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A quasilinear system of three differential equations of hyperbolic type, whi-
ch describes the settling of aggregating particles of a suspension placed in a
thin long tube in a field of external forces inhomogeneous along the tube, is
studied. The system of equations for mass and volume concentrations and the
average size of aggregates in a one-dimensional formulation allows disconti-
nuous solutions. The characteristics of the system correspond to the surfaces
of discontinuities, of which the outer one describes the subsidence rate, and
the inner one can have a different structure from a simple concentration jump
to a jump accompanied by a rarefaction wave and a fan of characteristics at
the moving boundary. A detailed study of the conditions for the existence of
different types of solutions is carried out. The application of the results for
different applied problems is discussed.

Key words: differential equations; hyperbolic systems; characteristics; sedi-
mentation; aggregation.

Kisinosa H. M., Ilocnaecekuit C. O., Bapanens B. O. HocaimkeHnHss KBa-
3iiHiltHOT MoOmesi ocimaHHSA YacCTUHOK CycCIieH3ii, 10 arperymoTb, B
HeoHOpigHOMY moJIi cuit. JlocaimKkyerbes KBa3niniitna CucTeMa TPhOX i~
depeHriaabHIX PIBHIHD TiTepOOJITHOTO TUITY, KA OMUCYE OCITaHHSA TaCTUHOK
cycriensii, mo arperyiorb. Cycnensis momiieHa B TOHKY JOBI'Y TPyOKy B HeO-
JIHOPIIHOMY y3/10B2K TpPyOKM 10J1i 30BHIMHIX cmii. Cucrema piBHSHB JjIsl Ma-
CcOBUX 1 00’€MHUX KOHIIEHTPAIIil i CepeIHBOIO PO3MIPY arperaTiB B OJHOMIPHOL
TIOCTAHOBIT JOITYCKAE PO3PUBHI PO3B’SI3KN. XapPaKTEePUCTUKU CUCTEMH BiIITOBII-
aloTh ITIOBEPXHSIM PO3PUBIB KOHIIEHTPAIII arperaTiB, 3 SKUX 30BHINIHS TOBEPX-
He BU3HAYAE IIBUJIKICTH OCIIAHHS, KA MOXKE BUMIPIOBATUCSH B €KCIEPHIMEHTAX,
a BHYTPIIIIHSI MOYXKe MaTHU Pi3HY CTPYKTYPY BiJ IPOCTOr0o CTPUOKA KOHIIEHTPAITiit
JI0 cTpuOKa, sIKAU CYIPOBOJXKYETHCSA XBUJIEIO PO3PI/ZKEHHST ab0 BisSJIOM Xapa-
KTEPUCTUK HA PYyXOMUU HUKHIi# rpanurni. [IpoBegeno meranbHe TOCTIIZKEHHST
YMOB iCHYBaHHSI Pi3HUX THUIIB pO3B’sa3KiB. OBroBOPIOETHCST 3aCTOCYBAHHS pe-
3yJIBTATIB /I PO3B’sA3aHHS PI3HUX MIPUKJIATHUX 33/1a4.

Kmowosi caosa: Tinepbostivni cucTeMu; XapaKTepUCTUKN; CEIMMEHTAITisT; arpe-
raifisi.
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Kusuiosa H. H., ITocnasckuit C. A., Bapanerny B. A. MccaenoBauue kBa-
3UJIMHENHOM MOJEeJIM OCe/IaHMsl arperupyromiux YacTUll CyCleH3un B
HEOIHOPOJAHOM I1oJie cuil. Vceienyercsa KBa3uinHeliHas cucremMa Tpex jud-
depeHnMaIbHbIX YPpaBHEHNUN TUIIEPOOIMIECKOTO TUIIA, KOTOPasi OMUCHIBACT OCe-
JaHue arperupyiomyx YacTULl CYCIeH3UN, IIOMEIIEHHOR B TOHKYIO IJIMHHYIO
TPYOKY B HEOJHOPOIHOM BJIOJIb TPYOKHU I10ojie BHeImHuX cujl. Cucrema ypaBHe-
HUl 77151 MACCOBBIX U 00'bEMHBIX KOHIIEHTPAIMI 1 CPEJIHEr0 pasMepa arperaronB
B OJIHOMEPHO IIOCTAHOBKE JIOMYCKAET Pa3PBIBHBIE PEIICHUs. XapaKTEePUCTUKN
CUCTEMBI COOTBETCTBYIOT TOBEPXHOCTSIM Pa3PBIBOB KOHIIEHTPAIUN arperaros,
13 KOTOPBIX BHEIIHSS [TOBEPXHOCTD OIPeesseT M3MePAeMyIO B 9KCIEePUMEHTAX
CKOPOCTD OCEeIaHN, 8 BHYTPEHHAA MOXKET HMETh PA3HyI0 CTPYKTYPY OT IIPOCTO-
r'o CKa9Ka KOHIIEHTPAIHii 10 CKAIKa, COIIPOBOK IAIOIIEr0Cs BOJIHON paspeskeHns
WIA BeepoM XapaKTePUCTHK Ha IOJBUKHON HuKHeil rpanune. IIposeneno me-
TaJIbHOE UCCJIEIOBAHNE YCIOBUIA CYINECTBOBAHUS PA3HBIX TUIOB penteruii. O6-
Cy2KIAeTcsl IIPUMEHEHNEe IIOJIYYEHHBIX Pe3Y/ILTATOB I PEIIeHUS PA3JIMIHBIX
IPUKIATHBIX 32024,

Kaouesvie caosa: runep0OIMIecKue CUCTEMBI; XapaKTEPUCTUKH; CEeIUMEHTa-
IUsl; arperamys.
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1. Introduction

As is known, in contrast to solutions of systems of linear differential equations,
quasilinear equations of hyperbolic type

8ui+§:A-~%—B- i=1,..n (1)
ot 4 YO T T
7=1

where A;;(t,z,u1,...,un) and Bj(t,z,u1,...,up) is the matrix of coefficients
and the vector of the right-hand sides of the system, and the equation
det|A;; — A;;| = 0, where I;; is the unit matrix, has different real roots
(characteristic values), with smooth initial data admit discontinuous solutions
[1]. Such systems of equations describe wave propagation in multiphase 2] and
non-Newtonian fluids [3], filtration in porous media with suffusion [4], kinematic
waves in channels and cavities [5], as well as sedimentation of particles in polydi-
sperse suspensions |6, 7, 8|. Investigations of sedimentation models for particles
of dilute suspensions go back to the works of Batchelor [9, 10|. For concentrated
suspensions, it was shown that in the one-dimensional case the system of equations
describing the distribution of concentrations and volumes of settling aggregating
(coagulating) particles [6, 7|, as well as particles of a polydisperse suspension [8]
remains hyperbolic if the Stokes drag coefficient depends on the size and shape
of the aggregate, when settling in a field of inhomogeneous force, and with a
number of other complications of the original one-dimensional model. Studies of
the solvability of problems in the theory of coagulation are of great interest for
the theory of differential equations [11], as well as for modern nanosciences, bio
and nanotechnologies [12].
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In most works, instantaneous stratification of settling particles into a
compressible sediment layer (zone III) at the bottom of the sedimentation tube,
a zone of settling particles (hindered settling layer, zone II) above it, and an area
of a stationary carrier fluid in the upper part of the tube (clear layer, zone I) for
both technical [13] and biological [14] suspensions. In this case, the formulation of
problem (1) in these cases includes the balance equations for the mass of particles
with a mass concentration C' and a carrier liquid with concentrations 1 — C' in
the form [8, 13, 14|

oC  oCu' o(1-C) o(1-C)u*
o e Y Ta T e Y 2)

where u! and u? are velocities of the particles and fluid.
The sum of equations (2) with flow impermeability through the bottom of the
tube gives the relation
ut =~ (1 - C)us, (3)

where ug = u! —u? is the fluid velocity relatively to the aggregate [15].

The velocities u' and u? can be found from the momentum equations of parti-
cles and liquid [14], discrete equations of particle dynamics [16], or by introduci-
ng approximations for the coefficient us(C') accounting for the difficulty of flow
around settling particles in the zone II. Taking into account the known power-law
approximation for the viscosity of the concentrated suspension [17]

fepr =po(1—C)' 7", (4)

where pg is the viscosity of the basic fluid, n is the empirical coefficient, it was
accepted for us(C) [15]

[ —up(l-0O), C<Cr
us(C) = { 0, C > C, (5)

where ugg = 2(ps — pf)gR2 /9up is the sedimentation rate of spherical particles
of radius R in the basic fluid, ps, p; are the densities of the particles and liquid,
respectively, ¢ is the gravitational acceleration, C* is the critical concentration
at which the particles form a quasi-solid viscoelastic framework and cannot settle
(us = 0, and zone II transforms into zone III); i.e. at the boundary between zones
II and III, the condition C' = C* is satisfied, and it is often assumed for simplicity
that C* = 1, so that in zone III there is also no movement of the basic fluid [15].

In this simple case, both characteristics are discontinuity lines of particle
concentrations [18]

dC dz oF

—_— = 1 —_— = = —
where (C) is the characteristic equation, F' = Cv! (C) is the mass flow of the
particles, Z = z/L and T' = Lugy/h are dimensionless longitudinal coordinate and
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time, L is the height of the sedimentation tube, and the speed of the discontinuity
line (Rankine-Hugoniot condition) is

_F(CH-F(C)
o= M) (7)

where CF, C~ are the particle concentrations above and below the discontinuity
line.

The first characteristic separates zones I and II; it has a negative slope (z =0
and z = 1 correspond to the bottom and top of the tube, respectively) and
determines the sedimentation rate measured in experiments |2, 3, 5, 6, 8, 14]. The
second characteristic is usually called internal [18]; it has a positive slope and can
correspond (Fig. 1) either to a jump to maximum packing with the disappearance
of zone IT and the subsequent cessation of movement in zones I and III ( C~ = C*,
case 1), or a jump C~ # C* with a subsequent rarefaction wave up to C~ = C*
(case 2) or a jump with a fan of rarefaction waves (rarefaction fan, case 3). The
upper of the characteristics always has the highest speed ¢ (7), otherwise there
will be an intersection of the number of constitutive relations and conditions for
the evolutionary character of the discontinuity [1|. As a result, different types of
sedimentation curves are obtained (upper dashed lines in Fig. la-d).
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Fig. 1. Different options for internal concentration jump:
case 1 (a), case 2 (b, ¢), case 3 (d) (adapted from [18])

Similar versions of families of characteristics were obtained for a bidisperse
suspension [17]. As shown in a recently published article [16], discrete equations
of particle dynamics, taking into account all possible forces of interactions between
them, after averaging, give the Navier-Stokes equations of a two-phase suspension.
Similar calculations on discrete models of a suspension of settling aggregating
particles [19] showed good agreement with continual models [6, 8, 14].

In more complex cases, when the particles of the suspension during aggregation
can capture a part of the basic fluid, which is then gradually percolate through
the porous surface of the aggregate as it settles, the problem is reduced to a
hyperbolic system of three differential equations for the mass C' and volume H
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concentrations and the average volume w of the aggregates (Fig. 2a). Many bi-
ological microparticles exhibit similar properties, for example, blood erythrocytes
(Fig. 2b), polymers, nanoparticles [3, 5], etc.

B

a
Fig. 2. Structure of the aggregates in a three-phase liquid (a)
and in human blood (b).

In this case, in the hyperbolic systems of the form (1), (2) for the variables
{C, H,w}, a third family of characteristics appear, the slope of which can be either
positive or negative, depending on the parameters of the model [8|. For the case
of the aggregating particles in inclined tubes in an inhomogeneous external field,
it was shown that other variants of the arrangement of families of characteristics
can be added to the possible patterns of characteristics (Figs. la-d), which is also
confirmed by numerical calculations based on the initial hyperbolic system of the
continuum model [8, 20| by the finite volume method [21]. Since the settling of
the particles in inclined tubes at certain angles of inclination leads to a significant
acceleration of settling and separation of mixtures (Boycotte effect) and is wi-
dely used in oil and gas industry [22], biological [14, 23, 24| and nanotechnology
[3, 5], the study of such sort of problems is of interest not only for the theory
of hyperbolic differential equations, but also for many applied problems. Particle
sedimentation in the inhomogeneous field of centrifugal forces makes it possible to
accelerate the sedimentation process with the formation of sediments of different
variable density, which can be used for additional medical diagnostics in biomedi-
cal applications or for the manufacturing of various nanostructured samples of
particle-based materials in nanotechnology.

In this paper, a detailed analysis of the mathematical formulation of the
sedimentation for a three-phase suspension of aggregating particles [8] in an
inhomogeneous field is carried out. The difference of the studied model with similar
already known formulations is that the hyperbolic system of differential equations
is solved in the region (zone II), which has variable boundaries (characteristics of
the 1st and 2nd families), moving at the speeds ¢y, o, respectively.

2. Description of the mathematical model

The model of the three-phase suspension composed of a free fluid (phase 1),
particles (phase 2) and fluid captured inside the aggregates (phase 3) is considered.
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The main system of equations has a form [8]:

@Jr 2810_ w?
a " or Yo

OH OH oC ow oul
_ _ 8
o +7116 +V128 4-713a =0+(1 H)(?x’ (8)
oC n OH n oC n aw ou?
6 Y21 5 Or Y22 5 or V235 or 7&@ >
oul oul oul
11 = ul _(1_H)87H’ 712——(1—H)%, 713——(1—H)6w
2 2 2 ©)
ou ou ou
721—(7@7 Yoo = u? +C% ’723—0%,

where C' and H are mass and volumetric concentrations of aggregates, w is an
average volume of aggregate, ¢ is the aggregation rate, u',u?, are the phase

velocities, § = 63/ Pt 63 is the rate of the fluid capture during the aggregation.
In the matrix form the system (8)-(9) is:

2
w u? 0 0 w pw
O g O g |= c 10
ot p + Y13 Y11 Y12 o p = 0+ (1 —H)k1 ) ( )
Y23 Y21 Y22 —Cky
1 2
where k1 = ai, ko = %

x
The phase velocities are expressed explicitly through the variables x, w, H, C":

- _ 2

ul — _H(lF H) n (H DC) } Clps — pp)an??(z + a),
(1 )2 )2

=[O EZ o = ppyini(o ), (1)
co ma B B

where ps, py are physical densities of particles and free fluid, v is a centrifuge
rotation frequency, a is a distance from a disc center to tubes.
Thermodynamic coefficients F, D are [6]:

7\ 2/3
F=anH(1—-H)™™ <C) w23,

c\ ™ _
D = pn;C (1—H> w02/3,

(12)



50 N.N. Kizilova, S. A. Poslavskyi, V. A. Baranets

where o, 3,711,712 are positive constants, wg is a volume of one particle, ny is a
fluid viscosity.

This system is hyperbolic with characteristic values of the defining parameters.
Therefore, for its analysis and solution the method of characteristics is effective.
The characteristic values \i, A9, A3 are:

Ny — (1 + 722) £ /(11 — 722)% + 412721 (13)
2,3 =
’ 2

The families of characteristics and corresponding conditions at them are:

d—w =Us+u
dt 1—5 fs

(14)
dx 1
— = Ug —A(1++1— B/A?
<dt>273 s Tt ( / )
(i)
t) c’
= (15)
_ _ 2) _ _ 2
2[A1<1i 1 B/A) A2<1:F 1 B/A)}x
dH dc
X ((dt) s —9—(1 — H)]ﬂ) + 712 <Cl€2 + <dt>273> =0,
where
(1—H)2*C(ps — pp)dn*v*(z + a) (H — C)2Cl(ps — ps)anv?(z + a)
Us = , U = s
F D
L O0ug Ouy ~ Ous  Ouy B
Al—HaH—(l—H)aiH, AQ—CaC—I—aC, A=A+ As,
. 8u5 8Uf aus aqu
B—4C(aH‘ao‘ ac 8H>

The equations of the first family of characteristics coincide with the equations
for the trajectories of solid phase particles (similar to contact characteristics in gas
dynamics). Therefore, the boundary separating the area of settling particles from
the area occupied by a stationary fluid moves at the speed u? of those particles
(aggregates) that are on it. In this case, the effective densities and velocities of the
phases at this boundary are discontinuous. There is no need to set special jump
conditions here, because in the area occupied by the suspension, all parameters
are determined by integrating the characteristic equations (by the method of
characteristics).
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The situation is quite different with the setting of boundary conditions at
the boundary of the compact zone. Depending on the relationship between the
characteristic speeds and the speed of this boundary, different regimes can be
realized.

If this boundary is a strong discontinuity, then corresponding conditions for
the limit values must be performed on it when approaching the jump from one
side and from the other:

wip =wrrr, (L= Hin)Zir—1r = (1= Hyp) (Zi—1r — uig) (16)
Zri-111Crir = (Zir—1r — vwi;) Cir,

where Zrr_jsr is a velocity of the discontinuity.
3. Analysis of possible cases

According to the general theory of discontinuous (or generalized, or weak)
solutions of systems of quasilinear equations [25, 26|, existence of an evolutionary
(not decaying into a system of waves) discontinuity is ensured by the following
condition. The number of characteristic lines arriving to the same point at the di-
scontinuity surface should be such that, in the problem of small perturbations, the
perturbations of all the quantities are uniquely determined from the conditions
along these characteristics and the constitutive relations at the discontinuity. For
example, if the same hyperbolic system of n quasilinear equations is satisfied in
regions on both sides of the discontinuity, then the number of arriving characteri-
stics from one side and from the opposite should be exactly n + 1. Indeed, in this
case, the number of unknowns is equal to 2n + 1 (n unknown functions on each
side of the discontinuity and an unknown speed of it), which means that there
should be the same number of equations for their determination. If, however, some
additional conditions are fulfilled at the jump, then the number of characteristic
lines arriving to the jump should be reduced by the number of conditions.

In the problem under consideration, the situation is somewhat different. The
main system of equations (8)-(9) is satisfied only on one side of the discontinuity,
and on the other, the state of all phases is considered to be specified (we mean the
packing density of aggregates and the volumetric content of fluid in the compact
zone, i.e., the values of Hyrr and Cyyy) ). Only the quantity wyr; remains unknown
in the compact zone, but it satisfies the condition wy;; = wyy.

Therefore, for the stability of the discontinuity, it is necessary that the
characteristics of two families enter the jump, and only the characteristics of
one family are outgoing (Fig. 3). Accordingly, the characteristic velocities and the
discontinuity velocity Zjr_rr;r must satisfy the following inequalities:

(ZHIH - (CZ>2> ' <ZHHI - <Zf)3> <0. (17)
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Fig.3. Location of characteristics relative to the strong discontinuity line.

If this condition is not satisfied, then there is no strong discontinuity on the
boundary of the compact zone, since it does not satisfy the evolutionary condition
and cannot be stable.

But then the structure of the solution should be different. Instead of a strong
discontinuity, the transition from zone I to zone III should be carried out in a
more complicated manner. Apparently, in this case, the mathematical model of
the studied process of particle sedimentation needs to be revised. At a sufficiently
high concentration of aggregates, the relationship between the phase velocities
and concentrations described by relations (11) is no longer sufficiently adequate.

4. Conclusions

In this paper, we consider the properties of solutions of a quasilinear hyperbolic
system of partial differential equations describing the process of settling and
aggregation of particles under conditions of an inhomogeneous field of external
forces. We study the conditions for the existence of different types of solutions.
The results obtained make it possible to analyze various modes and the influence
of model parameters on the sedimentation process. The estimation of the number
of incoming and outgoing characteristics for the strong discontinuity between the
zone of settling aggregates and the compact zone is carried out. The obtained
condition determines the existence and stability of this discontinuity. If it is not
satisfied, the mathematical model describing the process of settling and aggregati-
on of suspension particles requires correction. The results obtained can be used
to solve various applied problems, in particular, in the field of medicine.
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Hocaimkenas kBas3ijiHifiHol Moaesi oci/lanHs YacCTUHOK CycrneHs3il,
sIKi arperymoTb, B HEOJHOPiAHOMY MOJIi CHJI
Kizinosa, H. M., ITocaascekuit, C. O., Bapanens, B. O.
Xapxiscvruti Haytonasvrut ynisepcumem im. B. H. Kapasina
na. Ceoboou, 4, Xapxie, Yxpaina, 61022

MaremaTndHa MOJEb IPOIECY OCiMaHHS YaCTUHOK CyCIIeH3il 3a3BUYail ABJIs€ CODOIO
KBas3imiHifiny rimepboigHoro cucremMy audepeHIiaJbHIX PiBHSHD, JOMOBHEHY MOYaTKO-
BUMU i KpaifioBuMu ymoBaMu. B jmaHiit cTaTTi MOCTIIKYETHCS YCKJIaIHEHA MOJIE/b, IO
BPAXOBY€ arperyBaHHsI YaCTUHOK 1 HEOJHOPITHICTH ITOJIsT 30BHINIHIX MacoBux cui. Po3-
IJISTHY TO BUNQJIOK OJIHOPITHIX IMOYATKOBUX YMOB, KOJIU BCi TApAMETPH PYXY, IO BUHUKAE,
3aJ1e2KaTh TLIBKM Bill OfHIET TPOCTOPOBOI IeKapTOBOI KoopauHaT & i Bix wacy t. Ha Big-
MiHy BiJ[ BIZIOMUX [IOCTAHOBOK 3aJ1a4 JJisl KBa3LIIHIAHUX cucTeM DIBHsHDb (HAIPHUKJIALI, B
ra3oBiil JuHaMili), po3B’sI3KN SIKUX MICTATH CHJIbHI DO3PUBH, Yy MOCJIIRKYBaHIll mocTa-
HOBI[i OCHOBHA CHUCTEMa PiBHsHb BUKOHYETHCS TIILKHU 1O OJWH OIK BiJ JiHil po3puBy B
wionuai 3minnux (t;x). Io inmuit 6ik Big JiiHil PO3pUBY pIBHAHHS, B3araji KaxKydu,
MAalOTh IPUHIIAIOBO iHIMI BUTIs. Mu 0OMeX)XKyeMOoCsi BUBYEHHSM BUIAJIKY, KOJIA B KOM-
MaKTHIN 30Hi, 3afiHATII OCITUMK YaCTUHKAMU, HiSTKOTO PyXy HeMa€, TOOTO yci IBUIKOCTI
JIOPIBHIOIOTH HYJIIO i 00’€MHI 9acTKH BCiX (a3 He 3MIHIOIOTHCA 3 9acoM. PO3TyIsgHyTO 3a-
Jady PO CEJUMEHTAII0 €PUTPOIUTIB B IOJI BIIIIEHTPOBUX CHJI B IeHTpudy3i, npu i1
piBHOMIpHOMY 0OepTaHHI 3 KyTOBOIO MIBHJKICTIO w = const. IIpoBeneno mociiipxkenHst
YMOB icHyBaHHSI Pi3HUX THIIB po3B’s3KiB. O/Hi€I0 3 OCHOBHEUX € IPobJIeMa eBOJIIOIITHO-
cri (crifikocTi) BUHUKAIOUUX CUJIbHUX PO3pUBIB. Po3B a3anus niel npobsemu mos’s3aHo 3
aHAJI30M CIIIBBITHOIIEHD JJI XapaKTEPUCTUIHUX MIBUJIKOCTEN 1 MIBUIKOCTI ITepeMileH-
H¢l IOBEPXHI po3puBy. Biamosiap 3a/1eKuTh Bij unc/ia XapaKTEpUCTUK, 10 MTPUXOIATD 10
PO3PUBY, i BiJl KITBKOCTI JIOJJATKOBUX YMOB, IO 33IaI0THCSI Ha MTOBEpxHi po3ity. Po3pus
Ha HY2KHI# MexKi o6J1acTi, 3afiHaTOl YMCTOl IJIA3MOIO, 3aBXK M CTiiiKuil. AJje 11 noBepxHi
PO3PUBY, IO PO3ILJISE 30HU OCLINX 1 PyXOMHUX JaCTHHOK, YMOBA €BOJIIOIINHOCTI MOXKe TTO-
pymryBatucs. B mpoMmy BHUMaaKy HeOOXiTHe KOPUTYBAHHS BUXITHOI MATEMATHIHOI MOJIEITI.
Kmowosi caosa: TinepOOTiTHI cCTeMM; XapaKTEPUCTUKHI; CETUMEHTAIlisT; arperalis.

A study of a quasilinear model of the particles of a suspension
that are aggregated and settled in an inhomogeneous field
N. N. Kizilova, S. A. Poslavskyi, V. A. Baranets
V. N. Karazin Kharkiv National University,
4 Svobody sqr., Kharkiv, 61022, Ukraine
The mathematical model of the sedimentation process of suspension particles is usually
a quasilinear hyperbolic system of partial differential equations, supplemented by initial
and boundary conditions. In this work, we study a complex model that takes into account
the aggregation of particles and the inhomogeneity of the field of external mass forces.
The case of homogeneous initial conditions is considered, when all the parameters of
the arising motion depend on only one spatial Cartesian coordinate x and on time ¢. In
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contrast to the known formulations for quasilinear systems of equations (for example, as
in gas dynamics), the solutions of which contain discontinuities, in the studied formulati-
on the basic system of equations occurs only on one side of the discontinuity line in the
plane of variables (¢; ). On the opposite side of the discontinuity surface, the equations
have a different form in general. We will restrict ourselves to considering the case when
there is no motion in a compact zone occupied by settled particles, i.e. all velocities are
equal to zero and the volumetric contents of all phases do not change over time. The
problem of erythrocyte sedimentation in the field of centrifugal forces in a centrifuge,
with its uniform rotation with angular velocity w = const is considered. We have studied
the conditions for the existence of various types of solutions. One of the main problems
is the evolution (stability) problem of the emerging discontinuities. The solution of this
problem is related to the analysis of the relationships for the characteristic velocities
and the velocity of the discontinuity surface. The answer depends on the number of
characteristics that come to the jump, and the number of additional conditions set on
the interface. The discontinuity at the lower boundary of the area occupied by pure
plasma is always stable. But for the surface separating the zones of settled and of moving
particles, the condition of evolution may be violated. In this case, it is necessary to adjust
the original mathematical model.
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