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Introduction

Boundary value problems of the theory of elasticity for an infinite cylinder
had been considered in classical works [1 — 4]. Their solutions had been obtained
by the authors using the Fourier method. Problem for semi-infinite and finite
cylinders had been investigated in articles [5 — 8] using various modifications of
the Fourier method.

A method for determining the stress state of a finite cylinder, based on the
principle of superposition and the expansion of the stress tensor in the Fourier
and Bessel — Dini series was proposed in papers |9, 10]. The problem was reduced
to an infinite system of linear algebraic equations.

The behavior of solutions for boundary value problems of elasticity theory for
a space with a thin cylindrical inclusion is analyzed by asymptotic methods in
article [11].

Several studies of the stress-strain state of elastic space in the neighborhood
of a cylindrical cavity or inclusion has been associated with the construction of
models of fibrous porous or composite materials. Typically, these models have the
simple structure in the form of a cylindrical cavity or inclusions or two coaxial
cylinders. An example of such research is the work [12]. In the case of plane stress
analysis of stresses in multiply fiber composite was carried out using the theory
of functions of complex variable at work [13].

Solutions of thermoelasticity problems for an infinite cylinder were considered
in the works [15, 14]. Solutions are constructed as power series expansions, Fourier
series, Fourier — Bessel series in these papers.

Transversely isotropic rod with a cylindrical inclusion with axisymmetric own
deformations was studied in paper [16]. An analytical solution for the elastic
displacements, stresses and elastic energy of the rod were obtained.

The distribution of stresses in a cylinder with two cylindrical cavities or
inclusions was investigated in works [17, 18]. In these papers stresses are
determined using the generalized Fourier method. Apparatus of generalized
Fourier method had been developed in [19]. Its application to the doubly connected
problems was given in the book [20].

It should be noted that in the scientific literature there are practically
no studies on the distribution of stresses in non-axisymmetric elastic multiply
connected bodies with non-compact boundary.

Analytical-numerical solution of the non-axisymmetric boundary value
problem of elasticity theory for multi-body in the form of a cylinder with a
cylindrical cavities is presented in this paper. The solution is constructed as a
superposition of the exact basis solutions of the Lame equation for the cylinder
in the coordinates systems related to the centers of the boundary surfaces of
the body. The boundary conditions of the problem are satisfied exactly with
the help of the apparatus of the generalized Fourier method. As a result, the
original problem is reduced to an infinite system of linear algebraic equations.
The theorem about Fredholm property of the system operator in Hilbert space lo
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is proved for this class of problems for the first time. Resolving system is solved
numerically by the reduction method. The practical speed of convergence of the
reduction method is investigated. The numerical analysis of stresses in the areas
of their greatest concentration is carried out.

1 Problem statement

Let’s consider an infinite elastic cylinder {2y containing N cylindrical cavities
2 (j = 1+ N), whose axes are parallel to the cylinder axis. Denote by O;
(j = 0+ N) points belonging to the axes of the original cylinder and cavities
located in the plane perpendicular to the generatrix of cylinder. Without loss of
generality, assume that points O; (j = 1 + N) form a certain structure on the
plane, in particular, centered hexagonal, and the point O; coincides with the point
Oy (Fig. 1).

We will use cylindrical coordinates systems (pj;,¢;,2;) with the same
orientation, for which origins are related with the points O; (j = 1 + N). Radii
of cylinders €); are equal to R;, boundaries of cylinders I'; are described by the
equations p; = R;. It is assumed that the cavities are located within original
cylinder and the boundaries do not intersect each other.

Let’s consider the first boundary value problem of elasticity theory for a
specified domain. It is assumed that outer boundary is under the load (g, 20),
which has an absolutely and uniformly convergent series expansion and integral
representation

m=—0oQ

f(o,20) = ) / {fx,m(/\)eer fymNey + frm(Ne, | e Fmedn. (1)

where {e;, e,,e;} — are unit vectors of the Cartesian coordinate system, which
are co-directional with inserting cylindrical coordinates systems.

It is considered that the vector function f satisfies static conditions on the
surface p; = Ry.

Elastic displacement vector satisfies the following boundary value problem for

the Lame equation:
1

1—-20
with boundary conditions: on the outer boundary

VU + VdivU = 0, (2)

FU|p, = f(0, 20), (3)

and on the cavities boundaries
FU|. =0, (4)
where U — displacement vector, FU — corresponding stress vector on the

boundary surface, ¢ — Poisson’s ratio.
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Fig. 1: Schematic representation of the problem

2 Solution of the problem

General solution of the boundary value problem (2) — (4) in the domain
N

Qo\ U Q; constructed as a superposition of basic solutions of the Lame equation
j=1

for cylinder in the coordinate system related to the centers of cavities

N 3 [e’9) 0
U:ZZ > /Ag}n()\)U:E\?’)Zn(pj,cpj,Zj)d/\—l-
3
Y / 49,0007 (9o, 90, 20)dA, (5)

where Agﬂ)n(/\) — unknown functions to be determined; Ui@n(p,go,z) — basic

solutions of the Lame equation for the cylinder (sign + (—) matches the external
(internal) solution) were introduced in [19]. In the article [21] was introduced the
concept of a basis system of solutions of the Lame equation and proved basis

3,00,00 3,00,00
property of systems {U:@n} ) {Us §\37)n}

s=1,m=—00,A=—00 s=1,m=—00,A=—00
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Let’s consider the explicit form of these solutions

Sif\gzn(p, 0,2) = )lesuigi)(p, 0, 2); s=1,3; (6)
+ — +
UQ,E\%Zn(,O,QD,Z) = )\ 1B2u)\7(¢i)(p7§072)7 (7)

where

D, =V, Dy=2V—ye,, D3=ilVxe,,

0 3}
B, = (xax+yay>V—x[ezx [Vxez]],

G (0, 2) = R O), (e, 2) = XL (),

m

In(z) — modified Bessel function, K,,(z) = (signz)™Kn(|z|), Kn(z) —
Macdonald function; x = 3 — 4o, ufsi) — complete set of particular solutions
of the Laplace equation in cylindrical coordinates, ¢ — imaginary unit.

In the expanded coordinate form basic solutions (6), (7) are of the form:

UL (0 002) = Fuiol oot F iy en +iu i eo, )

U;&?:Zn(m ©,2) = F(D — x) [ui(ri)_le_l + uiﬁi)_s_lel} + iDui(Ti)eo, (9)
+(3 +(3 +(3

US,g\;Zn(pu 2 Z) = :l:u)\,gn)_le—l + u)\7(m)ﬂe1, (]_0)

1 1
e D =p—,e_1 = -(e; +1iey), e = —(e; — iey), eg = e,.
dp 2 2

Stress vector at the site with the normal n has the form:

1—2c0

o . ou 1
FU =2G [ 5 nd1VU+an+2(nxrotU)} , (11)

where G — shear modulus.
Applying the formulas (8) — (10) operator (11) at the site with the normal
n = e, we obtain:

2
FUT® — pG { D“i(?)) e_1 TF Dui(s) e + Z'Dui(g')eo} ; (12)

1,Am m—1 m—+1 m

2G .
P, = 22 % ln = )= 14 20) + 3252 4 (20 = DS o1

F [(m+1)(m+1—20) + A2p* + (20 — 3)Dluy ), e1+

i[m? + A2p2(20 — 2)D]ui§i)eo}, (13)

G )
FU;)_LE\‘gzn = ; {i(D +m — 1)ui§i)_1e_1 F(D-m-— 1)ui§z)+1e1 — zmui&i)eg} ,
(14)
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3 Addition theorems

Basic solutions of the Lame equation in coordinate systems, combined with the
centers pair of cylinders, are associated by the addition theorems. The following
addition theorems are the case [19]:

= « 1,7,
U gw)n (P> 5> %) Z Z D] ) SS)mJ U ()(pa)ﬂomza) (15)

3 o)
a 33)L,j,« 3
U:E\Zn (pjs 5> %) Z Z D(j +( 5 Uj,&?(ﬂm@mza); (16)
t=1l=—00

3 o)
—(3 ~a) p—(33),5,a 3
Usgxr)n (pjs 5> %) Z Z Dgt )f/\,7(n 7 Util)(pm‘»pmza)’ (17)

t=1[l=—o00
f1>\ =(-1) U m— l(p]aa@JaaZJa) f u,\,m_l(PjaaSOjaaZ]a)v

pue — {@t + dudapia p#

el
8pjoc ’

where (pja; ©jas Zja) — cylindrical coordinates of the point O, in the coordinate
system (pj, ¢j,2;), st — Kronecker delta.

4 Resolving system of equations

Using the addition theorems (15) — (17), we represent the displacement vector
U in the coordinate system with the origin at O; near borders I'g u I'y:

3
U:Z Z /Ag,lm(A)U:f\??n(Pl,%01,21)d)\+

3 ) oo N 3 00 oo '
+2; > / As?m(A)U;ffﬁn<m»whm)dA+Z;2; > [ A O)x
s=1m=—00_" Jj=2 s=1 m=—00_"

3
1 +(3
<3 Z DIV (o1, 051, 200U (o1, 01, 20)dA, - (18)

t=1l=—00



10 A. G. Nikolaev, E. A. Tanchik

o0

3 00
U= Z Z / A; U?f’ﬁn(m, ©1,21)dA+
s=1 m=—o0 oo

o0 ¢}

3 o'} 0o

N
Sl T T g Sy T
J s

3
s=1 m=—o0_" 1 m=—o0_"

3 0o
1 3
X Z Z s]t)u;\rm) l(p]h%o]laz]l)U:;(\’l)(plv901,Zl)d)\7 (19)
=1 |——o0

and with origin in the point O; (j =2+ N):

3 [e'e) s
U-Y S [ AU e Y Yy /A<a>
s=1 m=—00_" a=1,a#j s=1 m=—oc0_"
3 ')
<SS (DU (Do oy 20 UL N D (01 055 2)dA+
t=1l=—0c0
3 0o 0 3 (e’ ~ ) 5 )
+>33 / AQ. NS ST DI D (o1 017, 21U (0, 905 21)d.
s=1 m=—00_" t=1l=—c0

(20)

After satisfaction of the boundary conditions, the problem reduces to an
infinite system of linear algebraic equations for the unknown coefficients A(j ) (N):

3
3 {Ag?mA)G;i?L(Rl) + AN NG (R)+

S,A,m

N 3 [e’e)
+G U ERDIST ST ATV (- >’“D<J”uA§>m<pﬂ,goﬂ,zﬂ>}—o, (22)
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s=1
N 3 o
)Y S AN )P DE U, (s s Zag)
a=1l,a#j t=1 —©
+G Z Z Dts u)xl m pl]agpljvzlj)} =0, (23)

t=1l=—00
j=2+N; meZ, AeR, MX#QO,

e GO (R) = (G el el );

S,A,m s,A,m ? A,m

(D +m - 1>a§§;? (R),

2
G = [m2 + VR + (20 - 2>D} at(R),

- 2G
G (R) = F [(m —1)(m — 1+ 20) + N’R? 4 (20 — 3)D} a2 (R),

2G
Gy 5 (R) = T [(m F1)(m+1—20) + A2R? + (20 — 3)0] W (R),

i W(R) = Kn(AR), @, O(R) = In(AR).

A,m
5 Analysis of the resolving system
Theorem 1 For each \ # 0 system operator (21) — (23) is Fredholm in the
Hilbert space ly under the conditions Rj + Ry < pja (J # «; j,a =1+ N),
Pra + Ra < Ry (¢ =2+ N).

By renaming the unknown functions

) A(j) () A(O) (\)
AY) s =1+N), AL () =22 24
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and solving system with respect to flg?)n(/\), system (21), (23) can be represented
in the form

3 o0
Ag?%()\) + ZZ Z lefv’sm ~pl + Z Z TQI):;vsm ~pl )‘) = 07 (25)

j#ap=1ll=—oc0 p=11l=—00

N 3

AL (N +ZZZ TPt AY)(N) = Fon(N). (26)

j=1p=1ll=—c0
Omit the explicit entry of matrix coefficients. Note that matrix coefficients

Jsps 2
modules ‘T17a757m‘, 15 s

‘Tgffn’ estimated from above by finite linear

combinations of expressions hke (27) — (29) respectively

Ra)
T Kol | 7)
I,(AR,)
e 1A 29
Kn(MF)
TRy ) )

Here were used the estimates of resolving systems determinants of the first
boundary value problem of elasticity theory for interior and exterior of the
cylinder, which were derived in the work [21].

To prove the theorem it is sufficient to show the fulfillment of following
conditions for matrix coefficients of the system (25), (26):

Z Z 1’§im’ 00, (30)
m=—0o0 [=—00
Z Z 2asm < 0, (31)
M=—00 [=—00
>yl o | (32)

m=—00 [=—00

Let’s consider the addition theorem for harmonic functions [20]:

00
u;t(ri)(pj?@jazj) = Z ( l)lu;\i_sn) l(p]om@]omzja)u)\ 53)(pa7(100u201)' (33)

l=—00

This expansion can be interpreted as Fourier series representation of the harmonic
+@3)

function u, "’ (pj,¢j,%;) the variable ¢, € [0,27]. Then for this expansion
Parseval equality has a place by
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2

'Km ([N psa) doa. (34

Il()‘pa)

2
1
- — ||k, :
o [ Kt
0

By the estimates (27) — (29) to prove the theorem it is sufficient to show
convergence of the series

l=—00

2

m— A ja)| s 35
m;olz TR Ko (o) (35)

00 Im 2
Z Z I )Im—l(’)‘|p1a) > (36)

m=—00 [= l )
’/\|R0 2
In the work [21] was proved the estimate

I (2)Km(z) > (1+22)7Y, m>0, z>0, (38)

m2+1

where ¢ > 0 — some constant. Then the series (35) can be majorized by the series

>y

m=—00 [=—o0

2
Li(AR) I (ARG Ko -1 (| Al pjar)

Let the value p, = R, be substituted in the identity (34), then multiply its both
sides by |I,,(AR;)|? and sum up by m from —oo to co. As a result, we obtain

[e.9] o0

2. 2

Mm=—00 [=—00

2
Il )\R /\R) m— l(‘)“pja)

21
b
7271'
0

From the asymptotic formulas as m — oo [22]

In(2) = (;)m ! [1+0( )}, (40)

m)!

2 2

I (A doa.  (39)

‘Pa=Ro¢

Kin(|Alpj)

m=0

w {1 + O(ml)] (41)

z

K (2) =

follows that the series in the left side of (39) is convergent under condition p; > R;.
Let’s define minimal value p7"" for arbitrary values of the angle ¢q. From the
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dependence between cylindrical coordinates with the origins O; and O, it follows
that for po = Ra

Pi = \/P?a + RZ + 2pjaRa cos (pa = pja)

and minimal value p; is reached under condition ¢, — ¢jo = 7 and is equal to
,07”" = pja — Ra (pja > R — natural geometrical condition in the problem
statement).

Thus the condition of series convergence will be satisfied if p;?”" > R;. It
means that R; + Ry < pja-

Similarly, we can write this equality

2

Z Z 'K (IA[Ro) [i(ARa) I —1(Ap1a)

m=—00 [=—00

2
dpe. (42)

Ipa=Ra

Im(/\pl)

2m
1 [ & 2
= — K, (AR
o | 2 [entaimy
0o m=

On the basis of asymptotics (40), (41) the series in formula (42) is convergent
under condition p; < Ry. On the surface p, = Ry, it is true p"** = p14+ Rq- Thus
condition of convergence of the series (42) is truthfulness of inequality p"** < Ry
or pio + Ra < Rp.

By the estimate (38) convergence of the series (37) under condition pi;+ R; <
Ry follows from convergence of the series (42).

6 Analysis of numerical results

For numerical implementation we assume that the boundary of cylinder is
under piecewise constant normal load.

T, |z <h,

43
0, |z]>h. (43)

FU|., =Te, = {

Following values of parameters were selected: R; = R, Ryp = 10R, 0 = 0.38.
Centered hexagonal packing of cylindrical cavities symmetrically located with
respect to the axis of cylinder is considered (fig. 1).

The system (21) — (23) is numerically solved by reduction method relatively
to the parameter m (—Mpmae < M < Mypq,) with fixed values of A, which are
nodes of Gauss-Laguerre quadrature formula.

On the figures 2 — 4 graphs of stresses o, /T, 0, /T, 0./T on the line, which
connects centers of cavities 6-th and 7-th (fig. 1), depending on relative distance
between cavities a/R in planes z = 0 and z = h are shown. Relative distance
between boundaries of neighbor cavities is plotted along horizontal axis. Maximal
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h/Ro = 1.0;0 = 0.38;

<<

f/
!

x

——a/R=15,2=0
- a/R=12,2=0
—A—q/R=15,z=h
—-—a/R=12,z=h

Fig. 2: Stresses o,/T on the line,
which connects centers of cavities
depending on relative
between them

distance

h/Ry = 1.0;0 = 0.38;

0 0.5 1
T
——a/R=15,2=0
& a/R=12,2=0
—4—q/R=15,z=h
——a/R=12,2=h

Fig. 3: Stresses o,/T on the line,
which connects centers of cavities
depending on distance
between them

relative

stress concentration o, /T is observed on the cavities boundaries, while for stresses
0,/T is in the center of the line. It is characteristically that the signs of stresses
0,/T are different on planes z =0 and z = h.

On the figure 5 comparison of stresses o, /7" on the line, which connects centers
of cavities 6-th and 7-th (fig. 1), for centered hexagonal structure and on the
corresponding line for centered tetragonal structure is given.

On the figures 6, 7 stresses 0,/T and o,/T between 1-st and 5-th, 6-th and
7-th cavities are compared. Slight asymmetry of graphs of stresses relative to the
point located in the middle between 1-st and 5-th cavities is observed.

The efficiency of proposed method can be seen by the rate of convergence of
reduction method (table 1). The values of normal components of stress tensor in
the middle point of the line, which connects centers of neighbor cavities, depending
on size of reduced system if a/R = 2.0, h/Ry = 1.0 are given in this table.

Mmagz 3 10 15
ox/T | 0.506252 0.506847 0.506847
ay/T 1.16719 1.16695 1.16695
o,/T | —0.156974 | —0.156848 | —0.156848

Table 1: Convergence of reduction method
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h/Ry =1.0;0 = 0.38; h/Ro = 1.0;a/R = 2.0;0 = 0.38;
0z ay
) Ty 4
T ——a/R=152=0 T —o— 7 cavities
—aq/R=12,2=0 —a— 5 cavities
——aq/R=15z=h
0.5 ——a/R=12,z=h 9
[ >
— s o—9
0 — 4 A 1
—0.5 0
0 0.5 1 0 0.5 1
x x

Fig. 4: Stresses o,/1T on the line, Fig. 5: Stresses o,/T on the line,
which connects centers of cavities which connects centers of cavities
depending on relative distance depending on the type of packing
between them

h/Ry =1.0;a/R = 1.5;0 = 0.38; h/Ry =1.0;a/R = 1.5;0 = 0.38;
oy v 3
T —0— between 1-st and 5-th cavities T —0— between 1-st and 5-th cavities
—— between 6-th and 7-th cavities —&— between 6-th and 7-th cavities
2
q
>
" N \\1//
1
0 0
0 0.5 1 0 0.5 1
T x

Fig. 6: Stresses o,/T on the line, Fig. T7: Stresses o,/T on the line,
which connects centers of 1-st and which connects centers of 1-st and
5-th, 6-th and 7-th cavities 5-th, 6-th and 7-th cavities
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Conclusion

Development of analytical-numerical method of solution of boundary value
problems of elasticity theory in the non-axisymmetrical multiconnected domains,
which boundary is the system of unidirectional infinite circular cylinders is
proposed. Solution is constructed in the form of superposition of exact basic
solutions of Lame equation for cylinder in coordinate systems related to centers
of boundary surfaces of the body. Boundary conditions are satisfied exactly by
the generalized Fourier method apparatus. As a result initial problem is reduced
to infinite linear algebraic system of equations with exponentially decreasing
coefficients, which has Fredholm operator in the Hilbert space lo. The last
circumstance allows to apply reduction method for numerical solution of the
system. It is well known [23] that solution of reduced system converges to exact
solution of resolving system when m,,., — o00. Practical rate of convergence
of reduction method is investigated, which shows efficiency of method even for
a large number of cavities. Numerical analysis of stresses in domains of their
concentration is carried out. Reliability of results is proved by the comparison
them for two cases: cylinder with seven and five cylindrical cavities.

Advantage of this approach is that this method allows to satisfy boundary
conditions exactly reducing procedure of construction of numerical solution to
inversion of linear algebraic system in contrast to well known methods, such
as finite element analysis, boundary integral equations, finite differences and
so on, which work poorly in domains with non-compact boundaries. Herewith
approximate solution quickly converges to exact solution. This allows significantly
increase accuracy of results using the same resources as in other methods.
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