
126

I. Zaretska
zaretskaya@karazin.ua

A. Radchenko
wsooh16@gmail.com

A. Minayev
alexlm555555@gmail.com

Algorithms Constructor:
a Tool to Learn and Teach Algorithms

The paper presents an environment for creating, editing, tracing and running, saving and

loading algorithms in a flowchart form. It can be used in any educational process whenever the basics
of algorithms are to be learned. The requirements model, design of the system and its implementation
are presented. Two modules are presented: for a trainer to fill in the system with the problems on
creating algorithms and their right solutions in the form of flowchart, and for a trainee to solve these
problems by creating and tracing algorithms and gaining skills in algorithms construction.

Key words: software system, object-oriented design, algorithm, flowchart.

І. Зарецька
zaretskaya@karazin.ua
А. Радченко
wsooh16@gmail.com
А.Мінаєв
alexlm555555@gmail.com
Конструктор алгоритмів: інструмент вивчення та навчання алгоритмам
У цій роботі подано середовище для розробки, редагування, трасування й виконання,

збереження та завантаження алгоритмів у формі блок-схем. Воно може бути застосоване у
будь-якому навчальному процесі під час вивчення основ алгоритмів. Наведені модель вимог,
дизайн системи, а також його реалізація. Подано два модулі: модуль викладача для
наповнення системи завданнями щодо створення алгоритмів та їх рішеннями у формі блок-
схем; модуль учня для вирішення цих проблем під час розробки та трасування алгоритмів
і отримання навичок у конструюванні алгоритмів.

Ключові слова: програмна система, обʼєктно-орієнтований дизайн, алгоритм, блок-
схема.

Introduction

In IT education wherever it takes place – at the elementary or the secondary
school, university, any other secondary or higher educational institution or even
just IT school – it is of utmost importance to gain fundamental knowledge and
skills which form the base for further education. As our experience on teaching IT
for more than 40 years shows it is absolutely justified to teach basics of
algorithms, their structures and control flows as well as methods of creating before
teaching programming and programming languages. When a student can develop
an algorithm to solve the problem it is much easier for him or her to write a
program using the syntax of some programming language. Unfortunately, many
trainers begin teaching programming skipping this very important step which
leads to partial understanding instead of general approach. To make the process of
teaching and learning basics of algorithms more IT-like we developed a software
system which in fact is an IDE (Integrated Development Environment) for

127

working with algorithms – creating, saving in files, loading from files, editing,
tracing and running. The system has two modules – for trainees and for trainers.

The trainerʼs module allows user to formulate a problem and add it to an
existing category or to a new one (all the problems are supposed to be divided
into categories). Then a trainee creates a flowchart of an algorithm or a set of
flowcharts (if there are several solutions) being the right solution to this problem
by using flowchart blocks and filling them with commands. There is an option to
add some extra blocks with commands aside from the right flowchartʼs blocks
for a trainee to widen the variety of choices. The problem and its flowchart
solutions should be saved.

The trainee module allows user to choose the problem from the list of
problems of the certain category and to create the flowchart of an algorithm
using blocks with commands created by a trainer. He or she can then check the
solution, edit it and check again, run or trace the algorithm under different input
data and see control paths and outputs, save it in any folder for further usage.

The proposed system was developed by request of the Ukrainian
publishing agency “Ranok” in frame of the international project on joint school
education as an electronic support for several textbooks on informatics for
schools published by this agency. All these textbooks are recommended by the
Ukrainian Ministry of Education and are used together with their electronic
support systems in most Ukrainian schools. There are several types of electronic
support materials developed together with these textbooks. In fact the authors of
this paper are among the authors of all the textbooks and all the electronic
materials. Part of them is developed as the interactive games strictly bounded to
the materials and the design of the textbooks and covering the whole book
including basics of algorithms. Opposite to those electronic materials the system
presented in this paper is universal and can be used separately not only at schools
but in any educational institution teaching IT. The first version of the system
with Ukrainian interface only was disseminated two years ago via the site of the
publishing agency “Ranok” among the Ukrainian schools. The feedback was
analyzed and corrections and improvements implemented. The paper presents the
new version of the system.

The system goes with the predefined initial set of about 50 problems and
their solutions developed by the authors. All problems are divided into
categories (linear algorithms, forks, iterations, and combined algorithms). New
categories and problems can be easily added using trainerʼs module as well as
any of the problems of the initial set can be deleted or edited by a trainer.

The system can be used for individual training as well as in the class
work. In second case a teacher can assign different problems to different
students and check their solutions saved in agreed network folder later, which
considerably decreases teachersʼ loads.

128

1. Related Work

In the last decade of previous century the theory of R-charts was proposed
by Russian professor I.V. Velbitskiy. He developed a new technology of visual
programming by R-charts which allowed drawing programs instead of writing
them. He implemented the universal graphical environment to create programs
in any existing programming language [1–4]. His research was continued and
enhanced with UML notation [5]. The R-charts were used mostly on industrial
level for teaching the software technology in the process of software systems
development. The theory and technology are quite complicated to be used at the
introductory stage of learning algorithms.

Some research in the area were conducted in Kherson state university by
professors A. Spivakovskii, M. Lvov and their followers [6–9]. They created
a special instrumental language that allowed interpreting an algorithm. It was
created especially for teaching students basics of algorithms but it had no
graphical tool for constructing flowcharts.

A lot of European and American software companies worked on the
flowcharts construction tools mostly for modelling business processes, work and
data flows, activities, etc. In fact nowadays there are a lot of CASE-tools for
flowcharts construction: any office suite includes something like Microsoft
Visio. The truth is that they may be quite helpful for modelling and for expe-
rienced users but much less useful in the educational process for learning
algorithms. They have quite complicated interfaces for the beginners. They do
not allow user to check or to trace or to run an algorithm, explore different
control paths under different input data, examine output data and make
conclusions, which the process of learning requires. But they do have a lot of
other options which are really excessive in the process of learning basics of
algorithms. Not to mention the absence of incorporated problems to solve, which
gives a teacher the freedom for creative work with students of different levels
without increasing teacherʼs load.

There are also several web-applications for flowcharts construction like
draw.io (https://www.draw.io/) or lucidchart.com (https://www.lucidchart.com/)
but they have the same disadvantages as the CASE-tools mentioned above.

The only similar software system found by authors is Algorithm Flowchart
Editor (AFCE) (https://github.com/viktor-zin/afce/tree/gh-pages/download) [10]
which can be used in educational process. It offers the environment to construct,
edit, save and load flowcharts but one cannot trace or run an algorithm to explore
it. Instead it offers some pseudo-programming code implementing the algorithm,
which may be useful for learning purposes. No set of problems and no interface
to create them are proposed.

The authors do not know so far software systems which satisfy the
requirements given in the next section.

129

2. Requirements for Algorithms Constructor

After multiple discussions with customers and potential users (mostly
school teachers) and prototyping the following set of requirements was defined.

The system has two types of users with roles “trainee” and “trainer”.
A trainee uses the system to explore the process of creating flowcharts for

the predefined set of problems, tracing and running the obtained algorithms
with different data inputs to see the outputs. The right solutions for these
problems have already been saved in the system by a trainer. So a trainee can
check whether his or her solution is correct and if not, edit the flowchart and
explore or check it again. To create or to edit a flowchart a trainee has to insert
or delete blocks. To insert a block one has to choose (click) a block from the set
of given ones and then choose (click) a place for a block on the flowchart.
Deleting a block is a usual procedure of deleting a fragment. UnDo and ReDo
commands are also available.

A trainer uses the system to fill it in with problems and their right
solutions in the form of flowcharts. Several right solutions can be stored with a
problem. A problem can include an image. Problems can be divided into
categories if needed. A trainer can add or delete categories. Categories can form
a tree with nested categories but no more than 3 levels in depth. The names of
categories and problems, their texts, images and the right solutions are
completely up to the trainer and completely his or her responsibility. The only
validation offered by the system is checking that conditions are in their proper
places in forks and iterations and blocks for data input and output (they have the
special shape) contain the commands to enter or print variables.

The simplified use case diagrams for these functional requirements are
shown in Fig. 1 and Fig. 2.

Fig. 1. Use case diagram for a trainee

130

Fig. 2. Use case diagram for a trainer

The nonfunctional requirements are the following.
The system supports three interface languages – English, Ukrainian and

Russian.
The prototype of the user interface design looks like shown in Fig. 3.

Fig. 3. User interface prototype

The system is a desktop application. The deliverable is an executable file
(*.exe).

The presentation and business logic levels are implemented with Python.
The data storage (problems, flowcharts, solutions) is implemented as json-
format files.

131

3. Design of Algorithms Constructor

This section covers the most crucial part of the system, which is its
design. We used an object-oriented approach and UML diagrams [11] to
represent the static structure of the system (class diagrams) and its behavior
(sequence diagrams). The main goal of the design was to make it reusable for
both trainee and trainer modules and to follow SOLID principles [12, 13]. The
whole number of classes exceeds 50, so we divided the class diagram into
logically connected parts to present it in the paper. The sequence diagrams
show the behavior of the system for each use case, but they are too big to be
presented here, so we present here the main concepts of the system, the rendering
classes, and the classes responsible for persistency. We also consider the GUI
structure and models for json representation of the basic concepts.

3.1. Business logic and GUI structure

This section specifies the structural design of the system as UML class
diagrams.

1. The main concept of the system is an Algorithm. Its structure is shown in
Fig. 4. It is a container of classes derived from the abstract Operator base class.
These derivative classes stand for all basic operators of any algorithm which are
inputs and outputs, text commands, assignments, forks and loops of three types
(with preconditions, postconditions or counters). The base class Condition and its
derivative classes stand for different types of conditions in forks and loops.

Fig. 4. Class diagram for Algorithm structure

132

2. The whole structure of the system is shown in Fig. 5. The class System
contains all the problems (Fig. 3, left part), current algorithm (Fig. 3, center
part) and blocks of its flowchart (Fig. 3, right part). A problem is implemen-
ted with the class Task. To run or trace an algorithm along different control
paths the idiom of an iterator is used. The classes RunIterator and TraceIte-
rator are responsible for running and tracing flowcharts respectively. The
class StateStack is responsible for UnDo and ReDo commands in the process
of the flowchart construction. The class Comparator is used for checking
the current flowchart i. e. comparing it with the solution represented by
the class Solution.

Fig. 5. Class diagram for the whole system structure

3. The diagram in Fig. 6 shows the classes responsible for running or
tracing an algorithm. The variables and their current values are stored in the
class Memory in the dictionary. The Memory and the MemoryViewer classes
implement the Observer pattern [14].

133

Fig. 6. Class diagram for tracing the values of variables

4. All the classes shown in Fig. 7 are responsible for proper rendering of
flowcharts and their blocks in the working area.

Fig. 7. Class diagram for rendering

134

5. The diagram shown in Fig. 8 is a simplified structure of the systemʼs
GUI.

Fig. 8. Class diagram of GUI structure

6. The classes shown in Fig. 9 are responsible for storing data in json-
format files. The class Accessor implements a bridge [14] between the business
logic and the storage. The class Logger is an auxiliary class to follow errors in
the process of systemʼs operation.

Fig. 9. Class diagram for access to data storage

4. Implementation of Algorithms Constructor

This section presents several snapshots of the trainee module to show the
operation of the system.

135

The first snapshot in Fig. 10 shows the beginning of work: the left panel
offers a problem to solve with the selected one being highlighted, the upper part
contains language selector and menu, the right panel shows blocks of the future
flowchart, and the working area contains the text of the problem and the blank
flowchart with the Start and End blocks only.

Fig. 10. Beginning of work

To insert a block into the flowchart one should first select it on the right
panel, which results in bold points on all arrows where it can be inserted as
shown in Fig. 11. Clicking one of these points results in inserting the selected
block exactly into this place.

Fig. 11. Inserting the selected block

136

After finishing the flowchart construction one can check it just pressing
the Check button and then run or trace the algorithm. The process is shown in
Fig. 12. The right panel contains now the fields where the values of variables
should be entered. The results of the algorithmʼs “execution” appear in the
output area at the bottom of the screen.

Fig. 12. Running an algorithm

In the process of tracing the algorithm step by step the current step is
highlighted by the red border and the current values of all variables are shown
on the right panel. For example Fig. 13 shows the current values of variables on
the third iteration of the loop.

Fig. 13. Tracing an algorithm

137

5. Evaluation Results

The first version of the system has been in use in Ukrainian schools for
about two years. Several webinars for teachers using it were organized by the
publishing office “Ranok”. All the feedback was analyzed and taken into account.
The new version presented in this paper was spread out via the site of the publi-
shing office “Ranok”. There is positive response from teachers. Teachers confirm
that it helps to motivate their students and greatly lessens the teachersʼ load.

Our university conducts courses for teachers where we also present this
system. At our university we use the system in the course of introduction to
algorithms for students of different specialties. The results show the system to
be useful for better understanding of algorithms fundamentals.

Conclusions
The paper presents a software system for learning and teaching basics of

algorithms through flowcharts construction. It can be used by trainees to learn how
to create algorithms of different complexity levels using only basic algorithmʼs
structures (forks and iterations of three types), “run” the constructed algorithms
with different input data and explore all control paths. It also can be used by
trainers to fill in the system with problems and their right solutions in the form of
flowcharts. The situation with several right solutions to the problem is covered.

The system was developed exceptionally for educational purposes. It can be
used in any educational institution from elementary school to university to learn
and teach basics of algorithms and to understand basic algorithm structures.

The	 feedback	 from	 teachers	 using	 the	 system	 shows	 it	 to	 be	 useful	
exactly	for	the	purposes	it	was	developed.	

	

References

1. McHenry W. K. R-Technology: A Soviet Visual Programming / W. K. McHenry // Journal
of Visual Languages and Computing. – 1990. – Vol. 1. № 2. – P. 199–212.

2. Velbitskiy I. V. Next generation visual programming technology with R-charts /
I. V. Velbitskiy // MEDIAS-2012. Dedicated to 100anniversary of Alan Turing (IEEE) : plenary
report. – Cyprus, 2012. – P. 14–34.

3. Velbitskiy I. V. Next generation visual programming technology / I. V. Velbitskiy //
11-th IEEE EAST-WEST DESIGN & TEST SYMPOSIUM (IEEE EWDTS), Russia, Rostov on Don,
Sept. 27–30 : plenary report. – Rostov on Don, 2013. – P. 404–410.

4. Velbitskiy I. V. Graphical programming and programs verification / I. V. Velbitskiy //
9-th IEEE COMPUTER SCIENCE & INFORMATION TECHNOLOGIES CONFERENCE, ARMENIA,
YEREVAN. – YEREVAN, 2013.

5. Drobushevich L. F. Common use of UML and R-chart notations in the training process for sof-
tware system development methods / L. F. Drobushevich // MEDIAS-2010. – Cyprus, 2010. – P. 73–77.

6. Lvov M. Video-interpreter of search and sorting algorithms / M. Lvov, A. Spivakovskii //
Informatizatsiya osvity v Ukrayini: stan, problem, perspectivy. – Kherson, 2003. – P. 100–102.

7. Spivakovskii A. Web-environment for learning basics of algorithms and programming /
A. Spivakovskii, N. Kolesnikova, N. Tkachuk, I. Tkachuk // Upravlyayushiye sistemy i mashiny. –
Kiev, 2008. – P. 70–75.

8. Spivakovskii A. Video-interpreter of algorithms of integrated environment for learning basics
of algorithms and programming / A. Spivakovskii, N. Kolesnikova // Third International conference “New
information technologies in education for everybody”. – Kiev, 2008. – P. 399–404.

9. Spivakovsky A. An integrated training environment for the university course “Basics of
algoritmization and programming” / A. Spivakovskii, N. Kolesnikova, N. Tkachuk, I. Tkachuk //
Information Technologies in education for all. – Kiev, 2007. – P. 240–248.

