toro Mol
KOMOMHUDYeM JOKA3AHHYIO B HACTOMAINEl paboTe TeOpeMy MAaJiorO yCUJIEHUs
(small gain theorem) ¢ MeTomOM ITOCTPOEHMS JEIEHTPAJIN3OBAHHBIX CTAOUIIH-
BUPYIONIUX yIIpaBjeHuil moyderrbiM B pabore S. Pavlichkov and C. K. Pang
(NOLCOS-2016) /151 KOHEIHBIX CETEBBIX CHCTEM.

Hacrosimas pabora nmepenocut pesynbrarhl HemaBreilr padborsr S. Dashkovskiy
and S. Pavlichkov, Stability conditions for infinite networks of nonlinear
systems and their application for stabilization, Automatica. — 2020. — 112. —
108643 ma ciyuail crabuau3annuy 3a KOHEYHOE BPeMs.

Karouesvie cro6a: HETMHERHDBIE CHCTEMBI; YCTOMUUBOCTD BXO/I-COCTOSHUE; YCIIO-
BUS MaJIOrO yCUJIEHUS

2010 Mathematics Subject Classification: 93C10; 93A15; 93D25; 93B70; 93D40;
93A14.

1. Introduction

The definition of input-to-state stability (ISS) was introduced in 1989 in [36]
as a natural generalization of the classical global asymptotic stability for the
case when the dynamics of the system under consideration is affected by some
external disturbance. Very soon, the concept of ISS became very fruitful. First, it
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appeared that the classical converse Lyapunov theorems (on the existence of the
Lyapunov functions for globally asymptotically stable systems) can be extended
to the case of ISS. More specifically a systems of ordinary differential equati-
ons (ODE) with external disturbance input is ISS if and only if it has an ISS
Lyapunov function [37]|. Second, deep results devoted to various characterizati-
ons of ISS including its relationship with the classical Lyapunov stability and
asymptotic stability properties were obtained [38]; in particular one of results from
[38] states that a system of ODE with external disturbance inputs of class Lo is
ISS if and only if it is globally asymptotically stable whenever the disturbance is
identically equal to zero, and the system possesses the so-called asymptotic gain
(AG) property, which means that, for any disturbance input which is different
from zero, each trajectory of the system eventually converges to a ball with its
center at origin and the raduis of this ball is a K-function of the L,.-norm of the
corresponding disturbance regardless of the initial condition. Third, this theory
led to the so-called small gain theorems firstly for two interconnected systems
[17],]16], which later was extended to the general case of N > 2 interconnected
subsystems [8], [18], [9]. Later these classical results devoted to systems of ODE
were extended to networks of impulsive and delayed systems [10], interconnecti-
ons of partial differential equations (PDE)[27], etc. In general, the purport of the
small gain theorems is to provide sufficient conditions for (ISS) stability of entire
interconnection of several ISS subsystems. This, in turn, provided many applicati-
ons such as nonlinear stabilization in presence of dynamic uncertainties [17],[39]
or decentralized(or distributed or cooperative control) of multi-agent systems, see
e.g. [24],[32],[33], [31].

The problem of finite-time stabilization was raised and solved in 1979 for
linear control systems in [21, 22| by means of the controllability function method,
which was later developed in many works such as |2, 23, 4, 1|. This area enjoyed a
renaissance after 2000, see, for instance, [3, 15, 40, 13, 14, 34]. In contrast to the
above-mentioned papers based on the controllability function method |21, 22, 2,
23, 4, 1], in which the corresponding finite-time control Lyapunov function (i.e.,
the controllability function) is defined as an implicit function, works [15, 40, 13] are
based on a certain revision of the backstepping approach for the case of finite-time
stabilization, where the Lyapunov functions and controls are designed explicitely.
The latter allowed to obtain an extension of the ISS framework and small-gain
approaches to the case of finite-time stability and further applications in design
of nonlinear finite-time stabilizers in presence of dynamic uncertainties similarly
to the classical work [17]. Such a generalization was proposed in [14].

Since stability and stabilization of large-scale networks has many meaningful
applications |11, 25, 26|, another recent popular topic has become infinite networks
[5, 35, 6, 41]. The main focus was the infinite networks of finite-dimensional linear
control systems with linear interconnections. In work [7], a new small-gain theorem
for infinite networks of nonlinear ODE systems interconnected nonlinearly was
proved and its applications were demonstrated by solving the decentralized
stabilization problem for infinite networks of nonlinear control systems with
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uncontrollable linearizations and power integrators. Also there are new recent
results devoted to characterizations of ISS of infinite-dimensional systems |[28§]
as well as further extensions of ISS small gain conditions to the case of infinite
networks of nonlinear ODE systems, see, for instance, [19].

The goal of the current work is to extend the results of [7] to the case of finite-
time stability and stabilization of infinite networks, i.e., to prove the correspond-
ing small gain theorem and to show how it can be applied to the decentralized
finite-time stabilization of infinite networks composed of nonlinear control systems
of ordinary differential equations. The current paper extends and generalizes its
conference predecessor [30] to the case of finite-time /SS stability and decentrali-
zed stabilization in presence of external disturbance inputs and with respect to
these disturbance inputs. In the special case when all these external disturbances
are zeroes (i.e. are abscent), we just obtain finite-time stability and finite-time
decentralized stabilization of infinite networks as a corollary.

2. Preliminaries

A function « : [0, +00[—[0, 00 is said to be of class K, if it is continuous,
strictly increasing and «(0) = 0, and « : [0, +00[— [0, 4+00] is said to be of class
Koo if it is of class K and unbounded. In compliance with [14], we say that « :
R+ — Ry is a generalized K-function, or a §K-function, if it is continuous, with
a(0) = 0 and satisfies a(s) = max{0, a(s)—a(so)}, where &(-) is a K-function and
sp > 01is a given parameter. A continuous function 3 : [0, +00[x [0, 400[— [0, +-00[
is said to be of class KL if for each fixed ¢t > 0 the function (-, t) is of class K and
for each fixed s > 0, we have 3(s,t) — 0 as t — +oo and t — (s, t) is decreasing.
A continuous function £ : [0, 4+00[x[0, +00[— [0, +0o0] is said to be a generalized
KL-function, or a GKL-function if for each ¢t > 0 the function B(-,t) is a GK-
function and for each s > 0 the function (s, -) is decreasing with 5(s,t) — 0 as
t — 400 with some T'(s) < +oo and t — (s, 1) is decreasing.

For any finite-dimensional vector £ € RY, by [£], |£|eo, and [£]1 we denote
its Fuclidean norm, max-norm, and Manhattan Taxicab norm respectively, i.e.,

N
€] = (£,6)2, |€|o = max [&], and [¢]; = zl & If NV is a finite set, i.e., it has
<i< i=
a finite number of elements, then we denote the number of its elements by |N|.

Let (M,d) be a metric space. A map R D [a,b] 3t — X(t) € M is said to
be absolutely continuous on the segment [a, b] if and only if, for every £ > 0 there
exists 6 > 0 such that for every finite sequence of pairwise disjoint subintervals
17m, Sm| of [a, b], we have:

S (sm =) <= > d(X(sm), (1)) < €. (1)
m m
Throughout the paper, by AC([a,b]; M) we denote the class of absolutely conti-
nuous maps R D [a,b] 5 ¢ — X (t) € M.

Next, instead of ¢ = 1,n we can also write i« € {1,...,n} to make some
formulae shorter.
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3. A finite-time small gain theorem for infinite networks

In this Section, we deal with the following infinite network
Xi(t) = 2i(X; (1), {X;(1)} jeyiy, Di(1)), ieN, (2)

where X; = [Xj1,... ,Xi,Ni]T € RYi is the state vector of the i-th subsystem,
D; = [Di1,...,D;yn]" € R™ is the disturbance input of the i-th subsystem,
every ®; is of class C(RNi+Zj€J(i) Nj;RNi), and, for every i € N, the set J(i) C N
of the neighbors of the i-th subsystem is a finite set of the corresponding indices
from N. According to our notation, ¢ ¢ J(i) for all i € N, i.e. i-th subsystem is not
treated as a neighbor of itself. We suppose that the state vector X = {X;};°,, and
the disturbance input vector D = {D;}:°, of the entire network (2) are elements
of lo. Furthermore, it is assumed that the dynamics of (2) is locally uniformly
bounded in the following sense:

sup max max
ieN JEJ(i) |Xiloo<R, |Xjloo<R, |Diloo<R

|19i (X5, {Xj}ies0) Didloo <00 (3)
for every R €]0,+oo[. Throughout the paper, we assume that external di-
sturbances R > t — D(t) = {D;(t)};2, are such that for each i € N
we have D;(-) € Loo(R;R™) and D(t) = {D;(t)};2; € lx ae. ont € R,

and such that sup max || Di;(")ll;_(gmg) < +oo. This class of disturbances
ieN j=Ln; o

D(:) = {D;(-)};2, is denoted by Lo (R;ls) throughout the paper, and, by
definition, we denote |[D(:)[|,_ (g )= sup max || D;;(-)[,_(rm)- Also, by def-
o0 )L oo ZEN j:m oo )

inition, we put || Xi(")llc( 1Ny = max [X;(t)[es for every i € N, and every

t€[to, T
Xi() € C(fto, T RM).
The following two definitions of a solution (trajectory) of (2) are the same as
in [7].

Definition 1. Tauke any D(-) = {D;(:)};2; € Lo(R;lx) and any nonempty
T C R of the form T =la,b[, or T = [a,b], or T = [a,b], or T =]a,b]. A map
Tot— X(t) ={Xi(t)};2 € lso is said to be a solution to (2) on T, if and only if
for each [/, V'] C T and each i € N the map t — X;(t) is of class AC([a’,b']; RNi),
and (2) holds a.e. ont € T, or, which is the same, for each ty € T, we have

VieN VeT  Xi(t) = Xi(to) + / D4(Xi(5), {X5(5)} e ey Di(s))ds. ()

to

Definition 2. Given any nonempty (open, half-open, or closed) interval T C R,
any to € T, any X° = {XP}22, in loo, and any D(-) = {D;()}32; in Loo(R; lo),
let Y (to, X°, D(-), T) denote the set of all solutions T >t + X (t) to (2) on T in
the sense of Definition 1 such that X (tg) = X° and D; = D;(t).
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Let us note that, according to Lemma 1 from [7], if T > ¢t — X(t) =
{Xi(t)}2, € ls is a solution to (2) on T in the sense of Definition 2, then
the entire map 7 3 t — X (t) = {X;(t)};2, € lx is also absolutely continuous on
each [a/,V/] C T (although the latter statement seems to be stronger at the first
glance).

In contrast to [7|, we are now interested in the problem of l..-finite-time
input-to-state stability (£oo-FTISS) of (2) in the current paper; as a corollary
we will obtain global {.-finite-time stability ({so-FTS) of (2) in the special case
D() =0 € Loo(R; ls), which was considered (with some drawbacks) in [30]. The
corresponding definitions are as follows.

Definition 3. System (2) is said to be {x- finite-time input-to-state stable or
lo-FTISS if and only if there exist v € K and f € GKL such that B(r,s) = 0
for each s > T(r) with some r — T(r) of class C([0,+oc]; [0, +00]) and such
that T(0) = 0, and, for each ty € T, each X° = {X?}2, in ls, and each
D(:) = {D;()}2, in Loo(R; L), we have Y (tog, X%, D(-), [to, +00o[) # 0 and each
solution X (-) € Y (tg, X°, D(-), [to, +00]) satisfies the following inequality

X ()lleee < max{B([X°et —t0).Y(IDO) | (ritw))}  for all t > to. (5)

In particular, if D(-) = 0, i.e., there is no any external disturbance D(-) in system
(2), we obtain the following definition of loo- finite-time stability (loo-EFTS)

1X )llewe < BUX Nl t — to) for all't > to, (6)

where 8 € GICL is the same as above in (5). In both the cases, the above-mentioned
function v — T(r) is called the settling time for system (2).

Remark 1. For comparison, let us quote the original, classical definition of finite-
time input-to-state stability (FTISS) of finite-dimensional systems of ordinary
differential equations (ODE), which was given in [14]. System of ODE

X(t) = F(X(t),D(t)), XeRY, DeRM (7)

with states X € RN external disturbance input D(-) € Loo(R; RM), and conti-
nuous F(-,-) is said to be finite-time input-to-state stable (FTISS), if and only
if there exist v € K and 8 € GKL such that 3(r,s) = 0 for each s > T(r) with
some r +— T(r) of class C(Ry;Ry) such that T(0) = 0 and for each ty € R, each
X0 e RV and each D(-) € Loo(R;RM) every solution to (7) with X (tg) = X°,
D = D(t) satisfies the inequality

X (t)] < max{B(|X°],t —t0), ([ DC)l| Lo i)} for-allt > to.  (8)

(actually, the original Defintion 3 from [14] has sum instead of max in the right-
hand side of (8), but both these two versions are equivalent, of course). Also
following [14] (with some simplification), we say that V() of class C'(RV;R)
is a finite-time ISS Lyapunov function for system (7), if and only if there
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exist a €]0,1[, A > 0 and a1(:) € Ks, a2(-) € Koo, 7(-) € K such that
(| X)) < V(X) < ag(|X]) for all X € RN and such that the following FTI-
SS Lyapunov inequality holds

V(X) >5(D|)} = VV(X)F(X,D) < -A[V(X)]® forall Xe RV, DeRM
(9)
In comparison with [14], the main simplification here is that V() should not be
necessarily of class C' in [14], but this is an equivalent formulation in our case.
As it is noted in [14] (and can be easily shown), if system (7) has a finite-time
ISS Lyapunov function, then (7) is FTISS.

Accordingly instead of the small-gain theorem from [7] our current version of
finite-time (FT) small gain theorems is as follows.

Theorem 1. Suppose that each ®; is continuous, inequality (3) holds true and
there exist positive definite FTISS Lyapunov functions V;(X;) in C*(RYi;[0, +oc])
such that

(i) There exists a(-) € K such that Vi(X;) > a|X;]) uniformly for all
X; € RNi i €N (i.e., Vi(:) are uniformly radially unbounded)

(i1) For each R > 0 we have:

sup N; < 400, supn; < 400,

ieN ieN (10)
sup max V;(X;) < +oo, sup max ‘% < 400
ieN |XG|<R ieN |XG|<R ‘

(111) There exist A > 0, p €]0,1[, € €]0,1[, and v(-) € K such that each i-th
subsystem of (2) satisfies the following Lyapunov ISS inequality:
Vi(Xi) = max{(1 —¢) mex Vi(X;),7(I1Diloc)} =
JjeJ (2

B (11)
VVi(Xi)®i(Xi, X} je sy Di) < —AVTH(XG).

Then the following three statements hold true:

(I) For each ty € R each initial X° = {X?}2, in ls, and each D(-) €
Loo(R;ly), the set Y(to, X°, D(-),[to, +oo[) is mot empty and every
trajectory t — X(t) = {Xi(t)}32, € loo from Y (to, X, D(-), [to, +00[) is
well-defined and uniformly bounded on the entire [to, +oo[, i.e., t — X(t)
satisfies X;(to) = X and

VieN Xi(t) = ®;(Xi(t), {X;()} jes), Di(t)  a.e. on t € [to, +ool.

For XY = 0 € (s, and D;(-) = 0, we just have X(t) = 0 € Lo for all
t e [t0,+oo[.
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(1I) Define the finite-time 1SS Lyapunov function for the entire network by

V(X) :=sup{Vi(X;)} forall X ={X;};2, € lss. (12)
€N
Then, for every trajectory t — X(t) of (2) defined in (I), the function
t— V(X (t)) is absolutely continuous on every |a,b] C [to, +oo[, and

VXO)>1(I DOl ity = VX)) SAVITH(X(H)) ace. on [to, +ool.
(13)
This immedately implies that (2) is loo-FTISS in the sense of Definition 3.

(III) If D(-) = 0 € Loo(R;4o) then system (2) is loo-F'TS in the sense of Defini-
tion 3 and the settling time T'(r) mentioned in Definition 3 can be obtained
from the following estimate:

V(X(t)=0 forall te[T(V(X?),4o0],

where

1
T(V(X%) < E[V(XO)]“- (14)
Remark 2. Note that Assumptions (i), (i) imply the existence of max(+) € Koo
such that

Vie N VX; € RV of|X;]) < Vi(Xy) < amax(| X)) (15)

In addition, by Assumption (i), the FT Lyapunov function V(X) from (12) is
well-defined by (12) for all X € U, and then, from (15) it follows that

VX = {X;};2) €los a(|X]) S V(X) < amax(|X]). (16)

Remark 3. Assumption (iii) with (11) is a finite-time analog of Assumpti-
ons (i), (i) from [7], the latter being devoted to the problem of uniform
asymptotic stabilization for infinite networks (2). For finite networks, they
can be formulated in more general form [9], [18], but being motivated by these
finite-dimensional and essentially nonlinear results, we note that our version of
small gain theorems for infinite networks deals with linear gains similarly to [7].
However, as in [7], we will see that this version does suffice for such important
applications as decentralized stabilization of infinite networks composed of nonli-
near control systems which are interconnected nonlinearly.

Proof of Theorem 1.

Step 1. As in [7] we first prove the existence of the corresponding trajectori-
es of (2). Take and fix any initial tp € R and X" = {X?}°, € /o, and any
D(-) € Lo(R; {). Without loss of generality, we first assume that

XNl g+ I DO g (i) > O
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(the trivial case X? = 0 € loo, D(-) = 0 € Loo(R;/s) will be discussed in the
very end of the proof). This Step 1 is similar to the corresponding Step 1 from
[7]. Define

V= V(X(t)) = iggvi(Xi(tO)); D:=7(| DC) llpm(®n));  (17)

and taking any o €]0, max{%- 4 ) 4 [, define

Ro=2| X, +a'2V°+2D+1)+2V°+2D +1;

My :=1+sup max max | P (X5, {X;} , D;)|
i€N | X;|<2Ro+1,|Di|eo<y~1(2D) |X;|S2Ro+1,5€J(d) ne JeJ(@)

i(Xi, { X5} je sy, Di)l

+ sup max

max ]EJ
zeN |X3|<2R0+1,|Ds|ee<y—1(2D) |X; \<2Ro+1,aeJ(z)

e S
(18)

Then we define the following standard iterations X (™) (.) = {Xi(m)(-)}fil on
[to—0,to+ 0] for m=0,1,2,...

XV =X0, telto—0,tg+60), ieN,
x"() X°+f<1> D (5), AX V() s 0y Di(s))ds, (19)
t0—6§t§to+0 1€N, meN.

It is straightforward that each Xi(m)(-) is of class AC([to — 0,to + 6]; RYi), and,
using (i) and (18), we obtain

Vie N Vm € Zso Vt € [to— 0,10+ 0] |X™ (1) < Ro. (20)

As in [7], we apply the Arzela-Ascoli lemma and Cantor’s diagonal argument
and prove the existence of a subsequence X ("a)(.) = {Xi(mq)(-) € CHJto — 0, to+
0); RN)1° ) ¢ € N such that for every fixed i € N there is X;(-) of class

C([to — 0, to + 0]; RV¢) such that
1 X7 () = XiC) louo—po oz — 0 s g — .

Combining this with (19), (20), we obtain:

Xi(t) = X +f<1> (), £X5() ey Dils))ds, o)
te [t0—0 to+0] ieN.

Hence X (-) = {X;(-)}.5% belongs to Y (to, X, D(-), [to — 0, to + 0]) with X;(-) €
AO([to —0,ty + 9]7RN ) and

Vie N Vte [to —0,ty + 9] ’Xz(t)’ < Ry. (22)
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Step 2. First we assume that V0 > ﬁ; the other cases will be discussed in the
end of the proof. Define

1 A
e = imin{s, VO-D, D, ZVO}. (23)

Define # > 0 as in Step 1 (see (18)), and let ¢t — X (¢) be any trajectory of (2) with
X (tp) = X© defined on some [tg — 0%, to + 0*] with some 6* €]0, 6], i.e., t — X(t)
satisfies (21) with 6* €]0, 0] instead of 6.

Using (3),(10),(15),(21), find L = L(Rop, Vp) > 0 and 7* € ]0, %} such that

Vi € N Vt'€[to, to+7"] Vt"€lto, to+7*] |Vi(Xi(t)) — Vi(X;(t")| < LIt —t"|.
(24)

(Indeed, as we noted above, ¢t — X (t) should be of class AC([to—7",to+7*]; {eo),

and therefore sup || X;(-)l|¢(jtg—r* to+r+;rN:) Should be uniformly bounded; then
i€N ’ '

we apply (10),(15),(21)). Then, fix any 7 €]0, 7*] such that

Vtelto, to+0*—1] Vse[0,7] VieN |Vi(X;(t+s))—Vi(Xi(t))] < % < 3%‘/0.
(25)
Then, in particular,
Vi e N Vitelto, to+7]  |Vi(Xi(t)—Vi(X;(to))| < % < %Vo, (26)
and .
Vielto, totr]  V(X(t) < VO + % (27)
For every ¢ €]0,e*], by 1(6) C N denote the following set of indices
1(6) == {j e N| V;(X;(to)) = V° — 6} (28)

As in [7] we obtain the following lemma.
Lemma 1. The following statements hold true.
(S1) For each i € N and each t € [to,to+T] we have:

8

Vi) = VO = 2

= Vi(Xi(1) < —AVi(Xa(t))]' "
(S2) For each i € N and each t € [to, to+7] we have:
0 3&*
Vi(Xi(t)) < max{Vi(Xi(to)), V" — T}
(S3) For each i € I(%) we have:

Vielto, to+7]  Vi(Xi(t)) < —AV,"H(X,(t)) (29)
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(S4) For each j € N\ I(5) and each i € I(%*) we have: V;(X;(t)) < Vi(Xi(t))
for all t € [to, to + 7).

Proof of Statement (S1) follows from (23),(26),(27), from (iii), (11) and
from (12),(17). Proof of Statement (S2) follows from Statement (S1). Proof
of Statement (S3) follows from (26)-(28) and from Statement (S1). Proof of
Statement (S4) follows from (25),(26),(28) and from Statements (S1),(S2).

Since I(%) C I(%*), Statement (S4) of Lemma 1 yields:

Vtelto, to+7] V(X(t))ZSU£W(Xi(t))= Sl(lp*)v;(Xi(t))' (30)
€ el (&

Finally, from Statement (S4) of Lemma 1 we obtain integrating the inequality
(29):

Vie I(5) [Vi(Xi(t +h)* < [Vi(X(t)]* — Auh forall t >tg, h>0
such that to <t<t+h<t+r,

Taking sup,cy, and using (12),(30), we obtain

V(X (4 h)F < [V(X(t)* —Auh  forall ¢ >ty, h>0
such that tg <t <t+h<t+rT,

which yields for any h > 0
[V(X(t+h)] - V(X)) < [VXWO))" - Auhﬁ - VI(X(1)),

ie.,

T

_%} _

1
V(X(t-&-h)}Z—V(X(t)) < V(X(t)) [ [V(X(}:))]”

forall t>1ty, h>0 (31)
such that ty <t<t+h<t+T,

From (24), (30), it follows that that ¢t — V(X(t)) satisfies (24) on [to, to + T];
hence ¢t — V(X (¢)) is absolutely continuous and differentiable almost everywhere
on [to,to + 7]. If D = 0 then, taking hlimo in(31) we obtain (III).

-+

If V9> D >0, then we repeat the argument from [7], Proof of Theorem 1,
Steps 2,3 beginning with eq.(31) of [7] and until the very end of the Proof of
Theorem 1 from [7] and obtain (I),(II) (more specifically, using Lemma 1 we note
that Y (tg, X°, D(-), [to, +0c[) is not empty, since (18) implies that the solution
constructed on [tg, to+ 6] in Step 1 can be extended inductively to [to+ 6, to+ 26],
with the new initial condition at ¢ = ¢ty + 6, then to [tg + 26, to + 36], etc. and the
length of each new interval will be not less than # > 0 defined in (18), because

the inequality w > 0 is not possible whenever V(X (t)) > D according to
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Lemma 1 and the assumption V° > D, hence, after each extension of the time
interval, the inequality (22) will hold on each extended time interval. Then, as in
[7], for any solution ¢ — X (t) from Y (tg, X°, D(-), [to, +00[), we find 6 := sup{f >
0] V(X (to+6)) > D} and obtain that V(X (ty + s)) < D for all s > 6, because,
otherwise, we again obtain contradiction with Lemma 1. Finally, if V0 < D, then
again from Lemma 1 it follows that V(X (to + s)) < D for all s > 0, since s >
0 V(X (to+s)) > D implies 3s' > 0s.t. V(X (tg+5')) > D and LV (X (to+5)) >
0, which is again impossible due to Lemma 1 and for every solution ¢ — X (¢) from
Y (to, X°, D(-), [to, +00]), whereas Y (tg, X°, D(-),[to, +oc[) is again not empty,
which again follows from the inductive extension of construction in Step 1 to
[to+0,to+20], [to+20,t0+36], . ... The same can be obtained for the trivial case
V0 = D = 0: on the one hand, X (t) = 0 belongs to Y (ty, X°, D(-), [to, +00[), and,
on the other hand there no any other solutions from Y (to, X°, D(-), [to, +00),
because dv(éi(t)) > 0 and V(X(¢)) > 0 is not possible for any t > to for the same
reasons as above).
The proof of Theorem 1 is complete.

4. Applications: decentralized finite-time
stabilization of infinite networks

Motivated by [20, 25, 26, 29, 31| consider the following infinite network of
interconnected strict-feedback form control systems

{ i =2 1 F Ak (Xi g, Xigy Di), k=1,...,05—1, icN,  (32)

Tiw, = Ui + DNiy, (Xiw,, Xivy, Di),

with controls u; € RY, i € N, with the state vector X = {X;,,}22, € luo, where
Xk Xk, are given by

Xi =i, --~,$i,k]T, Xio={Xoomin{k v} bresy k=1 Vi (33)

for all i € N, and with external disturbance inputs R 3> ¢ — D(t) = {D;(t)};2,
such that for each i € N we have D;(-) € Loo(R;R™) and D(t) = {D;(t)};2; € lo
a.e. ont € R, and such that sgg m{'ﬁ | Dii (1. gy < +00. As in Section 3,
ieN j=In;
J(1) € N can be considered as the set of “neighbors” affecting i-th agent (node)
of (32). As in Section 3, we assume without loss of generality that ¢ ¢ J(i)
for all i € N. Let us remark that finite but large-scale networks of form (32)
with hierarchical structure of interconnections (32), (33) have engineering and
physical motivation, see, for instance, |26, 25]. The case of infinite networks can
be interpreted, for instance, as “open multi-agent systems”, when some agents
(nodes) may unexpectedly arrive, some agents (nodes) may unexpectedly depart,
and the maximal number of nodes is unknown [12].
We suppose that (32) satisfies the following assumptions:

(A1) Every J(i) C N is finite for each ¢ € N, and sup |J(i)| < +o0;
1€EN
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(A2) A;£(0,0,0) =0 and A; (-, ) are functions of class C1;

(A3) The dimensions of the state spaces and disturbances of all the agents are

uniformly bounded, i.e., v :=supv; < +00, and n := supn; < +00;
i€N i€N

(A4) For every R > 0 we have:

sup ma

X max AN (X, X, D) < o0 34
ien 15k<y; [Xinl<R, |1Xnl<R, Dy Rk (K X, D)l <o (34)

0N 1 (Xi ks Xig, Di)

sup  max max max < 00; 35
ieN #€J(@)U{i} 1<k<y; ‘sz’ < ]%7 | aX;:,k | ( )

|k <R

|Di| < R

0N 1 (X 1y Xige, Ds

sup  max max max | ik (Xik: Xk Z)\ < o0; (36)
ieN »eJ(@)u{i} 1<k<y; ‘sz| <R, oD;

Xkl < R

|D;| <R

As a corollary of our main Theorem 1, we obtain the following result.

Theorem 2. Under the above Assumptions (A1)-(A4), there is a decentralized
continuous feedback u; = u;(X;,,) with u;(0) = 0, ¢ € N, which renders (32) loo-
FTISS in the sense of Definition 3, i.e., there exist v € K and 8 € GKL such that
B(r,s) = 0 for each s > T(r) with some r — T(r) of class C([0,+oc[; [0, +00()
such that T(0) = 0, and such that, first, there exists at least one solution to the
closed-loop system (32) with this decentralized feedback w; = w;(xiq,...,%iy,),
i € N with every initial condition X;,,(to) = Xio,w € RY, with every X° =
{X7,, 1321 € loo, and with every disturbance input R 3 t — D(t) = {D;(t)};2,
such that D;(-) € Loo(R;R™) for all i € N and D(t) = {D;(t)};2 € loo a.c. on

t € R, and sup max | D; ()|, (rr) < +00, and, second, every such a solution
ZGN jzlvni i ’
t = X(t) € b can be extended to the entire [tg,+00| and it always satisfies the

following inequality

1X®)llee < max{BUIX°e s t = t0), YD)l oo i)} for all't > to.

The design of the above-mentioned decentralized feedback w; = wi(x;1, ..., Tiy,),
it € N s constructive, the settling time is finite and estimated by our main
Theorem 1, and the controllers u;(-) along with the {x-FTISS Lyapunov function
and with the settling time are derived explicitly.

In the special case, when D;(-) = 0, or D; are absent from (32), the same
decentralized feedback w; = ui(ziq1,...,2i.,), © € N renders (32) loo-FTS in the
sense of Definition 3.



Bicuuk XHY, Cep. «Maremaruka, IpuK/IaJHa MaTeMaTAKa 1 MexaHikay, Tom 94 (2021) 53

Proof of Theorem 2. The proof of Theorem 2 is a combination of our main
Theorem 1 with the gain assignment obtained in the decentralized backstepping
design proposed in [29]. The only remark in comparison with [29] is that our
network is now composed on infinite (countable) set of nodes, whereas the network
in [29] was finite and without external disturbance inputs. However our conditi-
ons (Al)-(A4) will eventually provide conditions (i)-(iii) of our main Theorem 1
inside the design borrowed from [29] (and our external disturbance inputs can be
included into common inputs in the gain assignment borrowed from [29)]).

More specifically, to reduce our proof to Theorem 1, we first fix any
e €]0,1], and fix any finite sequences of positive real numbers ¢*) €]0, [ and
A8 =1—e) >0, k=1,2,...,v, such that

0<A* Dy c1_¢ forall k=2,...,v, (37)
where v € N is defined in Assumption (A3).

Second, we take any n € N such that n > v := supy; = max v;. As in [40],
ieN ve

define d = 522 and

2n+1
x? 2n—2k+3
Vii(xin):= ;’1; §i,1:=T4,1; =g k=1,n. (38)
and denote
Xix = (Xig, Di) forall k=1,...,1;,—1, 1€N, (39)

and X 1, := (X; 1, X; ). Then we rewrite our system (32) as
{ B =2 g1 +0 (X, X ) =1, v — 1 (40)
By = i + Di oy, (Xiwi, Xins)s 1 €N,

and thus we unify our notation with [29]. Then, with this new notation, we repeat
(almost copy and paste) the passage from Section 5 of [29] beginning with (11)
from [29] until the very end of Section 5. The only updates will be as follows:
i ko (0, X i) should be everywhere replaced with A; ,(X}) = Ak (Xi g, X p) and
x € {l,...,N}\ {i} should be replaced everywhere with j € J(i).

Using this backstepping algorithm from [29], i.e., recursive design of controllers,
FT Lyapunov functions, and gain assignment by induction on k =1,2,...,y; for
each fixed ¢ € N and for each reduced order system

{ i’i,j:xi,j—i-l‘i‘Ai,j(Xi,jvXi,j)? .7 = 17 cee >k - 11 (41)
Ty = Tigr1 + Din(Xigs Xig), 1€EN,

and having designed inductively the feedbacks and FTISS Lyapunov functions
which satisfy Assumption (iii) of our main Theorem 1 with ¢®) >0,k =1,2,...,v
from (37) instead of e, we finally need to explain why Assumptions (i),(ii) hold
true as well.
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To obtain the uniform estimates from (i)-(ii), we note that, by (34)-(36) from
Assumption (A4), functions A;1(X;1)>0 from eq. (13) in [29] can be designed
such that all A;1(X;,1)>0 and all their partial derivatives are uniformly bounded
w.r.t. ¢ € N, on every closed ball of every fixed radius. From this, we will obtain
(ii) for the closed-loop system (41) with z;2 = 27, in the Base Case k = 1.
Condition (i) is straightforward in the Base Case k = 1 due to (38).

To obtain (i),(ii) at every Inductive Step (k — 1) — k, one uses the formulas

Vi Wi i 9
% =x;1, and Drir = i,quv and
GWZ x:‘ q, 0 o
ax.’lk — (2 - Qk) 8m"kl /(sqk — xi,qu )1 9k s (l < k) (42)

from [29] and notes that our Assumption (A4) implies that the functions ¢; 1 ;(-),
V1,5 (+) from eq. (12) in [29] are bounded on every compact subset of their domain
uniformly w.r.t. i € N. Similarly, Assumption (A4) implies that the functions
Cik1,j(-), from Lemma 1 of [29], p;x(-), from (23) from Lemma 3 of [29] are
bounded on every compact subset of their domain uniformly w.r.t. ¢ € N. Since
they are involved in (24), (25) of [29] we obtain that the coefficients A, B, @ from
(26)-(28) in [29] are also bounded on every compact subset of the corresponding
domain uniformly w.r.t. ¢ € N. Finally, ¢; x(-), from Lemma 4 of [29], are also
bounded on every compact subset of the corresponding domains uniformly w.r.t.
i € N similarly by (A4).

All this proves that A;1(X;1)>0, ..., Xix—1(X;%)>0 and all their partial
derivatives are uniformly bounded w.r.t. ¢ € N, on every closed ball of every fixed
radius. From this, we obtain (i)-(ii) for the closed-loop system (41) with z; ; = 27
at every Inductive Step (k — 1) — k, and finally for & = v;, which ends the proof
of Theorem 2.

Acknowledgement. This result was partially obtained when the author was
with the University of Groningen, and its special case devoted to finite-time stabi-
lity and stabilization of infinite networks without any external disturbance inputs
and even without the precise definition of £-FTS and its analysis was published
in the conference predecessor [30] of the current work.
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Teopema mpo MaJie TTOCUJIEHHS JJIsI CTifiIKOCTi BXiA-cTaH 3a
ITapmmakos C. C.
Darysomem mawurnobydyearts ma MeTHON0IYHUT NPOYECIS,
Texniunuti ynisepcumem Katisepcaaymepra
Tomai6-/atimaep wmpacce, 42, Katzepcaaymepn, Himewwuna, 67663
Mu n1oBOIMMO JIOCTATHIO YMOBY CTIMHKOCTI BXiJI-CTaH 3a CKiUY€HHHI YaC HECKiHYECH-
HUX MEPEXKEBUX CUCTeM B TepMinax Mmajoro mocusieHHs (small gain condition). Mepe-
2KeBa CUCTEMa, IO PO3TIIATAETHCH, CKIAJAETHCS 31 3JTITeHHOI MHOXKWUHN CKIHIYEHHOBUMIP-
HAX CUCTEM 3BHYANHNX AudepeHIiaJbHIX PIBHSAHDb, KOXKHA 3 IKAX 3’€aHaHa TIIbKH 3i
CKIYeHHOI0 MHOXKWHOIO CYCI/IHIX I/ICCTeéM, a TaKOXK MICTUTH 30BHIiIHE 30ypenns. [le-
peabadaeThesl, MO KOXKEH By30JI Mepexki (KOXKHa IijicncreMa) € CTIHKOK BXiJ-CTaH 3a
CKIHYEHHUI 9Yac BiTHOCHO HOr0 CKIHYEHHOBHMIDHUX BXO/IIB YTBOPEHMX (DA30BUMU 3MiH-
HUMH CyCigHix mijcucreM i 3oBHINmHIM 30ypeHHsAM. fK 3aCTOCYBaHHS I[HOIO PE3YJILTATY
(HACJIZIOK) MU OTPUMYEMO HOBY TeOpeMy IIPO JIelleHTPai30Bany crabiiizamnio BXiji-crad
3a CKiHYEeHHUU Yac [JIsi HECKIHYEHHUX MEPEXKEBHUX CHUCTEM, siKi IPEICTABJIAIOTH COOOIO
3/IideHHN HADIP 3’€IHAHUX TPUKYTHUX CHCTEM 3BUYANHUX Tu(MEPEHITaTbHUX PiBHSIHbD.
Jljist poro Mu KOMOGIHYEMO JOBEJIEHY B Jaiii pobori Teopemy Majoro mocusenns (small
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gain theorem) 3 MerTog0M HOBYIOBH JIEIEHTPAIZ0BAHUX CTAOLII3YIOUNX KepYBaHb, sIKHl
orpumano B pobori S. Pavlichkov and C. K. Pang (NOLCOS-2016) aus KiHneBux Mepe-
xkeBux cucreMm. Jlana pobora mepeHocuTh pe3ysbraru HeJaBHboI pobotu S. Dashkovskiy
and S. Pavlichkov, Stability conditions for infinite networks of nonlinear systems and
their application for stabilization, Automatica. — 2020. — 112. — 108643 na BUIIaJIOK CTa-
Gimizarii 3a ckivennuit gac. g cTaTTa mOMMUPIOE Ta y3araJbHIOE CBOTO TOMEPETHUKA -
KOH(DEPEHTIiHy CTaTTIO HA BUIAIOK CTIHKOCTI BXi/I-CTaH 3a CKiHUEHHUN Yac Ta JIEIeH-
TpaJsizoBanol cTabimizaril 3a HasSBHOCTI 30BHIMIHIX BXO/iB-30ypeHb. B okpeMomy BUIIAJIKY,
KOJIM BCl 30BHIIIHI 30yPEHHS € HYJIsIMUA, MU IIPOCTO OTPUMYEMO CTIAKICTh 38 CKIHYeHHUH
Jac Ta BiAMOBIIHO AEIEHTPAJI30BaHy CTabITI3AINI0 HECKIHIEHHNX MEPEXKEBUX CHCTEM 34
CKiHYeHHHI Jac.
Knaovoei crosa: HestiHiiHi cuCTeMU; CTIHKICTD BXi/I-CTaH; YMOBH MAJIOTO TTOCHJICHHSI.

A small gain theorem for finite-time input-to-state
stability of infinite networks and its applications
S. S. Pavlichkov
Department of Mechanical and Process Engineering,
Technical University of Kaiserslautern
42, Gottlieb-Daimler-Str., Kaiserslautern, 67663, Germany

We prove a small-gain sufficient condition for (global) finite-time input-to-state stabi-
lity (FTISS) of infinite networks. The network under consideration is composed of a
countable set of finite-dimensional subsystems of ordinary differential equations, each of
which is interconnected with a finite number of its “neighbors” only and is affected by some
external disturbances. We assume that each node (subsystem) of our network is finite-
time input-to-state stable (FTISS) with respect to its finite-dimensional inputs produced
by this finite set of the neighbors and with respect to the corresponding external di-
sturbance. As an application we obtain a new theorem on decentralized finite-time input-
to-state stabilization with respect to external disturbances for infinite networks composed
of a countable set of strict-feedback form systems of ordinary differential equations. For
this we combine our small-gain theorem proposed in the current work with the controllers
design developed by S. Pavlichkov and C. K. Pang (NOLCOS-2016) for the gain assi-
gnment of the strict-feedback form systems in the case of finite networks. The current
results address the finite-time input-to-state stability and decentralized finite-time input-
to-state stabilization and redesign the technique proposed in recent work S. Dashkovskiy
and S. Pavlichkov, Stability conditions for infinite networks of nonlinear systems and their
application for stabilization, Automatica. — 2020. — 112. — 108643, in which the case of
£5-1SS of infinite networks was investigated. The current paper extends and generali-
zes its conference predecessor to the case of finite-time ISS stability and decentralized
stabilization in presence of external disturbance inputs and with respect to these di-
sturbance inputs. In the special case when all these external disturbances are zeroes (i.e.
are abscent), we just obtain finite-time stability and finite-time decentralized stabilization
of infinite networks accordingly.
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