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The controllability function method, introduced by V. I. Korobov in late 1970s,
is known to be an efficient tool for control systems design. This paper bridges
the method with the homogeneity theory popular today. In particular, it is
shown that the so-called homogeneous norm is a controllability function of the
system in some cases. Moreover, the closed-loop control system is homogeneous
in a generalized sense. This immediately yields many useful properties of the
system such as robustness (Input-to-State Stability) with respect to a rather
large class of perturbations.
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TlonskoB A. IIpo ommopimai yHKIil KepoBauocTi. Merox (yHKIHT Ke-
posanocTi, BBegenuit B. 1. Kopobos mampukinmi 1970-x pokiB, gK Bijomo, €
epeKTUBHUM IHCTPYMEHTOM JIjisl JOCJIIJZKEeHHs cucTeM KepyBaHHsi. 1ls1 craTTst
MIOE/IHYE TIeil MeTOJ] 13 MOIYJISPHOK ChOTOJIHI TEOPi€ro OHOpiaHOCTI. 30KpeMa,
MIOKa3aHo, IO TaK 3BaHa OJHOPIIHA HOpPMa B ACSIKHX BUMAIKAX € (PYHKINEIO
KepOBaHOCTI cucTteMu. BinmbIime Toro, 3aMKHyTa CHCTeMa KEPYBAHHSA € OTHOPI-
JTHOIO B y3arajbHeHomy cemci. Ile Bigpa3y mae 6arato KOpUCHUX BJIACTHUBOCTEH
CHCTEeMH, TaKUX siK pobacTicTs (cTablibHICTH BXIIHOTO CTaHy) IMIOAO JOCUTH
BEJIMKOTO KJiacy 30ypeHb.

Karwwosi caosa: ByHKIisS KepoOBaHOCTI; y3arajibHEHa OIHOPIIHICTB; poba-
CTHICTb.

TTonsikoB A. O6 omHOpPOAHBIX (PYHKIMAX yIIipaBiiseMocTu. Meron pyH-
Kruu yrupasasemoctn, BBesennbiii B. . Kopobos B konre 1970-x ro/10B,
KaK IMOHSITHO, sIBJISIETCsI JIefICTBEHHBIM WHBEHTAPEM JIJIsl UCCJIEIOBAHUS] CUCTEM
yIpaBJIeHUsI. JTa CTaThsl COBMEINAET ITOT METOJ, C IOIYJISPHON CeromHsl Te-
opueil OJHOPOIHOCTH. B 9acTHOCTH, MMOKA3aHO, YTO TAK HA3LIBAEMAasi OIHOPO-
JHAs HOPMa B HEKOTODPBIX CIydasix ABJsSeTCsa (PYHKIINEN YIIPABIAEMOCTH CHCTE-
Mbl. BoJsiee Toro, 3aMKHyTast CUCTeMa yIIPABJIEHUS OJHOPOIHA B 0OOOIEHHOM
CMBICJIE. DTO Cpa3y JaeT MHOIO IOJIE3HBIX CBOCTB CUCTEMBI, TAKUX KaK pObO-
THOCTH (CTAOUJIBHOCTH BXOJIHOIO COCTOSIHUSA) OTHOCHTEILHO JOCTATOYHO GOJIb-
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1. Introduction

Most of physical systems are symmetric in the view of Noether’s Theorem
[23]. Differential symmetries can discovered in both ODE (Ordinary Differential
Equation) and PDE (Partial Differential Equation) models of dynamical systems
[9], [8], [27]. One of Lie symmetries, that is rather popular in control theory, is
homogeneity. The homogeneity is a dilation symmetry known since 18th century,
when Leonhard Euler studied functions x — f(z) which are symmetric with
respect to uniform dilation x — Az of its argument, namely, f(Az) = N f(x),
VA > 0,Vx, where v is a real number. Such functions were called homogeneous and
the number v was referred as the homogeneity degree. It seems that a generalized
homogeneity (the symmetry with respect to a non-uniform dilation) was first
studied by Vladimir Zubov in [36]. The homogeneity is useful for analysis of
nonlinear finite-dimensional dynamical systems (see also [36], [11], [13] [14], [33],
[4], [2]) as well as non-linear controllers/observers design (see [13], [7], [10], [1],
[19]). Homogeneity degree specifies a convergence rate of any asymptotically stable
homogeneous system (see e.g. [22]). Homogeneous approximations of nonlinear
models are useful in the case when a linear approximation is not informative or
simply impossible [1]. Homogeneous control systems have similar properties to
linear ones, e.g., local stability yields global stability, invariance of the compact
set is equivalent to stability, etc. However, they may have better control quality,
e.g., faster convergence, better robustness and less overshoot. For more details we
refer the reader to [27, Chapter 1.

The controllability function method [16] is an efficient tool for control systems
design. The monograph [17]| presents most detailed study of the method and its
applications to different control problems. Formally, a controllability function has
no relation with the homogeneity theory. However, in some cases, its design is
implicitly inspired by the homogeneity and uses the dilation symmetry of the
system. This paper bridges controllability function method with the homogeneity
theory showing that the control/controllability function design for linear plants
results in a generalized homogeneous control system, that inherits all good
properties of homogeneity, e.g., robustness (Input-to-State Stability) with respect
to a sufficiently large class of perturbations.

The paper is organized as follows. First, the controllability function method
and elements of the homogeneity theory are remained. Next, the main theorem
about homogeneous controllability functions for linear plants is proven. Finally,
some remarks and conclusions are given.

2. On controllability function method

Following [17]| the controllability function © : R™ — [0,4+00) is a Lyapunov-
like function of a closed-loop system u = wu(x) realizing a position control in a
finite time. More precisely, the properties of © are characterized by the following
theorem.
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Theorem 1. [17, Theorem 1.2, page 19] Let us consider the controlled process
i = f(z,u), t>0, f:R"™™ 5R™ (1)

where x(t) € R",u € Q C R™ and the function f is locally Lipschit continuous
on (R™\{0}) x Q, i.e.,

x; € K(p1,p2),

— <L _ _
[f (21, w1) = fz2, u2)l| < L(p1, p2)(l|lz1 — @2l + [lur — uzl]), lusl] € i = 1,2,

where K (p1, pa) :={z: 0 < p1 < ||z < pa}-
Let there ezist a function © : R™ — [0, 4+00) such that
1) © >0 for x # 0 and ©(0) = 0;
2) there exists ¢ > 0 such that the set is Q := {x : O(z) < ¢} is bounded;
3) there exists a function u : Q — Q satisfying the inequality

00(x)
Ox

for some ¢ > 0 and a > 0, such that u satisfies the Lipschitz condition on
on any set K(p1,p2) N Q.

fla,u(z)) < 0w (z), Vae Q\{0} 2)

Then the trajectory x(t) of the closed-loop system (1) with x(0) = xo € Q
reaches the state x = 0 at an instant of time T (xg) < %@é(xo). Moreover, if
a = oo then z(t) — 0 as t — oo.

If @« = 1 and the symbol < in (2) is replaced with =, then the inequali-
ty becomes the Bellman (dynamic programming) equation and the function ©
is the settling time function of the closed-loop system. On the other hand, the
controllability function © satisfies the classical |20] (resp., a generalized [32], |5])
Lyapunov theorem for o = 400 (resp. 0 < a < +00).

Ezample 1. [17, page 21] A controllability function © for the chain of

integrators
TEL. :

& =Ax+Bu, z(t)eR", u(t)eR, A= (.0. 6 o 1) , B= (‘O’) , (3)
000..0 1

can be designed implicitly as a solution of the following algebraic equation
a® = 2" D(O)FD(0©)z, z#0 (4)

where ag > 0, a symmetric matrix F = F' € R™*" satisfies’ the linear matrix
inequalities (LMIs)

F(A+BK)+ (A+BK)'F <0, F=0 (5)

!The sign < (resp. ) denotes the negative (resp. positive) definiteness of a symmetric matrix.
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with K € R™" : A + BK - Hurwitz, and the matrix-valied function D is defined
as follows

(6)

with a and m are natural numbers being selected such that the linear matrix
inequality (LMI)

m+n—2i+1 )

D(©) = diag (@— a

(7)

241
F—H,F — Hy,F = 0, H, = diag (—”H"H>

20

is fulfilled. The corresponding controller is given by

m—n

u(z) = 0" 2 KD(O)z. (8)

3. Homogeneity

This section presents a brief summary of the homogeneity theory of dynamical
system in R" .

3.1. Dilations in R™

The standard (Euler’s) dilation in a vector space is the operator z — Az,
A > 0. Generalized dilations and the generalized homogeneity in R™ are introduced
in [36], [15], [14], [26].

Definition 1. [14] A family of mappings d(s) : R™ — R, s € R is a said to be
a dilation group (or, simply, a dilation) in R™ if

e (Group property) d(0)x = z, d(t)od(s)xr = d(t+s)z, Vt,s € R,Vx € R";

e (Limit property) Er_n Ild(s)x|| = 0 and l}lll ||d(s)x| = oo for all x # 0.

Below we deal only with the so-called linear dilation |26] defined as follows:

d(s) = e20a =3 2G4 (9)

7!
i=0

where Gq € R™" is an anti-Hurwitz matrix being a generator of the dilation. For
Gq = I, (the identity matrix), we have the standard (Euler’s) dilation d(s) = e*I,
but the case of diagonal matrix G4 corresponds to the so-called weighted dilation
[36], [31], [12], [18], [1], |28] popular today.

Definition 2. [26] A linear dilation d is said to be monotone with respect to a
norm || - || if there exists B > 0 such that

|d(s)|| < €%, V¥s<o, (10)
l[d(s)z]|

LT i the matriz norm of d(s).

where ||d(s)] = max
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A criterion of the monotonicity of the linear dilation in R"™ is given by the
following lemma

Lemma 1. [26] Any linear dilation d in the finite dimensional space R™ is
monotone with respect to the weighted Euclidean norm ||z|p = VaT Pz,x € R"
provided that the symmetric matriz P = PT € R™ " satisfies the linear matriz
nequality

GiP+PGq >0, P >0, (11)

where the symbol = 0 means that the matriz is positive definite.

It is known [26] that any vector from R™\{0} can be uniquely projected to a
unit sphere using monotone dilation. More precisely, for any = € R™\{0} there
exists a unique pair (z,s) : ||z|| = 1,s € R such that d(s)z = z. We use this
feature of monotone dilation in our further constructions.

8.2. Canonical homogeneous norm. Any compact and convex neighborhood of
the origin induces a norm in R™ by means of the standard dilation x — Az, A > 0
(see, e.g.,[30]). In the general case, the similar construction for monotone dilation
leads to the so-called homogeneous norm [10].

Definition 3. The function || - ||q : R" — [0,+00) defined as follows ||0]|g = 0
and
[zlla =€ :fld(=se)zll =1, = #0,

1s called the canonical homogeneous norm, where d is a monotone dilation with
respect to the norm || - || in R™.

The canonical homogeneous norm is continuous on R™ and locally Lipschitz
continuous on R™\{0} (see, [26]). Moreover, in |27, Theorem 7.1., page 188] it is
proven that || - ||q is, in fact, a norm (in the classical sense) in a finite-dimensional
space R™ homeomorphic? to R™.

Below we show that the canonical homogeneous norm is the controllability
function for linear control systems considered in [17, Chapter 1|. The related
analysis would require differentiability of || - || on R™\{0}. The latter can always
be guaranteed for a canonical homogeneous norm induced by a weighted Euclidean
norm.

Lemma 2. [26] If the canonical homogeneous norm || - ||a is induced by the norm
lz|| = VaT Pz with a symmetric matric P = PT € R™" satisfying (11) then
I+ lla € CR™) N CHR™\{0}) and

Olzla _ 27d" (= 1In ||z]|a)Pd(— In [|2]a)
d 2TdT(— n[|z[la) PGad(— In [[z]a)z’

z#0. (12)

2The space R” consists of vectors from R™, but a sum of vectors and a multiplication of a
vector by a scalar are defined differently.
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Below we show that a properly designed canonical homogeneous norm is a
controllability function for linear control plant.

3.8. Homogeneous systems. By definition, we say that an ODE is homogeneous
if its right-hand side is a homogeneous vector field.

Definition 4. [1/] A vector field (resp. a function) f : R™ — R™ (resp. h : R" —
R) is said to be d-homogeneous of the degree v € R is

f(d(s)x) = e”*d(s)f(z), VseR, VzeR” (13)
(resp. h(d(s)x) = e"Sh(z), VseR, VzeR"),

where d 1s a dilation in R™.

The canonical homogeneous norm is the simplest example of the homogeneous
function of the degree 1.
Example 2: The system

. T2
= f(z):= 1 1
—klccl — kQCEz

is d-homogeneous of the degree v = —2 with respect to the dilation

a= (5 5 )

Indeed, simple computations show
f(d(s)z) = e ?d(s)f(z), Vz eR", VscR.

Moreover, one can be shown [29] that

5

6 4 4 2 2
INERE 2\° 3 kS25(14+k
V($> :C<51|IL’15+$2> +k1-%'1(132, ¢ > max (3) 7 1 3( + 2/6)

6 2 1 IYE
is the controllability function (in the sense of Theorem 1)
: ov
dg>0:V(x)= 8—xf(:6) < —qV%(x), Va # 0,

of the system
i’l = T2, ig = U
with the feedback control
1

1 1
uw(z) = —kixy — kozy, ki > %kﬁz.

To highlight some features the homogeneous systems we present the series of
known results.
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Theorem 2. [36] If x(t,xo) is a solution of a d-homogeneous system
t=f(z), t>0, f:R"—R", [feCR") (14)
with the initial condition x(0) = o then
z(t,d(s)) = dz(e!®t, x0)
is a solution of the same ODE with the scaled initial condition x(0) = d(s)xo.

The latter theorem implies that any local property of the system (14) can be
extended globally. For instance, local stability implies global stability, global-in-
time existence of solutions for small initial data yields global-in-time existence of
solutions for large initial data, etc.

The Zubov-Rosier Theorem [36], [31] given below is the converse Lyapunov
theorem for homogeneous systems. For shortness, we say that a “system is stable”
if its zero solution is stable.

Theorem 3. [31] A d-homogeneous system (14) is asymptotically stable if and
only if there exists a positive definite d-homogeneous function V : R™ — [0, +00)
of degree 1 such that V € C(R™) N CY(R™\{0}) and

V()= D pla) <~ (a), va£0 (15)

where 1 is the homogeneity degree of the vector field f and q > 0 is a positive
parameter.

In other words, any stable homogeneous system admits a homogeneous
Lyapunov function. Notice that, for g < 0 the inequality (15) repeats the inequali-
ty (2). The estimate (15) yields the following corollary which characterize the
convergence rates of homogeneous systems.

Corollary 1. [22] If the system is asymptotically stable then it is
o globally uniformly finite-time stable® for p < 0;
o globally uniformly exponentially stable for p = 0;
e globally uniformly nearly fived-time stable* for p > 0,

where € R is a homogeneity degree of the vector field f.

3 A system is globally uniformly finite-time stable if it is Lyapunov stable and there exists a
locally bounded function 7' : R™ — [0, +00) such that ||z(t)|| = 0,Vt > T'(zo),Vzo € R™. For
more details about finite-time stability see [5], [32].

4A system is globally uniformly nearly fixed-time stable if it Lyapunov stable and Vr >
0,37 > 0 : ||z(¢)|| < r,Vt > T, independently of zo € R™. For more details about fixed-time
stability see [24].
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One of useful properties of homogeneous control systems is robustness (Input-
to-State Stability) in the sense of the following definition.

Definition 5. [34] The system
@ = f(x,0), f:R"™ R feCR") (16)
is said to be Input-to-State Stable (I1SS) if there exist® B € KL and v € K :
@)l < BUlzO), ) +~ ( e ||5(T)||> , Vt>0.
7€0,

The ISS analysis is a non-trivial problem in the general case [35], however,
ISS of a perturbed homogeneous systems follows from asymptotic stability of a
non-perturbed one provided that the disturbances are involved to the system in
a homogeneous way [33], [12], [1].

Theorem 4. /3] Let d be a dilation in R™, d is a dilation in R¥, and tu € R.If

f(d(s)z,d(s)d) = e**d(s) f(z,0), Vs R,VzeR",V5e R
and the system (16) with 6 = 0 is asymptotically stable then this system is ISS.

Ezample 3. The control system considered in Example 2 is robust (Input-
to-State Stable) with respect to bounded additive exogenous perturbations and
additive measurement noises. Indeed, let us denote

Z2

f(z,0) = < (@ + ) )—1—51, T = (xl,:z:g)T € R?, ( g; ) e R,

where the feedback control u is defined in Example 2, §; € R? is a measurement
noise and J, is an exogenous perturbation. Let the dilation d be defined as in

Example 2. Then
~  d(s) 0
d(s) - < 0 6728(31(8) > )

is a dilation in R* with the generator

Gy =

O O O Ot
o O w o
oS w o o
— o O O

A function v : [0, +00) > [0,400) is of class K if it is continuous, strictly increasing and
7(0) = 0.
A function 8 : [0, +00) X [0, 4+00) — [0, +00) is of class KL if the function r — B(r, s) is of class
K for any fixed s € R and for any fixed r» > 0 the function s — j3(r, s) is decreasing to zero as
s — +00.
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being an anti-Hurwitz matrix. In Example 2, it was shown that the system
= f(z,0)
is globally uniformly asymptotically stable. Since
f(d(s)z,d(s)d) = e~2%d(s)f(z,6), VreR? VY5cRLVsecR
then, by Theorem 4, this system is ISS.
4. Homogeneous controllability functions for linear plants
Let us consider the linear control system
t=Ax+ Bu, t>0, z(0)=ux9 (17)

where z(t) € R™ is the system state, A € R™™" is the system matrix, u(t) € R™
is a control input and B € R"*™,
Inspired by Theorem 1 and [26] we present the following result.

Theorem 5. Let the pair {A, B} be controllable and the pair Yo € R™*"™, Gy €
R™ ™ be a solution of the linear algebraic equation

AGo— GoA+BYy = A, GoB=0 (18)
with respect to Gy, Yy, then
1) G4 = I, + uGy is anti-Hurwitz for any p € [—1,0);
2) Go — I, is invertible and the matriz Ag = A + BYy(Go — I,) ™! satisfies
AoGa = (Ga + pln)Ao, GaB = B. (19)

If a solution X € R™*™ Y € R™*" satisfies the system of linear matriz inequalities

(LMIs)
A X+ XA +BY +Y BT <0, GgX+XGi>0, X=X">0 (20
then

3) the canonical homogeneous || - ||a induced by the weighted Euclidean norm
|zl = VaT X1z is a controllability function of the system (17) with
the control

u(z) = Yo(Go — L) Lo + |z Y X 1d(— In ||z]|a)z (21)
and J
Amax (Ao X+XAJ +BY+YTBT) 1+p
_ < 0
gillella < Rt el e A0 (22)

where Amax(Q) denotes a mazimal eigenvalue of a symmetric matriz Q and
d is a dilation generated by Gq;
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4) u € CHR™{0}) for any p € [~1,0), u is continuous at zero if p € (—1,0)
and u s discontinuous at zero but locally bounded if p = —1;

5) the closed-loop system (17), (21) is d-homogeneous of the degree .

Proof. 1) Since the pair {A, B} then there exists [21], [28] a coordinate
transformation M € R"*" such that

0 0 Ao 0 0
0 0 0o .. 0
M~ 'B= o . MT'AM=| .. .. . ., (23)
App 0 0 0 ... Ap_1k
Apt Arz Apz o Awk

where A;;11 € R™ ™+ rank(A;;41) = ng, i < ngy1, @ = 1,2, 0k, np + ... +
ng = n, ng < m, ngt1 = m and k is a minimal natural number such that
rank(B, AB, ..., A*"1B) = n.

In this case, the equation (18) can be equivalently rewritten as follows

AGy— GoA+ BYo = A, GoB =0 (24)
where B=M~'B, A= M~1A)M,Go = M~'GoM and Yy = YoM.
Taking into account, the structure of A and B we conclude that the linear

equation (24) has a solution with respect to Yy, Go and the matrix G has the
block lower triangular form

—(k—1)I,, 0 0 .. 0 0
* —(k—2)I,, O 0 0
Go = ;
* * * .. —Ip , O
* * * L. * 0

where * denotes a possibly non-zero block. The latter means Gy — I is invertible
and Gq = I, + pGp is anty-Hurwitz for p < 0.
2) Since Gy — I, is invertible and the pair Gy, Y satisfies (18) then

A— A+ nAGy — pGoA + uBYy = pA

or, equivalently,
AGq + uBYy = (Gq + ply)A.

On the one hand, obviously, G4B = B and
(Gd + NIn)A = (Gd + ,UIn) (A + B%(GO - In)_l - B}/E)(GO - In)_l) =

(Ga + L) Ay — (1+ @) BYo(Go — L)~
On the other hand, one has

AGq4 + pBYy = (A + BYy(Go — I,) "' — BYy(Go — I,) ™) Ga + uBY, =
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AgGq—BYy(Go—1,) 'Ga+puBYy = AgGa—BYy(Go—1,) " H(Ga—u(Go—1,,)) =
AoGq — (1 +1)BYy(Go — I,) L.

Hence, we derive the identity (19).

3) First of all, notice that, the canonical homogeneous is well defined since
X1 is satisfies the second and the third inequalities from (20). It is continuous
on R™ and continuously differentiable on R™\{0} in the view of Lemma 2.

On the other hand, the formula d(s) = e*“a and the identity (19) yield

. = SiAQij . > Si(Gd — /L[n)iAo e _us
Apd(s) = ; = ; g = e*Cagy = et*d(s)Ay.  (25)
and
d(s)B=¢°B, VseR. (26)

In this case, for the closed loop system, using the formula (12) we derive

d z27dT (= In||z||q) X~ td(=In|z Apz+||lz|* T BY X—1d(—1n ||z||q)z

“zlla = llzlla (=In] IId)T - (_ I ”d)(fi I H_d (=In|zlla)z) _
dt zTd’ (—In|lz|la)X ~1Gad(—In||zlla)z

Hle—i—;wchT(—lnHz||d)X*1(AO+BYX*1)d(—lnHz||d)ac _
d 2TdT (- Infz]la) X ~1Gad(~ In [z]a)z
H»”UHHM zTdT (—In||z]ja)X (Ao X+BY+XAJ+YTBT)Xtd(—In|z|a)z
d

aTdT (= In|lzlla) X~ (GaX+XG])X~1d(~ In[lz[a)z

Hence, taking into account that X and Y satisfy (20) we derive (22).

4) Since the canonical homogeneous is continuous on R™ and continuously
differentiable on R™\{0} then, by construction, u is continuously differentiable
on R™\{0}. Moreover, from the definition of the canonical homogeneous norm we

have
2'd" (—In||z||q) X td(=In|jz|q)z = 1,

SO
lull < rillz) +rollz4t, Vo eR™

with 71 > 0 and r2 > 0 dependent of Yy, G, X, and Y. The latter means that u
is locally bounded for any u € [-1,0) and continuous at zero for p € (—1,0).
5) Let us denote the right-hand side of the closed-loop system by

f(x) = Aoz + ||z|l5T BY X 'd(=In [|z]la)=
Using the identities (25), (26) and ||d(s)z|lq = €*||z|lq we derive
f(d(s)z) = Apd(s)z + [|d(s)z[/5T BY X 1d(~ In ||d(s)z]la)d(s)z =
e d(s) Az + > H:BH’;HBYX_ld(— In||z|la — s)d(s)z =
ed(s) (Agz + |l BY X7 d(~ In alla)e) = e#*d(s) (),

for all z € R™ and all s € R. The proof is complete.
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Remark 1. A solution of the linear matriz equation (18) is not unique in the
general case of the multiply-input linear control system. In the single input case
(m = 1), the solution if always unique and Gq is a diagonal matriz.

Remark 2. The system of linear matriz inequalities (20) is always feasible at
least for u close to 0. Indeed, the feasibility of the first LMI together with the third
one follows from controllability of the pair {A, B} (see, [6]), while the second LMI
becomes the third one for u tending to 0 (reps. Gq — I, as u — 0). Notice that,
the system of LMIs (20) is always feasible for p = [—1,0), at least, in the single
input case [25].

As a straightforward corollary of Theorems 4 and 5 (see also Example 3 as
the hint of the proof) we provide the following result.

Corollary 2. The control system (17), (21) designed by Theorem 5 is ISS with
respect bounded additive measurement noises if p € [—1,0) and ISS with respect
to bounded additive exogenous perturbations if p € (—1,0).

Remark 3. If m =1 and A as in Example 1 then Yy =0,

-n+l 0 .. 0 0 es(1=p(n=1)) ? b 0 o0
0 —n+2.. 0 0 0 l=p(n=2)) = 0 0
GO = e e e e s d(S) = ¢
0 0 ..—10 0 0 es(l—u) ¢
0 0 .00 0 0 w0 e
Obviously, for F = agX ™', an integer a = —% and m = a+n — 1 the canonical

homogeneous norm defined in Theorem 5 simply coincides with the controllability
function given by (4), (6) and the system of LMIs (20) implies (5), (7) with
K = Y X~L. Therefore, the controller (21) coincides with (8). The latter means
that the control system (3), (8) is d-homogeneous.

Similar conclusions can be made for controllability functions designed in [17,
Chapter 1, §5] and [17, Chapter 1, §6].

5. Conclusions

The paper shown that linear autonomous control system always admits
a generalized homogeneous controllability function. Moreover, the well-known
controllability function studied in [17, Chapter 1| are homogeneous as well! This
immediately results in robustness (Input-to-State Stability) of the corresponding
control systems with respect to a rather large class of disturbances. An interesti-
ng open problem in this context is the homogeneity analysis of controllability
functions designed by means of integral operators (see [17, Chapter 5]).
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Meron ¢yukmil kepoBanocrti, BBemenmit B. 1. KopoboBum mHampukinii
1970-x poxiB, K BioMO, € ePEKTUBHUM IHCTPYMEHTOM i HPOCKTYyBAaHHS CHU-
cTeM KepyBaHHs. BiH po3pobJieHnit siK Jiyist JIHIAHIX /HeJIHIHHIX, TaK 1 JiJIst CKiH-
YEeHHO/HeCKIHYeHHOBUMIDHUX cucTeM. Ll crarTst moennye 1eit MeTos i3 Teopieto
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OJTHOPITHOCTI, IO KOPIHHAM CATA€ MOYATKy 18 CTOITTS Ta siBjste cOOOIO CHMe-
Tpiero PyHKIIT 1110/10 PiBHOMIpHOrO MaciiTabyBaHHs 11 apryMeHTy. Y3arajbHeHHsI
TaKoro e(peKTUBHOTO IIiaxory Oyian BBeaeri B 20 cromiTTi. ¥ 1miit poboTi mokasaHo,
[0 TaK 3BaHA OJIHOPiIHA HOpMa € (PYHKINEH KEPOBAHOCTI JIHIHHOI aBTOHOMHOT
CACTEMU KepyBaHHS, a BIJIIOBITHA 3aMKHYTa CHCTEMA € OJIHOPIJTHOIO B y3araJib-
menomy cenci. Ile Bimpasy jgae 6araTo KOPHUCHUX BJIACTHBOCTEH, BIJOMUX JIJIst
OJIHODIJIHMX CHUCTEM, TaKUX $K pobacricTh (CTablIbHICTH BXIJHUX JIAHUX) IIOJ0
JIOCUTH BEJINKOTO KJIacy 30ypeHb, 30KpeMa, MI0JI0 0OMEXKeHUX aJUTHBHUX IIyMiB
BUMIPIOBaHHSI Ta OOMEKEHUX AJUTUBHUX eK30TeHHuX 30ypeHb. OCHOBHa Teope-
Ma, IpeJCTaB/ieHa B Iiif pobOTi, JENmo yTOYHIOE MOOYI0BY (DYHKINI KepOBAHOCTI
s JIHITHIX aBTOHOMHMX CHUCTEeM KepyBaHHs 3 KijbkoMa Bxomamu. [Iporemypa
[IOJISITA€ B PO3B’si3aHHI JIHHIAHOTO aaredpaidHoro piBHAHHS Ta CHCTEMY JIHIMHIX
MaTpudHuX HepiBHOcTel. CaMa OJHOPIHICTh 1 BUKOPUCTaHHS KAHOHIYHOI OJ[HO-
PigHOT HOPMU iICTOTHO CIIPOIIYIOTH 3HAXOKEHHS (DYHKINT KepOBAHOCTI Ta aHaIi3
3aMKHyTOl cucteMmu. TeopeTnyni pe3ysibraTu maxpimieni npukiaagamu. lepcre-
KTUBHUM HAIIPIMKOM J[JIsI MaiOyTHIX TOCJI2KEHD € T0/Ia IbIlle BUBIEHHS 100Y/10-
BU (DYHKINI KepoBaHOCTI Ha OCHOBI OJHOPIIHOCTI.

Kamovoei carosa: GyHKITS KepOBAHOCTI; y3arajabHEeHa OIHOPIIHICTL; POOACTHICTD.

On homogeneous controllability functions
A. Polyakov
Inria Lille-Nord Europe, 40. av. Halley, Villeneuve d’Ascq, 5965, France

The controllability function method, introduced by V. I. Korobov in late 1970s, is
known to be an efficient tool for control systems design. It is developed for both li-
near/nonlinear and finite/infinite dimensional systems. This paper bridges the method
with the homogeneity theory popular today. The standard homogeneity known since
18th century is a symmetry of function with respect to uniform scaling of its argument.
Some generalizations of the standard homogeneity were introduced in 20th century.
This paper shows that the so-called homogeneous norm is a controllability function
of the linear autonomous control system and the corresponding closed-loop system is
homogeneous in the generalized sense. This immediately yields many useful properti-
es known for homogeneous systems such as robustness (Input-to-State Stability) with
respect to a rather large class of perturbations, in particular, with respect to bounded
additive measurement noises and bounded additive exogenous disturbances. The main
theorem presented in this paper slightly refines the design of the controllability function
for a multiply-input linear autonomous control systems. The design procedure consists in
solving subsequently a linear algebraic equation and a system of linear matrix inequali-
ties. The homogeneity itself and the use of the canonical homogeneous norm essentially
simplify the design of a controllability function and the analysis of the closed-loop system.
Theoretical results are supported with examples. The further study of homogeneity-based
design of controllability functions seems to be a promising direction for future research.
Keywords: controllability function; generalized homogeneity; robustness.
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