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Regularization of the electrostatics problem for
three spheres and an electrostatic charge
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A numerical-analytical algorithm for investigation of the electrostatic potential
of a sphere with a circular hole and a charge surrounded by ribbon spheres
is constructed. The method of inversion of the integral operator and semi-
inversion of the matrix operator of the Dirichlet problem for the Laplace equati-
on is used. A system of the second kind with a compact operator in space £5 is
obtained. Particular variants of the problem are considered.
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Pesynenko B. O. Perynsipusaunis 3ama4di eJeKTpPOCTATUKU  JJIsI
TpboxX cdep Ta ejJeKTpocTaTudHoro 3apsigy. [lobymoBanuii uncesbHO-
AHATITUIHUN aJrOPUTM JIOCTIZKEHHS TOTEHITaay chepu 3 KPyroBUM OTBOPOM
i 3apsLy, oToYeHUX CTpidyKOoBUME cdepamu. Bukopucranuii MeTos 0bepHEHHs
IHTErpaJIbHOTO OTIepPaTOpa i HAIIBOOEPHEHHS MATPUIHOTO oniepaTopa 3aaaxdi Jli-
pixJie mtst piBasinast Jlamraca. OTpumano cucteMa JIpyroro poy 3 KOMIAKTHUM
omepaTopoM B mpoctopi 5. PosriisinyTo okpemi BapianTu 3a1adi.
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1. Introduction

Among the problems of electrostatics on classical surfaces, the interest in
problems on a sphere with various geometric and physical properties has not
faded for more than a hundred years. So, at present, the parts of the sphere, made
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up of conductive tapes, can be a model of microcircuit blocks, connecting nodes
and adapters of various wave-guides, electrical appliances, and charge storage
devices. New nanomaterials with complex molecular structures can be models
of thin conductive spherical ribbons [1, 2, 3, 4, 12]. In this work, an algorithm
is constructed for calculating the electrostatic field of a sphere with a circular
hole and an electrostatic charge placed between two closed spheres composed of
conductive ribbons.

The algorithm is based on the application of a variant of the regularizati-
on method for the non-self-adjoint Dirichlet problem for the Laplace equation,
proposed and developed in the works of Kharkiv mathematicians [17, 18, 16, 14,
13]. In this work, a system of linear algebraic equations of the second kind with a
compact matrix operator in the Hilbert space 5 of complex sequences is obtained.

2. Statement of the problem

The task has several parameters. Let’s consider on them in detail. Let the
origin of the Cartesian and spherical coordinate systems be aligned with the center
of the sphere with a circular hole. Let the radius of the sphere » = ry and the
hole in the sphere formed by a plane cut, and the polar cut angle of the sphere is
fy. At the hole, angle 8 varies from 6y to 7. Let another closed sphere of radius
r1 be located inside the sphere with a hole. The third closed sphere of radius r9
encloses the sphere with a hole. In this case, respectively, a1 < agp < ag. Closed
spheres are made up of infinitely thin ribbons. There are infinitely thin partitions
between the ribbons. The partitions lie in planes parallel to the plane XOY. The
polar angles of the partitions are 0 1, K = 1,2,..., N for a sphere of radius r1. The
sphere of radius 7o has other ribbons. The partitions between ribbons have polar
angles 0 ,,, m = 1,2, ..., M. The number of ribbons is limited. All three spheres
are equipped with independent potentials. Let Vj be the potential of the sphere
with a hole, V; ; be the potential of the k -ribbon of the inner sphere, and V3, be
the potential of m-ribbon of the outer sphere. We assume that the electrostatic
charge is located between the outer sphere and the sphere with a hole on the OZ
axis at point by, ag < by < ao. Assume the potential of the charge V3 # 0. Pic. 1
(left) shows a cross section of three spheres by a vertical plane passing through
the OZ axis. In Pic. 1 (right) a three-dimensional model of the spheres is given.

Here we note that this work differs from work [5] by the geometry of the
problem and the presence of an electrostatic charge. The total electrostatic field
must satlsfy Maxwell’s equations and material equations rot E = 0, div D= 00,
D= EE where pg is the density of charges on the surface of the conductors, ¢ is
the dielectric constant of the medium.

By the assumption, the magnetic permeability of the medium p = 0 and the
magnetic field is absent H= 0, the magnetic induction B=0.

Let us take into account the connection between the electrostatic field E and
its scalar potential E = —gradU and proceed to the scalar problem for the
potential U. The total potentials must satisfy the Laplace equation, must be
equal to the given potentials at the spherical boundaries are equal Vy, Vi, Va,
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Pic. 1. Spheres and an electrostatic charge.

respectively. Its partial tangential derivatives must be continuous at the hole in the
open sphere r = ag, 6 € (6p, 7], must satisfy the condition of bounded electrostatic
energy in any limited volume of three-dimensional space. except for the volume,
containing the given electrostatic charge fW lgrad U|?dW < oo, have the requi-
red singularity at the point where the charge is placed, decrease at infinity as
O(r=1), r = oco. It is required to find the electrostatic field of the three spheres
and the charge placed between them. In this statement, the problem is well-posed
— it has a stable unique solution [9, 15].

3. Functional equations

Let us represent the 3-dimensional space by the sum of four spherical domains
G ={r<ai}, Ga={a1 <r <ap}, Gz ={ap <1 < ag}, Gy = {r > az} for
which 0 € [0,7], ¢ € [0,27x]. In the Laplace equation, we separate the spherical
variables and represent the charge potential and the unknown secondary potentials
by Fourier - Legendre power series in the corresponding domains.
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where P,(cosf) are Legendre polynomials of the 1st kind of order zero of integer
degree n of the argument cosf, 0 < 0 < 7.

Note that the method of separation of variables and Fourier-Legendre series
for problems of mathematical physics on a sphere were first applied by Debye
in 1908-1909. Since then, the method has been effectively used for a wide range
of problems, including for problems on sphero-conical and other surfaces [9, 2,
14, 8, 10]. The coefficients of series (1)—(4) are sought in the Hilbert space {2,
ensuring the fulfilment of the condition that the energy integral is finite. Note
that the potential V3 (1) charge is known, and the potentials V; and Vs of the
ribbon spheres are known, and the potential V{; of the sphere with a hole is also
known. First, we construct an algorithm for finding the coefficients of series (3)—
(4) for potentials Us,..,Us. We use the boundary conditions on spherical surfaces
forr =ag, r = a1, r = ag, 0 < 6 < 7. We use the completeness and orthogonality
of the Legendre polynomials P,(cosf) with weight sin€ in Ly(0,7) and change
from the equalities of the Fourier series to the equalities of their coefficients. As
a result, from the boundary conditions, we obtain a system of 3 linear equations
with four sequences of unknowns By, Cy, Dy, E,, n=0,1,2... (2)—(4)

Buar" ™'+ Cua} = V),
Dpa} + Epay" ™t = Vg(i), (5)
Bpag" '+ Cpa = Dpal + R,

where the values VQ(i), Vl(jl), S) are known. To find the coefficients, for example,

E,, we express from (5) the coefficients B,,, C,, D, through E,, n > 0. We
transform respectively, system (5) and calculate the determinant of the new
system. As a result, we get the determinant A,,:

soalb @ R@)

The determinant A,, is nonzero, since by condition as > 0, 0 < a; < ag. The
system has a unique solution. It is solvable, for example, according to Cramer’s
rule. So we get, in particular, the coefficients B,, of the potential Us (3):

1
B, = {V)(~agay) + V37 agat
n
— na’fa;"_lag + Enag‘aa”_la’f + Rgl)a’fag} , (7)

)

where Vl(j% are known, and VQ(iL) = Vl(jl) —H,, Rg) = Rpa(. Functional equations
for finding the coefficients FE,, are obtained from the boundary conditions on a

sphere with a hole at » = ag
Us +Us = V31 + W, 0 <6 <6, (8)

0[Uy + Us] _ O=Vs1 +Us + U3]’ Oy < 6 < . (9)
ar 6T
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Now, in (8)-(9) we replace the potentials by series (3), (4). Then we substitute
the coefficients By, Cy,, D, in the series, particularly, by (5), (6), (7). As a result,
we obtain a paired system of functional equations:

> {Buag™ = u]+ VD + RO} Pa(cosd) = Vo, 0<6< 6o, (10)
n=0

e}

Y @k +1) {Enaa"’l[l — ) - Ln} Pu(cosf) =0, fo<0<m  (11)
k=0
where

) {a% [1 _ <a1>2"“ } Lo <M> { ag [1 ) <al>2”“] } .

" a ! ao o as aytt ao
In (10)—(12) all quantities are infinitesimal MS)), 5510), sg), 6512), n — 00. The series
in (10), (11) belong to L2(0,7). System (10), (11) is prepared for transformati-
on into the system of algebraic equations of the second kind (SLAE-II). The
transformation is based on the method of regularization of paired summator and
integral functional equations, which is close to the method of the Riemann - Hi-
Ibert problem.

4. System of linear algebraic equations of the second kind

The system of functional equations (10), (11) can be transformed into SLAE-II
in several ways.

Let us choose a variant leading to SLAE-IT with the least compact matrix
operator in the norm in ¢ [8, 11].

Note that (10), (11) is a system of the first kind. Despite the fact that it
can be relatively easily transformed into a system of the 11th kind, it is also not
effective for direct application of both analytical and numerical methods. Let us
redesignate in (10), (11)

n

Ep = Yoag ™M= e, T, = V2 + RY (13)

and introduce the smallness parameter

L0, 0
el = "7(0)", eB®) =o(® 1), 0<q<1, n-— oo (14)
1 - gn

We obtain the system of equations
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Z{Yn (1_€g3>) —i—Tn}Pn(cosG) =V, 0<0< 6 (15)
n=0
> (2n+1)[Yy — L] Pu(cost) =0, 6y <6< (16)
n=0

which is convenient for further transformations.

Let us use that the series in (15), (16) belong to the space Lo(0, 7). Substi-
tute the Mehler-Dirichlet integral representation in the series (15) instead of the
Legendre polynomials and change the order of summation and integration. We
obtain a homogeneous Volterra integral equation of the 1st kind

)
/f(ap) (cos ¢ — cos 9)7% dp =0, (17)
0

which has a unique solution f(p) = 0, ¢ € [0,6p). This, instead of (15), we
obtain a functional equation for the complete orthogonal system cos (n + %) ©,
n=0,1,2,...in Ly(0,7):

i {Yn (1 — 5%3)> —{—Tn} cos <n+ ;) p= Vocosg, 0<0 <0,y (18)

n=0

In (16), we replace (2n + 1)P,(cosf) by the difference (P} (cosf) —
P/ _,(cosh))(sinf) and reduce by sinf. Then we integrate the series in (16) term
by term. In this case, the integration constant vanishes, since the polynomials
Pot1(z), Pp—1(x) have the same parity and P,,11(0) — P,—1(0) = 0. Now, instead
of the Legendre polynomials, we substitute another (on the half-interval (6, 7])
integral representation and using the uniform convergence of the integrated series,
we change the order of summation and integration. We obtain a homogeneous
Volterra integral equation of the 1st kind, similar to (17) on the half-interval
(0o, w]. This integral equation has a trivial solution on (6p,n]. The functional

equation (16) is thus transformed into the equation
o0

S ton(ns om0 wepsn

n=0
Let us single out the main part in (18) and, together with (19), prepare a
system of functional equations in trigonometric functions for the semi-inversion:

- 1
ZYncos (n—i— 2) ®
n=0

o0

> (Ymegg)—Tm>cos(m+%)<p—|—Vocos%, 0 < < b,
= " (20)
chos(k—k%)go, O < p <.

k=0
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Let us invert the left-hand side of the Fourier series (20). As a result, we obtain
a system of algebraic equations of the second kind (SLAE-II)

Y, = Z Ym€,(n,?)a£82n - Z Tmoz,(g?n + Voag% + Z LkOéS}w (21)
m=0 m=0 k=0
where LT 1o ' 0
al), == [Sm(n tmt by , sin(n —m) 0] , nFm, (22)
' s n+m+1 n—m
1 [sin(2n + 1)69

0) — — (2227 70 4 g D _g5 40 92

Apn p |: o+ 1 + 0] y  Opm n,m — Opm ( 3)

where 6, ,, is the Cronecer’s symbol. Let us write (21) in the following matrix
form
Y = MY + Z. (24)

Since the matrix operator of system (24) is compact in ¢o and the right column
belongs to 2 and unity is not an eigenvalue of the operator, then system (24) has
a unique solution in fs.

The obtained SLAE-IT (24) has a wider region of effective solvability both in
the parameter » = ag and in the parameter 6y. This is due to the application of
integral equation of the Volterra type [8] on various intervals and new choice of
the small parameters.

Since elements 0@(10,7)% are bounded by the value 26/, then the system is
solvable by the method of successive approximations for 0 < 6y << m. For the
numerical solution of the system, for example, with the selection of the main di-
agonal, it is necessary to re-designate the unknowns to accelerate the convergence
of the solution erl) =Y,/ (n+1), n=0,1,2,3.... We note, in particular, that
the coefficients A,,, Fy,, n =0,1,2,... of the Fourier - Legendre series of potenti-
als Uy, Uy (2) are in explicit form. For this, it is sufficient to use the boundary
conditions at = 71 and at r = ro and take into account that 6 belongs to
the (complete) segment [0,7]. An important particular variant of the problem
statement will be the lack of charge in the area G3. In this case, the final SLAE-II
will also change. So, on the right-hand side of SLAE-II, the quantities T;, and L,
acquire the limiting form: Vg(i) instead of T,, (13), VQ(;L)ES) - ‘/2(’1351(12) instead of
L, (12).

5. Conclusions

An efficient algorithm for calculating the electrostatic field of a complex
structure containing three nested spheres, among which the inner sphere has a
circular hole is constructed. A point charge is placed between the outer sphere
and the open sphere. The algorithm is based on the analytical method of semi-
inversion of the matrix operator of the problem in the space #s.
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Perynspusarnis 3a/1a4i eJIeKTPOCTaTUKU [JIsT TPHOX
cdep Ta eJIEKTPOCTATUYHOTO 3apsaay
Pesynenko B. O.
Xapriscvruti Hayionasvhul ynisepcumem im. B. H. Kapasina

na. Ceobodu, 4, Xapxis, Yrpaina, 61022
IlobynoBanuit YnceIbHO-aHAJITHIHIN AJITOPUTM JIOC/II?KEHHSI IOTEHIALY cdepH 3 Kpy-
TOBUM OTBOPOM, OTOYEHOI 30BHIMIHBOI 1 BHY TPIIITHBOT 3aMKHEHUMY CTPIYKOBUMU C(DEPAMU.
Yucsio crpivok Ha cdepax maosiabHO. CTpiuku Ha cdepax po3ijieH] HEMPOBIIHUME He-
CKIHYEeHHO TOHKUMU IeperopojkamMu. [leperopoku 3Haxo1siThCs B IUIOMUHAX,, TAPAJIEIIb-
HUX ILIOIIHHI 3pi3y cdepu 3 orBopoM. KozkHa cTpiuka Mae CBiif He3ae:KHUI TOTEHITIAT.
Esekrpocrarnyanunii 3apsi1 po3MillieHnii MizK 30BHIITHBOIO ceporo 1 cdheporo 3 0TBOPOM Ha
oci crpykTypu. [loBHI moTeHITia M TOBUHHI 33/I0BOJILHSATH, 30KpeMa, piBHIHb Makcsesia
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3 ypaxyBaHHSM BiJICYTHOCTI MarHiTHHUX IIOJIB, 33/I0BOJIbHATH I'PDAHUYHUM YMOBaM, MaTU
HeoOXiTHy 0COOMBICTD B TOUI pO3MilieHHs 3apsiry. st BUpIlIeHHST TOCTABIEHOTO 3aB-
JIaHHSI CIIOYATKY BUKOPUCTAHI METOJ] YaCTKOBHUX 00JIacTell 1 po3iieHHs 3MIHHUX B chepu-
9HO1 cuctemi koopauHatT. [Ipu mpomy jutst psaaiB @yp’e 3acTocoByeMo crermeHeBi DyHKIIT i
mostiHoMu JlexkaHapa mianx nopsakiB. 3 rpaHUIHUX YMOB, BUKOPUCTOBYIOUN JOMIOMIXKHY
cucreMy 3-X piBHSAHb 3 4-Ma HEBIJOMUME, OTpUMaHa MapHA cucTeMa (PYHKI[IOHAIBHUAX
PiBHSIHB IIEPINOrO POy BimgHOCHO KoedinienTis psiaiB @yp’e. Cucrema HeedeKTUBHA JIJIst
BUPIIlIEHHsI TPSIMUAMHU METOJIaMU. 3aCTOCOBaHI METO 0OepHEHHsI IHTErpaJIbHOIO OITEPATO-
pa Bousibreppa i HaniBobepHeHHST MaTpUIHOrO orrepaTopiB 3asadi Jlipixje mist piBHsIHHS
Jlammaca. Meros 3acHoBaHUi Ha iedx aHAJIITHIHOTO MeTomy 3ajadi Pimama - 'inmnbep-
ta. [Ipu mpomy BukopucTani inTerpasibHi ysBients s noginomis Jlexxamapa. OTpumano
crucTeMa JIHITHIX anredpaidHuX PiBHIHD JPYTOro POay 3 KOMITAKTHUM MAaTPUIHUM OTIe-
paTopoM y rijasbepToBoMy mpocTopi £o. Cucrema epeKTUBHO BUPINIYETHCS YMCEIBHO JIJIsT
JIOBUIBHUX TTapaMeTpiB 3a/1a4i 1 aHAJITUIHO JTd TPAHUIHUX HapaMeTpiB 3aja4di. Posris-
HYTO OKpeMi BapiaHTU 3aBJIAHHS.

Kmowosi carosa: chepu; oTBip; eleKTpoCcTaTUKa; JiHIfIHA CHCTEMa IPYrOrO POIY; KOM-
[AKT.

Regularization of the electrostatics problem for three
spheres and an electrostatic charge
V. A. Rezunenko
V. N. Karazin Kharkiv National University,
4 Svobody sqr., Kharkiv, 61022, Ukraine

A numerical-analytical algorithm for investigation of the potential of a sphere with a
circular hole, surrounded by external and internal closed ribbon spheres, is constructed.
The number of ribbons on the spheres is arbitrary. The ribbons on the spheres are
separated by non-conductive, infinitely thin partitions. The partitions are located in
planes parallel to the shear plane of the sphere with a hole. Each ribbon has its own
independent potential. An electrostatic charge is placed between the outer sphere and
the sphere with a hole on the axis of the structure. The full potential must satisfy, in
particular, Maxwell’s equations, taking into account the absence of magnetic fields, sati-
sfy the boundary conditions, have the required singularity at the point where the charge
is placed. To solve this problem, we first used the method of partial domains and the
method of separating variables in a spherical coordinate system. In this case, for the
Fourier series, we use power functions and Legendre polynomials of integer orders. From
the boundary conditions, using an auxiliary system of 3 equations with 4 unknowns,
a pairwise system of functional equations of the first kind with respect to the coeffici-
ents of the Fourier series is obtained. The system is not effective for solving by direct
methods. The method of inversion of the Volterra integral operator and semi-inversion of
the matrix operators of the Dirichlet problem for the Laplace equation are applied. The
method is based on the ideas of the analytical method of the Riemann - Hilbert problem.
In this case, integral representations for the Legendre polynomials are used. A system
of linear algebraic equations of the second kind with a compact matrix operator in the
Hilbert space £y is obtained. The system is effectively solvable numerically for arbitrary
parameters of the problem and analytically for the limiting parameters of the problem.
Particular variants of the problem are considered.
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