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We consider a real vector bundle £ of rank p and a unit sphere bundle & C &
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Introduction

A. Borisenko [1] posed a problem on description of all totally geodesic sub-
manifolds in a (unit) tangent bundle with Sasaki metric over a space of constant
curvature.

A natural class of submanifolds in the (unit) tangent bundle is formed by
(unit) vector fields on the base. H. Gluck and W. Ziller |2] posed a problem to
find "the best organized" unit vector field on spheres and proposed on this role
the field which gives rise to minimal submanifold in the unit tangent bundle with
the Sasaki metric. Later on this meaning of unit vector field was extended the
notion of locally minimal [3] and totally geodesic [4, 5] unit vector field. From
this viewpoint the unit vector fields has been considered by many authors (see,
e.g. [13, 14, 15, 16, 16, 17, 18]).

A natural generalization of tangent vector field is a section of given vector bun-
dle (&, 7, B). If B is the Riemannian manifold and £ is endowed with a fiberwise
metric and compatible bundle connection, then one can define the Sasaki-type
metric and consider a unit section as a harmonic map [6, 7] or as a locally min-
imal (totally geodesic) unit section of a subbundle & C &£ formed by the unit
vectors of each fiber. The latter approach is presented in the given paper.

Section 1 contains necessary preparations. In Section 2 we study the simplest
nontrivial case of vector bundle of rank 2 over 2 dimensional Riemannian manifold
in details. We give a local description of the base manifold and the bundle con-
nection for the case when the bundle admits a local unit totally geodesic section
(Theorems 1 and 2). In Section 3 we give some some examples of minimal and
totally geodesic sections of tangent and normal bundles.

The vector bundle, the base manifold and the sections are assumed smooth of
class C™ (m > 2) or analytic, if necessary.

1. The Sasaki-type metric on vector bundle

Let (€, 7, B) be a smooth real vector bundle of rank p over a smooth manifold
B of dimension n. A smooth section is a smooth mapping s : B — & such
that m o s = idg. By definition, s(q) € F,;, where F, is a fiber over ¢ € B
and the fiber F, is a real p-dimensional vector space. The section could not
exist globally but it is possible to find p linearly independent sections si,..., s,
over a trivializing neighborhood U (u!, ..., u™) C B. Then, for any ¢ € T, B, we
have a decomposition ¢ = £ s,(u). The parameters (u',...,u™; &t ... €P) form
a natural local coordinate system in U x F =~ U x RP. Any smooth local section
& :U — & can be given by

§= ga(u) Sa(u)v

where £* : U — R some smooth functions. The image £(U) C & represents the
analog of explicitly given submanifold with respect to natural local coordinate
system. The mail goal of the paper is to study some geometrical properties of the
locally given submanifold £(U/) in the case when £ is endowed with the so-called
Sasaki-type metric and the section ¢ is of unit length.
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Take a trivializing neighborhood U C B. Let (ul,...,u"™; &Y, ..., &P) be the
natural local coordinate system on £. A local frame
~ 0 ~ 0
8 .

VT ou T gga
is called natural tangent local coordinate frame over the restriction Ely. Thus, for
any local vector field X on &y, we have a decomposition

X = Xz(u7 5)51 + Xn-‘roz(u’ g)én—&-a-

At each point (u,§) € T(,¢)€ we have a decomposition T, ¢)& = V()€ B H (y46)E,
where V(, ¢)& and H, ¢)€ are tangent and transversal to the fiber at u = 7(u, &),
respectively. The V(, ¢)€ is called vertical subspace and H, ¢)& is called horizon-
tal subspace at (u,§) € £. The horizontal distribution H, )€ is called bundle
connection. Over each trivializing neighborhood U, the horizontal distribution
can be defined by

p
H|U = ﬂ ker(ea)v

a=1
where 01, ...,6P is a collection of linearly independent smooth linear forms over
7~ 1(U). The bundle connection is called linear, if the forms ',...,6P are taken

by

0% = d&® + ~§;(u)€P du’.
The functions Vj; are called fiber bundle connection coefficients and subject to the
definite transformation law in a pass to the neighboring trivializing neighborhood
(see [19] for details).

Denote by &(B) and X(B) the module of smooth sections of £ and Lie algebra
of smooth vector fields on B, respectively. For any £ € §(B) and any X € X(B),
the section

V]: I Xz 8ﬁ a ¢f
x§€ = <8ui +73:€ > Sa
is called fiber bundle covariant derivative of the section £ in a direction of the
tangent vector field X.

The connection map K : T, ¢)& — Fy is defined locally by KX = (X”Jra +
Vi §5Xi)sa. The bundle projection differential mx : TE — TB acts by T, X =
X9;, where 9; = w*(éz) = %
U. These mappings possess the following easy-to-check properties

are the vectors of the local coordinate frame over

ker my = Vi ¢), imme =T,B,
ker K =H, e, mK=UF,

at each point (u,&) € €.
For any X = X*(u)9; € X(B), the vector field

X", €) = X (w)F; = A3 (W) X (@) Fosa
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is in H,¢) and is called horizontal lift of X (u) to T(y¢)€. For any n = n*(u)sa €
S(B), the vector field

77” (u7 f) = 77a (u)én—&—oa

is in V(,¢) and is called vertical lift of n(u) to T, ¢)E.

For any smooth section £ : B — &, the section differential &, : TB — TE acts
by &X = X" + (V%€)? and hence K(£.X) = V€. A fiber-wise metric on & is
a smooth function g* : & — R, such that the restriction g7 |z, is a positively
definite quadratic form in &', ..., €P. A vector bundle is said to be metrized if it
admits a fiber-wise metric. A fiber-wise metric is said to be compatible with the
bundle connection, if

Ox (g7 (&m) = g7 (VL& n) + g7 (&, Vin).

From now on, suppose B is the Riemannian manifold (B,¢®) and £ is a
metrized vector bundle with the fiber-wise metric g~ compatible with the bundle
connection.

Definition 1 Let 7 : £ — B be a smooth vector bundle over the Riemannian
manifold (B, gB) with a fiber-wise metric g7 compatible with the bundle connection
V7. Let X,Y be smooth vector fields on €. The Sasaki-type metric ¢ on € is
defined by the following scalar product

F(X,Y) = B(mX, 1Y)+ ¢" (KX,KY). (1)

With respect to natural local coordinates on &, the line element of (&, g%)
takes the form

dsg = dsi + | D72, (2)

where ds% is the line element of the Riemannian base manifold B and D7¢ =
(d&> + ’yg‘zfﬁ du)s, is the covariant differential of the "point" vector ¢ € F,, with
respect to the bundle connection.

The horizontal and vertical subspaces are mutually orthogonal with respect
to g€. In terms of lifts,

(XYM = B(XY), ¢F(X" ) =0, ¢*(n".¢") = g7 (1.0).
A tri-linear mapping R : X(B) x X(B) x &(B) — &(B) defined by
R (X,Y)¢ = VEVIE = VEVEE = Vi yi€
is called curvature tensor of the bundle connection. The bundle connection is said

to be flat if R” (X,Y)¢ =0 for all X,Y € X(B), ¢ € &(B).
Direct computations give the following formulas (c.f. [9]) .
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Lemma 1 Let X,Y € X(B) and n,¢ € &(B). Then over each trivializing neigh-
borhood the Lie-brackets of combinations of lifts to T(, )& have the following ex-
PTEsSIons

[Xh7yh] = [Xa Y]h - (R]:(Xa Y)g))v’ [Xhﬂ?v] = (V§77)Ua WJ,CU] =0.

By using the Koszul formula, it is easy find the Levi-Civita connection for the
Sasaki-type metric on £ (c.f. [10]).

Lemma 2 Denote by V the Levi-Civita connection of (£,¢%). Let X, Y € X(B)
and 1, € &(B). Then over each trivializing neighborhood the covariant deriva-
tives of combinations of lifts to T(, \E have the following expressions

VY = (VEY)" — (ARF(X,Y))", VYt = (3RF(&,n)Y)",
Vet = (V) + BRF (&) X)", Ve =0,

where R : &(B) x &(B) x X(B) — X(B) is defined by g%(R”(&,7)X,Y) =
g7 (R7(X,Y)¢.m).

The tensor field R” is called formally conjugate to the bundle connection curva-
ture tensor field R”. Lemma 2 implies the following remarks: the fibers of £ are
totally geodesic and flat submanifolds of (£, g%); a single fiber normal bundle con-
nection is defined by R7; the horizontal distribution % is non-integrable (except
the case of flat bundle connection) but totally geodesic one.

Lemmas 1 and 2 allows to calculate the curvature tenor of (TE, g%).

Lemma 3 Denote by R a curvature tensor of (€, g%). Then at each point (u,§) €
E, the R is completely defined by

R(1”,¢")x" = 0,
Rop,c)zh = (R7(,QZ + JR7 (6 R (6,02~
a . h
LRE(EORT (6 mZ)
- o o o h
ROXM G = =(3R7(G0X + 5R7 (6 QRT(6,0X )

R(X", ¢v)Zh =
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RXM My = (RZ(X,Y)x + SRZ(RZ (€, )Y, X)¢-
LRF (R (6,0 X, Y)E) +

L(Dx ) (e )Y ~ (DyRF)(E X))

RB(X,Y)Z + 1R7 (¢, R7 (X, 2)§)Y -

R¥ (&, R7(Y, 2)6)X + LR (€, R (X, Y)6)Z) +

L(DzR7)(X.Y)E)

R(XM yh)zh =

e N Ll NG V]

where X,Y,Z € X(B), n,¢,x € 6(B), RB is the Riemannian curvature tensor of
(B, ¢®) and

(DxB7) (&2 = VE (R (60)2) = 7 (&, VEmZ - R (€ n)VRZ,
(DZRD)(X,Y ) = VE (RT(X,Y)¢) = RT(VEX, V)¢ — R¥ (X, VEY ).
The proofs of Lemma 1, Lemma 2 and Lemma 3 are the step-by-step analogs of

the proofs of the similar Lemmas for the normal bundle case [1].
Consider a single fiber F,. At each point £ € F,, we have T¢(Fy,) =

Span(sy,...,sp) and Tg(]—'u) = Span(f,...,0"). By using the normal coor-
dinates in a neighborhood of u € B one can get (97,...,0") as the orthonormal

normal bundle frame along F,. The Ricci equation being applied to a single
(totally geodesic) fiber yields the following corollary.

Corollary 1 Let (£,4%) be a vector bundle with the Sasaki-type metric. Denote
by Nr the curvature tensor of normal bundle connection of a single fiber F,,. Then

9" NE". X" Y") = P (R7 (0, )X, Y)+

1 A - 1 . .

19 (RT (€ mX, R7(€,QY) = 10°(RT (€, mY, BT (&, O)X).
The latter corollary means that the extrinsic geometry of the fibers is defined by
the curvature of the fiber bundle connection.

2. Unit sphere bundle and unit sections.

Denote by & C & a subbundle defined by the equation g7 (¢,£) = 1. The
fibers of & are unit spheres and 7 : & — B is called a unit sphere bundle over
B. The &; is a hypersurface in £ with the Sasaki-type pull-back metric. At each
point (u,&) € &, the ¥ is a unit normal for & C £. Consider a unit section
¢€:B— & as a (local) imbedding of the base into (&1, g).

Definition 2 Let (&1,¢%) be a unit vector bundle with the Sasaki type metric.
A unit section & : B — (&1,¢%) is called minimal (totally geodesic) if £(B) is a
minimal (totally geodesic) submanifold.
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For a given unit section &, the differential &, : TB — T&; acts by
6X = X"+ (V4e)".

Define a point-wise linear operator A¢ : T, — F, and its conjugate AE Fu —
T.B by
AX =-V%¢,  gP(An, X) = g7 (A:X ).

Then the tangent and normal vector fields on £(B) can be described as follows:
X eTeB)  iff X = XM — (A:X)Y;
N eT+(B) iff N=(Ap)"+n" (nLg).

By using the standard computations one can prove the following Lemma which is
similar to the one for the unit sections of the unit tangent bundle [8].

Lemma 4 Let & be a smooth unit section of a smooth unit vector bundle &1 with
the Sasaki-type metric g¢. Denote by QN the second fundamental form of £(B) C
E1(B) with respect to the normal vector field N = (Aén)h +nY (n L&). Then for
any X,Y € X(B),

QN(&*Xa f*Y) =
— %gf (VEA)Y + (VA X + A (R (€, Ac X)Y + RT (€, A¢Y) X)), n)

where (V5 Ag)Y = V5 (AY) — Ac(VEY).
As a consequence, we can easily prove the following statement.

Lemma 5 The submanifold £(B) C (&1, %) is totally geodesic if and only if the
section £ satisfies

(VEAOY + (V¥ A X+
A (RT (6, AcX)Y + RT (£, AeY)X) — 297 (A X, AcY)E =0 (3)

for any X, Y € X(B).

The equation (3) represents over-definite system of PDEs with respect to the
section £ and involves the bundle connection of £ and the Riemannian connection
of TB. The first question is, if the equation could have a solution? In the next
section we give positive answer to this question.

2.1 A unit circle bundle over a surface.

The simplest non-trivial case for the equation (3) is the case n = dim B = 2
and p = dim F = 2. For this case we will use the terms "a 2-vector bundle over a
surface" and "a unit circle bundle over a surface". In this section we will conduct
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all our calculations over local trivializing chart of the vector bundle 7 : £ — B
without special emphasis.

We begin with the case of flat bundle connection in £. The base Riemannian 2-
manifold, nevertheless, could have zero or non-zero Gaussian curvature, i.e. could
be locally isometric/non-isometric to the Euclidean plane.

Theorem 1 Let m: £ — B be 2-vector bundle with flat bundle connection over
a surface B. Let & be a unit totally geodesic local section of a unit circle bundle
m: &1 — B with the Sasaki-type metric.

e If B is not locally Fuclidean, then £ is arbitrary parallel unit section;

o [f B is locally Fuclidean with the Cartesian coordinates (x,y), then & makes
the angle 0(x,y) = ax + by + ¢ with arbitrary parallel unit section.

Proof. Since the bundle connection of £ is flat, there is a pair of orthonormal
sections which are parallel with respect to the bundle connection. Denote by s;
and sg these sections. Then any unit section can be given by

& =cosf s +sinb s;.

Denote £+ = —sin# s; + cos@ sy. Then AcX = —V%E = —X(0)¢H, Viet =
—X(0)¢ and we have

(VEA)Y = VX (AY) = Ac(VRY) = V(Y (0)€) + (VRY)(0)¢ =
— X(Y(0)6" + X(0)Y ()¢ + (VRY)(0)¢™.
By definition, X (Y (9)) — (V5Y)(6) = Hess5(X,Y) and hence
(VX Ae)Y = —Hessg (X,Y)E + X ()Y (0)¢ = (V§ Ag) X.

Then, the equation (3) takes the form —2 Hess5(X,Y )&t = 0. As a conclusion,
the section & is totaly geodesic iff

. 9% B 09
H€SSE(X,Y) =X Yk(auluk_ Fik w) = 07 (4)

B
where I}’ mean the Christoffel symbols of the base manifold Riemannian metric.

e If @ = const, then £ is a parallel local unit section and £(B) is totally geodesic
independently on geometry of the base manifold;

e If df # 0, then &£(B) is totally geodesic if df is a nonzero parallel 1-form
on the base manifold. In other words, B admits a parallel local vector field
(namely, the grad #). In this case the Gaussian curvature of the base man-
ifold is zero, i.e. B is locally Euclidean. Choose the Cartesian coordinates
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(z,y) on the base manifold. Then the line element of £ takes the form (see

(2))
ds® = da® + dy? + db?

and hence (€1, ¢°) is locally Euclidean (while topologically & = E? x S1).
So we have
0=ax+by+c

as a solution to the equation (4). Geometrically, we get a linear angle
function between the totally geodesic local unit section & and a parallel unit
section.

u
Consider the case of non-flat bundle connection. Introduce the bi-sectional cur-
vature function of £ by

_ F(RFxY)E)
|X /\Y‘gB ) |§ /\n|g-7:’

where XY € X(B) and &,n € &(B). Up to a sign, it is nothing else but the
Gaussian curvature in the case of & = TM? and the Gaussian torsion in the case
of normal bundle & = T+ F? of a submanifold in the Riemannian M*. If both
frames are orthonormal, then » = g]:(R]:(X, Y)E, n).

If n > p, then the kernel of A¢ is non-empty by the dimension reasons. Denote

Z=kerA¢ C X(B), J=imA; C &t C &(B)

If Z, = T,B for all ¢ € B, then the bundle connection is flat. In general, T;B8 =
Z,D ZqL. In general setting, for each given section & we have two complementary
distributions Z and Z+ on B. The following statement simplifies Lemma 4.

Lemma 6 Let & be a unit local section of a unit circle bundle w: & — B over
a surface. Suppose the bundle connection of m : € — B is non-flat. Denote
by (e1,e2) the orthonormal local tangent frame on B such that Z = Span{e1},
2L+ = Span {es}. Then the second fundamental form Q of E(B) C & satisfies

s(e1(a) = )
ea(a) cos(a/2) (5)

—k1 sin(a/2)

Qei,ej =
M= e -

where s is a bi-sectional curvature of €, a /2 is the angle between the unit normal
n of a hypersurface £(B) C &1 and the vertical (one-dimensional) subspace and k;
is a geodesic curvature of the field eq.

Proof. Take a unit section n = £&*. Take (e1, e2) as in a hypothesis. Then we
may put
Ace1 =0, Agea = =M.
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Then

& = el (e +An") (6)

_ 1

€y = —F———
T VIt
form the orthonormal tangent frame on £(B). A unit normal vector field 7 on

&(B) is ,
n = ﬁ(—)\eé‘ +17"). (7)

Denote by /2 the angle between 7 and the vertical distribution. Then

1 A

cos(a/2) = Vel sin(a/2) = i

A = tan(a/2)

and hence
é1=el, & = cos(a/2)el +sin(a/2)n®, n = —sin(a/2)el + cos(a/2) n.
Define k1 and ko by Vgel = kiea, Verg = koej. Then by Lemma 2,
Veér = (VBe)' = kiel, Ve éa = Skicos(a/2)el + L(ei(a) — 5)i,
\%

Vi, é2 = (ki cos(a/2) — sinasx)el + ea(a) cos(a/2)7 + sin?(ar/2)€°.

Q(é1,61) = —sin(a/2)k1, Q(é1,8) = L(e1(a) — »),
Q(&a, &) = cos(a/2) ea(ar/2),
which completes the proof.
[

Corollary 2 Let & be a unit section of a unit circle bundle m : & — B over a
surface. Suppose the bundle connection of m: € — B is non-flat. Denote by H
the mean curvature of &(B) and by ny, the horizontal projection of the unit normal

vector field on §(B) C &1. Then
B = —Sdiv() = — sdiv(in,)
= —g5div(R) = —5div (7).
Proof. Indeed, the equality H = —%&Z)(ﬁ) follows from the definitions. As for

the second equality, we have nj;, = — sin(a/2)es and

VB fu, = —1 cos(a/2)er(a)es + kysin(a/2)ey,

VB fu, = —1 cos(a/2)ea(a)es — ka sin(a/2)e;.
Therefore, ) .
Q(é1,61) = (VB ap,e1), Qe &) = —(VE iy, e2) and H = —Ldiv(fiy).
u

Now we can prove the main result of the section.
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Theorem 2 Let m: &4 — B be a unit circle bundle with the Sasaki-type metric
over a surface. Suppose the bundle connection of w : £ — B is non-flat. Then &
admits a local totally geodesic unit section if and only if B is locally isometric to

(M?,ds* = du® + sin® a(u)dv?)
and the bi-sectional curvature of € satisfies 3 = &(u).

Proof. Suppose £ admits a local totally geodesic section. Since » # 0, the
section is non parallel and hence the surface {(B) is not horizontal. Therefore,
there is a trivializing neighborhood & C B such that «afy; # 0. Restrict our
considerations to U and choose (e1,e2) as in Lemma 6. Then &(U) is totally
geodesic if, particularly,

e2(a) =0, k1 =0.

Thus, the trajectories of e; are geodesics and the angle function « is constant
along es.
Choose the semi-geodesic coordinate system (u,v) on U such that

Oy =e1, O, = f(u,v)es,
where f(u,v) is some non-zero function. Then
ds® = du® + f2dv?.
With respect to these coordinates, the conditions on « take the form
Oy =0, Oya = s.

Hence

On the other hand,

RF(€1,€2>5 = (Vengg)@l - (ViAg)ez
— Ae(VB e1) — VI (Agea) + Ae (VB e2) = (e1(N) — k2.
Since A = tan(a/2), we have
&
A 2)ks.
o 3 cos?(a/2) tan(a/2)keo

Since a = a(u), we see that ko = ka(u). With respect to the chosen coordinate

Ot
-

Hence, f(u,v) = a(v)h(u) and after the parameter change

system
ky =

ds* = du® 4 h*(u) dv.
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Thus we have the equation on h(u)

&= QCosjza/Q) B tan(a/2)(—%),

with a general solution
h(u) = Csina.

After the parameter v rescaling, we come to
ds* = du® + sin® o dv?.

Conversely, let w: & — B is a unit sphere bundle over the Riemanian mani-
fold (B,ds? = du® + sin® a(u) dv?) with the bi-sectional curvature of the bundle
connection s = &(u). Let us show, that there is a local section £ which satisfies

Vg;ﬁ =0, ngg = 2sin%(a/2)n
Take an arbitrary orthonormal sections {s1,s2}. Then
&= cosfsy+sinfsy, n=—sinfhs; + cosb s,
where 6 is some smooth function. Then
(VEEm) =00 173, =0, (VL En) = 0,0+ 7, = 2sin®(a/2)

or
00 = va1, 0ol = ygpp + 25in%(r/2).

Then the integrability condition takes the form
827%” — 817%‘2 = 2sin(«a/2) cos(a/2)& = sin(a)d.
In the left hand side we have g]: (Rf (01, 02)s1, 32). By definition,

g7 (R7 (01, 02)s1, 52)

sin o

Hence, the condition & = s provides the integrability.

Direct computation implies the following assertion.

Corollary 3 Suppose w: & — B is a unit circle bundle over a surface. Suppose
the bundle connection of m: & — B is non-flat and & admits a totally geodesic
local section. Then the base manifold Gaussian curvature K and the bi-sectional
bundle curvature s satisfy

K = »* — cot a(u)s. (8)
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Examples.
3.1 The unit tangent bundle.

In this case one can find the totally geodesic section explicitly.

Theorem 3 [11] Let (M?,g) be a Riemannian manifold with a sign -preserving
non-zero Gaussian curvature K. Then M admits a local totally geodesic unit
vector field & if and only if there is a local parametrization of M with respect to
which the line element takes the form

ds* = du® + sin® a(u) dv?,

where a(u) is a solution of the differential equation

da 1_a—i—l

du cosa

The corresponding local unit vector field & is of the form

sin(av + w
& = cos(av + wp) Oy + 7( 0) v
sin a(u)

where a,wy = const.

It is worthwhile to mention that Gaussian curvature K of the metric from the

Theorem 3 is p )
F=9__ ot
du Ccos &

and after evident reparametrization, the metric takes the form

1
ds® = m do? + sin? a dv?.
The curvature K could be non-zero constant iff a = —1 and K = 1. In this case,

the integral trajectories of the totally geodesic unit vector field £ are stereogra-
phically equivalent to the pencil of parallel straight lines on the plane [11].

In general, the integral trajectories of the totally geodesic unit vector fields
on M? are conformally equivalent to the trajectories of the totally geodesic unit
vector field on the plane E2.

3.2 The unit normal bundle

In this case the bi-sectional bundle curvature is the same as the Gaussian
torsion sp. In [12] it was proved, that every analytic 2-dimensional metric admits
a local isometric immersion into E* as analytic surface with prescribed analytic
Gaussian torsion. So, if we take arbitrary monotonic smooth function 0 < a(u) <
7 and put s»r = &(u), then there is a surface in E* with unit normal bundle
satisfying the conditions of Theorem 2. For example, if we take o = cu and
ur = & = c, then the Gaussian curvature of the base K = ¢? and we get a



Bicuuk Xapkisebkoro nanjonasibaoro yuisepcurery im. B.H. Kapasina, 1030 (2012) 67

local constant curvature surface with constant Gaussian torsion in E4 with some
local totally geodesic unit section. Observe, that in this case TlLF 2 is a space of
constant curvature %.

Another surface which satisfies the conditions of Theorem 2 is the Veronese
surface V2(r) C S4(R) C E° given by

1 1
- (2 —23), (a2 + 23 - 2w§>} ,

1 1 1
=9 —=T123, —= —=X1x9, —=
Y {¢313¢3 V3 o3 6

- : . 2
where 27 + 23 4+ 3 = r%. This is a surface in a sphere of radius R = . The V?
has constant Gaussian curvature K and constant Gaussian torsion s, namely

3 6
K = ﬁ’ nr — ﬁ =2K.
The necessary condition (8) is fulfilled if K = I, that is when r = v/12. In this
case ) )
K=" _—
1 Ty

By passing to spherical coordinates
x1 =rsin(u/2) cos(v/2), x9=rsin(u/2)sin(v/2), x3=rcos(u/2),
the first fundamental form of the Veronese surface takes the form (for r = v/12)
ds® = du® + sin®(u/2) dv*.

Evidently, a(u) = % and exactly ¢, = s = 3. Remark that Tj(V2(V/12) is of
constant sectional curvature 1—16.

3.3 Minimal unit normal sections

The example below show that there is a minimal but not totaly geodesic global
section of a unit normal bundle of a surface in the Euclidean space.

Propozition 1 The graph of complex curve w = e* admits a global unit normal
vector field which provides a global minimal but not totally geodesic embedding of
the 2-plane into the unit normal bundle of the curve.

Proof.The complex curve w = e is a surface in E* given by
7= {x,y,e" cosy, e’ siny},
The tangent (non-orthonormal) and normal frames are given by

0, ={1,0,e* cosy,e’siny}, 09, ={0,1,—e"siny, e’ cosy},

ni {—e"cosy,e”siny, 1,0},

1
C VIgex
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no {—e"siny, —e” cosy,0,1}.

1
V1t

Put ¢ = n; and 1 = ny. Then the frame

1 1

1= e Oy, ey = 0,
YTV Trem T Txem Y

meets the requirements of the Lemma 6 with

621
We have
5 A
npy = —————=¢
NV e
and then
<v61ﬁh7 €1> = Oa <v62ﬁh7 62> = Oa
that is H = 0.
The Gaussian curvature and Gaussian torsion are of the form
621’
K=—s2p=-2———.
T 1+ ex)3
Since @ = 2 arctan A, then
se(N) e2%(e?® — 2)
) =10 = e r e o 7T

The next example is interesting itself. Consider the tangent bundle TM? with
the Sasaki metric. It is known that the fibers are totally geodesic and intrinsically
flat submanifolds in TM?2. The Corollary 1 implies that the Gaussian torsion s
of a single fiber T, M? is equal to the Gaussian curvature of the base at  and
hence is constant.

Propozition 2 Denote by T,M? a fiber of TM? with Sasaki metric. Let & = X!
be a unit normal vector field on TpyM?, where X, € T,M? . Then & maps the
fiber into minimal submanifold in the unit normal bundle of the fiber.

Proof.Take a fiber T,M?. Then at each point ¢ € T,M?, the tangent frame
of T,M? consists of 7Y,¢Y and the normal frame consists of X! Y/ where
(Nwy Coy Xz, Yz) € T,M?. As the fibers are totally geodesic, the curvature ten-
sor of the normal bundle connection of the fiber is defined by the curvature tensor
component of TM? of the form

g(m,ﬁ) (R(nva CU)Xh7 Yh) = Uz (R(na C)Xv Y)
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Hence, the Gaussian torsion of the fiber is
ser(TuM?) = K(x),

where K (z) is the Gaussian curvature of M? at = € M?.
Let (1,¢) and (X,Y) be orthonormal frames in T, M? oriented in such a way
that

9:(R(n, O)X,Y)) = K(z).
By applying Lemma 2 to the case of tangent bundle, we get
- 1 h
h — —
9t = L (mig.x)"
Decompose
§=¢n+E%¢
As the fiber metric is Euclidean,
o K@{-ed)
V1+ K2 (2)((€) + (£2)%)

and hence
K3 (@)
(14 K2()[¢]?)

So we see, that any unit normal vector field on the fiber T, M? of the form ¢ = X/
is minimal in the unit normal bundle of the fiber.

A single fiber T, M? C TM? does not admit a totally geodesic unit normal
section of its normal bundle if the base manifold have non-zero curvature at the
corresponding point. Indeed, the single has zero Gaussian curvature while the
Gaussian torsion of the fiber is equal to the Gaussian curvature K(z) # 0 of the
base manifold at the corresponding point (and hence is constant along the fiber)
and we come to a contradiction with (8).

—div (i) = 01 2" + 82 7% = 53 (—€°€ + €67 =0.
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