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Kharitonov’s theorem for interval polynomials is given in terms of orthogonal
polynomials on [0, +00) and their second kind polynomials. A family of robust
stabilizing controls for the canonical system is proposed.
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A6non E. Hoke-Pisepo Teopema XapuroHoBa ta pobacTHa crabinizaris,
3aCHOBaHi Ha OPTOTOHAJBHUX IoJiiHOMAax. [Ipencrasiena reopema Xapu-
TOHOBA, JIjI IHTEPBAJBbHUX IOJIIHOMIB y Te€pMiHaX OPTOTOHAJILHUX ITOJIIHOMIB
Ha [0, +00) Ta TX MOJIHOMIB JPYroro pojy. 3anpoNOHOBAHWI KJIAC KePYyBaHb,
sIKi pobacTHO CTabIIi3yIOTh KAHOHIUHY CHCTEMY.

Karuwosi caosa: Teopema XapUTOHOBA; OPTOTOHAJBHI ITOJIIHOMU; ITOJIHOMUA
T'ypBurs; crabimizaris KepOBAHUX CACTEM.

AGyon 9. Yoke-Pusepo. Teopema XapuTtoHOBa M pobGacTHasi cTabuiin-
3alisi, OCHOBAHHBbIE HA OPTOTOHAJBHBIX MHOJUHOMAaX. lIpejcrabiieHa
TeopeMa XapUTOHOBA [IJIsi WHTEPBAJIBHBIX IIOJUHOMOB B TEPMHHAX OPTOrO-
HAJIBHBIX HOJMHOMOB Ha [0, 400) U UX IIOJUHOMOB BTOPOro poja. Ilpemioxkeno
CEeMENCTBO yIpaBIeHuil, pPOOACTHO CTAOUIU3UPYIONIEE KAHOHUIECKYIO CUCTEMY.
Kaouesvie crosa: Teopema XapuTOHOBA; OPTOTOHAIBHBIE TOJIMHOMBI; TOJHHO-
™Mbl ['ypBHIa; cTabuan3aius yiupaBiseMbIX CHCTEM.
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1 Introduction

Throughout this paper, let n and m be positive integers. We will use C and
R to denote the set of all complex numbers and the set of all real numbers,
respectively.

The aim of this work is to rewrite Kharitonov’s well-known theorem [26] on
the Hurwitness of interval polynomials through orthogonal polynomials [0, co) and
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their second kind polynomials; see Proposition [2| and Theorem [2 We will also
construct positional robust controls u = w,,(x) for the Brunovsky system of degree
n via two sets of Markov parameter sequences or equivalently by using two families
of Hurwitz polynomials; see Definition [§] and Theorem [3]

The motivation for present work comes from two sources. One comes from
the interrelations between the Markov parameters, orthogonal polynomials and
Hurwitz polynomials and their practical application on control theory. The second
comes from the generalization of the indicated results for the matrix case.

The present work is based on the Markov parameter approach which is
thoroughly studied in [20, Chapter XV]. We decisively use the explicit interrelation
between the coefficients of given polynomials and their Markov parameters; see
remark 1] or [I0, Lemma 3.1]. This interrelation together with the Hurwitness
criteria in terms of the positive definiteness of two Hankel matrices; see lemma,
or [10, Theorem 3.4]. The explicit representation of a Hurwitz polynomial through
orthogonal polynomials, allows us to rewrite the Kharitonov theorem on interval
polynomials with the help of orthogonal polynomials; see Proposition |1f or [9,
Theorem 7.10].

In this sense, the following notions play a relevant role for the present paper:

e The truncated Stieltjes moment problem,
e Orthogonal polynomials,
e Hurwitz polynomials.

In contrast to Kharitonov’s theorem, instead of verifying the Hurwitzness of
four polynomials of degree n = 2m (resp. n = 2m + 1), we propose checking four
polynomials of the degree [2] (resp. [%E1]). To this end, the notion of Kharitonov
quadruples is introduced. Roughly speaking, this notion highlights the fact that
every stable interval polynomial can be constructed by two ordered sequences
of Markov parameters. The latter means that the corresponding orthogonal
polynomials and their second kind polynomials satisfy a certain order; see
Definition [8l

The paper contains three conjectures. The first one states that every stable
interval polynomial generates four sequences of ordered Markov parameters. The
second conjecture says that the ordering of the quadruple
(hq(q,max), g,(qmax),h%min),ggmin)) can be written in terms of the degree of the
corresponding interval polynomial p,. Finally, the third conjecture states the
necessary and sufficient conditions for an interval polynomial to be a stable
interval polynomial in terms of the Kharitonov quadruples.

The construction of robust controls of control systems in terms of the
coefficient of certain interval polynomials was considered in [I], [25], [19], and
references therein. In contrast to these works, we apply the Markov parameter
approach. The advantages of using Markov parameters are explained in [22].
These consist mainly of the fact that the stable region in the coefficient space of
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a given polynomial is not convex, while the stable region in terms of the Markov
parameters s; with positive definite Hankel matrices (2)) is convex set [24].

Future work can be devoted to the comparison of the descending degree
procedure of the interval polynomial proposed in the present work (as in example
1)) with the Routh procedure considered in [3]. Furthermore, future research on the
characterization of two Markov sequences to be ordered sequences which generate
Kharitonov quadruples is relevant. Such characterization could notably improve
Algorithm 3.1.

This work is organized as follows. A brief summary of the truncated Stieltjes
moment problem, orthogonal polynomials and the Hurwitz polynomial are given
in the Introduction. In section 2, the Kharitonov theorem is represented via
orthogonal polynomials on [0,400) and their second kind polynomials. An
example of constructing a stable interval polynomial of degree n = 7 starting
from two sequences of Markov parameters is given. Additionally, in remark [] an
example of a family of interval polynomials is proposed. In section 3, a result
on the construction of stable interval polynomials via orthogonal polynomials is
given; see Theorem [3] In subsection 3.1, an algorithm for the construction of a
robust control is suggested. Following this algorithm, a family of robust controls
is written; see examples [2[ and |3| Finally, in section 4, the conclusion and three
conjectures what develop or complete some results of section 2 are presented.

In the subsequent three subsections, we recall the definitions and relevant
results concerning the Stieltjes moment problem, orthogonal polynomials on
[0, +00) and Hurwitz polynomials.

Note that in [I2] the stabilization of the canonical system through orthogonal
polynomials on [0, +00) is treated.

1.1 The truncated Stieltjes moment problem and extremal solutions

The truncated Stieltjes moment problem is stated as follows: Let n be greater
than or equal to 2. Given a sequence (sj)’;:_ol of real numbers, find the set M of
nondecreasing functions o of bounded variation on [0, c0) such that

s :/ tdo(t), 0<j<n-—1. (1)
0

This problem was considered in [29, Page 176 and Page 192|.
In case of an infinite sequence (s)3, with for j > 0, the stated problem
is called the classical Stieltjes moment problem.

Let
S0 S1 e Sj S1 S9 e Sj+1
HLj - S1 59 N Sj.+1 ’ H2,j — 8:2 8:3 . . Sj:+2 ' (2)
S5 Sj+1 ... 52 Sj+1 Sj42 ... S25-1

It is known [16], [I7] that the truncated Stieltjes moment problem with given

moments (s]-)ifo+1 (resp. (sj)’;?go) as a solution if and only if Hy ,, and Hg ;1



52 Abdon E. Choque-Rivero

(resp. Hj ,,—1 and Hy ,,,—1) are positive semidefinite. In [I6], [17], the complete set
of solutions of the truncated Stieltjes moment problem when Hy,, and Hy ;1
(resp. Hy yy—1 and Hg,,—1) are positive definite was given.

With the help of the analytic function in C\ [0, c0)

(2) = /Omff"_(t)

called associated solution with ¢ € M, the truncated Stieltjes moment problem
is reduced to finding a set of associated analytic functions s € Z such that

s(z)=-20 5L Sl
P REEE

Assume that o is normalized as o(t) = oltt0)F+olt=0) " apd 0(0) = 0. From the

2
Stieltjes inverse formula [2, Page 631], one gets a corresponding measure by
1 t
o(t)==1lim [ Ims(x+ ie)dx.
™ e=0 Jo

1.2 Orthogonal polynomials on [0, +00)

Orthogonal polynomials [6], [39] play an important role in a number mathematical
areas. On one hand, orthogonal polynomials have been extensively used in
applications for solving practical problems, such as in signal processing [32] and
in filter design [38], [30]. On the other hand, the zeros of a certain family of
orthogonal polynomials can be interpreted as the electrostatic energy for a system
of a finite number of charges; see [43].

In the present subsection, we focus on truncated families of orthogonal
polynomials on [0, +00).
Definition 1 The sequence (sj)?fo (resp. (sj)?zo_l) is called a Stieltjes positive
definite sequence if Hy , and Hg 1 (resp. Hy ;-1 and Hy 1) are positive
definite matrices.

In the sequel, we consider only Stieltjes positive definite sequences.

Definition 2 Let (:;p?i;;l and (Sj)§$0 be Stieltjes positive definite sequences. For
k=1,2, let

Sk—1 Sk cee Si4k—1
Sk Sk+1 .- Sj+k
Sj+k—2 Sj+k—1 .. S2j+k—2
1 z .. 27
Sk—1 Sk cee o Si4k—1
Sk Sk+1 .- Sj+k
Ek,j(z) = >
Sj+k—2  Sj+k—1 --- S2j4k—2

ero(2) era(z) ... erji(2)
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where (e1,0(2), e1,1(2),...,e1(2)) = (0,—s0,—250 — 51,-- -, ZJ lzj =lg)
and .

(€2,0(2), €2,1(2),...,€2,(2)) := (=50, =250 — 81, .., — {:U zj_lsl).

Denote by p1,o(2) :==1, q10(2) :=0, p2o(2) :==1, and g20(2) := s¢. For j > 1 and

k=1,2, let

det Dw(z) _ det Ek,j(z)

det Hy ;1 ’ Qk,j(z) . det Hy ;1 ' (3)

pr,j(2) ==

The polynomials qy ; are called second kind polynomials.

Note that in [9] a matrix version of py ; and g ; is considered. In the proof of [8,
Remark 2.6], the transformation from the matrix form to the determinant form

is performed.

Definition 3 Let n = 2m (resp. n =2m+1). Let o(t) be a positive distribution
on [0,00) such that all moments s; := [ t/do(t) are finite for 0 < j < n — 1.
The sequence of monic polynomials (pl,j);-”zo

| msomatasn ={ & 175 g0

Cj,

and respectively
> 07 . k?
| miomatnano ={ § T2 450
0 gy J = R

are called the sequences of monic orthogonal polynomials on [0, 00) with respect to

do(t) (resp tdo(t)).

For completeness, we recall two special, associated solutions of the truncated
Stieltjes moment problem for n = 2m+1 (resp. n = 2m) called extremal solutions:

S(Qm—l) 5) = Q1,m(Z) S(Qm—l) 2) = — QQ,mﬂ(Z)
M ( ) . pl,m(z)’ ( ) Zp27m71(2)' (5)

These solutions, introduced by Yu. Dyukarev in [I8], play a relevant role as proving
Proposition

1.3 Hurwitz polynomials and Markov parameters

The real polynomial of degree n
fn(2) :=apz" + a1z" V4 an_1z +an
can be written as with the help of two polynomials h, and g, such that

Fal(2) = hn(2%) + 2gn(2?),
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where

(6)

() o= a12™ +aze™ 2 4Lt ap—3z +ap—1, n=2m, )
gn\Z) == apz™ + asz™ 4+ 4 an_32 + an_1, n=2m+ 1.

hn(2) = apz™ + asz™ V+ . 4 an_o0z+a,, n=2m,
n = alzm—{-a3zm—1—|—,..—|—an,22—}—an, n=2m+ 1,

A polynomial f, is called a Hurwitz polynomial if all its roots have negative
real parts.

Definition 4 The numbers (sj)?zo_l (resp. (sj)gfo) appearing in the asymptotic
eTpansions

g2m(_2) o S0 S1 S92 S$9m—9 Som—1 )

m__;_;z—?—-u—zgm_l— om — .., ()

hami1(—2) __ S0 _ 851 _ S22 _ Sam—1 Som N o)
(_Z) g2m+1(_2) VA 2:2 Z3 T sz Z2m+1 e

are called Markov parameters of the polynomials fy,

Note that the expansion appears in [20, Chapter XV|, meanwhile expansion
([9) was first introduced in [9] in the matrix case.
Here we highlight two of the Hurwitzness criteria.

e The algebraic Routh-Hurwitz criterion 23], [34], [4], which is given in terms
of the coefficients ag, of the polynomial f,,. More precisely, one should verify
whether the so-called Hurwitz matrix, constructed by the coefficients aj has
positive principal minors; see [23], [34], [4].

e The Markov parameter criterion [20, Chapter XV| given in terms of the
Markov parameters si. This criteria consists of finding out whether two
Hankel matrices of the form are positive definite; see lemma

Lemma 1 [10, Theorem 3.4] Let n be greater than or equal to 2. The polynomial
fom+1 (resp. fom) is a Hurwitz polynomial if and only if the associated Hankel
matrices Hy , and Hg 1 (resp. Hy o1 and Ha 1) associated with f,, are
positive definite matrices.

The following remark proved in [I0] allows the calculation of the Markov
parameters sy from the coefficients a; of the polynomial f,.

Remark 1 /70, Lemma 3.1] Let f,, be a real polynomial of degree n, and let hy,
gn be as in and (7). The Markov parameter sequence (sj)?ﬂo (resp. (sj)?;'lo_l
from the relations and (@ 1s determined by the following equalities:

(50, 815+, S2m—1)T :Agé(al,ag, cey@2m—1,0,...,0)T,  n=2m, (10)

(S0, 815+ -+, S2m)T :.A;T}LJFI(al,ag, cey@2m+1,0,...,0)T, n=2m+1, (11)
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where
ag 0 0 0
a9 —a e 0 0
An = : - .. .. 0 ’
Ag(n—1) —Qan—2) --- (—1)"ag (—=1)""ag

for n > 2 is the n X n matrix with ap, =0 for k > n.

In [9, Theorem 6.1], it was proven that every Hurwitz polynomial can be
written in terms of orthogonal polynomials py j, & = 1,2, on [0,00) and their
second kind polynomials gy, ;; see [7, Equality E.2|. We reformulate the latter as
a proposition.

Proposition 1 FEvery real Hurwitz polynomial f, with ag = 1 admits the
following representation
—-1)m —22) — 2 —22)), n=2m,
fue) = { 0= =222, = 12
27) 4+ z2pam(—27)), n=2m+1.

Here py, j, k = 1,2 are orthogonal polynomials on [0,00), and qy ; are their second
kind polynomials defined as in Definition |3,

To prove Proposition [I], the subsequent, explicit relation between polynomials h,,,
gn as in @, and orthogonal polynomials was introduced in [9, Pages 78
and 79]:

hom(2) = (=1)"p1m(=2), gom(2) = (_1)m+1qu(_Z)a (13)
9om+1(2) = (=1)"p2,m(=2), homi1(2) = (=1)"g2m(—2). (14)

2 Kharitonov’s theorem via orthogonal polynomials

In this section, we propose a new form of the Kharitonov theorem which first

appeared in [26] in 1978. This representation consists of writing the ) (resp.

g,(f)) part of each of the four Kharitonov polynomials via a member of a family
of orthogonal polynomials on [0,00) and their second kind polynomials. Such
a procedure is based on the Markov parameters generated by the Kharitonov
polynomials Kff).

Let § € R"*!, and let P, be a family of monic interval polynomials:

n

Pn(2,6) =Y 6n_j2, (15)
j=0

with
€y S(Sn—j Syj, j:{O,l,,n} (16)
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Denote
th(Z) =30 + Yoz + 1a2” + ..., (17)
QT(LI)(Z) =x1 + Y3z + 2527 + ..., (18)
hﬁf)(z) =Yo + T22 + y4,z2 +..., (19)
and
9$P(2) =1 + a3z + s+ (20)

Definition 5 Let p, be an interval polynomial as in , and let h,(@k), gf{“) be
polynomaals as in —(@. The following four polynomials

KM (2) =h{D(2%) + 290 (22), (21)

KP(2) =h{D(2%) + 292 (22), (22)

KP®(2) =hP(2%) + 290 (22), (23)
and

KP(2) = B (%) + 292 (?) (24)

are called Kharitonov polynomials of the interval polynomial p,.

Note that the Kharitonov polynomials are usually defined in the following form:

KT(Ll)(Z) =To + 12 + y222 + y3z3 +agzt a4 , (25)
KP(2) =z 4 y12 + 1222 + 2325 + 242t +y52° + ..., (26)
K’r(zg)(z) =yYo +T12 + x222 + y3z3 + y4z4 + x5z5 + ..., (27)
KW (2) =yo + y12 + 222% + 232° + a2 +y52° + . . ., (28)
The equivalence between — and — is obvious.
Definition 6 Let o := (o, o, ..., o) where o are real numbers. An interval

polynomial py,(z,d) as in 1s said to be a stable interval polynomial if for each
a; € [z4,y;] all the zeros of pn(2, a) are strictly in the left-hand complex plane.

Let us recall the celebrated Kharitonov theorem [26].

Theorem 1 Let p, be an interval polynomial as in . Furthermore, let K,(f) for
r =1,2,3,4 be Kharitonov polynomials as in Definition[3. The interval polynomial
Dn is stable if and only if the four Kharitonov polynomials K,(f) for r =
1,2,3,4 are stable.
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In the present work, we restrict ourselves to the case where the leading interval
coefficient dy is equal to [1,1].

Definition 7 Let the polynomials h%k), gfzk) fork =1,2 be defined as in —(@.
Forn = 2m, define

A
=
=
\
N
P~
N
2
\
!

W) =D @y o o) (20)
hn” (=) hn” (—2)
L)/ () _
hy ' (—2) hy ' (—2)
Stmilarly for n = 2m + 1, define
L _ (2)_
s (2) ::%7 s@(2) = %UZ)’ (31)
(=2)gn’(—2) (=2)gn"(—2)
(1) _ (2)_
5 (z) = ((2) 2. s () = ((2) L (32)
(=2)gn " (=2) (=2)gn(=2)
Each of these rational functions s( can be expanded as in and @,
respectively. Every sequence (sy))?;ol corresponding to such expansions is called

the Markov parameter sequence, which is associated with the polynomial KT(LT).

Under the assumption that K,(LT)(Z) are monic Hurwitz polynomials, we will
prove that the functions s(")(z) are in fact extremal solutions of truncated Stieltjes
moment problems.

Lemma 2 Let the polynomials KT(LT)(Z) for r = 1,2,3,4 be monic Hurwitz
polynomial, then the following is valid.
(T))nfl

a) The Markov parameter sequence (sj 0 associated with the polynomial Kr(f)

s a truncated Stieltjes positive definite sequence for r =1,2,3,4.
b) The functions s\")(z) defined by (@)— are extremal solutions of the

truncated Stieltjes moment problem with (sgr))?:_& forr=1,2,3 4.

Proof1 Part a) is a direct consequence of lemma . Part b) is verified by
employing , (@ and equalities in lines 12, 22 on [9, Page 80].

The following Proposition can be readily verified by applying Proposition [1] for
every r =1,2,3,4.

Proposition 2 The interval polynomial with 6o = [1, 1] is stable if and only
if the four Kharitonov polynomials KT(LT) forr =1,2,3,4 as in - admit
the following representation

K" (z) = { (_1)m(p§?n(—22) - qu) (—22)), n=2m,

; g r=1,2,3,4, (33)
(1) (g5 (=2%) + zp&,),l(—zZ)), n=2m+1
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where p( " and ql,)n (resp. p( ")

and Second kind polynommls

and q2 m) are orthogonal polynomials on [0, +00)

To write Kharitonov’s theorem of two sequences of Markov moments, we
introduce the following notion.

Definition 8 Let n = 2m (resp. n = 2m +1). Let ((s gmm))?:_&’ (sg-max))” o) be
Stieltjes positive definite sequences such that sg-mm) ;max) 0<j<n—1wih

at least one strict inequality. Furthermore, let (p,gmgx), . (min) m ), for k = 1,2, the
polynomials as in Definition[d The quadruple

Py, = ( (min) (min) (max) (max)) (34)

plm ’qlm 1m0 H411lm

and

((mln) (min) _(max) (max)) (35)

P2m+1 me 7Q2m ’p2m )qZ,m

are called Kharitonov quadruple if the Markov parameter sequences
(550775 (s203mg ) (resp. ((s§)320), (s2)7%0)) (36)
generated by

P () e (z) P () i (z)
- (resp. | — )

¢ (2) g (z) () 2g ()

(37)
A m

are Stieltjes positive definite sequences.

Remark 2 The Markov parameters (@ can be calculated by Laurent series
expansion of the rational functions appearing in , respectively.

Alternatively, to determine the Markov parameters (@ one can use remark
with

(ha(2),9a(2)) = ()™M (—2), (~1)™ g™ (=2)), n=2m  (38)

and
(ha(2),9a(2) = (~1)™g5m) (=2), (~1)"p5™ (~2)), n=2m+1.  (39)

Definition 9 Let n = 2m (resp. n = 2m + 1), and let K\ ) forr = 1,2,3,4
be the monic Kharitonov polynomials as in Definition [3], which correspond to the
mterval polynomial with the leading coefficient g = [1,1]. Furthermore, let

h%k), gn for k=1,2 be as in . We say that the Kharitonov polynomials

form a Kharitonov quadruple if between the polynomials h7(Z ), g,(lk), k=12
there are quadruples

(=1 hS) (=2), (1™ g2) (=2), (~1)™ ) (—2), (-1 g (=)
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and
((=1mghz (=20 (1™ RG L (=2), (1) gty (<2), (<1052, (=2) )
that are Kharitonov quadruples. Here (i) is one of the superscripts (1) or (2).

Now we state the main result of the present work.

Theorem 2 Let n = 2m (resp. n = 2m + 1) and K for r =1,2,3,4 be
monic Kharitonov polynomials as in Definition é If the polynomials KT(LT) form a
Kharitonov quadruple, then the corresponding interval polynomial p, is a stable
interval polynomial.

Proof 2 The proof follows by using Propositon @ and Equalities —.

Note that the converse statement to Theorem [2] appears in Conjecture

The following remark verifies, for 2 < 57 < 7, some ordering of the pairs
(h(lk)jg]( )) appearing in 1)1} This ordering allows the identification of the
pairs (hgmax)’gj(max)) and (hjmin ’g§min)
are stated in Conjecture [2|

). For j > 7, the corresponding equalities

Remark 3 Let hﬁ), gg), hﬁf), g,(f) be as in —(@. Furthermore, let the pairs
(hgl),gﬁfa)) forip =1 or iy = 2 with k = 1,2. be Kharitonov quadruples as in
definition[4 Thus, the following equalities hold.

(B g8y =D g8, (™, g8y = (h", g8, (40)
(h§™) g8y =(n§), g, (™, g™y = (hD,68Y),  (a1)
(h§™), g >>:<h<” g gy = (0P ), 2
(B gy =D g, (M, gl = (), 687, (43)
(h§™ g™y =D g8, (™, g™y = (hD, g8). (49)
(R gy =(n{D g, (AT gty = (B, gtV). (45)

Proof 3 Equalities @— can be verified by using lemma : see also [10,
Remark 3.1].

Example 1 Let the following Stieltjes positive definite sequences be given

19 913 49959 2753481 151846263 8374343913 461849056119
8 ' 16 32 ’ 64 ’ 128
596853 16095575 868194535
1 1 ) 3 , 2926929877}

{5t Nmo={5

(i 415
¥ ={9, —2,5538,

}
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(min) (max

Clearly, s, < s ) for 0 < k < 6. The corresponding orthogonal polynomials
and second kind polynomials (see Definition @) are given by

6322 153 1923 219
P (2) =28 — ;'+1uz—7f,qg“N@: ; ST T g,
- 223 ; 14322 25
pggm)(z) =% 31224 F 76, q§,m3m)(z) =95 — 2% 11092 — 5
Let
K (2) 1= = (¢85 (=2%) + 2 pSy " (—22), (46)
K™ (2) 1= — (85 (=22) + 2035 (=5%)), (47)
3 X i
EP(2) 1= = (¢35 (=2%) + 2pf3 " (—2), (48)
and
4 min max
K{Y(2) = = (a85™(=2%) + 2 p§5™ (—22). (49)
By applying remark[3, we calculate the Markov parameters
316 19 447 23910 34763331 937569489 50573020801
Lo ={=, =, 2 161131
{Sk}k—o {2727 4 ) 3 ] ) ] ) 16 }( )
242490639 13373470377
{s35_y ={9,212, 5788, 159466, 4396929, ). (51)

2 ’ 4

Next, we verify that @) and are Stieltjes positive definite sequences; see

Definition[1. Furthermore, we construct the corresponding orthogonal polynomials

pg)’%, pg‘% and their second kind polynomials q%, qgg. These are the following:

) )

223 1923 219
Pha(z) =2* =312+ zz_ﬂi é?&)=*§*—7u2+—53—1z
6322 153 14322 25
zﬁﬁd=n3— ; + 11z — —-, éﬂ@)=9f—» z +109z — 7.
By Pmposz'tion the corresponding Kharitonov polynomials Kémin), émax), K§3)

and K§4) are Hurwitz polynomials. Finally, by Theorem@ the interval polynomial
fr(z,8) :==002" + 6125 + 0225 + 032% + 642% + 0522 + 062 + 07 (52)

is a stable interval polynomial. Here &g € [1,1], 61 € [9,9.5], d2 € [31,31.5], d3 €
[71,71.5], 64 € [111,111.5], 85 € [109,109.5], & € [76,76.5] and &7 € [12,12.5].

The interval coefficients d; are attained from the coefficients of Kémin), émax),

Kés) and K§4), which in fact are the Kharitonov polynomials of f7.
Note that the interval polynomial was considered in [4, Example 5.4,
Chapter 5|.
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Remark 4 By using the moments of example[1] and Definition[d, we construct the
polynomials ((pY'),)3,_, (a\"))3,—0» (S 0.)3—0> (a5)3—0)- With the help of these
polynomials and @, we establish four finite sequences of Hurwitz polynomials:

) =2+ a 1P vl r=1,04,

and k € Z$. Here 78 =1{1,2,...,p}. For every k, each interval coefficient of the
interval polynomial is defined by

() )]

> MAX ay

[min a
rezZy

4
reZj

The family of stable interval polynomials in descending order with an initial
interval polynomial @ is then given by
fo(z) =2% +19,9.5]2° + [30.57, 30.05] 2% 4 [66.61, 67.74] 2% 4 [97.24, 99.18] 2>
+ [83.30, 85.84] 2 + [47.27, 48.74],
f5(2) =2° +[9,9.5]2% + [29.33,29.94] 2% 4 [54.87, 57.75] 2>
+ [61.43,67.49]z + [26.00, 29.92],
fa(z) =2 +19,9.5]2% + [28.41, 29.11] 2>
+ [46.39, 50.06] 2 + [38.96, 43.07],
f3(z) =2 +9,9.5]2% + [26.69, 27.35] 2 4 [30.63, 33.71],
fa(2) =22 +19,9.5]2 4 [23.05,24.02],  fi(2) = 2+ [9,9.5].

3 Robust stabilization of the canonical system

Let z := column(z1, z2,...,x,). Consider the linear system
T =A,x, (53)
where
0 1 0 0
-y —Qp_1 ... —Qy —Qj

with o € [y, @j] for 1 < j < n. System li represents a linear system subject to
some uncertainties, which may be caused by unknown perturbations with entries
within a given interval; see [25].

Definition 10 Let A, be a matriz as in .
a) The interval polynomial

pa,(t) = (=D"(t" + art" P+ aqt" 2+ it + ay) (54)

1s called the characteristic interval polynomial of the matrix A,,.
b) System is called stable if (—1)"pa,, is a stable interval polynomial.
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Now consider the linear control system
T = A,z + bpuy, (55)

with
by, := column (0,...,0,1). (56)

Definition 11 The system is robustly stabilizable if there exists a 1 X n
interval matriz v == —(v1,72, - .., ¥n) where v; € [v4,7;] for 1 < j < n such that

the linear system & = (A,, + by)x is stable. Here

0 1 ... 0 0
Antbr=1 "9 o .. 0o 1 |’
—0n —0Op—1 ... —0y —01
with 6; = [z, y;] and
(25, y5] = o + 75,05 + 7] (57)
The linear interval function
Un(T,7Y) 1= —Yn®1 — Yn—1T2 — ... — N Tn (58)

1s called the robust stabilizing control of the system .

In , we used interval arithmetic. For completeness, let us recall endpoint
formulas for the arithmetic operations of intervals; see [31].

Remark 5 Let [a,b] and [c,d] be closed intervals. The addition, subtraction,
multiplication and division of intervals are defined respectively as follows:

[a,b] + [¢,d] :=]a + ¢, b+ d],
[a,b] — [¢,d] :=]a —d,b— ],
[a,b] - [c, d] :=[min{ac, ad, be, bd}, max{ac, ad, be, bd}],
L aabbd
[C,d] T mln{ 7dac7d}amax{cadvcad} ) Og[cad]

Remark 6 System with A, = Ay (a) and u, = up(z,7y) a is parametric
differential equation

T = An(a)z + bpun(z, ). (59)
In turn, differential equation @ 1s a special case of the differential equation
&= f(z,a,7),

where a and v are parameters taking certain given values within certain closed
intervals. See for example [33, Equality (1), [21)] and [35].
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Now we turn to the problem of the robust stabilization of the Brunovsky system.
Let

0y I,_
A(O)::< n—1x1 n—1 >’
" 0 O1xn—1

where I, and 0,x, denotes the identity matrix and p x g zero matrix. The system
i=A2 + byu, (60)

is called the Brunovsky system or canonical system. System is a widely used
control system for the study of the controllability and feedback stabilizability of
linear and nonlinear systems, with the latter after a certain transformation; see
[37], [36]. The Brunovsky system as the basic control model is used for testing
results or approximating more general systems for controllability, time optimal
control and stability problems; see [5], [37], [40], [41], [42], [44], [15], [13], and [L1].
In particular, we emphasize the relevance of the controllability function method
created by B.I. Korobov in 1979 [27]. This method allows stabilization at a finite
time of the Brunovksy system and more general control systems under bounded
controls [28]. See also [14].

The following result allows the construction of a robust control that stabilizes
system by employing the Kharitonov quadruples as in Definition

Theorem 3 Let n = 2m (resp. n = 2m + 1). Let p,, be the interval polynomial
of the form with interval coefficients 6; constructed via the Kharitonov
in)

m (min) (max) (max (min) (min) (max)
quadruples (pl,m yd1m s P1im A m 2m 92m s P2m s glfnx)

Thus, the linear interval function

)), respectively (p

Un(x) = =0px1 — dp_12 — ... — 012y, (61)
s a robustly stabilizing control for system (@)

Proof 4 Let 6™ := —(61,00,...,0,). Write the positional control u, as
1(@;6) = 6My. Substitute u, for up () = sz in (@) The right-hand side of

can be written in the form & = A, x, where
A=A 4p,60.

The characteristic polynomial of An has the form

Pz, () = det(t] — Ap) = (=1)"(t" + 61" "+ 61t" 2 + ... + 61t + 6n)

Clearly (—1)"px  coincides with the stable interval polynomial py of the form
with coefficients (1,081,02,...,0,). Consequently, the control robustly

stabilizes system
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3.1 An algorithm for constructing a robust control

Let n = 2m (resp. n = 2m + 1).

1) Find two Stieltjes positive sequences (sgmin))?:_&, (ngax))j:_& such that
ngin) < ngax) with at least one strict inequality.

2) Construct polynomials (pgﬁn),qgﬁn), pglf;jx),qﬁjx)), and (pgﬁn), qéﬁn),
(max) (max)

5 m 3 3 m ) asin Deﬁnition

3) In the case that the polynomials constructed in 2) form a Kharitonov
quadruple, using lemma [I] and remark [2] calculate the interval coefficients.
In the opposite case, return to Step 1).

4) With the help of , write the stabilizing robust control wy,.

Example 2 Consider the system @) with n = 7. We use example |1, which in
fact follows the suggested algorithm. Thus, we attain the positional control

wr(2)=—[12.12.5]2, —[76, 76.5)m5—[109, 109.5]z3—[111, 111.5]a4—[71, 71.5]z;
— [31,31.5]z6 — [9,9.5]a7,

which robustly stabilizes system (@)

Example 3 As in a similar manner for 2 < n < 6, system (@) can be robustly
stabilized by

ug(x) = — [47.27,48.47)x1 — [83.3,85.84]x9 — [97.24,99.18]z3
— [66.61,67.74)z4 — [30.57,30.05]z5 — [9,9.5]z6,
us(x) = — [26,29.92]z; — [61.43,67.49]zy — [54.87,57.75]3
— [29.33,29.94]z4 — [9,9.5]z5,
ug(x) = — [38.96,43.07)z1 — [46.39, 50.06]z5 — [28.41,29.11]z5 — [9, 9.5]24,
us(x) = — [30.63,33.71)z1 — [26.69, 27.35]z5 — [9, 9.5z

and

ug(x) = — [23.05,24.02]z1 — [9,9.5]x2.

4 Conclusion and conjectures

In the present work, a reformulation of the Kharitonov theorem via quadruple
polynomials is given. A family of decreasing degrees stable interval polynomials
is proposed. With the help of constructed stable interval polynomials, a family of
robust controls is formulated.

Next we present three conjectures concerning the results of section 1.



Bicuuk XHY, Cep. «Maremaruka, IpUKJIa/Ha MaTeMaTHKa I MexaHikay, Tom 86 (2017) 65

Conjecture 1 Let n = 2m (resp. n = 2m + 1) and let p, be a stable interval
n—1

polynomial of the form . Furthermore, for r = 1,2,3,4 let (sy))‘ . be
J:

Markov parameters
corresponding to Kharitonov polynomials K ofpn Thus, the following order

yields
(min) <8(i2) <5 (i3) < (max)’
J - J - .7 -

where (min), (i2), (i3), and (max) take one of the values 1,2,3 or 4. Furthermore,
at least one of the inequalities in (@) is a strict inequality.

s 0<j<n-1 (62)

Conjecture 2 Let h%l), g,&l), th), g,(f) be as in —(@. The following equalities
hold.

(i) aies)) =(hiy- z,gii) ) () aies) = (il gl) o), (63)
(e 05y =(hig o 0i ), (W ) = (gl (69)
CHNH =<h4g .9 i?) (5™, g1 ™) = (057, 017, (65)
(hgjla?)’ 4?13:)': ) =(h{ 4e 3 44 3) (hz(lr;ir:ls)’gz(iren:?) = (hi?,;g,gg),?)). (66)
This conjecture is a generalization of remark (3| It says that the superindex (min)

and (max) can be related to the degree of the interval polynomial p,, (15).

Conjecture 3 Let n = 2m (resp. n = 2m + 1). The interval polynomial py, is

a stable if and only if the Kharitonov polynomials K for r =1,2,3,4 form
Kharitonov quadruples.

Note that the sufficient condition of Conjecture [3|is proven in Theorem [2]
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