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The present article gives sufficient conditions for the existence and uniqueness
of the solution of an implicit linear difference equation of an arbitrary order
over a certain class of non-Archimedean rings, in particular a ring of formal
power series. It is shown that this solution can be found using the Cramer rule.
Some results on such equations over a ring of polynomials are also given.
Keywords: difference equations; non-Archimedean valuation; ring of polynomi-
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Tonuapyk A. b. HesiBHi JiiHiiiui pisHuIleBi piBHsSIHHS Ha O HeapxiMeIoBH-
MU KiJIBIIIMH. Y CTATTI HABOAATHCS JOCTATHI YMOBH JIJTsT iICHYBAHHS Ta, € TIHO-
CTi pO3B’SI3KY HESIBHOTO JIHIHOTO PI3HUIIEBOTO PIBHIHHSA OYIb-sIKOTO MOPSIIKY
HaJl JIEIKUM KJIaCOM HeapXiMeJIoBUX Kijellb, 30KpeMa KiablieMm (hopMabHUAX
crereHeBux psifiiB. [lokazaHo, mo 1eif po3B’I30K MOXKHA 3HAUTH 38 JIOTIOMOTO0
npasuia Kpamepa. Takoxk HaBesneHi Jedki pe3yJbTaTU IMOJO0 TAKUX PIBHAHDL
HaJT, KiJIbIIEM TTOJIIHOMIB.

Kmowosi crosa: pisHUIEBe PIBHAHHS; HeapXiMeI0Be HOPMYBAHHS; KiJIbIIE MTOJTi-
HOMIB.

Tonuapyk A. b. HesiBHBbIE JInHElHBbIEe PA3HOCTHBIE yPABHEHUS HAa Heap-
XUMEIOBBIMU KOJIbIIAMU. B cTarbe mpUBOAATCS JOCTATOYHBIE YCJIOBHS CY-
MECTBOBAHUS W €IMHCTBEHHOCTU DPEIeHNs] HESBHOTI'O JIMHEHHOIO Pa3HOCTHOTO
yPaBHEHUS JII0OOro MOPsiJIKa HaJl HEKOTOPBIM KJIACCOM HEAPXUME/IOBBIX KOJIEIT,
B 9aCTHOCTHU Ha/ KOJIBIIOM Cl)OprIa..HbeIX CTEeII€eHHbIX PsAJIO0B. HOK&S&HO, 9TO 3TO
pelleHre MOXKeT OBITH HaiijleHo ¢ oMol mpasuiaa Kpamepa. IIpuBojsarces
TaKKe HEKOTOPbIE PE3YJIbTATDI, KACAIONNECs TAKNX YPABHEHUSX HAJl KOJIBIIOM
MHOTOYJIEHOB.

Karuesvie caoea: pPa3sHOCTHBIE yDABHEHWs; HEAPXUMEIOBO HOPMHUPOBAHUE;
KOJIBIIO MHOT'OYJIEHOB.
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1. Introduction

In the article [1] a simple interesting fact about recurrence equations is
discovered: there is shown that the infinite implicit system of linear equations
in variables xqg, z1, x2, ...
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bxn+1:a$n+fn, n:0)1)27"'5

where a, b, f,, € Z, b # 1 and a and b are coprime, which has infinitely many
solutions over Q, may have either no integer solution or exactly one.

It is proven that there exists a unique solution from the ring of p-adic integers
Zy and this solution is found explicitly as a sum of series converging in Z, with
respect to the well-known non-Archimedean valuation (see [1, Cor.2.1]).

In 2] it is shown that this unique solution can be found using the Cramer‘s
rule. In [3] both these results are generalized for the second order equation.

Let us consider the similar equation over the ring of polynomials with the
coefficients from some field K:

b(2)Znt1(2) = a(2)zn(2) + fu(2), n=0,1,2,...,

where a(z), b(2), fn(z) € K|z], degb > 1.

Since for obtaining the solution over Z we considered the equation over the
completion of Z, i.e. Zj, then for obtaining the solution over K|z] it is naturally
to consider the equation over the completion of K|[z], i.e. K[[z]]. This analogy is
described, for instance, in [4, §7].

In the present article a construction integrating these two cases is described:
the ring of p-adic integers is a particular case of the valuation ring of a field with a
non-Archimedean valuation Q,, the ring of formal power series also is a valuation
ring of a field of formal Laurent series (|5, Ch. XII, §6]).

The results for the finding a solution of such an equation over the ring of
integers are generalized to an equation of the arbitrary order and for the class of
rings, which are valuation rings of non-Archimedean field. The results obtained
in this article also clarify the previous results for integers.

In Theorems 1 and 2 of Section 2 a sufficient conditions for the uniqueness
and existence of a solution of n-th order difference equation over the valuation
ring of a field with a non-Archimedean valuation is formulated. The solution is
explicitly found as a sum of the series (see Theorem 2), converging with respect
to the non-Archimedean valuation in the field. In Section 3 it is shown that this
unique solution can be found using the Cramer‘s rule.

Section 4 is devoted to the equations over the ring of polynomials. The
results of Section 2, applied to the equations over the field of formal power series
(Corollaries 2 and 3), require some additional study to check the existence of a
polynomial solution. There is given Theorems 4, 5 and 6, facilitating this checking
in different particular situations and some specific examples of its applying.

2. Existence and uniqueness theorems

Consider a field F' with a non-Archimedean valuation | - | (see [6, 1.2]) and its
valuation ring R = {s € F': |s| < 1} (see |5, Ch. XII, §4]).
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Theorem 1. Suppose a; € R, |a;| < |ag| for all 1 < j < m, and f, € R for
n=20,1, 2, .... Then the following implicit difference equation

AWt + G 1Wnpm—1 + « . + G1Wp41 + aowy, = fn, n=0,1,2, ... (1)
has no more than one solution over R.

Proof. To prove the uniqueness of solution of the equation (1) it is enough to
proof that the homogeneous equation

A Whtm + CGm—1Wptm—1 + - .. + a1wp+1 + aow, =0, n=0,1, 2, ... (2)

has only trivial solution w, = 0 for any n over R.
Over the field F' the solution {w,} satisfies

a Am—1 aj
Wy = = Wpm — —— W] — -+ — —Wpy1, B =0,1,2, .... (3)
ao ao

Then, taking into account that the valuation is non-Archimedean, we obtain
|wy| < 11;12;%%’1“%8“\}. Therefore for any n there is ¢ such that |%§+Z| > |why-
By r denote max {\%H. Note that by assumptions of the theorem, r < 1. We

<j<m
obtain that for any n there is ¢ such that |wy| < r|wp4il.

Thus starting with wp one can construct a subsequence {w,, } such that ng =0
and |wy,| < r|wp,,,| for all i. It means that |wo| < r* - [wy,| for any 7. Since |wy|
belongs to R then |w,| < 1 for all n, then |wg| < r* for any i. Note also that by
the assumption of the theorem, r < 1. Thus wy = 0 and consequently w,, = 0 for
all n.

The proof is complete.

Remark 3.1. Suppose Ry is a factorial ring, v € Ry is a prime element ([5,

Ch.XII, 4]). Then any element z from the field of fractions Frac(Ry) has a unique

representation x = v'-c such thatt € Z and ¢ = g, where r, s € Ry and both of r,

s have not v in their factorizations. By definition, put |x|, = 27'. The valuation
||y is non-Archimedean over Frac(Ry) and Ry is a valuation ring for Frac(Ryp).
Over the ring Ry the assumption |a;|, <|agl, <1 of Theorem 1 can be rewritten
r
and both of 71, s; have not v in their factorizations, then t; > to > 0 for all
0<j<m.
In this case Theorem 1 yields, for instance, the following consequence:

in the following form: if aj = v' -c;, where t; € Z and ¢j = where rj, sj € Ry

Corollary 1. If there exists v € Ry such that v does not divide ag and v divides
aj for all 1 < j < m, then the equation (1) has no more than one solution
over Ry.

The following theorem gives a sufficient condition for the existence of solutions
of Equation (1) over the ring R.
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Suppose conditions of Theorem 1 hold and |ag| = 1. Then ag is invertible in
R. Indeed, in the field F' there is an element aal and |aal\ = 1, thus it belongs
to R. Thus the following infinite linear system

Yo = 17
aoyr + a1Yr—1 +agyr2+ ... +tagyo =0, k=1,....m—1
aoyk + ar1yk—1 + a2yYk—2 + ... + amY-m =0, k=mm+1,m+2,...
(4)
is explicit. It has a unique solution {y, }>> over R. The following theorem descri-
bes a solution of (1).

Theorem 2. Let the field F be complete. If |aj| < |ag| =1 for all 1 <j <m,
all the following series

— [
— ntk —
wanyk ao,nfO,l,Q,... (5)
k=0
converge in R with respect to the valuation | -|. This sequence {wy} is a unique

solution of (1).

Proof. The valuation || is non-Archimedean, so to prove the series (5) converge

over R it is enough to prove that ’yk fa“gk ’ tends to zero. ([6, 2.1])

Since fn, aal both belong to R, then f’(‘l—gk‘ < 1. Let us prove that

< rlml . 8, where § = 1} and r = 1.
[vn| <rimt - S, where = | max  {ly;|} and 7 = max {|a;[}
The proof is by induction on n. For the cases n < m, there is nothing to proof.

Indeed, |y,| < S = 1.
ndeed, [ya| < 5= max {ly;l}

For the case n = m = m + 0, by the system (4), we get

al a9 A,
Ym = ——Ym—-1— —Ym-2— ... — —Yo,
ag ag agp
so, keeping in mind that | - | is non-Archimedean and |ag| = 1, we can estimate
ai a2 am
= |—Ym-1+ —Ym-2+ ...+ —yo| < max {|a;ym—;|} <r-S.
|ym| aoym 1 aoym 2 a0 Yo| > 1§j§m{‘ iYm ]’} =

For the inductive step assume that the inequality holds for n < m+k —1. Let
k+
us prove that it holds also for n = m + k, i.e. |y,| < rl mol S
By the system (4), we get
a1 as Am

k = Yk -1 = 7T/ Yk -2 — -7 Yk
Yk+m aOy +m aOy +m aoyy

so, keeping in mind that | - | is non-Archimedean and |ag| = 1, we can estimate

[Yesm| < max {|ajyeem—j[} <7 max {{yprm—;]}
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] k
By the inductive assumptions, |y;| < rliml. s <rlml.Sforall k<j<k+m-—1,
. k k k+
that is max {Yrrm—j|} < rlml.S. Tt follows that |yg | < r-rlml. S =7l m .S,
<j<m

Therefore, by the principle of induction, the inequality |y, | < rlml . S is true
for any n € Npy.

Since r < 1, then |y,| tends to 0, so the series (5) converges.

To verify that (5) satisfies (1), let us substitute it into the equation. Taking
into account that {yy}>2, satisfies (4), we obtain

m

1 )
AmWpitm + Gm—1Wnim—1 + ... + G1Wpt1 + Wy = ; § Z aiykfn—‘rk:-‘ri =
1=0 k=0

1 m—1 7 1 00 m
= > firn Y i+ - > fitn > ajyij=fa. (6)
R =0 0 i—m =0

The proof is complete.

Remark 3.2. In the particular case m = 1 we have the equation
a1Wpa1 + aown = fn, n=0,1,2, ..., (7)

which has a unique solution over R if |ag| =1 and |a1| < 1. By Theorem 1, this
solution has the form of series (5). In this case (4) has a solution

ak:
yr=(-1)F—, k=0,1,2,...,
aq

so the solution of (7) can be written as

> k

a

wy =Y (=) gk n=0,1,2, .., (8)
k=0 Qo

In the particular case R = Z,, this result is obtained in [1].

Remark 3.3. The case m = 2 is described in details over the ring of integers

in [3].

3. Cramer formulas

Suppose F'is a field of characteristic zero with a non-Archimedean valuation
| - | and for the equation (1) conditions of Theorem 2 hold. Then it has a unique
solution over R, which can be found using Cramer’s rule.

Since ag is invertible, without loss of generality one can consider the following
equation instead of (1):

AWt + G 1Wptm—1 + « .. + Q1Wpt1 + Wy = fr, n=0,1,2, ... (9)
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It can be written as a system of linear equations in this way:

1 a1 as a3 -+  am 0 o - fo
0 1 a; ag - Am—1 [y 0 fl

Av=f A=119 0 1

a1 [ Qm—2 Am—1 Qm N ’ f - f2

Let A, be obtained from the matrix A by replacing the n-th column with the
vector f.

By A; (respectively, A, ;) denote the principal corner minor of the (j + 1)th
order of the matrix A (respectively, A,).

Theorem 3. Suppose the conditions of Theorem 2 hold. Then the unique solution
over R can be found using Cramer’s rule:

det A,

Wnp detA7 n 07 ) 4y ( O)
where the determinants are defined as following limits in R with the valuation |- |:
det A= lim A,,

T—00

det A,, = li_>m Apt1r, n=0,1,2,...
T oo

Proof. By Theorems 1 and 2, equation (1) has a unique solution over R in the
form (5). Let us show that this solution coincides with the Cramer formulas (10).
Note that A; =1 for all j, so det A = 1. Let us consider

fo a1 a2 a3 - ap 0 0
fi 1 a1 a2 -+ am-1 am 0O

A= f3 0 1 a1 - am—2 am-1 ap

Denote by Bj the determinant formed by the first k& columns and rows of the
matrix

aip az am 0 0

1 a1 -+ am_1 am 0

0 1 Gm—2 Am-—1 am
0 Um—-3 OAm—-2 am-—1

Add also By = 1. If 0 < k < m it is written as

ap az -+ ag-1 A
I ap - ap—2 ag1
I - ag-3 ag-o
By = . .
o 0 -+ as
o o --- 1 ai
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Considering the Ay ; and decomposing it relative to the first column, we get the
partial sums of

det Ay = fo + Z(—l)jijj
j=1

We should prove that the right-hand side of this formula coincides with > yg fi,
k=0

so we should prove that y, = (—=1)*By if k > 1.
Recurrence equations
Yk + a1yk—1tayp—2+ ... +agyo =0, k=1,...,m—1 (11)
Y+ a1yp—1 + aoyp2+ ... +amyp—m =0, k=mm+1,m+2,...

with the initial condition yo = 1 give a unique sequence {y;}2° . Thus we should
prove that {(—1)*Bj}?2, is a solution of these equations too.
Decomposing By, relative to the first row, we get

By =a1Bp_1 —aoBp_9+a3Bg_3— ...+ (—l)milamBk,m, iftk>m

By = a1Bj_1 — aaBj—2 + agBy_3 — ... + (—1)*ax By, ifk<m
Hence,

By —a1B_1 4+ agB—3 —a3B_3 — ... + (=1)"'qxBy =0, ifk<m

By —a1By_1 +a2B_2 —a3Bi_3+ ...+ (=1)"amBr_m =0, ifk>m

It follows that {(—1)*Bj}2°, is a solution of (11). Thus y, = (—1)*By, for any k,
therefore det A1 = wy.

Now consider A; and its minor of i-th order. Note that we are interested in
the limit by 4, so it is enough to consider ¢ such that ¢ > 5 and ¢ > m.

1 a1 az -+ aj—2 aj—1| fo ajt1 --- am 0
0 1 a - aj-3 aj—2| fi a -  ap-1 am

0 0 1 - aj—4 aj—3| fo aj-1 - Gn-2 Am—1

fi-1 a3 - Qm_j1 Gm—j

0 0 O 1 a1
0 O 0 0 1 fj an o Am—j5—2  Om—j—1
0 0 0 0 0 |fix1 a1 -+ Qm—j-3 Gm—j2
0 0 0 0 0 fj+2 1 ot Am—j—4 Om—j-3
0 0 O 0 0

fivs 0+ am—j5 Qm—ju

We see that its determinant equals det.A;, in which the vector
(fi+1, fi+2, fj+030, ...)T is taken instead of f. It follows that Aj; = >~} o Yk fitk
sodet Aj = 07 o Ukfith-
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The proof is complete.

4. Implicit linear difference first-order equation
over the ring of polynomials

Let K be a field with the characteristic zero. For any zy € K we can consider
the ring of formal power series K [[z—zo]]. It is a factorial ring (|5, Ch.IV, Th.9.3.]),
so we can construct its field of fractions and valuation ring as in Remark 3.1. This
field of fractions is a field of Laurent series K ((z—2zp)), it is complete. By definition,
for w € K((z — 20)) put |w(z — 20)|2— = 2%, where t is the smallest integer for
that (2 — 20)" - w(z — 20) € K[[z — 20]] (see [5, Ch.XII, §6]).

Then Theorems 1 and 2 yield the following corollaries:

Corollary 2. Let us consider the equation
b(z — 20)wn+1(2 — 20) + fu(z — 20) = a(z — 20)wn(z —20), n =0, 1,2, ..., (12)

where b(z — z9), a(z — 20), fn(z —20) € K[[z — 20]]-

Suppose a(z—29) = (2 —20)*-a1(z — 20) and b(z —29) = (2 —20)™ - b1 (2 — 20),
where a1(zp) # 0, bi(20) # 0 and k,m are non-negative integers. If k < m,
then there exists at most one sequence of formal power series {wy(z — 29)} that
satisfies (12).

Corollary 3. Suppose a(zg) # 0 and b(zg) = 0. Then the sequence of series

[e.9]

b (z — 20)
wn(Z_ZO):men-i—i(z_ZO)? n:o7 17 27 AR (13)
=0

is a unique solution of (12) over K[z — zp]].

Two previous results are related to the solution in the ring of formal power
series. They imply also the following result, concerning the solution over the ring
of polynomials.

Suppose a(z), b(z), fn(z) € K[z]. Let us consider the equation

b(2)wn41(2) + fu(2) = a(z)wn(2), n=0,1,2,.... (14)

Since any polynomial can be rewritten as a formal power series from K [[z — 2]
for any zp, then this equation can be consider over K|[[z — zo]] for any z.

Corollary 4. If for some zy Equation (14), considering over K|z — 2o]], sati-
sfies the assumptions of Corollary 2, then Equation (14) has no more than one
polynomial solution. If also the conditions of Corollary 8 hold for this zy, then
either sequence of sums

Wy (2) :ZMJ“”M(Z), n=0,1,2,..., (15)

=)

is a sequence of polynomials that solves (14) or there is no polynomial solution of
(14).
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Proof. By Corollary 2, Equation (14) has no more than one formal power series
solution (15). It is only candidate for being the polynomial solution.

The following example shows that it may be no polynomial solution of Equati-
on (14).

Example 1. The equation
2Wpy1+1=wp, n=0,1,2, ...,

has no polynomial solution. Indeed, we are under the conditions of Corollary 4,
so there is unique formal power series solution wy,(z) =1+ 2z + 22 + 23 + ... for
all n, which obviously is not a polynomial.

The following theorem directly follows from Corollary 4 if K is algebraically
closed. In the general case it needs a proof.

Theorem 4. The homogeneous equation
b(2)wnt1(2) = a(z)wn(2), n=0,1,2, ... (16)

has only zero solution if and only if b(z) does not divide a(z). Thus Equation
(14) has at most one polynomial solution if b(z) does not divide a(z).

Proof. Indeed, since b(z) does not divide a(z), there exists p(z) € K|z] such
that p(z) divides b(z) but does not divide a(z). Also, (16) means that

b"(2)

a”(z)

wp(2) =woe(z), n=0,1,2,....

We get that wq(z) is divisible by p™(z) for any degree n, which is impossible for
a non-zero element wy(z). Since wy(z) = 0, then wy(z) = 0 for any n.

If b(z) divides a(z), then the equation (14) can be rewritten in an explicit
form. It follows that there exist infinitely many solutions of this equation: one for
each initial value wy.

The proof is complete.

Example 2. Suppose f,(z) = f(z) for each n, and suppose b(z) does not
divide a(z). Suppose there exists a solution {wy,} of the difference equation

b(2)wny1(2) + f(2) = a(z)wn(2).

Consider the sequence {wy,+1}. Obviously, it also satisfies these equalities. By
the uniqueness of the solution, we get w, = wyy1 for all n. It means that if
the solution exists, it is constant. Therefore, it should satisfy the equality

b(2)w(z) + f(2) = a(z)w(2),

so we obtain that
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f(z)
a(z) = b(z)
is the only candidate to be a solution, thus there exists a solution if and only if

a(z) — b(z) divides f(z).

wp(2) = w(z) =

Particularly the equation zwyp4+1 +1 =w,, n =0, 1, 2, ... from the previous
example has no polynomial solution since b(z) — a(z) = 1 — z does not divide
fz) =1

The example considered shows that the equation may have no polynomial
solution, and to check that using Corollary 4, one have to check whether the
sequence of formal power series (15) is a sequence of polynomials. The following
result gives that it is enough to check whether only the first term wg(z) is a
polynomial.

Theorem 5. Suppose a(z) = 1. If the wy from (15) is a polynomial, then wy,
from (15) is a polynomial for any n.

Proof. Let us prove this by induction. Since {wy,} satisfies the equation, then

Wni1(2) = w"(z)b(_z)f”(z) n=0,1,2 ...

Since wy(z) and f,,(z) both are polynomials, then wy, (z)— f,(z) is a polynomial
too. Let us prove that b(z) divides it. By (15), we get

W (2) = fn(2) = b(2) (fas1(2)+ b(2) fata(2)+ b*(2) fags(2)+...), n=0, 1, 2,( : )
17
Let us choose Z from the algebraic closure K of K such that z— Z divides b(z).
Then b(Z) = 0.
Let b(z — 2) = b(z) and fn(z — 2) = fy(2) for any n. Find the {wn(2)} as
a sequence of formal power series 1, (2 — Z) from K[[z — 2]]. Then for any n we
obtain an equality between two formal power series from K[z — Z]|:

~

b(z — 2)

A~

B (2 = 2) furirr(z — 2) = a2 — ) — fulz - 2).

~r

Il
=)

)

Since b(Z) = 0, then b(0) = 0. Thus wy,(2) — fu(Z) = Wn(0) — f(0) = 0, it
means that z — Z divides the polynomial w,(z) — fn(z). So we can divide this
equality by z — Z and consider the equality

O“>

-z

2 ii" (2= ) farinr(z — 2) = w"(z_g)_fn(z_g)’
i=0

where the right-hand side is a polynomial with coefficients from K.
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Repeating this for each divisor of b(z), we obtain

wn(z - 2) - fn(z - 2) _ wn(z) - fn(z)
b(z — 2) b(z)

(o]

Zb Z_Z fn-‘rz-i—l(z_z) :wn—i-l(z)v
i=0

is a polynomial with coefficients from the algebraic closure of K.

We claim that its coefficients belong to K. Indeed, polynomials wy,(z) — fn(2)
and b(z) have coefficients from K. Let k denote a degree of w,,+1(z). Then consider

k+1 pairwise different elements xg, x1, x3, ..., xx € K that are not roots of the
polynomial b(z). Elements wn(%b)(;‘)f”(%) € K, where 0 < j < k, are the values
J

of our polynomial. There is a unique polynomial of degree k that takes these k+1
values, and it has coefficients from K.
The proof is complete.

Remark 3.4. In fact, the equality (17) does not yield that b(z) divides
wp(2) — fu(z): it is possible that the polynomial does not divide the product of
this polynomial and a formal power series, for example,

1-—2)A42z+22+224+..)=1.

By Theorem 8, the formal power series considered has a special structure
fn(2) 4+ b(2) far1(2) + b2(2) farao(2) + ..., this is what allows us to carry out
further reasoning.

Example 3. Let us consider the equation

k
2Wn11(2) + Z A2 = wy(2).
j=0

In this case a(z) = 1,b(z) = z and f,(2) = Z?:o Aj2""7. Then we are under
the conditions of Corollaries 2, 3 and Theorem 5 over the ring K[[z]]. Then the
first element of the solution sequence is

00 k k o) k 00
wo(z) = ZZZZAsz = ZAJ'ZZ”J = ZAJZZZ =
i=0 ;=0 j=0 =0 Jj=0 i=j
k k 00 k k—1 k o)
= ZAJ(Zz’ + Z z') = ZAsz’ +ZA] Z 2"
7=0 i=j i=k+1 7=0 i=j 7=0 i=k+1

It is a polynomial if and only if Z?:o A; = 0. Then wy(z) ZJ 04 Zk !
Theorem 5 implies that under this condition w,(z) also are polynomlals

It is interesting to note that the condition, which is an analogue to this one,
is appeared in |7] due to the finding a rational solution of some type of difference
functional equations (|7, Theorem 2]).
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Example 4. Let us consider the equation

(z = Dwpy1(2) + Apz + By, = wp(2).

In this case a(z) = 1,b(z) = z — 1, fu(2) = Anz + B,. we are under the
conditions of Corollaries 2, 3 and Theorem 5 over the ring K[z — 1]]. Rewriting
fn(2) as a power series from K[[z — 1]], we get fn(2) = An(2 — 1)+ A, + B,

Then the first power series of the solution sequence is

wo(z) = Y (Aiz+ Bi)(z = 1)) => (Ai(z = ) 4 (A + By) (2 — 1)) =
=0 1=0
— i (z—1) —G—Z (z — 1) A0+Bo+i(x4i—1 + A + B;) (2 — 1)i

i=1
Itisa polynomlal if and only if there is j such that for any ¢ > j the condition
Ai—1+ A; + B; = 0 holds. Theorem 5 implies that in this case w,(z) also are
polynomials.
For checking whether the formal power series solution of (14) is a sequence of
polynomials, one can look at degrees.

Example 5. The equation zwp41 +1 = w, has no polynomial solution,
because degw,(z) = degwy+1(z) + 1, so the degree of wy(z) decreases, which
is impossible for a sequence of polynomials.

The following theorem provides general information about the degree of
a polynomial solution, which is useful either for finding it or for proving the
non-existence.

Theorem 6. Suppose dega < degb. If the sequence of polynomials wy,(z) is a
solution of Equation (14), then there exists some number k such that the inequality

deg wi < deg fr —degb+ dega
holds.

Proof. Assume the converse, then degwy > deg fr — degb + dega for all k.
Let us consider the following cases, keeping in mind that {wy} satisfies (14):

1. if deg fr < degwyy1 + degbd, then degwy + dega = degwi1 + degb;
2. if deg fr = degwyi1+degb, then deg wy 1 = deg fr—degb < deg wy—deg a;
3. if deg fr, > degwy41+degb, then deg wi+dega = deg fr, > degwyy1+degb.

In all these cases we conclude that degwyiii < degwy for any k. The
sequence of degrees of wg(z) decreases, which is impossible for a sequence of
polynomials’ degrees.

The proof is complete.
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Example 6. Let us consider the equation
(2 + Dwpy1 + A2" 4+ B2"T 4+ C2"2 4 D23 = w,(2).

In this case a(z) = 1,b(2) = z + 1, fo(z) = A" + B2 + C2"T2 4 D23,
We are under the conditions of Corollaries 2 and 3 over the ring K[[z + 1]], thus
we can write down the solution:

oo
wnp(2) = Z (A" + B2"T1 4+ 02" + D2"T3) (2 4 1)°
i=0

To check whether these series are polynomials directly, one needs either to
rewrite f,(z) as a power series from K[[z + 1]], or to rewrite b’(z) as a power
series from K[[z]]. It is not easy to do both.

By Theorem 6, if w,(z) is a polynomial, then for some n its degree is no more
than deg(Az" + B2"" + 022 4+ D2"3) —deg(z + 1) = n + 2. It means that if
the polynomial solution exists, all terms of this sum having a greater degree are
reduced. The terms having a less degree are only in the first three summands, we
are not interested in others.

Thus if the equation considered has a polynomial solution, it may be the sum
of terms with degree no more than n 4 2 from the first three summands:

wy(2) = A2" + (A+ B)2"" + (2A4+ B+ C)2"

Now it is left to check when this polynomial satisfies the equation:

(z+ 1) (A" 4 (A4 B)2"™? + (2A+ B+ C)2"")+
+ A" + B2 4 2" 4 DS =
= A2"+ (A+ B)2"" + (2A+ B+ 0)2""2. (18)

We get that the coefficients of 2", 2"t! and 2"*? coincide automatically,
coefficients of "3 and 2"** give us assumptions 34 + 2B 4+ C + D = 0 and
2A + B 4+ C = 0. We conclude that the equation considered has a polynomial
solution if an only if D = A+ C and 2A + B + C' = 0. The solution found is

wn(2) = A2" + (A + B)2"t
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HesiBHi ginifini pisHuiiesi piBHsHHS
HaJ HeapXiMeIOBUMH KiJbIIMU
Tonuapyx A. B.
Xapxiscokuli nauionasvrutl yrisepcumem imeni B. H. Kapasina

M. Ceobodu, 4, Xapxie, Ypaina, 61022
Han 6ynb-sikum 1osieM HesiBHE JIiHIHe pi3HUIEBE PIBHSHHS 3BOIUTHCS JI0 3BUYAli-
HOTO SIBHOTO, siK€ Ma€ HECKIHYEHHO 0AaraTo po3B’si3KiB — CBiil [JIsT KO2KHOT'O TOYATKOBOIO
sunadenns. 1[ikaBo poO3TJIsiHyTH HesiBHE DI3HUIEBE PIBHAHHA HAJ| KiJIbIIEM, OCKLIHBKU HAJL
OyIb-IKUM KiJIbIIEM BUIAI0K HESBHOI'O PiBHIHHS 3HATHO BiIPI3HAETHCS BiJl BUMTAIKY sIB-
HOrO. Pe3ynibraTu 1010 pi3HUIEBUX PiBHSIHD HaJ KLJIBISIMHE, [II0 OYJIM OTPUMAaH] paHiiie,
3/1€OLIBIIIONO CTOCYIOThCSI KiJIbIlsl IIJIMX YUCEN 1 PIBHSIHB IIEPIIOro Ta JIPYIOro IMOPSIKY.
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VY miit cTaTTi BUBYAIOTHCS HESABHI PI3HUIEBI PiBHSHHS BHCOKOIO IMOPSIIKY HAJ JCIKUMI
IHITIMY KJIaCaMU KiJlellb, 30KpeMa, HaJ KiJIbIIeM ITOJIIHOMIB.

15 BUBYEHHS PI3HUIIEBOIO PIBHSHHA HAJ KiJIbIEM IINX YACEJ KOPUCHOIO OyJa imest
POBIVIHYTH I p-aJIn9HI 9UCJIa — MOMOBHEHHS KIJIBIIA IIJIMX YHCEN IO/I0 HeapXiMme io-
BOl p-ajuvHol HOpMU. 1106 3HAXOMUTH PO3B’S30K HESBHOI'O DI3HUIIEBOIO DIBHSHHS HAJL
KLUIBIIEM TIOJTIHOMIB, IPUPOTHUM OyIe PO3TIAHYTH TaKy K KOHCTPYKIIIIO JIJIsT IHOTO KiTb-
1Is1: Kijibite (DOpMAaJIbHUX CTEIIeHEBUX PSIJIB, K€ € TOMOBHEHHSIM KLJIBI(S [TOJIHOMIB OO
HeapXiMeJI0BOI HOPMU.

Kinbie popMaibHUX cTelreHeBUX PSAJIIB Ta KiIbIE IIINX P-aJdIHIX YUCEJT — 1€ OKPEeMi
BUIA/IKU KLUIbIST HOPMYBAHHS IOJIO0 HEAPXiMEJOBOI HOPMU JIESKOTO TIOJISA: TOJIS PSIiB
Jlopana Ta 1oJisi p-a/IMIHUX palliOHAJIbHUX YUCEJ BiAMOBIAHO. ¥ IIilf CTATTI BUBYAETHCS
HesIBHE JIHIITHe Pi3HUIEBE PIBHIHHS HAJI KiJIBIIEM HOPMYBAaHHS JIOBIJIBHOTO TOJIS HYJTHOBOT
XapaKTEePUCTUKU 3 HeapxiMenoBuM HOpMyBaHHAM. ChOpMYIbOBAHO JOCTATHI YMOBHU JIJIs
€JIMHOCTI Ta icHyBaHHS po3B’sa3Ky. HaBeieHo siBHY (hOpMYITy It €IMHOTO PO3B’SI3KY, SIKa
Mag€ BUTJISIT CYMU PsIILY, IO CXOJUTHCS 33 HEAPXiMeI0BOIO HOPMOIO.

Pizmrurnese piBHsgHHS BiMOBigae HecKindenniit cucremi giniitnnx piBHgHb. /loBeaenHo,
[0 Y BUIIAJKY, KOJIM HEsSBHE PI3HMIIEBE PIBHAHHA Ma€ €IMHUN PO3B'A30K, HOT0 MOXKHA
3HafiTH, BUKOpHUCTOBYIoUN mpaBmio Kpamepa. TakoxK y cTarTi HaBeJIeHI JiesdKi pe3yiib-
TATHU, IO MOJIErIIyIOTh TOIMIYK PO3B’si3Ky HEsIBHOI'O PI3HUIEBOTO PIBHSHHS HAJI KiJIBIIEM
HOJIIHOMIB.

Kmowosi caosa: pisHuIeBe PiBHSIHHS; HeapXiMe 0Be HOPMYBAHHS; KiJbIle MTOTiHOMIB.

Implicit linear difference equations
over a non-Archimedean ring
A. B. Goncharuk
V. N. Karazin Kharkiv National university
4 Svobody sqr., Kharkiv, 61022, Ukraine

Over any field an implicit linear difference equation one can reduce to the usual expli-
cit one, which has infinitely many solutions — one for each initial value. It is interesting
to consider an implicit difference equation over any ring, because the case of implicit
equation over a ring is a significantly different from the case of explicit one. The previous
results on the difference equations over rings mostly concern to the ring of integers and to
the low order equations. In the present article the high order implicit difference equations
over some other classes of rings, particularly, ring of polynomials, are studied.

To study the difference equation over the ring of integer the idea of considering p-adic
integers — the completion of the ring of integers with respect to the non-Archimedean
p-adic valuation was useful. To find a solution of such an equation over the ring of
polynomials it is naturally to consider the same construction for this ring: the ring of
formal power series is a completion of the ring of polynomials with respect to a non-
Archimedean valuation.

The ring of formal power series and the ring of p-adic integers both are the particular
cases of the valuation rings with respect to the non-Archimedean valuations of some
fields: field of Laurent series and field of p-adic rational numbers respectively. In this
article the implicit linear difference equation over a valuation ring of an arbitrary field
with the characteristic zero and non-Archimedean valuation are studied. The sufficient
conditions for the uniqueness and existence of a solution are formulated. The explicit
formula for the unique solution is given, it has a form of sum of the series, converging
with respect to the non-Archimedean valuation.
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Difference equation corresponds to an infinite system of linear equations. It is proved
that in a case the implicit difference equation has a unique solution, it can be found
using Cramer rules. Also in the article some results facilitating the finding the polynomial
solution of the equation are given.

Keywords: difference equations; non-Archimedean valuation; ring of polynomials.
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