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We introduce the notion of the limit set Iy (f) of the Henstock-Kurzweil
integral sums of a function f : [0,1] — X, where X is a Banach space, and
study its properties. In particular, we construct an example of function f,
which is not integrable, but its limit set consists exactly of one point. We
find sufficient conditions that guarantee the convexity of the limit set.
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Kocraako A. I. MHoOXWMHA TpaHHYHHX TOYOK IHTErpaJIbHUX
cym Xencroka-Kyprseiisia BeKTOpHO3Ha4YHOI (PYyHKIIIT. Mu
BBOJMMO IIOHATTS MHOXKUHU TIpaHuIHUX TOUOK [g_ i (f) iHTerpambuux
cym Xencroka-Kypmseiins dymxumii f : [0,1] — X, me X - Gamaxis
mpocTip, i BUBYAEMO HOro BiacTWBOCTI. 30Kpema, MU OyIyeEMO MPUKIAT
HeinrerpoBaHol PyHKINT f, MHOKHHA MPAHMYHKX TOYOK KOTPOI CKJIAIAETHCA
piBHO 3 ommiei Toukm. Takok MM 3HAXOAWMO JOCTATHI YMOBH, IIO
TapaHTYIOTh OMYKJICTh MHOKHUHHU TPAHUIHUX TOUOK.

Karwwoei caoea:  imterpan Kypiseitns-Xencroka, 0aHaxiB mpocTip,
MHOXKWHA TPAHUIHUX TOYOK IHTErPATHHUX CYM.

Kocrsinko A. T. MHO>KecTBO HpedeSIbHBIX TOYeK WHTErpaibHBIX
cymm XeHcroka-KyprnBeiias BekTopHO3HadHOW dyHKmmm. Mol
BBOJMM IIOHATHE MHOXKECTBA NpPeNeabHbIX ToYeK gk (f) uHTerpasbHbix
cymm Xencroka-Kypuseitna dyakmun [ : [0,1] — X, tne X - Gamaxoso
MPOCTPAHCTBO, W U3y9aeM €ro CBOWCTBA. B 9acTHOCTH, MBI CTPOUM TIPUMED
HewmHTerpupyeMoit dyHkiun f, MHOXKECTBO TPEIETbHBIX TOYEK KOTOPOH
COCTOUT POBHO W3 OMHON TOoukM. Takke MbI HAXOIUM JTOCTATOYHBIE
YCJIOBHsI, KOTODBIE TAPAHTHUPYIOT BBIMYKJIOCTh MHOXKETCBA ITPEIE/IbHBIX
TOYEK.

Kmovesvie  caosa: naTerpan  Kypiseiiis-XeHCTOKA, 0aHaxoBO
MPOCTPAHCTBO, MHOXKECTBO TPEIETBHBIX TOYEK HWHTEIPATIBHBIX CYMM.
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1. Introduction

The Henstock-Kurzweil integral was discovered in 1957. It generalizes Rie-
mann integral and is used for integration of highly oscillatory functions which
occur in quantum theory and nonlinear analysis (see |8, Chapter 4]). Moreover,
all Lebesgue integrable functions are Henstock-Kurzweil integrable, and one of
the advantages of the latter is that it does not rely on measure theory. Also one
may consider integral and differential equations using Henstock-Kurzweil integral
(see [2]). For functions which are not integrable we introduce the notion of the
limit set of the Henstock-Kurzweil integral sums Iy (f) and study its proper-
ties. Similar notion of a limit set I(f) for Riemann integral and its properties is
studied in [4, Appendix].

Our main result is construction of a function for which limit set Iy_ g (f)
contains only 1 point but the function is not Henstock-Kurzweil integrable ( see
Theorem 3). Similar result for Riemann integral is established in [4, Appendix].
However in our case construction of such an example is more sophisticated. It
appears that properties of the limit set of Riemann integral sums (as well as
Henstock-Kurzweil integral sums) depend significantly on the properties of the
space of values of a function under consideration. For example, if function takes
values in a separable space then its limit set I(f) associated with Riemann in-
tegral is not empty (see [1]). However the full description of such spaces is not
known. Also for bounded functions with values in separable spaces it is known
that I(f) is a star-shaped set (see [5] and [4]). Conditions for convexity for I(f)
in the case of Riemann integral are given in [6] (see also [4]). In particular there
are conditions which can be easily described when a considered function takes
values in so called B-convex space. We establish analogues of these results for the
limit set of Henstock-Kurzweil integral Iy_ i (f) (see Theorem 4, Theorem 5). In
general situation we can not expect convexity of the limit set (see [3]).

The work is organised as follows. In Section 2 we recall the notion of Henstock-
Kurzweil integral and introduce a notion of a limit set for Henstock-Kurzweil in-
tegral. In the beginning of Section 3 we reformulate basic definitions in terms
of net convergence and give basic properties of the limit set Iy (f) (see Theo-
rem 1, Theorem 2). The main result is stated in Theorem 3. Results concerning
convexity of the limit set Iy (f) that generalize results obtained in [6] are given
in Theorems 4 and 5.

2. Basic definitions

We consider functions f : [0,1] — X, where X is a Banach space.
Let P be a tagged partition of [0, 1], i.e.

P = {(&, (ti_l,ti)),where O=to<ti < ---<tp,= 1,& € [ti—lyti]};

and d : [0,1] € (0,00) be a positive function, which is called gauge. We say, that P
is 0-fine if & € [ti—1,t;] C (& —0(&),&+0(&)) for all i = 1,...,n. We denote this
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by writing P is a d-fine tagged partition of [0, 1]. We define the Henstock-Kurzweil
integral sums of the function f as

S(f,P) = f&)(t: —ti).
=1

These integral sums are the same as for the Riemann integral, but they are
considered in context of a very different convergence definition:

Definition 1 A function f : [0,1] — X is said to be Henstock-Kurzweil integrable
on [0,1] if there is x € X such that for every ¢ > 0 there is a gauge § on [0,1]
such that for every d-fine tagged partition P of [0, 1]

IS(f, P) — x| <e.
This x 1s called the Henstock-Kurzweil integral of f.

For functions that are not Henstock-Kurzweil integrable the role of an integral
may be played by the limit set of the Henstock-Kurzweil integral sums.

Definition 2 We say, that for f : [0,1] — X a vector x € X is a Henstock-
Kurzweil point (H-K point) if for every e > 0 and for every gauge § on [0, 1] there
is a 0-fine tagged partition P of [0,1] such that

IS(f, P) — || <e.

The set of all H-K points of a function f : [0,1] — X, where X is a Banach space,
we denote by Ig_g(f). For a nonintegrable function its limit set Iy_ g (f) may
be empty or contain many points.

3. Properties of the limit set Iy_x(f)

We start with reformulation of Definition 1 and Definition 2 in terms of net
convergence.

Let (I',>) be the directed set, where I' ={(y = 4, P) : 0 is a gauge on [0, 1]
and P is a 0-fine tagged partition of [0, 1]}.

Definition 3 We say, that pair (61, P1) follows pair (82, P2) (we denote it by
((51,P1) ~ ((52,P2)), ’if 01 < 99 on [O, 1].

Define the net F¥ = Fy : I' — X by the rule F((6,P)) = S(P, f). Then the
following propositions are obvious

Proposition 1 Let X be a Banach space and a function f :[0,1] — X. Then
the following conditions are equivalent:

i) x € X is the integral of f on [0,1],

i1) © = limp F.
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Proposition 2 The limit set of the Henstock-Kurzweil integral sums coincides
with the limit set of the net I' = Fy.

Remark 1 Let X be a Banach space, then for a function f :[0,1] — X its limit
set Ig_(f) is closed. This is a general result for the limit set of nets (see [?,
Chapter 2]).

Now we proceed to prove other properties of Iy_k(f)

Theorem 1 Let X be a Banach space, f : [0,1] — X and g : [0,1] — X be a
Henstock-Kurzweil integrable function. Then

1
In-k(f+9) = In-(f) +/O g(t)dt.

Proof. i) Let us prove first the inclusion Ig_g(f +9) C Ig—x(f) + fol g(t)dt.

Take an arbitrary « € Ig_g(f + g) and denote xo = fol g(t)dt. We are going to
show that there exists 1 € Iy_ g (f) such that x = 1 +x9, i. e. we have to show
that ¢ — 29 € IH_K(f).

To this end fix € > 0. From integrability of g(¢) and Proposition 1 we get that
for every v € I there is a 4 > 7y such that for every ~v; > 7

3

ez = Fylm)ll < 5

Using condition « € I'y_k(f 4+ g) and Proposition 2, we obtain that for 4 as
above there is y; > 7 such that

€
|z = Fryg(r)ll < 5
So, for every v € I there is a 1 > 7 such that
e €
Iz =22 = Fy(y)l] < [le = FrrgOn)ll + [lz2 = Eg(y)ll < 5 + 5 ==,

which means that © — x93 € Ig_g(f).
i1) Applying i) with f instead of f + g and —g instead of g we obtain

1
Tn-k(f) € In-x(f +9) +/ —g(t)dt.
0
After adding fol —g(t)dt to both sides of this expression we get

1
Tn-x(f) + /0 g()dt € Irr_xc(f +g),

which was to be proved. O
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Theorem 2 Let f:[0,1] — X and g : [0,1] — X, where X is a Banach space,
and the image of f or of g is relatively compact in X, then

In—k(f+9) Clu-k(f) + Iu-K(9)

Proof.  Let us prove that Iy g (f+9) CIlg—x(f) + In-r(9). ¥ Ig_x(f +9)
is empty, the inclusion is satisfied. Let us assume Iy_x(f + g) is not empty fix
an x € Ig_g(f + ¢g) and define a new directed set

I'={(c,6,P):e>0,|[x— Friy(5,P)|| < e}

We say that (g1, 91, P1) follows (€9,09, P) if 1 < &9 and 01 < do. .
Let us introduce net Fyi4((e,6,P)) = Fry4((0, P)) then x = lims Frig(7),
i.e. for every € > 0 there is 4 € I" such that for every 71 = %

e~ Frag()ll < e.

Let image f([0,1]) be relatively compact, then F f(f‘) is also relatively compact,
i.e. for Ff there exists a limit point x;. Let 7 be as in the above condition. Then
for every 72 € I' there is a 43 that follows both 4 and A»2. Since x is a limit point
for Ff, there is a 71 > 73 such that

o1 = Fr(n)l| <e.

Using previous estimates we obtain: for every € > 0 and for every 7o there is
a y1 > 7y such that

[l — a1 = Fy(G)l] < llzn = Fr (G + ||z = Freg(0)]] < 2e.

We have demonstrated that 2o =+ — 21 € Ig_k(g). O
However the inverse inclusion may not be true and our next example shows
that. By A*(C') we denote the outer measure of C' C [0, 1].

Example 1 There exist functions f(t),g(t) : [0,1] — R such that their images
are relatively compact in X, but

In-rx(f+9) # In-x(f) + In-x(9)-
Define f and g : [0,1] — R by the rules
1 ifte A | =1 ifte A,
f(t)_{ -1 ifte B, g(t)_{ 1 ifteB,
where A and B are non-measurable sets, A*(A) = \*(B) =1, AU B = [0, 1] and
AN B =10. It is not difficult to see that f +¢g =0, and Ig_x(f + g) = {0}, but

In_k(f) +Ia-k(g) = {—2,0,2}.
The next property of Ig_g(f) is obvious, so we state it without proof.
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Proposition 3 Let f: [0,1] — X, where X is a Banach space, T be a continuous
linear map and x € Ig_g(f), then Tx € Ig_k(Tf).

Our next theorem is the general result for limits of nets (see [?, Chapter 2]).

Proposition 4 Let X be a Banach space and for a function f : [0,1] — X its
image f([0,1]) is relatively compact in X. Then f is integrable if and only if
its limit set Iy (f) consists exactly of one point and under this assumption its
wntegral is exactly this point.

It is easy to see that the assumption image f([0, 1]) is relatively compact in X
implies F'(9, P) is relatively compact in X. Thus under this assumption the limit
set of net contains at least one point (see |?, Chapter 2|). Hence the limit set of
the Henstock-Kurzweil integral of f is not empty. Let us show that compactness
condition can not be replaced by boundedness condition.

Recall that ¢1]0, 1] is the space of real-valued functions defined on the segment
[0, 1], having at most countable support and such that 3,117 [9(c)| < co. The
norm in £1[0,1] is [[g[| = - ,ep,17 [9(c)|. The standard basic vectors of the space
£1]0, 1] have the following form

er(a) = 1 ifa=t,
B 700 ifa#t

Then ||e;|| = 1 for all t € [0,1]. Any element g € ¢1[0, 1] can be represented in
the form g = Y .2, ajer,, and || D 2 aier || = Doy |ail-

Function f : [0,1] — ¢1[0, 1], which acts by the rule f(t) = e, is an example
of a function that has an empty limit set Iy_x(f).

Our next goal is to construct an example which shows that a one-point limit
set does not guarantee the existence of the integral. Further we need the following
technical result.

Proposition 5 Let § be a gauge on [0,1], C C [0,1] and \*(C) = 1. Then, for
every € > 0 there is a 0-fine tagged partition P of [0, 1] such that the sum of lengths
of segments whose tag points lie in C (we denote them by (7y, 1) fork=1,...,n)
obeys the following inequality:

n
Z(Tk —7~'k) >1—c.
k=1
Proof.  Step 1. For all t € C denote Ay = (t — 0(t),t + 6(t)). Let us consider
properties of the set A = UsecAy.

(1) A is an open set, and consequently it may be represented in the following

form:
o0

A = |_| (ak, bk);
k=1

(2) C' is a subset of A.
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Using 1 and 2, we can conclude that > 22 (by — ax) > 1.
Step 2. Pick ef, > 0 such that Y-, ex < . Notice that we can represent (ag, by)
in the form Uye(q,, 5, )ncA¢ for all k. After a small decrease of intervals, we obtain
Ek Ek
—,bp — — AR
lar + 5,0 = 571 € U t
tE(ak7bk)ﬂC

By the Heine-Borel theorem there exist such points t5, <tg, < - < tka that
[ak+ bk**CUAtk

Step 3. We are going to introduce smaller intervals A(tkj) C Atkj in such a way
that, if A(tkj) # 0, then t; € Atkj; intersection of interiors of Atkj and Atki is
empty for j # i and

[ak+2 k—7CUAtk

To this end let us consider four cases: }
(1) thy, — 0(tr,) < ar + %, then we skip point ¢, and A(tkl) =0,
(2) tg, > t, —O(tk,), then we may choose A(ty,) as follows A(ty,) = [ag + 5, tr, ];

(3) tr, < tr, — 5(%) and tg, + 6(ty,) < tr,, then A(t,) may have the form

A(tkl) [ak + £ 27 o+ tk1+6(tk1)2tk2+5(tk2)]

(4) tg, < tg, — 5(%) and tg, + 6(tk1) > thy, then A(ty,) = [a + 2, ty,)
Now we consider the segment [ay, + %, b, — %]\ A(t,) and go over to the point
t,, for it we check the similar four cases. Then we do the same for all points tx;
for all k£ and j.

As result, we obtain

OONk

S Alty) >1-¢,

k=1 j=1

which proves the statement. O

Theorem 3 There exists a function f : [0,1] — £1]0,1] such that its limit set
Iy _k(f) consists exactly of one point, but this function is not Henstock- Kurzweil
integrable.

Proof.  Define f : [0,1] — ¢1]0, 1] by the rule

B er ifte A
f<t)_{ eg ifte B,

where A and B are non-measurable sets, A*(A) = \*(B) =1, AU B = [0, 1] and
ANB=0.
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Set B obeys conditions of Proposition 5, therefore for every € > 0 and for
every gauge  on [0, 1] there is a d-fine tagged partition P of [0, 1] such that

1S(f, P) — eol| <e.

On the other hand, set A also fulfils conditions of Proposition 5, and so for
the same ¢ > 0 and gauge 0 on [0, 1] there is a d-fine tagged partition P of [0, 1]
such that for corresponding &; (almost all of which are in A) and ¢;

1S(f,P) = eol| = 1> F(&)(t: — ti1) — eol| =
=1

m n
= || Zeﬁi(tki —tg,y) + Z eo(th;, — thi_1) — eol| > 2|1 — €|,
=1 i=m+1

as result, e is not the integral of f.

It is easy to show, that there is no other limit points of f, and we complete
the proof. O

Let us recall the following definition. X has infratype p if there exists a
constant C' > 0 such that an inequality

n n
min |3 gl < O3 JJlP) VP
a;=%1 P =1

holds for any finite collection {z;}*; of elements of X. The basic properties of
spaces with infratype p > 1 can be found in [4, Chapter 5] .

Theorem 4 Let f : [0,1] — X, where X is a Banach space, and f([0,1]) is
relatively compact in X, then Ig_g(f) is conver.

Proof.  Notice that f is bounded and denote M = sup{||f(¢)||,t € [0,1]}. By
relative compactness of K = f([0,1]) for every ¢ > 0 there is a finite e-net A,
for K. Denote by Y the linear span of A.. Since Y is finite dimensional, it has
infratype p = 2.

Let z1 and x2 be two points in I (f). Since Ig_i(f) is closed (see Remark
(1)), it is sufficient to show that 3(z1 + x2) € Ig—k(f). To this end fix N. Since
x1,x2 € Ig_g(f) then for every € > 0 and for every v € I" there are v, > 7 and
Y2 > 7y such that ||z1 — F(71)|| < € and ||z2 — Ff(72)|| < €, also 1 and 1 may be
chosen in such a way that points k/N, where k = 0,1,..., N, belong to the set of
endpoints of the correspondent partition. Denote by Fik, 1=1,2, k=1,...,N,
the part of the integral sum Fy(7;) corresponding to the segments of the partition
that lie in [k/N, (k + 1)/N]. Now for each of the segments [k/N, (k + 1)/N] we
choose in arbitrarily manner either the sum Ff or F¥. After this we can formally
write 2V different integral sums of the function f in the following form:

N N tan o, -k,
P(Se) =30 (M L),
k=1

k=1
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where ap = %1 are arbitrarily. Let us show that one of these sums lies close
enough to 3(z1 + x2). Indeed,

\1F<Zak> — @)l S e ISR+ F) - (Zak>u—
k=1

N
= ellyF ) - Y (TR ) I -

k=1

N
1
= et gl et - R

For every element f(é,ij) from the sums FF = 2?21 f(f,ij)(tkj —tr;,), 1= 1,2,

there is the nearest element from e-net, let us denote it by g(ﬁ,icj). Then

*Hzak Ff — Fy)|| <

N ng Nk
et > o | Do ateh ), — by )+ Y0t — i, ) | I
k=1 =1 j=1

Using this inequality and definition of infratype, we obtain the required result

N
1
F —z <2 +CN~'V2M.
arerHIH (Zak> 2($1+9U2)H e+C

Since € > 0 can be made arbitrarily small and N arbitrarily large, we see that
point 3(z1 + 22) lies in the limit set of the Henstock-Kurzweil integral, which
completes the proof of the lemma. O

Theorem 5 Let f :[0,1] — X, where X is a B-convex normed space, and f is
dominated by some integrable function g, then Ig_i(f) is conves.

Proof.  Recall that B-convexity of X is equivalent to existence of some infratype
p>1.
Let 21 and x2 be two points in Iy (f). Let us prove that f(acl + x9) €

In_k(f). To this end fix N. Since g is integrable function ( fo dt = M),
the interval [0, 1] can be divided into N parts such that ft t)dt = , where
0=ty < t1 < -+ <ty = 1. From condition z1,22 € IH,K(f) we obtain:

for every € > 0 and for every 7 € I' there are v; > ~ and o > < such that
llx1 — Fr(m)|| < € and ||z2 — Ff(y2)|] < €, also 41 and 2 may be chosen in such
a way that points ¢;, where ¢ = 0,..., N, belong to the set of endpoints of the
correspondent partition.
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Further applying similar arguments as in Theorem (4), we come to the in-
equality

N N
1 1
\F <Zak) L+ a)ll 2o+ 21 aulrt - L

k=1 k=1

Using definition of infratype and taking into account that g dominates f, we
obtain
in_[|F 3 L <e+CNYP M
min, | ;ak — St m)| <e st .
Since € > 0 can be made arbitrarily small and N arbitrarily large, we see that
(21 + 22) € In_k(f), which was to be proved. O
Remark, that a function with Iy_k(f) # 0 (and even a Henstock-Kurzweil-
integrable function) does not necessarily have an integrable majorant. Moreover
there is no any restrictions on the behaviour of the function || f(¢)|| for a Henstock-
Kurzweil-integrable f, as the following proposition shows

Proposition 6 Let f :[0,1] — RT. Then there is Henstock-Kurzweil-integrable
function g : [0,1] — £5[0,1] such that ||g(t)|| = f(t) for every t € [0, 1].

Proof.  Define g : [0,1] — £5[0,1] by the rule g(t) = f(t)e;. It is obvious that
lg(®)]| = £() for every t € [0, 1]

Let us prove that fol g(t)dt = 0. Fix ¢ > 0 and define gauge by the rule
o(t) = m Choose intervals [ty_1,tx], 0 =tg < t; < --- <t, =1, in such a
way that [tp_1,tx] C (& — 0(&k), &k + 0(Ek)), where & € [tg—_1,tx]. Then

ISP g)ll = 11D 9(&r) (b — te—1)ll =

k=1

= m]?x{f(gk)(tk —tg—1)} < maXM <&,

P 6 +1
so g(t) is integrable and fol g(t)dt =0. O
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