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V. D. Dushkin. The Justification of Numerical Solution of Boundary
Integral Equations of Wave Scattering Problems on Impedance
Lattices. The justification of the method for numerical solution of the
boundary integral equations of the problems of waves scattering of on the
impedance lattice had been proposed. The convergence of the approximate
solutions to the exact solution had been proved.
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1. Introduction.

The process of developing of some mathematical models by using the method
of integral operators’ parametric representations [1, 2] leads to the consideration
of equations of two different types.

Equations of the first type are singular integral equations of the first kind:
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with the additional condition
1
I(r)dr _0. 2)
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The equations of the second type are Fredholm equations of the second kind:
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In the equations (1)-(3) it is assumed that
f € Cﬂﬁ[_L 1]a Q € CM’A/([_L 1] X [_17 1})’ v > 07 (4)

geC%[-1,1], KeC(-1,1]x[-1,1]), 0< < % (5)

In particular, equation (1)-(3) occurred in considering of the wave diffraction
problem on the system of superconducting tapes [3, 4]. The scheme of discretization
of these equations had been proposed in [4]. It is based on the method of discrete
singularities [5] . Using of this scheme numerical experiments had been conducted.

Unfortunately, the proof of convergence approximate solutions of the equations
(1)-(3) to the exact solution of these equations had not been given.

In this article the proof of convergence of the approximation process is offered.

Also the estimation of convergence rate of approximate solutions to the exact
solution of the equations had been given.
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2. The functional spaces and integral operators.

Let us consider the Lebesgue spaces L2, « = :l:%, of measurable functions
with the inner product

1
(v, V)a = /U(T) -v(T)(1 — 72)ad7' (6)
21

and norm ||v||q = /(V,V)a.

We introduce the subspaces II,, o, of spaces L? . Elements of these subspaces
are polynomials of degree n. Also we define spaces L§ , = {u € L2|(u,1)o = 0}
and H%,a ={u eIl q|(u,1)q =0}.

We introduce the operators (see [6, 7]):

1
d
o 0@ =1 [wlr-g 00 <@
w (r)d
72 g2 1 u(T)dr '
KeL?, =12, (Ku)() = * /1 KengZD d<n ®
1 / (1)d
12 2 1 u(T)dr '
Q:I2_, —I3,(@Qu)©) = - /1 Qe ZET. K<n )
PiL2, =12, (Pu)(© = VI— € u(®), |6 <1 (10)
1 Fou(r)d
12 g2 _ 1 [ ulr)dr )
Ji Ly = L3, (Ju) () w) Nt €l < 1; (11)
L F 1w
12 g2 _1 u(r)dr )
TR ROIES W_/T_gm, < (2
and the mappings
A:L3’7%—>L2%; A=T—c1J +Q; (13)
B:IL*, - L*,, B=I—-c(P\)+K. (14)

With the preceding notation (7)-(14), equation (1) with the additional
condition (2) and equation (3) can be written as
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AV = f; (15)
Br =g. (16)

Proposition 1
The operator A : L2 | — L3 is invertible and operator A~! is bounded.

Proof. ’ ’

The operator A is the sum of invertible operator I' (see [6, 7] ) and a compact
operator —c;J + Q. Hence, by virtue of Nikolsky criterion (see [8], p. 150),
Ind(A|L2 L2 ) =0. From the uniqueness of the problem solution (1)-(2)

? ?

follows, that dzm(k:er(A|L2 lﬁLz )) = 0 . Hence, A(L2 )= L2 Therefore, the

2

operator A is bijective and bounded So, by the corollary to the Banach Open
Mapping Theorem operator A has the bounded inverse.

Proposition 2

The operator B : L2 L — L?

Proof.
The operator PA is compact, as the composition of the bounded operator P

and the compact operator A. This follows from the compactness of the operator
—c2PA+K and the Fredholm theorem (see [8], p. 146) that Ind(B|g2 _ 2 ) =0.

-2

is invertible and operator B~! is bounded.

l\J
N|=

1 —
From the uniqueness of the problem solution (3) follows that
dim(ker(Blr2 _ ;2 ))=0.
-5 -3
Hence, B(L? ) = L*,. Therefore, the operator B is bijective and bounded. So,

2 2
by the corollary to the Banach Open Mapping Theorem the operator B has the
bounded inverse.

3. The statement of the problems for the approximate solution
of the problems (1)-(2) and (3).

Let us consider sets of the points

2k —1 J .
Z:COS< 5 7r>,k::1,...,n; t&j:cos(nW),jzl,...,n—l. (17)

Here the points {t}},_, are the zeros of Chebychev polynomials of the first

n—1

kind 7),(7) and the points {t{)” ]} are zeros of Chebychev polynomials of the

7j=1
second kind U,—1(§) .
We introduce the functions:

k() = 1+2ZT k=1 (18)
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lon-25(8) = I(ng)l(f)_ gy J=Leen (19)
n— sJ sJ
n—1
fn(§) = Z f(t0.;) - lon—2,5(8); (20)
=1
gn(©) =9t - lun-14(). (21)
k=1

The functions f,(§) are Lagrange interpolation polynomials of the functions
f(§) with the interpolation points {tf; ?;11 and the functions g¢,(§) are
interpolating polynomials of the functions ¢(¢)  with the interpolation

points {¢}'}}_,. We introduce the operators:

1

0 . 1 u(T)dr .
Quill ) =T,y (Quu)(©) = / QenTED. <1 (2)
' (1)d
u\T)aTt
KoL,y 1 =1L, 4 1, (Kpu)(§) = W/Kn(ﬁﬂ')ma 1€ < 1; (23)
-1
Poilly, 12— 10, 1,
(Pau)(§) = L= ()% u(ty)  lin-1.(8), €] <1 (24)
k=1
where
Ko(§m) =Y Y K 17) - lin-1,(€) - lin—1.6(7); (25)
j=1k=1
n—1 n
Qn(gaT) = Z Q(tg,]’tZ) : l2,n72,j(€) : ll,n—l,k(T)' (26)
j=1 k=1

Note that the functions (P,u)(§) are Lagrange interpolation polynomials of the

functions (Pu)(§) with the interpolation points {¢{ ; ;:11
Let us consider the integral operators:
Ay Hgfl,fé — Hnd,%’ Apn =T —c1J + Qn; (27)
Byill, y 1 =T, 1, By=I-c(PA)+K, (28)
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and equations
Anﬁn = fna

Bnvn = gn.
Proposition 3

For all natural numbers the following inequality holds:

Besides, || A — Ap|po 72 —0asn — oo.
e

L—35 bl
Proof.
The following estimate (see [6, 7]) holds:
My
1Q — QnHLi%HLQ% S

(32)

This estimate is the consequence of Jackson’s Theorems (see Corollary 1 of

Th. 2 in [9], p.164 ). From (32) and equality

A=Al 2 = Q= Qulle 12
5 nfl,fj

n-1,-3 2

follow that the Proposition 3 is valid.

Proposition 4
The following inequality holds for all natural numbers:

1B = Buln . <22
nfl,fg

Hence, ||B — BnHHn_1 2, — 0 asn — oo.
’ 2

Proof.

(33)

If the function s(&) is the polynomial of degree n then the the function
V1 —&2-5(€) is the element of space o [—1, 1]. From that fact and by corollary

of Jackson’s Theorems [9, p. 164] follows:

My
vn'

Hence, the estimation (35) shows that the operators

[Pu— Paull2 < Yu € Hm—%’
-2

Wo:M, , 1 —L*,, W,=P-P,
2

’2

are bounded. Futhemore,

|P~ Pully,

2
—L
B

SV

M.
§—4 Vn € N.

(35)
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The following inequality clearly holds

I1B=Bulln, | —r2, <lel-IIP=Fulln o2 A 2+
2 T2 2 T2 T2 T3
+HK_Kn”Hn_1_l4>L2 1 (37)
yT g -3
In [6, 7] the proof of inequalities
M5
1K = Kullzz gz <05 (38)

was given. From (36)-(38) follows the validity of proposition 4.
In the monograph [10, p.19] you can see the following theorem:

Theorem 1

Let X and Y be normed linear spaces and let X C X and Y C Y be finite-
dimensional subspaces of the same dimension. We consider two equations.

The equation for exact solution of the problem

Au=f, uwe X, feY (39)

and the equation for the approximate solution of the problem

Aui=f ueX,feY. (40)

Assume that:
1) the operator A is invertible and the operator A~! is bounded,
2) the inequality holds

p=lA" y—x A= Allg_y <1 (41)

Then
1) for any function ]?E Y the equation (40) has a unique solution u* € X
2) let u* € X be the solution of equation (39) and let § = || f — f||y then

[u* =@y <A y—x - (L =p)"" - (6 +pllflly)- (42)

Proposition 1-3 and Theorem 1 lead us to the following result.

Theorem 2

For all positive values exceeding the certain number M the following
statements hold true.

1) The problems (29) and (30) have a unique solution.

2) ¥, € Hg—l,—l and v, € 11

3) The sequence2 {9,,}5° 5, converges to the exact solution of the problem (15)

in the norm of space L2 . Moreover, |9 — 2971HL21 < nﬂ‘f—fv
3 1
2

n—l,—%'
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4) The sequence {v, }>° ,, converges to the exact solution of the problem (16)

in the norm of space Lz_% . Moreover, ||v — Vn||L2l < %
2
Proof.
Let’s define the numbers:
Pin = ”Ail”m1 2 A= Anllpe g2 (43)
3 0-3 n—1l,—3 3
pon =B sz gz IB = Ball 2 (44)
-2 -2 ’ -2

From the Propositions 3 and 4 and the existence of bounded operators A~! and
B~ it follows the existence of number M that

(pim <1)A(p2n<1) VneN,n>M. (45)
Appealing to the Theorem 1 and (45) it concludes that

10 = dllzz <IA™ ez —p2 - A =pia)™ - (I = fallz +prallfllzz), (46)
2 2 2 2 2

W —=vallz . <IB g2, gz, - (L=p2n)™ - (lg = gallze . +p2allglizz ). (47)

2 2 2 2

On using (46)-(47) and propositions 3-4 we complete the proof of Theorem 2.

3. Conclusions.

In the article [4], the discretization of equation (1) with the additional
condition (2) and the equation (3) was performed by using the method of
discrete singularities. As a result of discretization the systems of linear algebraic
equations in the unknowns {0, (t})};_, and {v,(t})};_, had been obtained.
These systems of linear algebraic equations are equivalent to the problems (29),
(30). The proof of the equivalence follows from the one-to-one correspondence
between the sets{d,(t})};_; , {vn(t})};_; and the polynomials ¥, (7), vyn(7).
Thus, finding the approximate numerical solution of the equation (1) with the
additional condition (2) and the equation (3) is reduced to solving the system of
linear algebraic equations. The convergence of the approximations to the exact
solution is guaranteed by propositions proved in this article. Also, the rate of
convergence of the approximate solutions to the exact solution had been found.
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